

ffirs.indd iiffirs.indd ii 9/29/2012 5:55:03 PM9/29/2012 5:55:03 PM

MAC OS® X AND iOS INTERNALS

INTRODUCTION .xxv

 � PART I FOR POWER USERS

CHAPTER 1 Darwinism: The Evolution of OS X . 3

CHAPTER 2 E Pluribus Unum: Architecture of OS X and iOS .17

CHAPTER 3 On the Shoulders of Giants: OS X and iOS Technologies 55

CHAPTER 4 Parts of the Process: Mach-O, Process, and Thread Internals 91

CHAPTER 5 Non Sequitur: Process Tracing and Debugging .147

CHAPTER 6 Alone in the Dark: The Boot Process: EFI and iBoot 183

CHAPTER 7 The Alpha and the Omega — launchd . 227

 � PART II THE KERNEL

CHAPTER 8 Some Assembly Required: Kernel Architectures 261

CHAPTER 9 From the Cradle to the Grave — Kernel Boot and Panics 299

CHAPTER 10 The Medium Is the Message: Mach Primitives . 343

CHAPTER 11 Tempus Fugit — Mach Scheduling . 389

CHAPTER 12 Commit to Memory: Mach Virtual Memory . 447

CHAPTER 13 BS”D — The BSD Layer . 501

CHAPTER 14 Something Old, Something New: Advanced BSD Aspects 539

CHAPTER 15 Fee, FI-FO, File: File Systems and the VFS . 565

CHAPTER 16 To B (-Tree) or Not to Be — The HFS+ File Systems 607

CHAPTER 17 Adhere to Protocol: The Networking Stack . 649

CHAPTER 18 Modu(lu)s Operandi — Kernel Extensions . 711

CHAPTER 19 Driving Force — I/O Kit . 737

APPENDIX Welcome to the Machine . 773

INDEX . 793

ffirs.indd iffirs.indd i 9/29/2012 5:55:02 PM9/29/2012 5:55:02 PM

ffirs.indd iiffirs.indd ii 9/29/2012 5:55:03 PM9/29/2012 5:55:03 PM

Mac OS® X and iOS Internals
TO THE APPLE’S CORE

Jonathan Levin

ffirs.indd iiiffirs.indd iii 9/29/2012 5:55:03 PM9/29/2012 5:55:03 PM

Mac OS® X and iOS Internal

Published by
John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2013 by Jonathan Levin

Published by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-11805765-0
ISBN: 978-1-11822225-6 (ebk)
ISBN: 978-1-11823605-5 (ebk)
ISBN: 978-1-11826094-4 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA
01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Permis-
sions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008,
or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifi cally disclaim all warranties, including
without limitation warranties of fi tness for a particular purpose. No warranty may be created or extended by sales or
promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work is
sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional
services. If professional assistance is required, the services of a competent professional person should be sought. Neither
the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is
referred to in this work as a citation and/or a potential source of further information does not mean that the author or the
publisher endorses the information the organization or Web site may provide or recommendations it may make. Further,
readers should be aware that Internet Web sites listed in this work may have changed or disappeared between when this
work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with
standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media
such as a CD or DVD that is not included in the version you purchased, you may download this material at
http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2011945020

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related trade dress are
trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affi liates, in the United States and other coun-
tries, and may not be used without written permission. Mac OS is a registered trademark of Apple, Inc. All other trade-
marks are the property of their respective owners. John Wiley & Sons, Inc., is not associated with any product or vendor
mentioned in this book.

ffirs.indd ivffirs.indd iv 9/29/2012 5:55:06 PM9/29/2012 5:55:06 PM

http://www.wiley.com
http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://www.wiley.com

To Steven Paul Jobs: From Mac OS’s very fi rst

incarnation, to the present one, wherein the legacy of

NeXTSTEP still lives, his relationship with Apple is

forever entrenched in OS X (and iOS). People focus on

his effect on Apple as a company. No less of an effect,

though hidden to the naked eye, is on its architecture.

I resisted the pixie dust for 25 years, but he

fi nally made me love Mac OS... Just as soon as I got

my shell prompt.

— Jonathan Levin

ffirs.indd vffirs.indd v 9/29/2012 5:55:07 PM9/29/2012 5:55:07 PM

CREDITS

ACQUISITIONS EDITOR
Mary James

SENIOR PROJECT EDITOR
Adaobi Obi Tulton

DEVELOPMENT EDITOR
Sydney Argenta

TECHNICAL EDITORS
Arie Haenel

Dwight Spivey

PRODUCTION EDITOR
Christine Mugnolo

COPY EDITORS
Paula Lowell

Nancy Rapoport

EDITORIAL MANAGER
Mary Beth Wakefi eld

FREELANCER EDITORIAL MANAGER
Rosemarie Graham

ASSOCIATE DIRECTOR OF MARKETING
David Mayhew

MARKETING MANAGER
Ashley Zurcher

BUSINESS MANAGER
Amy Knies

PRODUCTION MANAGER
Tim Tate

VICE PRESIDENT AND EXECUTIVE GROUP
PUBLISHER
Richard Swadley

VICE PRESIDENT AND EXECUTIVE PUBLISHER
Neil Edde

ASSOCIATE PUBLISHER
Jim Minatel

PROJECT COORDINATOR, COVER
Katie Crocker

PROOFREADER
James Saturnio, Word One New York

INDEXER
Robert Swanson

COVER DESIGNER
Ryan Sneed

COVER IMAGE
© Matt Jeacock / iStockPhoto

ffirs.indd viffirs.indd vi 9/29/2012 5:55:07 PM9/29/2012 5:55:07 PM

ABOUT THE AUTHOR

JONATHAN LEVIN is a seasoned technical trainer and consultant focusing on the internals of the
“Big Three” (Windows, Linux, and Mac OS) as well as their mobile derivatives (Android and iOS).
Jonathan has been spreading the gospel of kernel engineering and hacking for 15 years, and has
given technical talks at DefCON as well as other technical conferences. He is the founder and CTO
of Technologeeks.com, a partnership of expert like-minded individuals, devoted to propagating
knowledge through technical training, and solving tough technical challenges through consulting.
Their areas of expertise cover real-time and other critical aspects of software architectures, system/
kernel-level programming, debugging, reverse engineering, and performance optimizations.

ABOUT THE TECHNICAL EDITORS

ARIE HAENEL is a security and internals expert at NDS Ltd. (now part of Cisco). Mr. Haenel has
vast experience in data and device security across the board. He holds a Bachelor of Science Engi-
neering in Computer Science from the Jerusalem College of Technology, Israel and an MBA from the
University of Poitiers, France. His hobbies include learning Talmud, judo, and solving riddles. He
lives in Jerusalem, Israel.

DWIGHT SPIVEY is the author of several Mac books, including OS X Mountain Lion Portable
Genius and OS X Lion Portable Genius. He is also a product manager for Konica Minolta, where
he has specialized in working with Mac operating systems, applications, and hardware, as well as
color and monochrome laser printers. He teaches classes on Mac usage, writes training and support
materials for Konica Minolta, and is a member of the Apple Developer Program. Dwight lives on
the Gulf Coast of Alabama with his beautiful wife Cindy and their four amazing children, Victoria,
Devyn, Emi, and Reid. He studies theology, draws comic strips, and roots for the Auburn Tigers
(“War Eagle!”) in his ever-decreasing spare time.

ffirs.indd viiffirs.indd vii 9/29/2012 5:55:07 PM9/29/2012 5:55:07 PM

ffirs.indd viiiffirs.indd viii 9/29/2012 5:55:07 PM9/29/2012 5:55:07 PM

ACKNOWLEDGMENTS

“Y’KNOW, JOHNNY,” said my friend Yoav, taking a puff from his cigarette on a warm summer night
in Shanghai, “Why don’t you write a book?”

And that’s how it started. It was Yoav (Yobo) Chernitz who planted the seed to write my own book,
for a change, after years of reading others’. From that moment, in the Far, Middle, and US East (and
the countless fl ights in between), the idea began to germinate, and this book took form. I had little
idea it would turn into the magnum opus it has become, at times taking on a life of its own, and
becoming quite the endeavor. With so many unforeseen complications and delays, it’s hard to believe
it is now done. I tried to illuminate the darkest reaches of this monumental edifi ce, to delineate
them, and leave no stone unturned. Whether or not I have succeeded, you be the judge. But know, I
couldn’t have done it without the following people:

Arie Haenel, my longtime friend — a natural born hacker, and no small genius. Always
among my harshest critics, and an obvious choice for a technical reviewer.

Moshe Kravchik — whose insights and challenging questions as the book’s fi rst reader hope-
fully made it a lot more readable for all those who follow.

Yuval Navon — from down under in Melbourne, Australia, who has shown me that friend-
ship knows no geographical bounds.

And last, but hardly least, to my darling Amy, who was patient enough to endure my all-too-fre-
quent travels, more than understanding enough to support me to no end, and infi nitely wise enough
to constantly remind me not only of the important deadlines and obligations. I had with this book,
but of the things that are truly the most important in life.

— Jonathan Levin

ffirs.indd ixffirs.indd ix 9/29/2012 5:55:07 PM9/29/2012 5:55:07 PM

ffirs.indd xffirs.indd x 9/29/2012 5:55:07 PM9/29/2012 5:55:07 PM

CONTENTS

INTRODUCTION xxv

PART I: FOR POWER USERS

CHAPTER 1: DARWINISM: THE EVOLUTION OF OS X 3

The Pre-Darwin Era: Mac OS Classic 3
The Prodigal Son: NeXTSTEP 4
Enter: OS X 4
OS X Versions, to Date 5

10.0 — Cheetah and the First Foray 5

10.1 — Puma — a Stronger Feline, but . . . 6

10.2 — Jaguar — Getting Better 6

10.3 — Panther and Safari 6

10.4 — Tiger and Intel Transition 6

10.5 — Leopard and UNIX 7

10.6 — Snow Leopard 7

10.7 — Lion 8

10.8 — Mountain Lion 9

iOS — OS X Goes Mobile 10
1.x — Heavenly and the First iPhone 11

2.x — App Store, 3G and Corporate Features 11

3.x — Farewell, 1st gen, Hello iPad 11

4.x — iPhone 4, Apple TV, and the iPad 2 11

5.x — To the iPhone 4S and Beyond 12

iOS vs. OS X 12

The Future of OS X 15
Summary 16
References 16

CHAPTER 2: E PLURIBUS UNUM: ARCHITECTURE OF OS X AND IOS 17

OS X Architectural Overview 17
The User Experience Layer 19

Aqua 19

Quicklook 20

Spotlight 21

ftoc.indd xiftoc.indd xi 9/29/2012 5:55:19 PM9/29/2012 5:55:19 PM

xii

CONTENTS

Darwin — The UNIX Core 22
The Shell 22

The File System 23

UNIX System Directories 24
OS X–Specifi c Directories 25

iOS File System Idiosyncrasies 25

Interlude: Bundles 26
Applications and Apps 26

Info.plist 28

Resources 30

NIB Files 30

Internationalization with .lproj Files 31

Icons (.icns) 31

CodeResources 31

Frameworks 34
Framework Bundle Format 34

List of OS X and iOS Public Frameworks 37

Libraries 44
Other Application Types 46
System Calls 48

POSIX 48

Mach System Calls 48

A High-Level View of XNU 51
Mach 51

The BSD Layer 51

libkern 52

I/O Kit 52

Summary 52
References 53

CHAPTER 3: ON THE SHOULDERS OF GIANTS: OS X
AND IOS TECHNOLOGIES 55

BSD Heirlooms 55
sysctl 56

kqueues 57

Auditing (OS X) 59

Mandatory Access Control 62

OS X- and iOS-Specifi c Technologies 65
User and Group Management (OS X) 65

System Confi guration 67

ftoc.indd xiiftoc.indd xii 9/29/2012 5:55:21 PM9/29/2012 5:55:21 PM

xiii

CONTENTS

Logging 69

Apple Events and AppleScript 72

FSEvents 74

Notifi cations 78

Additional APIs of interest 79

OS X and iOS Security Mechanisms 79
Code Signing 80

Compartmentalization (Sandboxing) 81

Entitlements: Making the Sandbox Tighter Still 83

Enforcing the Sandbox 89

Summary 90
References 90

CHAPTER 4: PARTS OF THE PROCESS: MACH-O,
PROCESS, AND THREAD INTERNALS 91

A Nomenclature Refresher 91
Processes and Threads 91

The Process Lifecycle 92

UNIX Signals 95

Executables 98
Universal Binaries 99

Mach-O Binaries 102

Load Commands 106

Dynamic Libraries 111
Launch-Time Loading of Libraries 111

Runtime Loading of Libraries 122

dyld Features 124

Process Address Space 130
The Process Entry Point 130

Address Space Layout Randomization 131

32-Bit (Intel) 132

64-Bit 132

32-Bit (iOS) 133

Experiment: Using vmmap(1) to Peek Inside a Process’s
Address Space 135

Process Memory Allocation (User Mode) 138
Heap Allocations 139

Virtual Memory — The sysadmin Perspective 140

Threads 143
Unraveling Threads 143

References 146

ftoc.indd xiiiftoc.indd xiii 9/29/2012 5:55:21 PM9/29/2012 5:55:21 PM

xiv

CONTENTS

CHAPTER 5: NON SEQUITUR:
PROCESS TRACING AND DEBUGGING 147

DTrace 147
The D Language 147

dtruss 150

How DTrace Works 152

Other Profi ling mechanisms 154
The Decline and Fall of CHUD 154

AppleProfi leFamily: The Heir Apparent 155

Process Information 156
sysctl 156

proc_info 156

Process and System Snapshots 159
system_profi ler(8) 159

sysdiagnose(1) 159

allmemory(1) 160

stackshot(1) 160

The stack_snapshot System Call 162

kdebug 165
kdebug-based Utilities 165

kdebug codes 166

Writing kdebug messages 168

Reading kdebug messages 169

Application Crashes 170
Application Hangs and Sampling 173

Memory Corruption Bugs 174

Memory Leaks 176
heap(1) 177

leaks(1) 177

malloc_history(1) 178

Standard UNIX Tools 178
Process listing with ps(1) 179

System-Wide View with top(1) 179

File Diagnostics with lsof(1) and fuser(1) 180

Using GDB 181
GDB Darwin Extensions 181

GDB on iOS 182

LLDB 182

Summary 182
References and Further Reading 182

ftoc.indd xivftoc.indd xiv 9/29/2012 5:55:21 PM9/29/2012 5:55:21 PM

xv

CONTENTS

CHAPTER 6: ALONE IN THE DARK:
THE BOOT PROCESS: EFI AND IBOOT 183

Traditional Forms of Boot 183
EFI Demystifi ed 185

Basic Concepts of EFI 186

The EFI Services 188

NVRAM Variables 192

OS X and boot.efi 194
Flow of boot.efi 195

Booting the Kernel 201

Kernel Callbacks into EFI 203

Boot.efi Changes in Lion 204

Boot Camp 204

Count Your Blessings 204

Experiment: Running EFI Programs on a Mac 206

iOS and iBoot 210
Precursor: The Boot ROM 210

Normal Boot 211

Recovery Mode 212

Device Firmware Update (DFU) Mode 213

Downgrade and Replay Attacks 213

Installation Images 214
OS X Installation Process 214

iOS File System Images (.ipsw) 219

Summary 225
References and Further Reading 225

CHAPTER 7: THE ALPHA AND THE OMEGA — LAUNCHD 227

launchd 227
Starting launchd 227

System-Wide Versus Per-User launchd 228

Daemons and Agents 229

The Many Faces of launchd 229

Lists of LaunchDaemons 241
GUI Shells 246

Finder (OS X) 247

SpringBoard (iOS) 248

XPC (Lion and iOS) 253
Summary 257
References and Further Reading 258

ftoc.indd xvftoc.indd xv 9/29/2012 5:55:21 PM9/29/2012 5:55:21 PM

xvi

CONTENTS

PART II: THE KERNEL

CHAPTER 8: SOME ASSEMBLY REQUIRED:
KERNEL ARCHITECTURES 261

Kernel Basics 261
Kernel Architectures 262

User Mode versus Kernel Mode 266
Intel Architecture — Rings 266

ARM Architecture: CPSR 267

Kernel/User Transition Mechanisms 268
Trap Handlers on Intel 269

Voluntary kernel transition 278

System Call Processing 283
POSIX/BSD System calls 284

Mach Traps 287

Machine Dependent Calls 292

Diagnostic calls 292

XNU and hardware abstraction 295
Summary 297
References 297

CHAPTER 9: FROM THE CRADLE TO THE GRAVE —
KERNEL BOOT AND PANICS 299

The XNU Sources 299
Getting the Sources 299

Making XNU 300

One Kernel, Multiple Architectures 302

The XNU Source Tree 305

Booting XNU 308
The Bird’s Eye View 309

OS X: vstart 310

iOS: start 310

[i386|arm]_init 311

i386_init_slave() 313

machine_startup 314

kernel_bootstrap 314

kernel_bootstrap_thread 318

bsd_init 320

bsdinit_task 325

Sleeping and Waking Up 328

Boot Arguments 329

ftoc.indd xviftoc.indd xvi 9/29/2012 5:55:21 PM9/29/2012 5:55:21 PM

xvii

CONTENTS

Kernel Debugging 332
“Don’t Panic” 333

Implementation of Panic 334

Panic Reports 336

Summary 340
References 341

CHAPTER 10: THE MEDIUM IS THE MESSAGE: MACH PRIMITIVES 343

Introducing: Mach 344
The Mach Design Philosophy 344

Mach Design Goals 345

Mach Messages 346
Simple Messages 346

Complex messages 347

Sending Messages 348

Ports 349

The Mach Interface Generator (MIG) 351

IPC, in Depth 357
Behind the Scenes of Message Passing 359

Synchronization Primitives 360
Lock Group Objects 361

Mutex Object 362

Read-Write Lock Object 363

Spinlock Object 364

Semaphore Object 364

Lock Set Object 366

Machine Primitives 367
Clock Object 378

Processor Object 380

Processor Set Object 384

Summary 388
References 388

CHAPTER 11: TEMPUS FUGIT — MACH SCHEDULING 389

Scheduling Primitives 389
Threads 390

Tasks 395

Task and Thread APIs 399

Task APIs 399

Thread APIs 404

ftoc.indd xviiftoc.indd xvii 9/29/2012 5:55:22 PM9/29/2012 5:55:22 PM

xviii

CONTENTS

Scheduling 408
The High-Level View 408

Priorities 409

Run Queues 412

Mach Scheduler Specifi cs 415
Asynchronous Software Traps (ASTs) 423

Scheduling Algorithms 427

Timer Interrupts 431
Interrupt-Driven Scheduling 431

Timer Interrupt Processing in XNU 432

Exceptions 436
The Mach Exception Model 436

Implementation Details 437

Experiment: Mach Exception Handling 440

Summary 446
References 446

CHAPTER 12: COMMIT TO MEMORY:
MACH VIRTUAL MEMORY 447

Virtual Memory Architecture 447
The 30,000-Foot View of Virtual Memory 448

The Bird’s Eye View 449

The User Mode View 452

Physical Memory Management 462
Mach Zones 467

The Mach Zone Structure 468

Zone Setup During Boot 470

Zone Garbage Collection 471

Zone Debugging 473

Kernel Memory Allocators 473
kernel_memory_allocate() 473

kmem_alloc() and Friends 477

kalloc 477

OSMalloc 479

Mach Pagers 480
The Mach Pager interface 480

Universal Page Lists 484

Pager Types 486

Paging Policy Management 494
The Pageout Daemon 495

Handling Page Faults 497

The dynamic_pager(8) (OS X) 498

ftoc.indd xviiiftoc.indd xviii 9/29/2012 5:55:22 PM9/29/2012 5:55:22 PM

xix

CONTENTS

Summary 499
References 500

CHAPTER 13: BS”D — THE BSD LAYER 501

Introducing BSD 501
One Ring to Bind Them 502

What’s in the POSIX Standard? 503

Implementing BSD 503

XNU Is Not Fully BSD 504

Processes and Threads 504
BSD Process Structs 504

Process Lists and Groups 507

Threads 508

Mapping to Mach 510

Process Creation 512
The User Mode Perspective 512

The Kernel Mode Perspective 513

Loading and Executing Binaries 516

Mach-O Binaries 522

Process Control and Tracing 525
ptrace (#26) 525

proc_info (#336) 527

Policies 527

Process Suspension/Resumption 529

Signals 529
The UNIX Exception Handler 529

Hardware-Generated Signals 534

Software-Generated Signals 535

Signal Handling by the Victim 536

Summary 536
References 537

CHAPTER 14: SOMETHING OLD, SOMETHING NEW:
ADVANCED BSD ASPECTS 539

Memory Management 539
POSIX Memory and Page Management System Calls 540

BSD Internal Memory Functions 541

Memory Pressure 545

Jetsam (iOS) 546

Kernel Address Space Layout Randomization 548

Work Queues 550

ftoc.indd xixftoc.indd xix 9/29/2012 5:55:22 PM9/29/2012 5:55:22 PM

xx

CONTENTS

BSD Heirlooms Revisited 552
Sysctl 552

Kqueues 555

Auditing (OS X) 556

Mandatory Access Control 558

Apple’s Policy Modules 560
Summary 563
References 563

CHAPTER 15: FEE, FI-FO, FILE: FILE SYSTEMS AND THE VFS 565

Prelude: Disk Devices and Partitions 565
Partitioning Schemes 567

Generic File System Concepts 577
Files 577

Extended Attributes 577

Permissions 577

Timestamps 578

Shortcuts and Links 578

File Systems in the Apple Ecosystem 579
Native Apple File Systems 579

DOS/Windows File Systems 580

CD/DVD File Systems 581

Network-Based File Systems 582

Pseudo File Systems 583

Mounting File Systems (OS X only) 587
Disk Image Files 589

Booting from a Disk Image (Lion) 590

The Virtual File System Switch 591
The File System Entry 591

The Mount Entry 592

The vnode Object 595

FUSE — File Systems in USEr Space 597
File I/O from Processes 600
Summary 605
References and Further Reading 605

CHAPTER 16: TO B (-TREE) OR NOT TO BE —
THE HFS+ FILE SYSTEMS 607

HFS+ File System Concepts 607
Timestamps 607

Access Control Lists 608

ftoc.indd xxftoc.indd xx 9/29/2012 5:55:22 PM9/29/2012 5:55:22 PM

xxi

CONTENTS

Extended Attributes 608

Forks 611

Compression 612

Unicode Support 617

Finder integration 617

Case Sensitivity (HFSX) 619

Journaling 619

Dynamic Resizing 620

Metadata Zone 620

Hot Files 621

Dynamic Defragmentation 622

HFS+ Design Concepts 624
B-Trees: The Basics 624

Components 630
The HFS+ Volume Header 631

The Catalog File 633

The Extent Overfl ow 640

The Attribute B-Tree 640

The Hot File B-Tree 641

The Allocation File 642

HFS Journaling 642

VFS and Kernel Integration 645
fsctl(2) integration 645

sysctl(2) integration 646

File System Status Notifi cations 647

Summary 647
References 648

CHAPTER 17: ADHERE TO PROTOCOL: THE NETWORKING STACK 649

User Mode Revisited 650
UNIX Domain Sockets 651

IPv4 Networking 651

Routing Sockets 652

Network Driver Sockets 652

IPSec Key Management Sockets 654

IPv6 Networking 654

System Sockets 655

Socket and Protocol Statistics 658
Layer V: Sockets 660

Socket Descriptors 660

mbufs 661

Sockets in Kernel Mode 667

ftoc.indd xxiftoc.indd xxi 9/29/2012 5:55:22 PM9/29/2012 5:55:22 PM

xxii

CONTENTS

Layer IV: Transport Protocols 668

Domains and Protosws 669

Initializing Domains 673

Layer III: Network Protocols 676
Layer II: Interfaces 678

Interfaces in OS X and iOS 678

The Data Link Interface Layer 680

The ifnet Structure 680

Case Study: utun 682

Putting It All Together: The Stack 686
Receiving Data 686

Sending Data 690

Packet Filtering 693
Socket Filters 694

ipfw(8) 696

The PF Packet Filter (Lion and iOS) 697

IP Filters 698

Interface Filters 701

The Berkeley Packet Filter 701

Traffi c Shaping and QoS 705
The Integrated Services Model 706

The Diff erentiated Services Model 706

Implementing dummynet 706

Controlling Parameters from User Mode 707

Summary 707
References and Further Reading 708

CHAPTER 18: MODU(LU)S OPERANDI — KERNEL EXTENSIONS 711

Extending the Kernel 711
Securing Modular Architecture 712

Kernel Extensions (Kexts) 713
Kext Structure 717

Kext Security Requirements 718

Working with Kernel Extensions 719

Kernelcaches 719

Multi-Kexts 723

A Programmer’s View of Kexts 724

Kernel Kext Support 725

Summary 735
References 735

ftoc.indd xxiiftoc.indd xxii 9/29/2012 5:55:22 PM9/29/2012 5:55:22 PM

xxiii

CONTENTS

CHAPTER 19: DRIVING FORCE — I/O KIT 737

Introducing I/O Kit 738
Device Driver Programming Constraints 738

What I/O Kit Is 738

What I/O Kit Isn’t 741

LibKern: The I/O Kit Base Classes 742
The I/O Registry 743
I/O Kit from User Mode 746

I/O Registry Access 747

Getting/Setting Driver Properties 749

Plug and Play (Notifi cation Ports) 750

I/O Kit Power Management 751

Other I/O Kit Subsystems 753

I/O Kit Diagnostics 753

I/O Kit Kernel Drivers 755
Driver Matching 755

The I/O Kit Families 757

The I/O Kit Driver Model 761

The IOWorkLoop 764

Interrupt Handling 765

I/O Kit Memory Management 769

BSD Integration 769
Summary 771
References and Further Reading 771

APPENDIX: WELCOME TO THE MACHINE 773

INDEX 793

ftoc.indd xxiiiftoc.indd xxiii 9/29/2012 5:55:23 PM9/29/2012 5:55:23 PM

flast.indd xxivflast.indd xxiv 9/29/2012 5:55:33 PM9/29/2012 5:55:33 PM

INTRODUCTION

EVEN MORE THAN TEN YEARS AFTER ITS INCEPTION, there is a dearth of books discussing the architec-
ture of OS X, and virtually none about iOS. While there is plentiful documentation on Objective-C,
the frameworks, and Cocoa APIs of OS X, it often stops short of the system-call level and implemen-
tation specifi cs. There is some documentation on the kernel (mostly by Apple), but it, too, focuses on
building drivers (with I/O Kit), and shows only the more elegant parts, and virtually nothing on the
Mach core that is foundation of XNU. XNU is open source, granted, but with over a million lines of
source (and comments) with some dating as far back to 1987, it’s not exactly a fun read.

This is not the case with other operating systems. Linux, being fully open source, has no shortage of
books, including the excellent series by O’Reilly. Windows, though closed, is exceptionally well docu-
mented by Microsoft (and its source has been “liberated” on more than one occasion). This book aims
to do for XNU what Bovet & Cesati’s Understanding the Linux Kernel does for Linux, and Russinov-
ich’s Windows Internals does for Windows. Both are superb books, clearly explaining the architectures
of these incredibly complex operating systems. With any luck, the book you are holding (or downloaded
as a PDF) will do the same to expound on the inner workings of Apple’s operating systems.

A previous book on Mac OS — Amit Singh’s excellent OS X Internals: A Systems Approach is an
amazing reference, and provides a vast wealth of valuable information. Unfortunately, it is PowerPC
oriented, and is only updated up until Tiger, circa 2006. Since then, some six years have passed. Six
long years, in which OS X has abandoned PowerPC, has been fully ported to Intel, and has progressed
by almost four versions. Through Leopard, Snow Leopard, Lion and, most recently Mountain Lion, the
wild cat family is expanding, and many more features have been added. Additionally, OS X has been
ported anew. This time to the ARM architecture, as iOS, (which is, by some counts, the world’s leading
operating system in the mobile environments). This book, therefore, aims to pick up where its predeces-
sor left off, and discuss the new felines in the Apple ecosystem, as well as the various iOS versions.

Apple’s operating systems have proven to be moving targets. This book was originally written to
target iOS 5 and Lion, but both have gone on evolving. iOS is, at the time this book goes to print,
at 5.1.1 with hints of iOS 6. OS X is still at Lion (10.7.4), but Mountain Lion (10.8) is in advanced
developer previews, and this book will hit the shelves coinciding with its release. Every attempt has
been made to keep the information as updated as possible to refl ect all the versions, and remain rel-
evant going forward.

OVERVIEW AND READING SUGGESTION

This is a pretty large book. Initially, it was not designed to be this big and detailed, but the more I
delved into OS X I uncovered more of the abstruse, for which I could fi nd no detailed explanation
or documentation. I therefore found myself writing about more and more aspects. An operating sys-
tem is a full eco-system with its own geography (hardware), atmosphere (virtual memory), fl ora and
fauna (processes). This book tries to methodically document as much as it can, while not sacrifi cing
clarity for detail (or vice versa). No mere feat.

flast.indd xxvflast.indd xxv 9/29/2012 5:55:34 PM9/29/2012 5:55:34 PM

xxvi

INTRODUCTION

Architecture at a Glance
OS X and iOS are have a complex architecture, which is a hybrid of several very different technolo-
gies: The UI and APIs of the legacy OS 9 (for OS X) with NextSTEP’s Cocoa, the system calls and
kernel layer of BSD, and the kernel structure of NeXTSTEP. Though an amalgam, it still maintains
a relatively clean separation between its components. Figure I-1 shows a bird’s eye view of the archi-
tecture, and maps the components to the corresponding chapters in this book.

Darwin Libraries & syscalls
(Chapter 2,3,4)

Hardware

Application Frameworks

User Experience

Core Frameworks

IoKit and kexts

(18,19)

Proprietary, strictly user
mode components.
Covered at an overview
level in Chapter 2

Mach Abstractions (Chapter 10)

VFS
(15)

Networking
(17)

VM
(14)

VM
(11)

Scheduling
(13)

Scheduling
(11)

Kernel/User Transition (Chapter 8)

BSD

Mach

S
E
C
U
R
I
T
Y

FIGURE I-1: OS X Architecture, and its mapping to chapters in this book

This book additionally contains chapters on non-architectural, yet very important topics, such as
debugging (5), fi rmware (6) and user mode startup (7), kernel-mode startup (9), and kernel modules
(18). Lastly, there are two appendices: The fi rst, providing a quick reference for POSIX system calls
and Mach traps, and the second, providing a gentle high-level introduction to the assembly of both
Intel and ARM architectures.

Target Audience
There are generally four types of people who might fi nd this tome, or its parts, interesting:

 ‰ Power users and system administrators who want to get a better idea of how OS X works.
Mac OS adoption grows steadily by the day, as market claws back market share that was, for

flast.indd xxviflast.indd xxvi 9/29/2012 5:55:34 PM9/29/2012 5:55:34 PM

xxvii

INTRODUCTION

years, denied by the utter hegemony of the PC. Macs are steadily growing more popular in
corporate environments, and overshadowing PCs in academia.

 ‰ User mode developers who fi nd the vast playground of Objective-C insuffi cient, and want to
see how their programs are really executed at the system level.

 ‰ Kernel mode developers who revel in the vast potential of kernel-mode low-level program-
ming of drivers, kernel enhancements, or fi le system and network hooks.

 ‰ Hackers and jailbreakers who aren’t satisfi ed with jailbreaking with a ready-made tool,
exploit or patch, and want to understand how and what exactly is being patched, and how
the system can be further tweaked and bent to their will. Note, that in this context, the target
audience refers to people who delve deeper into internals for the fun, excitement, and chal-
lenge, and not for any illicit or evil purposes.

Choose your own adventure
While this book can be read cover to cover, let’s not forget it is a technical book, after all. The chap-
ters are therefore designed to be read individually, as a detailed explanation or as a quick reference.
You have the option of reading chapters in sequential or random access, skimming or even skipping
over some chapters, and coming back to them later for a more thorough read. If a chapter refers to a
concept or function discussed in a previous chapter, it is clearly noted.

You are also welcome to employ a reading strategy which refl ects the type of target reader you clas-
sify yourself as. For example, the chapters of the fi rst part of this book can therefore be broken into
the fl ow shown in Figure I-2:

1: Introduction

2: Architecture

7: User Mode Startup

6: Firmware

Part I:

User mode 4: Process Internals

5: Process Tracing and Debugging

PowerUser UserDev Kernel Dev

3: OS X Proprietary

Hacker

FIGURE I-2: Reading suggestion for the fi rst part of this book, which focuses on user mode

architecture

flast.indd xxviiflast.indd xxvii 9/29/2012 5:55:35 PM9/29/2012 5:55:35 PM

xxviii

INTRODUCTION

In Figure I-2, a full bar implies the chapter contents are of interest to the target reader, and a partial
bar implies at least some interest. Naturally, every reader’s interest will vary. This is why every chap-
ter starts with a brief introduction, discussing what the chapter is about. Likewise, just by looking
at the section headers in the table of contents you can fi gure out if the section merits a read or just a
quick skim.

The second part of this book could actually have been a volume by itself. It focuses on the XNU
kernel architecture, and is considerably more complicated than the fi rst. This cannot be avoided; by
their very nature, kernels are subject to a more complicated, real-time, and hardware constrained
environment. This part shows many more code listings, and (thankfully, rarely) even has to go into
snippets of code implemented in assembly. Reading suggestions for this part of the book are shown
in Figure I-3.

Part II:
Kernel mode

Power User User Dev Kernel Dev

15: Filesystems

16: HFS+

17: Networking

18: KEXTs

19: I/O Kit

8: Kernel Architectures

9: Kernel start up and panics

10: Mach Architecture

11: Scheduling

12: Mach VM

13: BSD

14: Advanced BSD

Hacker

FIGURE I-3: Reading suggestion for the second part of this book, which focuses on the kernel

flast.indd xxviiiflast.indd xxviii 9/29/2012 5:55:35 PM9/29/2012 5:55:35 PM

xxix

INTRODUCTION

EXPERIMENTS

Most chapters in this book contain “experiments,” which usually involve running a few shell com-
mands, and sometimes custom sample programs. They are classifi ed as “experiments” because they
demonstrate aspects of the operating system which can vary, depending on OS version, or on con-
fi guration. Normally, the results of these experiments are demonstrated in detail, but you are more
than encouraged to try the experiments on your own system, and witness the results. Like UNIX,
which it implements, Mac OS X can truly be experienced and absorbed through the fi ngers, not the
eyes or ears.

In some cases, some parts of the experiments have been left out as an exercise for the reader.
Even though the book’s companion website will have the solutions — i.e. fully working versions of
the exercises in question — you are encouraged to try to complete those parts yourself. Careful
reading of the book, with a modicum of common sense, should provide you with everything you
need to do so.

TOOLS

The book also makes use of a few tools, which were developed by the author to accompany the
book. The tools, true to the UNIX heritage, are command line tools, and are meant to be both
easily readable as well as grep(1)-able, making them useful not just for manual usage, but also in
scripts.

fi lemon
Chapter 3 presents a tool called “fi lemon,” to display real time fi le system activity on OS X and iOS.
An homage to Russinovich’s tool of the same name, this simple utility relies on the FSEvents device,
present in OS X and iOS 5, to follow fi le system related events, such as creation and deletion of fi les.

psx
Chapter 4 presents a tool called psx, an extended ps-like command which can display pretty much
any tidbit of information one could possibly require about processes and threads in OS X. It is
particularly useful for this chapter, which deals with process internals, and demonstrates using an
undocumented system call, proc_info. The tool requires no special permissions if you are viewing
your own processes, but will require root permissions otherwise. The tool can be freely downloaded
from the book’s companion website, with full source code.

jtool
While for most binary function one can use the OS X built-in otool(1), it leaves much to be desired
in analyzing data section and can get confused when displaying ARM binaries due to the two
modes of assembly in the ARM architecture. jtool aims to improve on otool, by addressing these

flast.indd xxixflast.indd xxix 9/29/2012 5:55:35 PM9/29/2012 5:55:35 PM

xxx

INTRODUCTION

shortcomings, and offering useful new features for static binary analysis. The tool comes in handy
in Chapter 4, which details the Mach-O fi le format, as well as later in this book, due to its many
useful features, like fi nding references in fi les and limited disassembly skills. The tool can be freely
downloaded from the book’s companion website, but is closed source.

dEFI
This is a simple program to dump the fi rmware (EFI) variables on an Intel Mac and to display reg-
istered EFI providers. This tool demonstrates the basics of EFI programming — interfacing with the
boot and runtime services. This tool can be freely downloaded, along with its source code. It is pre-
sented in Chapter 6.

joker
The joker tool, presented in Chapter 8, is a simple tool created to play with the kernel (specifi cally,
in iOS). The tool can fi nd and display the system call and Mach trap tables of iOS and OS X kernels,
show sysctl structures, and look for particular patterns in the binary. This tool is highly useful for
reverse engineers and hackers alike, as the trap and system call symbols are no longer exported.

corerupt
Chapter 11 discusses the low-level APIs of the Mach virtual memory manager. To demonstrate just
how powerful (and dangerous) these APIs are, the book provides the corerupt tool. This tool enables
you to dump any process’s virtual memory map to a fi le in a core-compatible format, similar to
Windows’ Create Dump File option, and much like the gcore tool in this book’s predecessor. It fur-
ther improves on its precursor, by providing support for ARM and allowing invasive operations on
the vm map, such as modifying its pages.

HFSleuth
A key tool used in the book is HFSleuth, a command line all-in-one utility for viewing the support-
ing structures of HFS+ fi le systems, which are the native OS X fi le system type. The tool was devel-
oped because there really are no alternative ways to demonstrate the inner workings of this rather
complicated fi le system. Singh’s book, Mac Os X Internals: A Systems Approach (Addison-Wesley;
2006) also included a similar, though less feature-ful tool called hfsdebug, but the tool was only
provided for PowerPC, and was discontinued in favor of a commercial tool, fi leXRay.

To use HFSleuth on an actual fi le system, you must be able to read the fi le system. One option is to
simply be root. HFSleuth’s functions are nearly all read-only, so rest assured it is perfectly safe. But
access permissions to the underlying block (and sometimes, character) devices on which the fi le sys-
tems are usually rw-r-----, meaning the devices are not readable by plebes. If you generally distrust
root and adhere to least privilege (a wise choice!), an equally potent alternative is to chmod(1) the
permissions on the HFS+ partition devices, making them readable to your user (usually, this involves
an o+r). Advanced functions (such as repair, or HFS+/HFSX conversion) will require write access.

flast.indd xxxflast.indd xxx 9/29/2012 5:55:35 PM9/29/2012 5:55:35 PM

xxxi

INTRODUCTION

HFSleuth can be freely downloaded from the book’s companion website and will remain freely
available, period. Like its predecessor, however, it is not open source.

lsock
The much needed functionality of netstat –o, which shows the processes owning the various sock-
ets in the system, is missing from OS X. It exists in lsof(1), but the latter makes it somewhat cum-
bersome to weed out sockets from other open fi les. Another functionality missing is the ability to
display socket connections as they are created, much like Windows’ TCPMon. This tool, introduced
in Chapter 17, uses an undocumented kernel control protocol called com.apple
.network.statistics to obtain real-time notifi cations of sockets as they are created. The tool is
especially easy to incorporate into scripts, making it handy for use as a connection event handler.

jkextstat
The last tool used in the book is jkextstat, a kextstat(8)-compatible utility to list kernel exten-
sions. Unlike the original, it supports verbose mode, and can work on iOS. This makes it invaluable
in exploring the iOS kernel hands-on, something which — until this book — was very diffi cult, as
the binary kextstat for iOS uses APIs which are no longer supported. The tool improves on its origi-
nal inspiration by allowing more detailed output, focusing on particular kernel extensions, as well
as output to XML format.

All the tools mentioned here are made available for free, and will remain free,
whether you buy (or copy) the book. This is because they are generally useful,
and fi ll many advanced functions, which are either lacking, or present but well
hidden, in Apple’s own tools.

CONVENTIONS USED IN THIS BOOK

To make it easier to follow along the book and not be bogged down by reiterating specifi c back-
ground for example code and programs, this book adopts a few conventions, which are meant to
subtly remind you of the context of the given listings.

Dramatis Personae
The demos and listings in this book have naturally been produced and tested on various versions of
Apple computers and i-Devices. As is in the habit of sysadmins to name their boxes, each host has
his or her own “personality” and name. Rather than repeatedly specifying which demo is based on
which device and OS, the shell command prompt has been left as is, and by the hostname you can
easily fi gure out which version of OS X or iOS the demo can be reproduced on. (See Table I-1.)

flast.indd xxxiflast.indd xxxi 9/29/2012 5:55:36 PM9/29/2012 5:55:36 PM

xxxii

INTRODUCTION

TABLE I-1: Host Name and Version Information for the Book’s Demos

HOST NAME TYPE OS VERSION USED FOR

Ergo MacBook Air,

2010

Snow Leopard , 10.6.8 Generic OS X feature demonstration.

Tested in Snow Leopard and later

iPhonoclast iPhone 4S iOS 5.1.1 iOS 5 and later features on an A5 (ARM

multi-core)

Minion Mac Mini, 2010 Lion, 10.7.4 Lion specifi c feature demonstration

Simulacrum VMWare image Mountain Lion, 10.8.0

DP3

Mountain Lion (Developer Preview) specifi c

feature demonstration

Padishah iPad 2 iOS 4.3.3 iOS 4 and later features

Podicum iPod Touch, 4G iOS 5.0.1 iOS 5 specifi c features, on A4 or A5

Further, shell prompts of root@ demonstrate a command runnable only by the root user. This makes
it easy to see which examples will run on which system, with what privileges.

Code Excerpts and Samples
This book contains a considerable number of code samples of two types:

 ‰ Example programs, which are found mostly in the fi rst part. These usually demonstrate simple
concepts and principles that hold in user mode, or specifi c APIs or libraries. The example pro-
grams were all devised by the author, are well commented, and are free for you to try your-
self, modify in any way you see fi t, or just leave on the page. In an effort to promote the lazy,
all these programs are available on the book’s website, in both open source and binary form.

 ‰ Darwin code excerpts, which are found mostly in the second part. These are almost entirely
snippets of XNU’s code, taken from the latest open source version, i.e. 1699.26.8 (cor-
responding to Lion 10.7.4). All code is open source, but subject to Apple’s Public Source
License. The excerpts are provided here for demonstration of the relevant parts in XNU’s
architecture. While natural language is potentially prone to some ambiguities, code is context
free and precise (though unfortunately sometimes less readable), and so at times the most
precise explanation comes from reading the code. When code references are provided, they
are usually either to the header fi les (denoted by the standard C < > notation, e.g. <mach/
mach-o.h>) in /usr/include. Other times, they may refer to the Darwin sources, either of
XNU or some related package. In those cases, the relative path is used (e.g. osfmk/kern/
spl.c, relating to where the XNU kernel source is extracted). The related package will
always be specifi ed in the section, and in Part II of the book nearly all references are to the
XNU kernel source.

flast.indd xxxiiflast.indd xxxii 9/29/2012 5:55:36 PM9/29/2012 5:55:36 PM

xxxiii

INTRODUCTION

XNU and Darwin components are fairly well documented, but this book tries to go the extra step,
and sometimes provide additional explanations inline, as comments. To be clear, such annotations,
which are not part of the original source code, can be clearly marked by their C++ style comment,
rather than the C style comment which is typical in Darwin as in this sample listing:

LISTING I-1: SAMPLE LISTING

/* This is a Darwin comment, as it appears in the original source */

// This is an annotation provided by the author, elaborating or explaining
// something which the documentation may or may not leave wanting

// Where the source code is long and tedious, or just obvious, some parts may
// be omitted, and this is denoted by a comment marking ellipsis (...), i.e:

// ...

 important parts of a listing or output may be shown in bold

The book distinguishes between outputs and listings. Listings are verbatim references from fi les,
either program source code or system fi les. Outputs, on the other hand, are textual captures of user
commands, shown for demonstration on OS X, iOS, or — sometimes — both. The book aims to
compare and contrast the two systems, so it is not uncommon to fi nd the same sequence of com-
mands shown on both systems. In an output, you will see the user commands that were typed
marked in bold, and are encouraged to follow along and try them on your own systems.

In general, the code listings are provided to elucidate, not to confuse. Natural language is not with-
out its ambiguities, but code can only be interpreted one way (even if sometimes that way is not
entirely clear). Whenever possible, clear descriptions aided by detailed fi gures will hopefully enable
you to just skim through the code. Fluency in C (and sometimes a little assembly) is naturally helpful
for reading the code samples, but is not necessary. The comments — especially the extra annota-
tions — help you understand the gist of the code. More commonly, block diagrams and fl ow charts
are presented, leaving the functions as black boxes. This enables to choose between remaining at an
overview level, or delving deeper and seeing the actual variables and functions of the implementa-
tions. Be warned, however, that the complexity of the code, being the product of many people and
many coding styles, varies greatly throughout XNU.

In the case of iOS, XNU remains closed. iOS versions actually use a version of XNU many revi-
sions ahead of the publicly released versions. Naturally, code samples cannot be shown, but in some
cases disassembly (mostly of iOS 5.x) is provided. The assembly in question is ARM, and comments
there — all provided by the author — aim to explicate its inner workings. For all things assembly,
you can refer to the appendix in this book for a quick overview.

flast.indd xxxiiiflast.indd xxxiii 9/29/2012 5:55:37 PM9/29/2012 5:55:37 PM

xxxiv

INTRODUCTION

Typographic Conventions
Every effort has been made to ensure that these conventions are followed throughout this book:

 ‰ Words in courier font denote commands, fi le names, function names, or variable names
from the Darwin sources.

 ‰ Commands are further specifi ed by their man section (if applicable) in parentheses. Example:
ls(1) for a user command, write(2) for a system call, printf(3) for a library call, and
ipfw(8) for a system administration command. Most commands and system calls shown in
this book are usually well documented in the manual page, and the book does not attempt to
upstage the fi ne manual (i.e. RTFM, fi rst). Occasionally, however, the documentation may
leave some aspects wanting — or, rarely, undocumented at all — and this is where further
information is provided.

THE COMPANION WEBSITE(S)

Both OS X and iOS have rapidly evolved, and continue to do so. I will try to play catch up, and
keep an updated companion website for this book at http://newosxbook.com. My company,
(http://technologeeks.com), also maintains the OS X and iOS Kernel developers group on
LinkedIn (alongside those of Windows and Android), with its website of http://darwin.
kerneldevelopers.com (the name chosen in a forward-compatible view of a post OS X era. The
latter site includes a questions and answers forum, which will hopefully become a bustling arena for
OS X and iOS related discussions.

On the book’s companion website you can fi nd:

 ‰ An appendix that lists the various POSIX and Mach system calls.

 ‰ The sample programs included in experiments throughout this book — for the enthusiastic
to try, yet lazy to code. The programs are provided in source form, but also as binaries (for
those even lazier to compile(!) or devoid of XCode).

 ‰ The tools introduced in this book, and discussed in this introduction freely downloadable in
binary form for both OS X and iOS, and often times with source.

 ‰ Updated references and links to other web resources, as they become available.

 ‰ Updated articles about new features or enhancements, as time goes by.

 ‰ Errata — Errare est humanum, and — especially in iOS, where most of the details were eked
out by painful disassembly, there may be inaccuracies or version differences that need to be
fi xed.

This book has been an unbelievable journey, through the looking glass (while playing with kittens),
unraveling the very fabric of the reality presented to user mode applications. I truly hope that you,
the reader, will fi nd it as illuminating as I have, drawing ideas not just on OS X and iOS, but on
operating system architecture and software design in general.

Read on then, ye devout Apple-lyte, and learn.

flast.indd xxxivflast.indd xxxiv 9/29/2012 5:55:37 PM9/29/2012 5:55:37 PM

http://newosxbook.com
http://technologeeks.com
http://darwin.kerneldevelopers.com
http://darwin.kerneldevelopers.com

Levin c01 V4 - 05/11/2012

PART I
For Power Users

 � CHAPTER 1: Darwinism: The Evolution of OS X

 � CHAPTER 2: E Pluribus Unum: Architecture of OS X and iOS

 � CHAPTER 3: On the Shoulders of Giants: OS X and iOS Technologies

 � CHAPTER 4: Parts of the Process: Mach-O, Process, and Thread

Internals

 � CHAPTER 5: Non Sequitur: Process Tracing and Debugging

 � CHAPTER 6: Alone in the Dark: The Boot Process: EFI and iBoot

 � CHAPTER 7: The Alpha and the Omega — launchd

c01.indd 1c01.indd 1 9/29/2012 5:07:17 PM9/29/2012 5:07:17 PM

c01.indd 2c01.indd 2 9/29/2012 5:07:24 PM9/29/2012 5:07:24 PM

Levin c01 V4 - 05/11/2012

1
Darwinism: The Evolution
of OS X

Mac OS has evolved tremendously since its inception. From a niche operating system of a cult
crowd, it has slowly but surely gained mainstream share, with the recent years showing an
explosion in popularity as Macbooks, Macbook Pros, and Airs become ever more ubiquitous,
clawing back market share from the gradually declining PC. Its mobile derivative — iOS — is
by some accounts the mobile operating system with the largest market share, head-to-head
with Linux’s derivative, Android.

The growth, however, did not happen overnight. In fact, it was a long and excruciating pro-
cess, which saw Mac OS come close to extinction, before it was reborn as “OS X.” Simply
“reborn” is an understatement, as Mac OS underwent a total reincarnation, with its architec-
ture torn down and rebuilt anew. Even then, Mac OS still faced signifi cant hardship before the
big breakthrough — which came with Apple’s transition to Intel-based architecture, leaving
behind its long history with PowerPC architectures.

The latest and greatest version, OS X 10.7, or Lion, occurred shortly before the release of this
book, as did the release of iOS 5.x, the most recent version of iOS. To understand their fea-
tures and the relationship between the two, however, it makes sense to take a few steps back
and understand how the architecture unifying both came to be.

The following is by no means a complete listing of features, but rather a high-level perspec-
tive. Apple has been known to add hundreds of features between releases, mostly in GUI and
application support frameworks. Rather, more emphasis is placed on design and engineering
features. For a comprehensive treatise on Mac OS versions to date, see Amit Singh’s work on
the subject[1], or check Ars Technica’s comprehensive reviews[2]. Wikipedia also maintains a
fairly complete list of changes[3].

THE PRE-DARWIN ERA: MAC OS CLASSIC

Mac OS Classic is the name given the pre-OS X era of Mac OS. The operating system then
was nothing much to boast about. True, it was novel in that it was an all-GUI system (earlier
versions did not have a command line like today’s “Terminal” app). Memory management was

c01.indd 3c01.indd 3 9/29/2012 5:07:24 PM9/29/2012 5:07:24 PM

Levin c01 V4 - 05/11/2012

4 x CHAPTER 1 DARWINISM: THE EVOLUTION OF OS X

poor, however, and multitasking was cooperative, which — by today’s standards — is considered
primitive. Cooperative multitasking involves processes voluntarily yielding their CPU timeslice, and
works reasonably well when processes are well behaved. If even one process refuses to cooperate,
however, the entire system screeches to a halt. Nonetheless, Mac OS Classic laid some of the foun-
dations for the contemporary Mac OS, or OS X. Primarily, those foundations include the “Finder”
GUI, and the fi le system support for “forks” in the fi rst generation HFS fi le system. These affect OS
X to this very day.

THE PRODIGAL SON: NEXTSTEP

While Mac OS experienced its growing pains in the face of the gargantuan PC, its founder Steve
Jobs left Apple (by some accounts was ousted) to get busy with a new and radically different com-
pany. The company, NeXT, manufactured specialized hardware, the NeXT computer and NeXTsta-
tion, with a dedicated operating system called NeXTSTEP.

NeXTSTEP boasted some avant-garde features for the time:

 ‰ NeXTSTEP was based on the Mach microkernel, a little-known kernel developed by Carne-
gie Mellon University (CMU). The concept of a microkernel was, itself, considered a novelty,
and remains rarely implemented even today.

 ‰ The development language used was Objective-C, a superset of C, which — unlike C++ — is
heavily object-oriented.

 ‰ The same object-orientation was prevalent all throughout the operating system. The system
offered frameworks and kits, which allowed for rapid GUI development using a rich object
library, based on the NSObject.

 ‰ The device driver environment was an object-oriented framework as well, known as
DriverKit. Drivers could subclass other drivers, inheriting from them and extending their
functionality.

 ‰ Applications and libraries were distributed in self-contained bundles. Bundles consisted of a
fi xed directory structure, which was used to package software, along with its dependencies
and related fi les, so installing and uninstalling could be as easy as moving around a folder.

 ‰ PostScript was heavily used in the system, including a variant called “display postscript,”
which enabled the rendering of display images as postscript. Printing support was thus 1:1,
unlike other operating systems, which needed to convert to a printer-friendly format.

NeXTSTEP went down the road of better operating systems (remember OS/2?), and is nowadays
extinct, save for a GNUStep port. Yet, its legacy lives on to the present day. One winter day in 1997,
Apple — with an OS that wasn’t going anywhere — ended up acquiring NeXT, bringing its intellec-
tual property into Apple, along with Steve Jobs. And the rest, as they say, is history.

ENTER: OS X

As a result of the acquisition of NeXT, Apple gained access to Mach, Objective-C, and the other
aspects of the NeXTSTEP architecture. While NeXTSTEP was discontinued as a result, these
components live on in OS X. In fact, OS X can be considered as a fusion of Mac OS Classic and

c01.indd 4c01.indd 4 9/29/2012 5:07:28 PM9/29/2012 5:07:28 PM

Levin c01 V4 - 05/11/2012

OS X Versions, to Date x 5

NeXTSTEP, mostly the latter absorbing the former. The transition wasn’t immediate, and Mac OS
passed through an interim operating system called Rhapsody, which never really went public. It
was Rhapsody, however, that eventually evolved into the fi rst version of Mac OS X, and its kernel
became the core of what is now known as Darwin.

Mac OS X is closer in its design and implementation to NeXTSTEP than it is to any other operating
system, including Apple’s own OS 9. As you will see, the core components of OS X — Cocoa, Mach,
IOKit, the XCode Interface Builder, and others — are all direct descendants of NeXTSTEP. The
fusion of two fringe, niche operating systems — one with a great GUI and poor design, the other
with great design but lackluster GUI — resulted in a new OS that has become far more popular than
the both of them combined.

OS X VS. DARWIN

There is sometimes some confusion between OS X and Darwin regarding the defi ni-
tions of the two terms, and the relationship between them. Let’s attempt to clarify this:

OS X is the name given, collectively, to the entire operating system. As discussed in
the next chapter, the operating system contains many components, of which Darwin
is but one.

Darwin is the UNIX-like core of the operating system, which is itself comprised of
the kernel, XNU (an acronym meaning “X is Not UNIX”, similar to GNU’s recursive
acronym) and the runtime. Darwin is open source (save for its adaptation to ARM in
iOS, discussed later), whereas other parts of OS X — Apple’s frameworks — are not.

There exists a straightforward correlation between the version of OS X and the ver-
sion of Darwin. With the exception of OS X 10.0, which utilized Darwin 1.3. x, all
other versions follow a simple equation:

If (OSX.version == 10.x.y)
 Darwin.version = (4+x).y

So, for example, the upcoming Mountain Lion, being 10.8.0, is Darwin 12.0. The
last release of Snow Leopard, 10.6.8, is Darwin 10.8. It’s a little bit confusing, but
at least it’s consistent.

OS X VERSIONS, TO DATE

Since its inception, Mac OS X has gone through several versions. From a novel, but — by some
accounts — immature operating system, it has transformed into the feature-rich platform that
is Lion. The following section offers an overview of the major features, particularly those which
involve architectural or kernel mode changes.

10.0 — Cheetah and the First Foray
Mac OS X 10.0, known as Cheetah, is the fi rst public release of the OS X platform. About a year
after a public beta, Kodiak, Apple released 10.0 in March 2001. It marks a signifi cant departure

c01.indd 5c01.indd 5 9/29/2012 5:07:29 PM9/29/2012 5:07:29 PM

Levin c01 V4 - 05/11/2012

6 x CHAPTER 1 DARWINISM: THE EVOLUTION OF OS X

from the old-style Mac OSes with the integration of features from NeXT/Openstep, and the layered
architecture we will discuss shortly. It is a total rewrite of the MacOS 9, and shares little in com-
mon, save for maybe the Carbon interface, which is used to maintain compatibility with OS 9 APIs.
10.0 ran fi ve sub-versions (10.0 through 10.0.4) with relatively minor modifi cations. The version of
the core OS packages, called Darwin, were 1.3.1 in all. XNU was version 123.

10.1 — Puma — a Stronger Feline, but . . .
While defi nitely novel, OS 10.0 was considered to be immature and unstable, not to mention slow.
Although it boasted preemptive multitasking and memory protection, like all its peer operating sys-
tems, it still left much to be desired. Some six months later, Mac OS X 10.1, known as Puma, was
released to address stability and performance issues, as well as add more user experience features.
This also led shortly thereafter to Apple’s public abandonment of Mac OS 9, and focus on OS X
as the new operating system of choice. Puma ran six sub-versions (10.1 through 10.1.5). In version
10.1.1, Darwin (the core OS) was renumbered from v1.4.1 to 5.1, and since then has followed the
OS X numbers consistently by being four numbers ahead of the minor version, and aligning its own
minor with the sub-version. XNU was version 201.

10.2 — Jaguar — Getting Better
A year later saw the introduction of Mac OS X 10.2, known as Jaguar, a far more mature OS with
myriad UX feature enhancements, and the introduction of the “Quartz Extreme” framework for
faster graphics. Another addition was Apple’s Bonjour (then called Rendezvous), which is a form of
ZeroConf, a uPNP-like protocol (Universal Plug and Play) allowing Apple devices to fi nd one another
on a local area network (discussed later in this book). Darwin was updated to 6.0. 10.2 ran nine
sub-versions (10.2 through 10.2.8, Darwin 6.0 through 6.8, respectively). XNU was version 344.

10.3 — Panther and Safari
Yet another year passed, and in 2003 Apple released Mac OS X 10.3, Panther, enhancing the OS
with yet more UX features such as Exposé. Apple created its own web browser, Safari, displacing
Internet Explorer for Mac as it distanced itself from Microsoft.

Another noteworthy improvement in Panther is FileVault, which allows for transparent disk encryp-
tion. Mac OS X 10.3 stayed current for a year and a half, and ran 10 sub-versions (10.3 through 10.3.9)
with Darwin 7.x (7.0 through 7.9). XNU was version 517.

10.4 — Tiger and Intel Transition
The next update to Mac OS was announced in May 2004, but it took almost a year until Mac OS
X 10.4 (Tiger) was offi cially released. This version sported, as usual, many new GUI features, such
as spotlight and dashboard widgets, but also signifi cant architectural changes, most important
of which was the foray into the Intel x86 processor space, with 10.4.4. Until that point, Mac OS
required a PowerPC architecture. 10.4.4 was also the fi rst OS to introduce the concept of univer-
sal binaries that could operate on both PPC and x86 architectures. The kernel was signifi cantly
improved, allowing for 64-bit pointers.

c01.indd 6c01.indd 6 9/29/2012 5:07:30 PM9/29/2012 5:07:30 PM

Levin c01 V4 - 05/11/2012

OS X Versions, to Date x 7

Other important developer features in this release included four important frameworks: Core Data,
Image, Video, and Audio. Core Data handled data manipulation (undo/redo/save). Core Image and
Core Video accelerated graphics by exploiting GPUs, and Core Audio built audio right into the
OS — allowing for Mac’s text-to-speech engine, Voice Over, and the legendary “say” command
(“Isn’t it nice to have a computer that talks to you?”).

Tiger reigned for over two years and a dozen sub-versions — 10.4.0 (Darwin 8.0) through 10.4.11
(Darwin 8.11). XNU was 792.

10.5 — Leopard and UNIX
Leopard was over a year in the making. Announced in June 2006, but not released until October
2007, it boasted hundreds of new features. Chief among them from the developer perspective were:

 ‰ Core Animation, which offl oaded animation tasks to the framework

 ‰ Objective-C 2.0

 ‰ OpenGL 2.1

 ‰ Improved scripting and new languages, including Python and Ruby

 ‰ Dtrace (ported from Solaris 10) and its GUI, Instruments

 ‰ FSEvents, allowing for Linux’s inotify-like functionality (fi le system/directory notifi cations)

 ‰ Leopard is also fully UNIX/POSIX-compliant

Leopard ran 10.5 through 1.0.5.8; Darwin 9.0 through 9.8. XNU leapt forward to version 1228.

10.6 — Snow Leopard
Snow Leopard introduced quite a few changes, but mostly under the hood. Following what now
was somewhat of a tradition, it took over a year from its announcement in June 2008 to its release
in August 2009 From the UX perspective, changes are minimal, although all its applications were
ported to 64-bit. The developer perspective, however, revealed signifi cant changes, including:

 ‰ Full 64-bit functionality: Both in user space libraries and kernel space (K64).

 ‰ File system–level compression: Incorporated very quietly, as most commands and APIs
still report the fi les’ real sizes. In actuality, however, most fi les — specifi cally those of the
OS — are transparently compressed to save disk space.

 ‰ Grand Central Dispatch: Enabled multi-core programming through a central API.

 ‰ OpenCL: Enabled the offl oading of computations to the GPU, utilizing the ever-increasing
computational power of graphics adapters for non-graphic tasks. Apple originally developed
the standard, and still maintains the trademark over the name. Development has been handed
over to the Khronos group (www.khronos.org), a consortium of industry leaders (including
AMD, Intel, NVidia, and many others), who also host OpenGL (for graphics) and OpenSL
(for sound).

c01.indd 7c01.indd 7 9/29/2012 5:07:30 PM9/29/2012 5:07:30 PM

http://www.khronos.org

Levin c01 V4 - 05/11/2012

8 x CHAPTER 1 DARWINISM: THE EVOLUTION OF OS X

Snow Leopard fi nished the process of migration started in 10.4.4 — from PPC to x86/x64 architec-
tures. It no longer supports PowerPCs so universal binaries to support that architecture are no lon-
ger needed, saving much disk space by thinning down binaries. In practice, however, most binaries
still contain multiple architectures for 32-bit and 64-bit Intel.

The most current version of Snow Leopard is 10.6.8 (Darwin 10.8.0), released July 2011. XNU is
version 1504.

10.7 — Lion
Lion is Apple’s latest incarnation of OS X at the time of this writing. (More accurately, the latest
one publicly available, as Mountain Lion has been released as a developer preview as this book goes
to print.) It is a relatively high-end system, requiring Intel Core 2 Duo or better to run on (although
successfully virtualized by now).

While it provides many features, most of them are in user mode. Several of the new features have
been heavily infl uenced from iOS (the mobile port of OS X for i-Devices, as we discuss later). These
features include, to name but a few:

 ‰ iCloud: Apple’s new cloud-based storage is tightly integrated into Lion, enabling applications
to store documents in the cloud directly from the Objective-C runtime and NSDocument.

 ‰ Tighter security: Drawing on a model that was started in iOS, of application sandboxing and
privilege separation.

 ‰ Improvements in the built-in applications: Such as Finder, Mail, and Preview, as well as port-
ing of apps from iOS, notably FaceTime and the iOS-like LaunchPad.

 ‰ Many framework features: From overlay scrollbars and other GUI enhancements, through
voice over, text auto-correction similar to iOS, to linguistic and part-of-speech tagging to
enable Natural Language Processing–based applications.

 ‰ Core Storage: Allowing logical volume support, which can be used for new partitioning fea-
tures. A particularly useful feature is extending fi le systems onto more than one partition.

 ‰ FileVault 2: Used for encryption of the fi lesystem, down to the root volume level — mark-
ing Apple’s entry into the Full Disk Encryption (FDE) realm. This builds on Core Storage’s
encryption capabilities at the logical volume level. The encryption is AES-128 in XTS mode,
which is especially optimized for hard drive encryption. (Both Core Storage and File Vault
are discussed in Chapter 15 of this book, “Files and Filesystems.”)

 ‰ Air Drop: Extends Apple’s already formidable peer-fi nding abilities (courtesy of Bonjour) to
allow for quick fi le sharing between hosts over WiFi.

 ‰ 64-bit mode: Enabled by default on more Mac models. Snow Leopard already had a 64-bit
kernel, but still booted 32-bit kernels on non-Pro Macbooks.

At the time of this writing, the most recent version of Lion is 10.7.3, XNU version 1699.24.23. With
the announcement of Mountain Lion (destined to be 10.8), it seems that Lion will be especially short
lived.

c01.indd 8c01.indd 8 9/29/2012 5:07:30 PM9/29/2012 5:07:30 PM

Levin c01 V4 - 05/11/2012

OS X Versions, to Date x 9

10.8 — Mountain Lion
In February 2012, just days before this book was fi nalized and sent off to print, Apple surprised the
world with the announcement of OS X 10.8, Mountain Lion. This is quite unusual, as Apple’s OS
lifespan is usually longer a year, especially for a cat as big as a Lion, which many believed would end
the feline species. The book makes every attempt to also include the most up-to-date material so as
to cover Mountain Lion, but the operating system will only be available to the public much later,
sometime around the summer of 2012.

Mountain Lion aims to bring iOS and OS X closer together, as was actually speculated in this book
(see “The Future of OS X,” later in this chapter). Continuing the trend set by Lion, 10.8 further
brings features from iOS to OS X, as boasted by its tagline — “Inspired by iPad, reimagined for
Mac.” The features advertised by Apple are mostly user mode. Interestingly enough, however, the
kernel seems to have undergone major revisions as well, as is hinted by its much higher version num-
ber — 2050. One notable feature is kernel address space randomization, a feature that is expected
to make OS X far more resilient to rootkits and kernel exploitation. The kernel will also likely be
64-bit only, dropping support for 32-bit APIs. The sources for Darwin 12 (and, with them, XNU)
will not be available until Mountain Lion is offi cially released.

Using uname(1)
Throughout this book, many UNIX and OS X-specifi c commands will be presented. It is only fi t-
ting that uname(1), which shows the UNIX system name, be the fi rst of them. Running uname will
give you the details on the architecture, as well as the version information of Darwin. It has several
switches, but -a effectively uses all of them. The following code snippets shownin Outputs 1-1a
through c demonstrate using uname on two different OS X systems:

OUTPUT 1-1A: Using uname(1) to view Darwin version on Snow Leopard 10.6.8, a 32-bit system

morpheus@ergo (~) uname -a
Darwin Ergo 10.8.0 Darwin Kernel Version 10.8.0: Tue Jun 7 16:33:36 PDT 2011; root:xnu-
1504.15.3~1/RELEASE_I386 i386

OUTPUT 1-1B: Using uname(1) to view Darwin version on Lion 10.7.3, a 64-bit system

morpheus@Minion (~) uname -a
Darwin Minion.local 11.3.0 Darwin Kernel Version 11.3.0: Thu Jan 12 18:47:41 PST 2012;
root:xnu-1699.24.23~1/RELEASE_X86_64 x86_64

If you use uname(1) on Mountain Lion (in the example below, the Developer Preview) you will see
an even newer version

OUTPUT 1-1C: Using uname(1) to view Darwin version on Mountain Lion 10.8 (DP3), a 64-bit system

morpheus@Simulacrum (~) uname -a
Darwin Simulacrum.local 12.0.0 Darwin Kernel Version 12.0.0: Sun Apr 8 21:22:58 PDT
2012; root:xnu-2050.3.19~1

c01.indd 9c01.indd 9 9/29/2012 5:07:31 PM9/29/2012 5:07:31 PM

Levin c01 V4 - 05/11/2012

10 x CHAPTER 1 DARWINISM: THE EVOLUTION OF OS X

OS X ON NON-APPLE HARDWARE

À la Apple, running OS X on any hardware other than the Apple line of Macs
constitutes a violation of the EULA. Apple wages a holy war against Mac clones,
and has sued (and won against) companies like Psystar, who have attempted to
commercialize non-Apple ports of OS X. This has not deterred many an enthusiast,
however, from trying to port OS X to the plain old PC, and — recently — to run
under virtualization.

The OpenDarwin/PureDarwin projects take the open source Darwin environment
and make of it a fully bootable and installable ISO image. This is carried further
by the OSX86 project, which aims to fully port OS X onto PCs, laptops, and even
netbooks (this is commonly referred to as “Hackintosh”). With the bootable ISO
images, it is possible to circumvent the OS X installer protections and install the
system on non-Apple hardware. The hackers (in the good sense of the word) emu-
late the EFI environment (which is the default on Mac hardware, but still scarce
on PC) using a boot loader (Chameleon) based on Apple’s Boot-132, which was
a temporary boot loader used by Apple back in Tiger v10.4.8. Originally, some
minor patches to the kernel were needed, as well — which were feasible since XNU
remains open source.

With the rise of virtualization and the accessibility of excellent products such as
VMWare, users can now simply download a pre-installed VM image of a fully
functioning OS X system. The fi rst images made available were of the later Leop-
ards, and are hard to come by, but now images of the latest Lion and even Moun-
tain Lion are readily downloadable from some sites.

While still in violation of the EULA, Apple does not seem as adamant (yet?) in
pursuing the non-commercial ports. It has added features to Lion which require an
Internet connection to install (i.e. “Verify the product with Apple”), but still don’t
manage to snuff the Hackintosh fl ame. Then again, what people do in the privacy
of their own home is their business.

IOS — OS X GOES MOBILE

Windows has its Windows Mobile, Linux has Android, and OS X, too, has its own mobile deriva-
tive — the much hyped iOS. Originally dubbed iPhone OS (until mid-2010), Apple (following a short
trademark dispute with Cisco), renamed the operating system iOS to refl ect the unifi ed nature of the
operating system which powers all its i-Devices: the iPhone, iPod, iPad, and Apple TVs.

iOS, like OS X, also has its version history, with its current release at the time of writing being iOS
5.1. Though all versions have code names, they are private to Apple and are usually known only to
the jailbreaking community.

c01.indd 10c01.indd 10 9/29/2012 5:07:31 PM9/29/2012 5:07:31 PM

Levin c01 V4 - 05/11/2012

iOS — OS X Goes Mobile x 11

1.x — Heavenly and the First iPhone
This release ran from the iPhone’s inception, in mid-2007, through mid-2008. Version numbers were
1.0 through 1.02, then 1.1 through 1.1.5. The only device supported was initially the iPhone, but
the iPod Touch soon followed. The original build was known as “Alpine” (which is also the default
root password on i-Devices), but the released version was “Heavenly.”

From the jailbreakers’ perspective, this release was heavenly, indeed. Full of debug symbols, unen-
crypted, and straightforward to disassemble. Indeed, many versions later, many jailbreakers still rely
on the symbols and function-call graphs extracted from this version.

2.x — App Store, 3G and Corporate Features
iPhoneOS 2.0 (known as BigBear) was released along with the iPhone 3G, and both became an
instant hit. The OS boasted features meant to make the iPhone more compatible with corporate
needs, such as VPN and Microsoft Exchange support. This OS also marked the iPhone going global,
with support for a slew of other languages.

More importantly, with this release Apple introduced the App Store, which became the largest soft-
ware distribution platform in the world, and helped generate even more revenue for Apple as a result
of its commission model. (This is so successful that Apple has been trying this, with less success,
with the Mac App Store, as of late Snow Leopard).

2.x ran 2.0–2.02, 2.1 (SugarBowl), 2.2–2.2.1 (Timberline), until early 2009, and the release of 3.x.
The XNU version in 2.0.0 is 1228.6.76, corresponding to Darwin 9.3.1.

3.x — Farewell, 1st gen, Hello iPad
The 3.x versions of iOS brought along the much-longed-for cut/paste, support for lesser used lan-
guages, spotlight searches, and many other enhancements to the built-in apps. On the more techni-
cal front, it was the fi rst iOS to allow tethering, and allowed the plugging in of Nike+ receivers,
demonstrating that the i-Devices could not only be clients but hosts for add-on devices themselves.

3.0 (KirkWood) was quickly superseded by 3.1 (NorthStar), which ran until 3.1.3, the fi nal version
supported by the “fi rst generation” devices. Version 3.2 (WildCat) was introduced in April of 2010,
especially for the (then mocked) tablet called the iPad. After its web-based jailbreak by Comex (Star
2.0), it was patched to 3.2.2, which was its last version. The Darwin version in 3.1.2 was 10.0.0d3,
and XNU was at 1357.5.30.

4.x — iPhone 4, Apple TV, and the iPad 2
The 4.x versions of iOS brought along many more features and apps, such as FaceTime and voice
control, with 4.0 introduced in late June 2010, along with the iPhone 4. 4.x versions were the fi rst to
support true multitasking, although jailbroken 3.x offered a crude hack to that extent.

iOS 4 was the longest running of the iOS versions, going through 4.0–4.0.2 (Apex), 4.1 (Baker
or Mohave, which was the fi rst Apple TV version of iOS), and 4.2–4.2.10 (Jasper). Version 4.3

c01.indd 11c01.indd 11 9/29/2012 5:07:33 PM9/29/2012 5:07:33 PM

Levin c01 V4 - 05/11/2012

12 x CHAPTER 1 DARWINISM: THE EVOLUTION OF OS X

(Durango) brought support for the (by then well respected) iPad 2 and its new dual-core A5 chip.
Another important new feature was Address Space Layout Randomization (ASLR, discussed later in
this book), which was unnoticeable by users, but — Apple hoped — would prove insurmountable to
hackers. Hopes aside, by version 4.3.3 ASLR succumbed to “Saffron” hack when jailbreaker Comex
then released his ingenious “Star 3.0” jailbreak for the till-then-unbreakable iPad 2. Apple quickly
released 4.3.4 to fi x this bug (discussed later in this book as well), and fi gured the only way to dis-
courage future jailbreaks is to go after the jailbreaker himself — assimilating him. The last release of
4.3.x was 4.3.5, which incorporated another minor security fi x.

The Darwin version in 4.3.3 is 11.0.0, same as Lion. The XNU kernel, however, is at
1735.46.10 — way ahead of Lion.

5.x — To the iPhone 4S and Beyond
iOS is, at the time of this writing, in its fi fth incarnation: Telluride (5.0.0 and 5.0.1) and Hoodoo
(5.1), named after ski resorts. Initially released as iOS 5.0, it coincided with the iPhone 4S, and
introduced (for that phone only) Apple’s natural language-based voice control, Siri. iOS5 also boasts
many new features, such as much requested notifi cations, NewsStand (an App Store for digital pub-
lications), and some features iOS users never knew they needed, like Twitter integration. Another
major enhancement is iCloud (also supported in Lion).

As a result of complaints concerning poor battery life in 5.0, Apple rushed to release 5.0.1, although
some complaints persisted. Version 5.1 was released March 2012, coinciding with the iPad 3.

As this book goes to print, the iPhone 4S is the latest and greatest model, and the iPad 3 has just
been announced, boasting the improved A5X with quad-core graphics. If Apple’s pattern repeats
itself, it seems more than likely that it will be followed by the highly anticipated iPhone 5. Apple’s
upgrade cycles have, thus far, been fi rst for iPad, then iPhone, and fi nally iPod. From the iOS
perspective this matters fairly little — the device upgrades have traditionally focused on better hard-
ware, and fairly few software feature enablers.

Darwin is still at 11.0.0, but XNU is even further ahead of Lion with the version being 1878.11.8 in
iOS 5.1.

iOS vs. OS X
Deep down, iOS is really Mac OS X, but with some signifi cant differences:

 ‰ The architecture for which the kernel and binaries are compiled is ARM-based, rather than
Intel i386 or x86_64. The processors may be different (A4, A5, A5X, etc), but all are based
on designs by ARM. The main advantage of ARM over Intel is in power management, which
makes their processor designs attractive for mobile operating systems such as iOS, as well as
its arch-nemesis, Android.

 ‰ The kernel sources remain closed — even though Apple promised to maintain XNU, the OS
X Kernel, as open source, it apparently frees itself from that pledge for its mobile version.
Occasionally, some of the iOS modifi cations leak into the publicly available sources (as can
be seen by various #ifdef,__arm__, and ARM_ARCH conditionals), though these generally
diminish in number with new kernel versions.

c01.indd 12c01.indd 12 9/29/2012 5:07:33 PM9/29/2012 5:07:33 PM

Levin c01 V4 - 05/11/2012

iOS — OS X Goes Mobile x 13

 ‰ The kernel is compiled slightly differently, with a focus on embedded features and some new
APIs, some of which eventually make it to OS X, whereas others do not.

 ‰ The system GUI is Springboard, the familiar touch-based application launcher, rather than
Aqua, which is mouse-driven and designed for windowing. SpringBoard proved so popular it
has actually been (somewhat) back ported into OS X with Lion’s LaunchPad.

 ‰ Memory management is much tighter, as there is no nigh-infi nite swap space to fall on. As a
consequence, programmers have to adapt to harsher memory restrictions and changes in the
programming model.

 ‰ The system is hardened, or “jailed,” so as not to allow any access to the underlying UNIX
APIs (i.e. Darwin), nor root access, nor any access to any directory but the application’s own.
Only Apple’s applications enjoy the full power of the system. App Store apps are restricted
and subject to Apple’s scrutiny.

The last point is really the most important: Apple has done its utmost to keep iOS closed, as a spe-
cialized operating system for its mobile platforms. In effect, this strips down the operating system to
allow developers only the functionality Apple deems as “safe” or “recommended,” rather than allow
full use of the hardware, which — by itself — is comparable to any decent desktop computer. But
these limitations are artifi cial — at its core, iOS can do nearly everything that OS X can. It doesn’t
make sense to write an OS from scratch when a good one already exists and can simply be ported.
What’s more, OS X had already been ported once, from PPC to x86 — and, by induction, could be
ported again.

Whether or not you possess an i-Device, you have no doubt heard the much active buzz around the
“jailbreaking” procedure, which allows you to overcome the Apple-imposed limitations. Without
getting into the legal implications of the procedure (some claim Apple employs more lawyers than
programmers), suffi ce it to say it is possible and has been demonstrated (and often made public) for
all i-Devices, from the very fi rst iPhone to the iPhone 4S. Apple seems to be playing a game of cat
and mouse with the jailbreakers, stepping up the challenge considerably from version to version, yet
there’s always “one more thing” that the hackers fi nd, much to Apple’s chagrin.

Most of the examples shown in this book, when applied to iOS, require a jailbroken device. Alterna-
tively, you can obtain an iOS software update — which is normally encrypted to prevent any prying
eyes such as yours — but can easily be decrypted with well-known decryption keys obtained from
certain iPhone-dedicated Wiki sites. Decrypting the iOS image enables you to peek at the fi le system
and inspect all the fi les, but not run any processes for yourself. For this reason, jailbreaking proves
more advantageous. Jailbreaking is about as harmful (if you ask Apple) as open source is bad for
your health (if you ask Microsoft). Apple went so far as to “get the facts” and published HT3743[4]

about the terrible consequences of “unauthorized modifi cation of iOS.” This book will not teach
you how to jailbreak, but many a website will happily share this information.

If you were to, say, jailbreak your device, the procedure would install an alternate software package
called Cydia, with which you can install third-party apps, that are not App Store approved. While
there are many, the ones you’ll need to follow along with the examples in this book are:

 ‰ OpenSSH: Allows you to connect to your device remotely, via the SSH protocol, from any
client, OS X, Linux (wherein ssh is a native command line app), or Windows (which has a
plethora of SSH clients — for example, PuTTY).

c01.indd 13c01.indd 13 9/29/2012 5:07:34 PM9/29/2012 5:07:34 PM

Levin c01 V4 - 05/11/2012

14 x CHAPTER 1 DARWINISM: THE EVOLUTION OF OS X

 ‰ Core Utilities: Packaging the basic utilities you can expect to fi nd in a UNIX /bin directory.

 ‰ Adv-cmds and top: Advanced commands, such as ps to view processes.

SSHing to your device, the fi rst command to try would be the standard UNIX uname which you
saw earlier in the context of OS X. If you try this on an iPad 2 running iOS 4.3.3, for example, you
would see something similar to the following:

OUTPUT 1-2A: uname(1) on an iOS 4 iPad 2

root@Padishah (/) # uname -a
Darwin Padishah 11.0.0 Darwin Kernel Version 11.0.0: Wed Mar 30 18:52:42 PDT 2011;
root:xnu-1735.46~10/RELEASE_ARM_S5L8940X iPad2,3 arm K95AP Darwin

And on an iPod running iOS 5:, you would see the following:

OUTPUT 1-2B: uname(1) on a 4th-generation iPod running iOS 5.0

root@Podicum (/) # uname -a
Darwin Podicum 11.0.0 Darwin Kernel Version 11.0.0: Thu Sep 15 23:34:16 PDT 2011;
root:xnu-1878.4.43~2/RELEASE_ARM_S5L8930X iPod4,1 arm N81AP Darwin

So, from the kernel perspective, this is (almost) the same kernel, but the architecture is ARM.
(S5L8940X is the processor on iPad, commonly known as A5, whereas S5L8930X is the one known
as A4. The new iPad is reported as iPad3.1, and its processor, A5X, is identifi ed as S5L8945X).

Table 1-1 partially maps OS X and iOS, in some of their more modern incarnations, to the respec-
tive version of XNU. As you can see, until 4.2.1, iOS was using largely the same XNU version as its
corresponding OS X at the time. This made it fairly easy to reverse engineer its compiled kernel (and
with a fairly large number of debug symbols still present!). With iOS 4.3, however, it has taken off
in terms of kernel enhancements, leaving OS X behind. Mountain Lion seems to put OS X back in
the lead, but this might very well change if and when iOS 6 comes out.

TABLE 1-1: Mapping of OS X and iOS to their corresponding kernel versions, and approximate release

dates.

OPERATING SYSTEM RELEASE DATE KERNEL VERSION

Puma (10.1.x) Sep 2001 201.*.*

Jaguar (10.2.x) Aug 2002 344.*.*

Panther (10.3.x) Oct 2003 517.*.*

Tiger (10.4.x) April 2005 792.*.*

iOS 1.1 June 2007 933.0.0.78

Leopard (10.5.4) October 2007 1228.5.20

c01.indd 14c01.indd 14 9/29/2012 5:07:34 PM9/29/2012 5:07:34 PM

Levin c01 V4 - 05/11/2012

The Future of OS X x 15

OPERATING SYSTEM RELEASE DATE KERNEL VERSION

iOS 2.0.0 July 2008 1228.6.76

iOS 3.1.2 June 2009 1357.5.30

Snow Leopard (10.6.8) August 2009 1504.15.3

iOS 4.2.1 November 2010 1504.58.28

iOS 4.3.1 March 2011 1735.46

Lion (10.7.0) August 2011 1699.22.73

iOS 5 October 2011 1878.4.43

Lion (10.7.3) February 2012 1699.24.23

iOS 5.1 March 2012 1878.11.8

Mountain Lion (DP1) March 2012 2050.1.12

THE FUTURE OF OS X

At the time of writing, the latest publicly available Mac OS X is Lion, OS X 10.7, with Mountain
Lion — OS X 10.8 — lurking in the bushes. Given that the minor version of the latter is already at 8,
and the supply of felines has been exhausted, it is also likely to be the last “OS X” branded operat-
ing system (although this is, of course, a speculation).

OS X has matured over the past 10 years and has evolved into a formidable operating system. Still,
from an architectural standpoint, it hasn’t changed that much. The great transition (to Intel archi-
tectures) and 64-bit changes aside, the kernel has changed relatively little in the past couple of ver-
sions. What, then, may one expect from OS XI?

 ‰ The eradication of Mach: The Mach APIs in the kernel, on which this book will elaborate
greatly, are an anachronistic remnant of the NeXTSTEP days. These APIs are largely hidden
from view, with most applications using the much more popular BSD APIs. The Mach APIs
are, nonetheless, critical for the system, and virtually all applications would break down if
they were to be suddenly removed. Still, Mach is not only inconvenient — but also slower.
As you will see, its message-passing microkernel-based architecture may be elegant, but it
is hardly as effective as contemporary monolithic kernels (in fact, XNU tends toward the
monolithic than the microkernel architecture, as is discussed in Chapter 8). There is much to
be gained by removing Mach altogether and solidifying the kernel to be fully BSD, though
this is likely to be no mere feat.

 ‰ ELF binaries: Another obstacle preventing Mac OS from fully joining the UN*X sorority
is its insistence on the Mach-O binary format. Whereas virtually all other UN*X support
ELF, OS X does not, basing its entire binary architecture on the legacy Mach-O. If Mach is
removed, Mach-O will lose its raison d’etre, and the road to ELF will be paved. This, along

c01.indd 15c01.indd 15 9/29/2012 5:07:35 PM9/29/2012 5:07:35 PM

Levin c01 V4 - 05/11/2012

16 x CHAPTER 1 DARWINISM: THE EVOLUTION OF OS X

with the POSIX compatibility OS X already boasts, could provide both source code and
binary compatibility, allowing migrating applications from Solaris, BSD, and Linux to run
with no modifi cations.

 ‰ ZFS: Much criticism is pointed at HFS+, the native Mac OS fi le system. HFS+ is itself a
patchwork over HFS, which was used in OS 8 and 9. ZFS would open up many features that
HFS+ cannot. Core Storage was a giant stride forward in enabling logical volumes and multi-
partition volumes, but still leaves much to be desired.

 ‰ Merger with iOS: At present, features are tried out in OS X, and then sometimes ported to
iOS, and sometimes vice versa. For example, Launchpad and gestures, both now mainstream
in Lion, originated in iOS. The two systems are very much alike in many regards, but the
supported frameworks and features remain different. Lion introduced some UI concepts
borrowed from iOS, and iOS 5.0 brings some frameworks ported from OS X. As mobile
platforms become stronger, it is not unlikely that the two systems will eventually become
closer still, paving the way for running iOS apps, for example, on OS X. Apple has already
implemented an architecture translation mechanism before — with Rosetta emulating the
PPC architecture on Intel.

SUMMARY

Over the years, Mac OS evolved considerably. It has turned from being the underdog of the operat-
ing system world — an OS used by a small but devoted population of die-hard fans — into a main-
stream, modern, and robust OS, gaining more and more popularity. iOS, its mobile derivative, is
one of the top mobile operating systems in use today.

The next chapters take you through a detailed discussion of OS X internals: Starting with the basic
architecture, then diving deeper into processes, threads, debugging, and profi ling.

REFERENCES

[1] Amit Singh’s Technical History of Apple’s Operating Systems: http://osxbook.com/book/
bonus/chapter1/pdf/macosxinternals-singh-1.pdf

[2] ARS Technica: http://arstechnica.com

[3] Wikipedia’s Mac OS X entry: http://en.wikipedia.org/wiki/Mac_OS_X

[4] “Unauthorized modifi cation of iOS has been a major source of instability, disruption of ser-
vices, and other issues”: http://support.apple.com/kb/HT3743

c01.indd 16c01.indd 16 9/29/2012 5:07:35 PM9/29/2012 5:07:35 PM

http://osxbook.com/book/bonus/chapter1/pdf/macosxinternals-singh-1.pdf
http://arstechnica.com
http://en.wikipedia.org/wiki/Mac_OS_X
http://support.apple.com/kb/HT3743
http://osxbook.com/book/bonus/chapter1/pdf/macosxinternals-singh-1.pdf

2
E Pluribus Unum: Architecture of
OS X and iOS

OS X and iOS are built according to simple architectural principles and foundations. This
chapter presents these foundations, and then focuses further on the user-mode components
of the system, in a bottom-up approach. The Kernel mode components will be discussed with
greater equal detail, but not until the second part of this book.

We will compare and contrast the two architectures — iOS and OS X. As you will see, iOS is
in essence, a stripped down version of the full OS X with two notable differences: The archi-
tecture is ARM-based (as opposed to Intel x86 or x86_64), and some components have either
been simplifi ed or removed altogether, to accommodate for the limitations and/or features of
mobile devices. Concepts such as GPS, motion-sensing, and touch — which are applicable at
the time of this writing only to mobile devices — have made their debut in iOS, and are pro-
gressively being merged into the mainstream OS X in Lion.

OS X ARCHITECTURAL OVERVIEW
When compared to its predecessor, OS 9, OS X is a technological marvel. The entire operat-
ing system has been redesigned from its very core, and entirely revamped to become one of
the most innovative operating systems available. Both in terms of its Graphical User Interface
(GUI) and its underlying programmer APIs, OS X sports many features that are still novel,
although are quickly being ported (not to say copied) into Windows and Linux.

Apple’s offi cial OS X and iOS documentation presents a very elegant and layered approach,
which is somewhat overly simplifi ed:

 ‰ The User Experience layer: Wherein Apple includes Aqua, Dashboard, Spotlight, and
accessibility features. In iOS, the UX is entirely up to SpringBoard, and Spotlight is sup-
ported as well.

 ‰ The Application Frameworks layer: Containing Cocoa, Carbon, and Java. iOS, how-
ever, only has Cocoa (technically, Cocoa Touch, a derivative of Cocoa)

 ‰ The Core Frameworks: Also sometimes called the Graphics and Media layer. Contains
the core frameworks, Open GL, and QuickTime.

 ‰ Darwin: The OS core — kernel and UNIX shell environment.

c02.indd 17c02.indd 17 9/29/2012 5:08:21 PM9/29/2012 5:08:21 PM

18 x CHAPTER 2 E PLURIBUS UNUM: ARCHITECTURE OF OS X AND IOS

Of those, Darwin is fully open sourced and serves as the foundation and low-level APIs for the rest
of the system. The top layers, however, are closed-source, and remain Apple proprietary.

Figure 2-1 shows a high level architectural overview of
these layers. The main difference from Apple’s offi cial fi g-
ure, is that this rendition is tiered in a stair-like manner.
This refl ects the fact that applications can be written so as
to interface directly with lower layers, or even exist solely
in them. Command line applications, for example, have no
“User Experience” interaction, though they can interact
with application or core frameworks.

At this high level of simplifi cation, the architecture of both
systems conforms to the above fi gure. But zooming in, one would discover subtle differences. For
example, the User Experience of the two systems is different: OS X uses Aqua, whereas iOS uses
SpringBoard. The frameworks are largely very similar, though iOS contains some that OS X doesn’t,
and vice versa.

While Figure 2-1 is nice and clean, it is far too simplifi ed for our purposes. Each layer in it can be
further broken down into its constituents. The focus of this book is on Darwin, which is itself not a
single layer, but its own tiered architecture, as shown in Figure 2-2.

libSystem.B.dylib

IoKit

libkern

IoKit

libkern

libc.dylib libm.dylib …

Other Darwin Libraries

Kernel/User Transition

(sysent)
BSD System calls

SecurityIPCScheduling VM

IPCScheduling VM

Mach Traps

(mach_trap_table)

/dev

Mach Abstractions

Hardware

VFS

BSD

Mach

Platform Expertml_* APIsmachine specific hacks

FIGURE 2-2: Darwin Architecture

Darwin

Application Frameworks

User Experience

Core Frameworks

FIGURE 2-1: OS X and iOS architectural

diagram

c02.indd 18c02.indd 18 9/29/2012 5:08:27 PM9/29/2012 5:08:27 PM

The User Experience Layer x 19

Figure 2-2 is much closer to depicting the real structure of the Darwin, and particularly its kernel,
XNU (though it, too, is somewhat simplifi ed). It reveals an inconvenient truth: XNU is really a
hybrid of two technologies: Mach and BSD, with several other components — predominantly IOKit,
thrown in for good measure. Unsurprisingly, Apple’s neat fi gures and documentation don’t get to
this level of unaesthetic granularity. In fact, Apple barely acknowledges Mach.

The good news in all this is that, to some extent, ignorance is bliss. Most user-mode applications,
especially if coded in Objective-C, need only interface with the frameworks — primarily Cocoa, the
preferred application framework, and possibly some of its core frameworks. Most OS X and iOS
developers therefore remain agnostic of the lower layers, Darwin, and most certainly of the kernel.
Still, each of the user-mode layers is individually accessible by applications. In the kernel, quite a few
components are available to device driver developers. We therefore wade into greater detail in the
sections that follow. In particular, we focus on the Darwin shell environment. The second part of
this book delves into the kernel.

THE USER EXPERIENCE LAYER

In OS X parlance, the user interface is the User Experience. OS X prides itself on its innovative fea-
tures, and with good reason. The sleek interface, that debuted with Cheetah and has evolved since,
has been a target for imitation, and has infl uenced other GUI-based operating systems, such as Vista
and Windows 7.

Apple lists several components as part of the User Experience layer:

 ‰ Aqua

 ‰ Quick Look

 ‰ Spotlight

 ‰ Accessibility options

iOS architecture, while basically the same at the lower layers, is totally differ-
ent at the User Experience level. SpringBoard (the familiar touch driven UI) is
entirely responsible for all user interface tasks (as well as myriad other ones).
SpringBoard is covered in greater detail in chapter 6.

Aqua
Aqua is the familiar, distinctive GUI of OS X. Its features, such as translucent windows and graph-
ics effects, are well known but are of less interest in the context of the discussion here. Rather, the
focus is how it is actually maintained.

The system’s fi rst user-mode process, launchd (which is covered in great depth in Chapter 6) is
responsible for starting the GUI. The main process that maintains the GUI is the WindowServer.
It is intentionally undocumented, and is part of the Core Graphics frameworks buried deep within

c02.indd 19c02.indd 19 9/29/2012 5:08:28 PM9/29/2012 5:08:28 PM

20 x CHAPTER 2 E PLURIBUS UNUM: ARCHITECTURE OF OS X AND IOS

another framework, Application Services. Thus, the full path to it is /System/Library/Frame-
works/ApplicationServices.framework/Frameworks/CoreGraphics.framework/Resources/

WindowServer.

The window server is started with the -daemon switch. Its code doesn’t really do anything — all
the work is done by the CGXServer (Core Graphics X Server) of the CoreGraphics framework.
CGXServer checks whether it is running as a daemon and/or as the main console getty. It then forks
itself into the background. When it is ready, the LoginWindow (also started by launchd) starts the
interactive login process.

It is possible to get the system to boot in text console mode, just like the good
ol’ UNIX days. The setting which controls loginWindow is in /etc/ttys, under
console defi ned as:

root@Ergo (/)# cat /etc/ttys | grep console
#console "/usr/libexec/getty std.57600" vt100 on
secure
console "/System/Library/CoreServices/loginwindow.app/Contents/
MacOS/
loginwindow" vt100 on secure onoption="/usr/libexec/getty
std.9600"

Uncommenting the fi rst console line will make the system boot into single-user
mode. Alternatively, by setting Display Login Window as Name and Password
from System Settings Í Accounts Í Login options, the system console can be
accessed by logging in with ">console" as the user name, and no password. If
you want back to GUI, a simple CTRL-D (or an exit from the login shell) will
resume the Window Server. You can also try ">sleep" and ">reboot"

Quicklook
Quicklook is a feature that was introduced in Leopard (10.5) to enable a quick preview from inside
the Finder, of various fi le types. Instead of double-clicking to open a fi le, it can be QuickLook-ed
by pressing the spacebar. It is an extensible architecture, allowing most of the work to be done by
plugins. These plugins are bundles with a .qlgenerator extension, which can be readily installed
by dropping them into the QuickLook directory (system-wide at /System/Library/QuickLook; or
per user, at ~/Library/QuickLook).

Bundles are a fundamental software deployment architecture in OS X, which we
cover in great detail later in this chapter. For now, suffi ce it to consider a bundle
as a directory hierarchy conforming to a fi xed structure.

The actual plug-in is a specially compiled program — but not a standalone executable. Instead of the
traditional main() entry point, it implements a QuickLookGeneratorPluginFactory. A separate
confi guration fi le associates the plugin with the fi le. The fi le type is specifi ed in what Apple calls
UTI, Uniform Type Identifi er, which is essentially just reverse DNS notation.

c02.indd 20c02.indd 20 9/29/2012 5:08:33 PM9/29/2012 5:08:33 PM

The User Experience Layer x 21

REVERSE DNS NOTATION — WHY?

There is good reasoning for using reverse DNS name as identifi ers of software
packages. Specifi cally,

 ‰ The Internet DNS format serves as a globally unique hierarchical namespace
for host names. It forms a tree, rooted in the null domain (.), with the top-level
domains being .com, .net, .org, and so on.

 ‰ The idea of using the same namespace for software originated with Java.
To prevent namespace confl ict, Sun (now Oracle) noted that DNS can be
used — albeit in reverse — to provide a hierarchy that closely resembles a fi le
system.

 ‰ Apple uses reverse DNS format extensively in OS X, as you will see through-
out this book.

quicklookd(8) is the system “QuickLook server,” and is started upon login from the fi le
/System/Library/LaunchAgents/com.apple.quicklook.plist. The daemon itself resides within
the QuickLook framework and has no GUI. The qlmanage(1) command can be used to maintain
the plugins and control the daemon, as is shown in Output 2-1:

OUTPUT 2-1: Demonstrating qlmanage(1)

morpheus@Ergo (/) % qlmanage –m
 living for 4019s (5 requests handled - 0 generated thumbnails) -
 instant off: yes - arch: X86_64 - user id: 501
memory used: 1 MB (1132720 bytes)
last burst: during 0.010s - 1 requests - 0.000s idle
plugins:
 org.openxmlformats.wordprocessingml.document ->
/System/Library/QuickLook/Office.qlgenerator (26.0)
 com.apple.iwork.keynote.sffkey -> /Library/QuickLook/iWork.qlgenerator
 (11)
 ..
 org.openxmlformats.spreadsheetml.template ->
/System/Library/QuickLook/Office.qlgenerator (26.0)
 com.microsoft.word.stationery -> /System/Library/QuickLook/Office.qlgenerator (26.0)
 com.vmware.vm-package -> /Library/QuickLook/VMware Fusion
 QuickLook.qlgenerator (282344)
 com.microsoft.powerpoint.pot -> /System/Library/QuickLook/Office.qlgenerator (26.0)

Spotlight
Spotlight is the quick search technology that Apple introduced with Tiger (10.4). In Leopard, it has
been seamlessly integrated into Finder. It has also been ported into iOS, beginning with iOS 3.0.
In OS X, the user interacts with it by clicking the magnifying glass icon that is located at the right
corner of the system’s menu bar. In iOS, a fi nger swipe to the left of the home screen will bring up a
similar window.

c02.indd 21c02.indd 21 9/29/2012 5:08:34 PM9/29/2012 5:08:34 PM

22 x CHAPTER 2 E PLURIBUS UNUM: ARCHITECTURE OF OS X AND IOS

The brain behind spotlight is an indexing server, mds, located in the MetaData framework, which
is part of the system’s core services. (/System/Library/Frameworks/CoreServices.framework/
Frameworks/Metadata.framework/Support/mds). This is a daemon with no GUI. Every time a fi le
operation occurs — creation, modifi cation, or deletion — the kernel notifi es this daemon. This noti-
fi cation mechanism, called fsevents, is discussed later in this chapter.

When mds receives the notifi cation, it then imports, via a Worker process (mdworker), various metadata
information into the database. The mdworker can launch a specifi c Spotlight Importer to extract the
metadata from the fi le. System-provided importers are in /System/Library/Spotlight, and user-pro-
vided ones are in /Library/Spotlight. Much like QuickLook, they are plugins, implementing a fi xed
API (which can be generated boilerplate by XCode when a MetaData Importer project is selected).

Spotlight can be accessed from the command line using the following commands:

 ‰ mdutil: Manages the MetaData database

 ‰ mdfind: Issues spotlight queries

 ‰ mdimport: Confi gures and test spotlight plugins

 ‰ mdls: Lists metadata attributes for fi le

 ‰ mdcheckschema: Validates metadata schemata

 ‰ Mddiagnose: Added in Lion, this utility provides a full diagnostic of the spotlight subsystem
(mds and mdworker), as well as additional data on the system.

Another little documented feature is controlling Spotlight (particularly, mds) by creating fi les in vari-
ous paths: For example, creating a .metadata_never_index hidden fi le in a directory will prevent
its indexing (originally designed for removable media).

DARWIN — THE UNIX CORE

OS X’s Darwin is a full-fl edged UNIX implementation. Apple makes no attempt to hide it, and in
fact takes pride in it. Apple maintains a special document highlighting Darwin’s UNIX features[2].
Leopard (10.5) was the fi rst version of OS X to be UNIX-certifi ed. For most users, however, the
UNIX interface is entirely hidden: The GUI environment hides the underlying UNIX directories
very well. Because this book focuses on the OS internals, most of the discussion, as well as the
examples, will draw on the UNIX command line.

The Shell
Accessing the command line is simple — the Terminal application will open a terminal emulator
with a UNIX shell. By default this is /bin/bash, the GNU “Bourne Again” shell, but OS X provides
quite the choice of shells:

 ‰ /bin/sh (the Bourne shell): The basic UNIX shell, created by Stephen Bourne. Considered
the standard as of 1977. Somewhat limited.

 ‰ /bin/bash (Bourne Again shell): Default shell. Backward compatible with the basic Bourne
shell, but far more advanced. Considered the modern standard on many operating systems,
such as Linux and Solaris.

c02.indd 22c02.indd 22 9/29/2012 5:08:35 PM9/29/2012 5:08:35 PM

Darwin — The UNIX Core x 23

 ‰ /bin/csh (C-shell): An alternative basic shell, with C-like syntax.

 ‰ /bin/tcsh (TC-shell): Like the C-shell, but with more powerful aliasing, completion, and
command line editing features.

 ‰ /bin/ksh (Korn shell): Another standard shell, created by David Korn in the 1980s. Highly
effi cient for scripting, but not too friendly in the command-line environment.

 ‰ /bin/zsh (Z-Shell): A slowly emerging standard, developed at http://www.zsh.org. Fully
Bourne/Bourne Again compatible, with even more advanced features.

The command line in OS X (and iOS) can also be accessed remotely, over telnet or SSH. Both are
disabled by default, and the former (telnet) is highly discouraged as it is inherently insecure and
unencrypted. SSH, however, is used as a drop-in replacement (as well as for the former Berkeley
“R-utils,” such as rcp/rlogin/rsh).

Either telnet or SSH can be easily enabled on OS X by editing the appropriate property list fi le
(telnet.plist, or ssh.plist) in /System/Library/LaunchDaemons. Simply set the Disabled
key to false, (or remove it altogether). To do so, however, you will need to assume root privileges
fi rst — by using sudo bash (or another shell of your choice).

On iOS, SSH is disabled by default as well, but on jailbroken systems it is installed and enabled
during the jailbreak process. The two users allowed to log in interactively are root (naturally) and
mobile. The default root password is alpine, as was the code name for the fi rst version of iOS.

The File System
Mac OS X uses the Hierarchical File System Plus (or HFS+) fi le system. The “Plus” denotes that HFS+
is a successor to an older Hierarchical File System, which was commonly used in pre-OS X days.

HFS+ comes in four varieties:

 ‰ Case sensitive/insensitive: HFS+ is always case preserving, but may or may not also be case-
sensitive. When set to be case sensitive, HFS+ is referred to as HFSX. HFSX was introduced
around Panther, and — while not used in OS X — is the default on iOS.

 ‰ Optional journaling: HFS+ may optionally employ a journal, in which case it is commonly
referred to as JHFS (or JHFSX). A journal enables the fi le system to be more robust in cases
of forced dismounting (for example, power failures), by using a journal to record fi le system
transactions until they are completed. If the fi le system is mounted and the journal contains
transactions, they can be either replayed (if complete) or discarded. Data may still be lost, but
the fi le system is much more likely to be in a consistent state.

In a case-insensitive fi le system in OS X, fi les can be created in any uppercase-lowercase combina-
tion, and will in fact be displayed in the exact way they were created, but can be accessed by any
case combination. As a consequence, two fi les can never share the same name, irrespective of case.
However, accidentally setting caps lock wouldn’t affect fi le system operations. To see for yourself,
try LS /ETC/PASSWD.

In iOS, being the case sensitive HFSX by default, case is not only preserved, but allows for multiple
fi les to have the same name, albeit with different case. Naturally, case sensitivity means typos pro-
duce a totally different command or fi le reference, often a wrong one.

c02.indd 23c02.indd 23 9/29/2012 5:08:35 PM9/29/2012 5:08:35 PM

http://www.zsh.org

24 x CHAPTER 2 E PLURIBUS UNUM: ARCHITECTURE OF OS X AND IOS

The HFS fi le systems have unique features, like extended attributes and transparent compression,
which are discussed in depth in chapter 15. Programmatically, however, the interfaces to the HFS+
and HFSX are the same as other fi le systems, as well — The APIs exposed by the kernel are actu-
ally provided through a common fi le system adaptation layer, called the Virtual File system Switch
(VFS). VFS is a uniform interface for all fi le systems in the kernel, both UNIX based and foreign.
Likewise, both HFS+ and HFSX offer the user the “default” or common UNIX fi le system user
experience — permissions, hard and soft links, fi le ownership and types are all like other UNIX.

UNIX SYSTEM DIRECTORIES

As a conformant UNIX system, OS X works with the well-known directories that are standard on
all UNIX fl avors:

 ‰ /bin: Unix binaries. This is where the common UNIX commands (for example, ls, rm, mv,
df) are.

 ‰ /sbin: System binaries. These are binaries used for system administration, such as fi le-system
management, network confi guration, and so on.

 ‰ /usr: The User directory. This is not meant for users, but is more like Windows’ program
fi les in that third-party software can install here.

 ‰ /usr: Contains in it bin, sbin, and lib. /usr/lib is used for shared objects (think, Win-
dows DLLs and \windows\system32). This directory also contains the include/ subdirec-
tory, where all the standard C headers are.

 ‰ /etc: Et Cetera. A directory containing most of the system confi guration fi les; for example,
the password fi le (/etc/passwd). In OS X, this is a symbolic link to /private/etc.

 ‰ /dev: BSD device fi les. These are special fi les that represent hardware devices on the system
(character and block devices).

 ‰ /tmp: Temporary directory. The only directory in the system that is world-writable (permis-
sions: rwxrwxrwx). In OS X, this is a symbolic link to /private/tmp.

 ‰ /var: Various. A directory for log fi les, mail store, print spool, and other data. In OS X, this
is a symbolic link to /private/var.

The UNIX directories are invisible to Finder. Using BSD’s chflags(2) system call, a special fi le
attribute of “hidden” makes them hidden from the GUI view. The non-standard option -O to ls,
however, reveals the fi le attributes, as you can see in Output 2-2. Other special fi le attributes, such
as compression, are discussed in Chapter 14.

OUTPUT 2-2: Displaying fi le attributes with the non standard “-O” option of ls

morpheus@Ergo (/) % ls –lO /
drwxrwxr-x+ 39 root admin - 1326 Dec 5 02:42 Applications
drwxrwxr-x@ 17 root admin - 578 Nov 5 23:40 Developer
drwxrwxr-t+ 55 root admin - 1870 Dec 29 17:23 Library
drwxr-xr-x@ 2 root wheel hidden 68 Apr 28 2010 Network

c02.indd 24c02.indd 24 9/29/2012 5:08:35 PM9/29/2012 5:08:35 PM

UNIX System Directories x 25

drwxr-xr-x 4 root wheel - 136 Nov 11 09:52 System
drwxr-xr-x 6 root admin - 204 Nov 14 21:07 Users
drwxrwxrwt@ 3 root admin hidden 102 Feb 6 11:17 Volumes
drwxr-xr-x@ 39 root wheel hidden 1326 Nov 11 09:50 bin
drwxrwxr-t@ 3 root admin hidden 102 Jan 21 02:40 cores
dr-xr-xr-x 3 root wheel hidden 4077 Feb 6 11:17 dev
...

OS X–Specifi c Directories
OS X adds its own special directories to the UNIX tree, under the system root:

 ‰ /Applications: Default base for all applications in system.

 ‰ /Developer:If XCode is installed, the default installation point for all developer tools.

 ‰ /Library: Data fi les, help, documentation, and so on for system applications.

 ‰ /Network: Virtual directory for neighbor node discovery and access.

 ‰ /System: Used for System fi les. It contains only a Library subdirectory, but this direc-
tory holds virtually every major component of the system, such as frameworks (/System/
Library/Frameworks), kernel modules (/System/Library/Extensions), fonts, and so on.

 ‰ /Users: Home directory for users. Every user has his or her own directory created here.

 ‰ /Volumes: Mount point for removable media and network fi le systems.

 ‰ /Cores: Directory for core dumps, if enabled. Core dumps are created when a process
crashes, if the ulimit(1) command allows it, and contain the core virtual memory image of
the process. Core dumps are discussed in detail in Chapter 4, “Process Debugging.”

iOS File System Idiosyncrasies
From the fi le system perspective, iOS is very similar to OS X, with the following differences:

 ‰ The fi le system (HFSX) is case-sensitive (unlike OS X’s HFS+, which is case preserving, yet
insensitive). The fi le system is also encrypted in part.

 ‰ The kernel is already prepackaged with its kernel extensions, as a kernelcache (in /System/
Library/Caches/com.apple.kernelcaches). Unlike OS X kernel caches (which are com-
pressed images), iOS kernel caches are encrypted Img3. This is described in chapter 5.

Kernel caches are discussed in Chapter 18, but for now you can simply think of
them as a preconfi gured kernel.

 ‰ /Applications may be a symbolic link to /var/stash/Applications. This is a feature of
the jailbreak, not of iOS.

 ‰ There is no /Users, but a /User — which is a symbolic link to /var/mobile

c02.indd 25c02.indd 25 9/29/2012 5:08:35 PM9/29/2012 5:08:35 PM

26 x CHAPTER 2 E PLURIBUS UNUM: ARCHITECTURE OF OS X AND IOS

 ‰ There is no /Volumes (and no need for it, or for disk arbitration, as iOS doesn’t have any
way to add more storage to a given system)

 ‰ /Developer is populated only if the i-Device is selected as “Use for development” from
within XCode. In those cases, the DeveloperDiskImage.dmg included in the iOS SDK is
mounted onto the device.

INTERLUDE: BUNDLES

Bundles are a key idea in OS X, which originated in NeXTSTEP and, with mobile apps, has become
the de facto standard. The bundle concept is the basis for applications, but also for frameworks,
plugins, widgets, and even kernel extensions all packaged into bundles. It therefore makes sense to
pause and consider bundles before going on to discuss the particulars of applications as frameworks.

The term “bundle” is actually used to describe two different terms in Mac OS:
The fi rst is the directory structure described in this section (also sometimes called
“package”). The second is a fi le object format of a shared-library object which
has to be explicitly loaded by the process (as opposed to normal libraries, which
are implicitly loaded). This is also sometimes referred to as a plug-in.

Apple defi nes bundles as “a standardized hierarchical structure that holds executable code and the
resources used by that code.”[1]. Though the specifi c type of bundle may differ and the contents vary,
all bundles have the same basic directory structure, and every bundle type has the same directories.
OS X Application bundles, for example, look like the following code shown in Listing 2-1:

LISTING 2-1: The bundle format of an application

 Contents/
 CodeResources/
 Info.plist Main package manifest files
 MacOS/ Binary contents of package
 PkgInfo Eight character identifier of package
 Resources/ .nib files (GUI) and .lproj files
 Version.plist Package version information
 _CodeSignature/
 CodeResources

Cocoa provides a simple programmatic way to access and load bundles using the NSBundle object,
and CoreFoundation’s CFBundle APIs.

APPLICATIONS AND APPS

OS X’s approach to applications is another legacy of its NeXTSTEP origins. Applications are neatly
packaged in bundles. An application’s bundle contains most of the fi les required for the application’s
runtime: The main binary, private libraries, icons, UI elements, and graphics. The user remains

c02.indd 26c02.indd 26 9/29/2012 5:08:36 PM9/29/2012 5:08:36 PM

Applications and Apps x 27

largely oblivious to this, as a bundle is shown in Finder as a single icon. This allows for the easy
installation experience in Mac OS — simply dragging an application icon into the Applications
folder. To peek inside an application, one would have to use (the non-intuitive) right click.

In OS X, applications are usually located in the /Applications folder. Each application is in its
own directory, named AppName.app. Each application adheres quite religiously to a fi xed for-
mat, discussed shortly — wherein resources are grouped together according to class, in separate
sub-directories.

In iOS, apps deviate somewhat from the neat structure — they are still contained in their own direc-
tories, but do not adhere as zealously to the bundle format. Rather, the app directory can be quite
messy, with all the app fi les thrown in the root, though sometimes fi les required for internationaliza-
tion (“i18n”) are in subdirectories (xxx.lproj directories, where xxx is the language, or ISO language
code).

Additionally, iOS distinguishes between the default applications provided by Apple, which reside
in /Applications (or /var/stash/Applications in older jailbreak-versions of iOS), and App
Store purchased ones, which are in /var/mobile/Applications. The latter is installed in a direc-
tory with a specifi c 128-bit GUID, broken up into a more manageable structure of 4-2-2-2-4 (e.g:
A8CB4133-414E-4AF6-06DA-210490939163 — each hex digit representing 4 bits).

In the GUID-named directory, you can fi nd the usual .app directory, along with several additional
directories:

This special directory structure, shown in Table 2-1 is required because iOS Apps are chroot(2)-ed
to their own application directory — the GUID encoded one — and cannot escape it and access
the rest of the fi le system. This ensures that non-Apple applications are so limited that they can’t
even see what other applications are installed side by side — contributing to the user’s privacy and
Apple’s death grip on the operating system (Jailbreaking naturally changes all that). An application
therefore treats its own GUID directory as the root, and when it needs a temporary directory, /tmp
points to its GUID/tmp.

TABLE 2-1: Default directory structure of an iOS app.

IOS AP P COMPONENT USED FOR

Documents Data fi les saved by the applications (saved high scores for

games, documents, notes..)

iTunesArtwork The app’s high resolution icon. This is usually a JPG image.

iTunesMetaData.plist The property list of the app, in binary plist format (more on plists

follows shortly)

Library/ Miscellaneous app fi les. This is further broken down into

Caches, Cookies, Preferences, and sometimes WebKit (for apps

with built-in browsing)

Tmp Directory for temporary fi les

c02.indd 27c02.indd 27 9/29/2012 5:08:37 PM9/29/2012 5:08:37 PM

28 x CHAPTER 2 E PLURIBUS UNUM: ARCHITECTURE OF OS X AND IOS

When downloaded from the App Store (or elsewhere), applications are packaged as an .ipa
fi le — this is really nothing more than a zip fi le (and may be opened with unzip(1)), in which the
application directory contents are compressed, under a Payload/ directory. If you do not have a jail-
broken device, try to unzip –t an .ipa to get an idea of application structure. The .ipas are stored
locally in Music/iTunes/iTunes Media/Mobile Applications/.

Info.plist
The Info.plist fi le, which resides in the Contents/ subdirectory of Applications (and of most
other bundles), holds the bundle’s metadata. It is a required fi le, as it supplies information necessary
for the OS to determine dependencies and other properties.

The property list format, or plist, is well-documented in its own manual page — plist(5). Prop-
erty lists are stored in one of three formats:

 ‰ XML: These human-readable lists are easily identifi ed by the XML signature and docu-
ment type defi nition (DTD) found in the beginning of the fi le. All elements of the property
list are contained in a <plist> element, which in turn defi nes an array or a dictionary
(<dict>) — an associative array of keys/values. This is the common format for property lists
on OS X.

 ‰ Binary: Known as bplists and identifi ed by the magic of bplist at the beginning of the
fi le, these are compiled plists, which are less readable by humans, but far more optimized
for the OS, as they do not require any complicated XML parsing and processing. Further, it
is straightforward to serialize BPlists, as data can be simply memcpy’d directly, rather than
being converted to ASCII. BPLists have been introduced with OS X v10.2 and are much
more common on iOS than on OS X.

 ‰ JSON: Using JavaScript Object Notation, the keys/values are stored in a format that is both
easy to read, as well as to parse. This format is not as common as either the XML or the
Binary.

All three of these formats are, of course, supported natively. In fact, the Objective-C runtime
enables developers to be entirely agnostic about the format. In Cocoa, it is simple to instantiate a
Plist by using the built-in dictionary or array object without having to specify the fi le format:

NSDictionary *dictionary = [NSDictionary dictionaryWithContentsOfURL:plistURL];
NSArray *array = [NSArray arrayWithContentsOfURL:plistURL];

Naturally, humans would prefer the XML format. Both OS X and iOS contain a console mode pro-
gram called plutil(1), which enables you to convert between the various representations. Output
2-3 shows the usage of plutil(1) for the conversion:

OUTPUT 2-3: Displaying the Info.plist of an app, after converting it to a more human readable form

morpheus@ergo (~) $ cd ~/Music/iTunes/iTunes\ Media/Mobile\ Applications/

Note the .ipa is just a zipfile..
morpheus@ergo(Mob..) $ file someApp.ipa
someApp.ipa: Zip archive data, at least v1.0 to extract

c02.indd 28c02.indd 28 9/29/2012 5:08:37 PM9/29/2012 5:08:37 PM

Applications and Apps x 29

Use unzip –j to "junk" subdirs and just inflate the file, without directory
structure

morpheus@ergo (Mob..) $ unzip -j someApp.ipa Payload/someApp.app/Info.plist
Archive: someApp.ipa
 inflating: Info.plist

Resulting file is a binary plist:

morpheus@ergo (Mob..) $ file Info.plist
Payload/someApp.app/Info.plist: Apple binary property list

.. which can be converted using plutil..

morpheus@ergo (Mob..) $ plutil -convert xml1 - -o - < Info.plist > converted.Info.plist

.. and the be displayed:

morpheus@ergo (Mob..) $ more converted.Info.plist
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>BuildMachineOSBuild</key>
 <string>10K549</string>
 <key>CFBundleDevelopmentRegion</key>
 <string>English</string>
 <key>CFBundleDisplayName</key>
... (output truncated for brevity)...

A standard Info.plist contains the following entries:

 ‰ CFBundleDevelopmentRegion: Default language if no user-specifi c language can be found.

 ‰ CFBundleDisplayName: The name that is used to display this bundle to the user.

 ‰ CFBundleDocumentTypes: Document types this will be associated with. This is a dictionary,
with the values specifying the fi le extensions this bundle handles. The dictionary also specifi es
the display icons used for the associated documents.

 ‰ CFBundleExecutable: The actual executable (binary or library) of this bundle. Located in
Contents/MacOS.

 ‰ CFBundleIconFile: Icon shown in Finder view.

 ‰ CFBundleIdentifier: Reverse DNS form.

 ‰ CFBundleName: Name of bundle (limited to 16 characters).

 ‰ CFBundlePackageType: Specifying a four letter code, for example, APPL = Application,
FRMW = Framework, BNDL = Bundle.

 ‰ CFBundleSignature: Four-letter short name of the bundle.

 ‰ CFBundleURLTypes: URLs this bundle will be associated with. This is a dictionary, with the
values specifying which URL scheme to handle, and how.

c02.indd 29c02.indd 29 9/29/2012 5:08:37 PM9/29/2012 5:08:37 PM

http://www.apple.com/DTDs/PropertyList-1.0.dtd

30 x CHAPTER 2 E PLURIBUS UNUM: ARCHITECTURE OF OS X AND IOS

All of the keys in the preceding list have the CF prefi x, as they are defi ned and handled by the Core
Foundation framework. Cocoa applications can also contain NS keys, defi ning application script-
ability, Java requirements (if any), and system preference pane integration. Most of the NS keys are
available only in OS X, and not in iOS.

Resources
The Resources directory contains all the fi les the application requires for its use. This is one of the
great advantages of the bundle format. Unlike other operating systems, wherein the resources have
to be compiled into the executables, bundles allow the resources to remain separate. This not only
makes the executable a lot thinner, but also allows for selective update or addition of a resource,
without the need for recompilation.

The resources are very application-dependent, and can be virtually any type of fi le. It is common,
however, to fi nd several recurring types. I describe these next.

NIB Files
.nib fi les are binary plists which contain the positioning and setup of GUI components of an appli-
cation. They are built using XCode’s Interface Builder, which edits the textual versions as .xib,
before packaging them in binary format (from which point on they are no longer editable). The .nib
extension dates back to the days of the NEXT Interface Builder, which is the precursor to XCode’s.
This, too, is a property list, and is in binary form on both OS X and iOS.

The plutil(1) command can be used to partially decompile a .nib back to its XML representa-
tion, although it still won’t have as much information as the .xib from which it originated (shown
in the following code). This is no doubt intentional, as .nib fi les are not meant to be editable; if they
had been, the UI of an application could have been completely malleable externally.

.XIB FILE

<?xml version="1.0" encoding="UTF-8"?>
<archive type="com.apple.InterfaceBuilder3.CocoaTouch.XIB" version="7.10">
 <data>
 <int key="IBDocument.SystemTarget">1056</int>
 <string key="IBDocument.SystemVersion">10J869</string>
 <string key="IBDocument.InterfaceBuilderVersion">1306</string>
 <string key="IBDocument.AppKitVersion">1038.35</string>
 <string key="IBDocument.HIToolboxVersion">461.00</string>
 <object class="NSMutableDictionary" key=
 "IBDocument.PluginVersions">

...
 <string key="NS.key.0">com.apple.InterfaceBuilder
 .IBCocoaTouchPlugin</string>
 <string key="NS.object.0">301</string>
 </object>
 <object class="NSArray" key="IBDocument
 .IntegratedClassDependencies">
 <bool key="EncodedWithXMLCoder">YES</bool>

c02.indd 30c02.indd 30 9/29/2012 5:08:38 PM9/29/2012 5:08:38 PM

Applications and Apps x 31

 <string>IBUIButton</string>
 <string>IBUIImageView</string>
 <string>IBUIView</string>
 <string>IBUILabel</string>
 <string>IBProxyObject</string>
 </object>

.NIB FILE

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/
PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>$archiver</key>
 <string>NSKeyedArchiver</string>
 <key>$objects</key>
 <array>
 <string>$null</string>
 <dict>
 <key>$class</key>
 <dict>
 <key>CF$UID</key>
 <integer>135</integer>
 </dict>
 <key>NS.objects</key>
 <array>
 <dict>
 <key>CF$UID</key>
 <integer>2</integer>
 </dict>

Internationalization with .lproj Files
Bundles have, by design, internationalization support. This is accomplished by subdirectories for
each language. Language directories are suffi xed with an .lproj extension. Some languages are
with their English names (English, Dutch, French, etc), and the rest are with their country and lan-
guage code (e.g. zh_CN for Mandarin, zh_TW for Cantonese). Inside the language directories are
string fi les, .nib fi les and multimedia which are localized for the specifi c language.

Icons (.icns)
An application usually contains one or more icons for visual display. The application icon is used in
the Finder, dock, and in system messages pertaining to the application (for example, Force Quit).

The icons are usually laid out in a single fi le, appname.icns, with several resolutions — from 32 ¥ 32
all the way up to a huge 512 ¥ 512.

CodeResources
The last important fi le an application contains is CodeResources, which is a symbolic link to
_CodeSignature/CodeResources. This fi le is a property list, containing a listing of all other fi les

c02.indd 31c02.indd 31 9/29/2012 5:08:38 PM9/29/2012 5:08:38 PM

http://www.apple.com/DTDs/PropertyList-1.0.dtd
http://www.apple.com/DTDs/PropertyList-1.0.dtd

32 x CHAPTER 2 E PLURIBUS UNUM: ARCHITECTURE OF OS X AND IOS

in the bundle. The property list is a single entry, files, which is a dictionary whose keys are the
fi le names, and whose values are usually hashes, in Base64 format. Optional fi les have a subdic-
tionary as a value, containing a hash key, and an optional key (whose value is, naturally, a Bool-
ean true).

The CodeResources fi le helps determine if an application is intact or damaged, as well as prevent
accidental modifi cation or corruption of its resources.

Application default settings
Unlike other well known operating systems, neither OS X nor iOS maintain a registry for applica-
tion settings. This means that an Application must turn to another mechanism to store user
preferences, and various default settings.

The mechanism Apple provides is known as defaults, and is yet again, a legacy of NeXTSTEP. The
idea behind it is simple: Each application receives its own namespace, in which it is free to add,
modify, or remove settings as it sees fi t. This namespace is known as the application’s domain. Addi-
tionally, there is a global domain (NSGlobalDomain) common to all applications.

The application defaults are (usually) stored in property lists. Apple recommends the reverse DNS
naming conventions for the plists, which are (again, usually) binary, are maintained on a per-user
basis, in ~/Library/Preferences. Additionally, applications can store system-wide (i.e. common to
all users) preferences in /Library/Preferences. NSGlobalDomain is maintained in a hidden fi le,
.GlobalPreferences.plist, which can also exist in both locations.

A system administrator or power user can access and manipulate defaults using the defaults(1)
command — a generally preferable approach to direct editing of the plist fi les. The command also
accepts a –host switch, which enables it to set different default settings for the same application on
different hosts.

Note, that the defaults mechanism only handles the logistics of storing and retrieving settings. What
applications choose to use this mechanism for is entirely up to them. Additionally, some applications
(such as VMWare Fusion) deviate from the plist requirement and naming convention.

Applications are seldom self-contained. As any developer knows, an application cannot rein-
vent the wheel, and must draw on operating system supplied functionality and APIs. In UNIX,
this mechanism is known as shared libraries. Apple builds on this the idiosyncratic concept of
frameworks.

Launching Default Applications
Like most GUI operating systems, OS X keeps an association of fi le types to their registered
applications. This provides for a default application that will be started (or, in Apple-speak,
“launched”) when a fi le is double clicked, or a submenu of the registered applications, if the
Open With option is selected from the right click menu. This is also useful from a terminal,
wherein the open(1) command can be used to start the default application associated with the
fi le type.

Windows users are likely familiar with its registry, in which this functionality is implemented (spe-
cifi cally, in subkeys of HKEY_CLASSES_ROOT). OS X provides this functionality a framework

c02.indd 32c02.indd 32 9/29/2012 5:08:38 PM9/29/2012 5:08:38 PM

Applications and Apps x 33

called LaunchServices. This framework (which bears no relation to launchd(1), the OS X boot pro-
cess), is part of the Core Services framework (described later in this chapter).

The launch services framework contains a binary called lsregister, which can be used to dump
(and also reset) the launch services database, as shown in Listing 2-2:

LISTING 2-2: Using lsregister to view the type registry

morpheus@Ergo (~)$ cd /System/Library/Frameworks/CoreServices.Framework
morpheus@Ergo (../Core..work)$ cd Frameworks/LaunchServices.framework/Support
morpheus@Ergo (../Support)$./lsregister -dump
Checking data integrity......done.
Status: Database is seeded.
Status: Preferences are loaded.

... // some lines omitted here for brevity...
bundle id: 1760
 path: /System/Library/CoreServices/Archive Utility.app
 name: Archive Utility
 category:
 identifier: com.apple.archiveutility (0x8000bd0c)
 version: 58
 mod date: 5/5/2011 2:16:50

reg date: 5/19/2011 10:04:01
 type code: 'APPL'
 creator code: '????'
 sys version: 0
 flags: apple-internal display-name relative-icon-path wildcard
 item flags: container package application extension-hidden native-app i386
 x86_64
 icon: Contents/Resources/bah.icns
 executable: Contents/MacOS/Archive Utility
 inode: 37623
 exec inode: 37629
 container id: 32
 library:
 library items:
 --
 claim id: 8484
 name:

rank: Default
roles: Viewer

 flags: apple-internal wildcard
 icon:

bindings: '****', 'fold'
 --
 claim id: 8512
 name: PAX archive

rank: Default
roles: Viewer

 flags: apple-default apple-internal relative-icon-path
 icon: Contents/Resources/bah-pax.icns

bindings: public.cpio-archive, .pax
 --

continues

c02.indd 33c02.indd 33 9/29/2012 5:08:38 PM9/29/2012 5:08:38 PM

34 x CHAPTER 2 E PLURIBUS UNUM: ARCHITECTURE OF OS X AND IOS

 claim id: 8848
 name: bzip2 compressed archive

rank: Default
roles: Viewer

 flags: apple-default apple-internal relative-icon-path
 icon: Contents/Resources/bah-bzip2.icns

bindings: .bzip2
 ...
 // many more lines omitted for brevity

A common technique used when the Open With menu becomes too overwhelming (often due to the
installation of many application), is to rebuild the database with the command: lsregister -kill
-r -domain local -domain system -domain user.

FRAMEWORKS

Another key component of the OS X landscape are frameworks. Frameworks are bundles, consisting
of one or more shared libraries, and their related support fi les.

Frameworks are a lot like libraries (in fact having the same binary format), but are unique to
Apple’s systems, and are therefore not portable. They are also not considered to be part of
Darwin: As opposed to the components of Darwin, which are all open source, Apple keeps
most frameworks in tightly closed source. This is because the frameworks are responsible
(among other things) for providing the unique look-and-feel, as well as other advanced features
that are offered only by Apple’s operating systems — and which Apple certainly wouldn’t want
ported. The “traditional” libraries still exist in Apple’s systems (and, in fact, provide the basis
on top of which the frameworks are implemented). The frameworks do, however, provide a full
runtime interface, and — especially in Objective-C — serve to hide the underlying system and
library APIs.

Framework Bundle Format
Frameworks, like applications (and most other fi les on OS X), are bundles. Thus, they follow a fi xed
directory structure:

CodeResources/ Symbolic link to Code Signature/CodeResources plist
 Headers/ Symbolic link to Miscellaneous .h files provided by this
 framework
 Resources/ .nib files (GUI), .lproj files, or other files required by
 framework
 Versions/ Subdirectory to allow versioning
 A/ Letter directories denoting version of this framework
 Current/ Symbolic link to preferred framework version

Framework –name Symbolic link to framework binary, in preferred version

As you can see, however, framework bundles are a bit different than applications. The key difference
is in the built-in versioning mechanism: A framework contains one or more versions of the code,

LISTING 2-2 (continued)

c02.indd 34c02.indd 34 9/29/2012 5:08:38 PM9/29/2012 5:08:38 PM

Frameworks x 35

which may exist side-by-side in separate subdirectories, such as Versions/A , Versions/B, and so
on. The preferred version can then easily be toggled by creating a symbolic link (shortcut) called
Current. The framework fi les themselves are all links to the selected version fi les. This approach
takes after the UN*X model of symbolically linking libraries, but extends it to headers as well. And,
while most frameworks still have only one version (usually A, but sometimes B or C), this architec-
ture allows for both forward and backward compatibility.

The OS X and iOS GCC supports a -framework switch, which enables the inclusion of any frame-
work, whether Apple supplied or 3rd party. Using this fl ag provides to the compiler a hint as to
where to fi nd the header fi les (much like the –I switch), and to the linker where to fi nd the library
fi le (similar, but not exactly like the –l switch)

Finding Frameworks
Frameworks are stored in several locations on the fi le system:

 ‰ /System/Library/Frameworks. Contains Apple’s supplied frameworks — both in iOS and
OS X

 ‰ /Network/Library/Frameworks may (rarely) be used for common frameworks installed on
the network.

 ‰ /Library/Frameworks holds 3rd party frameworks (and, as can be expected, the directory is
left empty on iOS)

 ‰ ~/Library/Frameworks holds frameworks supplied by the user, if any

Additionally, applications may include their own frameworks. Good examples for this are Apple’s
GarageBand, iDVD, and iPhoto, all of which have application-specifi c frameworks in Contents/
Frameworks.

The framework search may be modifi ed further by user-defi ned variables, in the following
order:

 ‰ DYLD_FRAMEWORK_PATH

 ‰ DYLD_LIBRARY_PATH

 ‰ DYLD_FALLBACK_FRAMEWORK_PATH

 ‰ DYLD_FALLBACK_LIBRARY_PATH

Apple supplies a fair number of frameworks — over 90 in Snow Leopard, and well past 100 in Lion.
Even greater in number, however, are the private frameworks, which are used internally by the
public ones, or directly by Apple’s Applications. These reside in /System/Library/PrivateFrame-
works, and are exactly the same as the public ones, save for header fi les, which are (intentionally)
not included.

Top Level Frameworks
The two most important frameworks in OS X are known as Carbon and Cocoa:

c02.indd 35c02.indd 35 9/29/2012 5:08:39 PM9/29/2012 5:08:39 PM

36 x CHAPTER 2 E PLURIBUS UNUM: ARCHITECTURE OF OS X AND IOS

Carbon
Carbon is the name given to the OS 9 legacy programming interfaces. Carbon has been declared
deprecated, though many applications, including Apple’s own, still rely on it. Even though many of
its interfaces are specifi cally geared for OS 9 compatibility, many new interfaces have been added
into it, and it shows no sign of disappearing.

Cocoa
Cocoa is the preferred application programming environment. It is the modern day incarnation of
the NeXTSTEP environment, as is evident by the prefi x of many of its base classes — NS, short for
NeXTSTEP/Sun. The preferred language for programming with Cocoa is Objective C, although it
can be accessed from Java and AppleScript as well.

If you inspect the Cocoa and Carbon frameworks, you will see they are both
small, almost tiny binaries — around 40k or so on Snow Leopard. That’s unusu-
ally small for a framework with such a vast API. It’s even more surprising, given
that Cocoa is a “fat” binary with all three architectures (including the deprecated
PPC). The secret to this is that they are built on top of other frameworks, and
essentially serve as a wrapper for them — by re-exporting their dependencies’
symbols as their own.

The “Cocoa” framework just serves to include three others: AppKit, Core-
Data and Foundation, which can be seen directly, in its Headers/cocoa.h.
In Apple-speak, a framework encapsulating others is often referred to as
an umbrella framework. The term applies whether the framework merely
#imports, as Cocoa does, or actually contains nested frameworks, as the
Application and Core Services frameworks do. This can be seen in the follow-
ing code:

/*
 Cocoa.h
 Cocoa Framework
 Copyright (c) 2000-2004, Apple Computer, Inc.
 All rights reserved.

 This file should be included by all Cocoa application
source files for easy building. Using this file is preferred
over importing individual files because it will use a precompiled
version.

 Tools with no UI and no AppKit dependencies may prefer to
include just <Foundation/Foundation.h>.
*/

#import <Foundation/Foundation.h>
#import <AppKit/AppKit.h>
#import <CoreData/CoreData.h>

c02.indd 36c02.indd 36 9/29/2012 5:08:39 PM9/29/2012 5:08:39 PM

Frameworks x 37

List of OS X and iOS Public Frameworks
Table 2-2 lists the frameworks in OS X and iOS, including the versions in which they came to be
supported. The version numbers are from the Apple offi cial documentation [3, 4], wherein similar (and
possibly more up to date tables) tables can be found. There is a high degree of overlap in the frame-
works, with many frameworks from OS X being ported to iOS, and some (like CoreMedia) making
the journey in reverse. This is especially true in the upcoming Mountain Lion, which ports several
frameworks like Game Center and Twitter from iOS. Additionally, quite a few of the OS X frame-
works exist in iOS as private ones.

TABLE 2-2: Public frameworks in Mac OS X and iOS

FRAMEWORK OS X IOS USED FOR

AGL 10.0 -- Carbon interfaces for OpenGL

Accounts 10.8 5.0 User account database — Single sign on support

Accelerate 10.3 4.0 Accelerated Vector operations

AddressBook 10.2 2.0 Address Book functions

AddressBookUI -- 2.0 Displaying contact information (iOS)

AppKit 10.0 -- One of Cocoa’s main libraries (relied on by Cocoa.

Framework), and in itself, an umbrella for others. Also

contains XPC (which is private in iOS)

AppKitScripting 10.0 -- Superseded by Appkit

AppleScriptKit 10.0 -- Plugins for AppleScript

AppleScriptObjC 10.0 -- Objective-C based plugins for AppleScript

AppleShareClientCore 10.0 -- AFP client implementation

AppleTalk 10.0 -- Core implementation of the AFP protocol

ApplicationServices 10.0 -- Umbrella (headers) for CoreGraphics, CoreText, Col-

orSync, and others, including SpeechSynthesis (the

author’s favorite)

AudioToolBox 10.0 2.0 Audio recording/handling and others

AssetsLibrary -- 4.0 Photos and Videos

AudioUnit 10.0 2.0 Audio Units (plug-ins) and Codecs

AudioVideoBridging 10.8 -- AirPlay

AVFoundation 10.7 2.2 Objective-C support for Audio/Visual media. Only

recently ported into Lion

continues

c02.indd 37c02.indd 37 9/29/2012 5:08:40 PM9/29/2012 5:08:40 PM

38 x CHAPTER 2 E PLURIBUS UNUM: ARCHITECTURE OF OS X AND IOS

FRAMEWORK OS X IOS USED FOR

Automator 10.4 -- Automator plug-in support

CalendarStore 10.5 -- iCal support

Carbon 10.0 -- Umbrella (headers) for Carbon, the legacy OS 9 APIs

Cocoa 10.0 -- Umbrella (headers) for Cocoa APIs — AppKit, Core-

Data and Foundation

Collaboration 10.5 -- The CBIdentity* APIs

CoreAudio 10.0 2.0 Audio abstractions

CoreAudioKit 10.4 -- Objective-C interfaces to Audio

CoreBlueTooth -- 5.0 BlueTooth APIs

CoreData 10.4 3.0 Data model — NSEntityMappings, etc.

CoreFoundation 10.0 2.0 Literally, the core framework supporting all the rest

through primitives, data structures, etc. (the CF*

classes)

CoreLocation 10.6 2.0 GPS Services

CoreMedia 10.7 4.0 Low-level routines for audio/video

CoreMediaIO 10.7 -- Abstraction layer of CoreMedia

CoreMIDI 10.0 -- MIDI client interface

CoreMIDIServer 10.0 -- MIDI driver interface

CoreMotion -- 4.0 Accelerometer/gyroscope

CoreServices 10.0 -- Umbrella for AppleEvents, Bonjour, Sockets,

Spotlight, FSEvents, and many other services (as

sub-frameworks)

CoreTelephony -- 4.0 Telephony related data

CoreText 10.5 3.2 Text, fonts, etc. On OS X this is a sub framework of

ApplicationServices.

CoreVideo 10.5 4.0 Video format support used by other libs

CoreWifi 10.8 P Called “MobileWiFi” and private in iOS

CoreWLAN 10.6 -- Wireless LAN (WiFi)

DVComponentGlue 10.0 -- Digital Video recorders/cameras

TABLE 2-2 (continued)

c02.indd 38c02.indd 38 9/29/2012 5:08:40 PM9/29/2012 5:08:40 PM

Frameworks x 39

FRAMEWORK OS X IOS USED FOR

DVDPlayback 10.3 -- DVD playing

DirectoryService 10.0 -- LDAP Access

DiscRecording 10.2 -- Disc Burning libraries

DiscRecordingUI 10.2 -- Disc Burning libraries, and user interface

DiskArbitration 10.4 -- Interface to DiskArbitrationD, the system volume

manager

DrawSprocket 10.0 -- Sprocket components

EventKit 10.8 4.0 Calendar support

EventKitUI -- 4.0 Calendar User interface

ExceptionHandling 10.0 -- Cocoa exception handling

ExternalAccessory -- 3.0 Hardware Accessories (those that plug in to iPad/

iPod/iPhone)

FWAUserLib 10.2 -- FireWire Audio

ForceFeedback 10.2 -- Force Feedback enabled devices (joysticks, game-

pads, etc)

Foundation 10.0 2.0 underlying data structure support

GameKit 10.8 3.0 Peer-to-peer connectivity for gaming

GLKit 10.8 5.0 OpenGLES helper

GLUT 10.0 -- OpenGL Utility framework

GSS 10.7 5.0 Generic Security Services API (RFC2078), fl avored

with some private Apple extensions

iAd -- 4.0 Apple’s mobile advertisement distribution system

ICADevices 10.3 -- Scanners/Cameras (like TWAIN)

IMCore 10.6 -- Used internally by InstantMessaging

ImageCaptureCore 10.6 P Supersedes the older ImageCapture

ImageIO -- 4.0 Reading/writing graphics formats

IMServicePlugin 10.7 -- iChat service providers

InputMethodKit 10.5 -- Alternate input methods

continues

c02.indd 39c02.indd 39 9/29/2012 5:08:40 PM9/29/2012 5:08:40 PM

40 x CHAPTER 2 E PLURIBUS UNUM: ARCHITECTURE OF OS X AND IOS

FRAMEWORK OS X IOS USED FOR

InstallerPlugins 10.4 -- Plug-ins for system installer

InstantMessage 10.4 M Instant Messaging and iChat

IOBluetooth 10.2 -- BlueTooth support for OS X

IOBluetoothUI 10.2 -- BlueTooth support for OS X

IOKit 10.0 2.0 User-mode components of device drivers

IOSurface 10.6 P Shares graphics between applications

JavaEmbedding 10.0-

10.7

-- Embeds Java in Carbon. No longer supported in Lion

and later

JavaFrameEmbedding 10.5 -- Embeds Java in Cocoa

JavaScriptCore 10.5 5.0 The Javascript interpreter used by Safari and other

WebKit programs.

JavaVM 10.0 -- Apple’s port of the Java runtime library

Kerberos 10.0 -- Kerberos support (required for Active Directory

integration and some UNIX domains)

Kernel 10.0 -- Required for Kernel Extensions

LDAP 10.0 P Original LDAP support. Superseded by

OpenDirectory

LatentSemanticMapping 10.5 -- Latent Semantic Mapping

MapKit -- 4.0 Embedding maps and geocoding data

MediaPlayer -- 2.0 iPod player interface and movies

MediaToolbox 10.8 P

Message 10.0 P Email messaging support

MessageUI -- 3.0 UI Resources for messaging and the Mail.app

(ComposeView and friends)

MobileCoreServices -- 3.0 Core Services, light

Newsstandkit -- 5.0 Introduced with iOS 5.0’s “Newsstand”

NetFS 10.6 -- Network File Systems (AFP, NFS)

OSAKit 10.4 -- OSA Scripting integration in Cocoa

OpenAL 10.4 2.0 Cross platform audio library

TABLE 2-2 (continued)

c02.indd 40c02.indd 40 9/29/2012 5:08:41 PM9/29/2012 5:08:41 PM

Frameworks x 41

FRAMEWORK OS X IOS USED FOR

OpenCL 10.6 P GPU/Parallel Programming framework

OpenDirectory 10.6 -- Open Directory (LDAP) objective-C bindings

OpenGL 10.0 -- OpenGL — 3D Graphics. Links with OpenCL on

supported chipsets.

OpenGLES -- 2.0 Embedded OpenGL — replaces OpenGL in iOS

PCSC 10.0 -- SmartCard support

PreferencePanes 10.0 -- System Preference Pane support. Actual panes

are bundles in the /System/Library/

PreferencePanes folder

PubSub 10.5 -- RSS/Atom support

Python 10.3 -- The Python scripting language

QTKit 10.4 -- QuickTime support

Quartz 10.4 -- An umbrella framework containing PDF support,

ImageKit, QuartzComposer, QuartzFilters, and Quick-

LookUI.Responsible for most of the 2D graphics in

the system

QuartzCore 10.4 2.0 Interface between Quartz and Core frameworks

QuickLook 10.5 4.0 Previewing and thumbnailing of fi les

QuickTime 10.0 -- Quicktime embedding

Ruby 10.5 -- The popular Ruby scripting language

RubyCocoa 10.5 -- Ruby Cocoa bindings

SceneKit 10.8 -- 3D rendering. Available as a private framework of

Lion, but made into a public one in Mountain Lion

ScreenSaver 10.0 -- Screen saver APIs

Scripting 10.0 -- The original scripting framework. Now superseded

ScriptingBridge 10.5 -- Scripting adapters for Objective-C

Security 10.0 3.0 Certifi cates, Keys and secure random numbers

SecurityFoundation 10.0 -- SF* Authorization

SecurityInterface 10.3 -- SF* headers for UI of certifi cates, authorization and

keychains

ServerNotification 10.6 -- Notfi ciation support

continues

c02.indd 41c02.indd 41 9/29/2012 5:08:41 PM9/29/2012 5:08:41 PM

42 x CHAPTER 2 E PLURIBUS UNUM: ARCHITECTURE OF OS X AND IOS

FRAMEWORK OS X IOS USED FOR

ServiceManagement 10.6 -- Interface to launchD

StoreKit 10.7 3.0 In-App purchases

SyncServices 10.4 -- Sync calendars with .mac

System 10.0 2.0 Internally used by other frameworks

SystemConfiguration 10.0,

10.3

2.0 SCNetwork, SCDynamicStore

TWAIN 10.2 -- Scanner support

Twitter 10.8 5.0 Twitter support (in iOS 5)

Tcl 10.3 -- TCL Interpreter

Tk 10.4 -- Tk Toolkits

UIKit -- 2.0 Cocoa Touch — replaces AppKit

VideoDecodeAcceleration 10.6.3 -- H.264 acceleration via GPU (TN2267)

VideoToolkit 10.8 P Replaces QuickTime image compression manager

and provides video format support

WebKit 10.2 P HTML rendering (Safari Core)

XgridFoundation 10.4–

10.7

-- Clustering (removed in Mountain Lion)

vecLib 10.0 -- Vector calculations (sub framework of Accelerate)

Exercise: Demonstrating the Power of Frameworks
OS X’s frameworks really are technological marvels. By any standards, their ingenuity and reusabil-
ity stands out. There are many stunning examples one can bring using graphical frameworks, but a
really useful, and equally impressive example is the SpeechSynthesis.Framework.

This framework allows the quick and easy embedding of Text-to-Speech features by drawing on
complicated logic which has already been developed (and, to a large part, perfected) by Apple. The
/System/Library/Speech directory contains the Synthesizers (currently, only one — MacinTalk)
which are Mach-O binary bundles, that can be loaded, like libraries, into virtually any process.
Additionally, there are quite a few pre-programmed voices (in the Voices/ subdirectory), and Rec-
ognizers (for Speech-to-Text). The voices encode the pitch and other speech parameters, in a pro-
prietary binary form. There is ample documentation about this in the Apple Developer document
“The Speech Synthesis API,” and a cool utility to customize speech (which is part of XCode) called
“Repeat After Me” (/Developer/Applications/Utilities/Speech/Repeat After Me).

TABLE 2-2 (continued)

c02.indd 42c02.indd 42 9/29/2012 5:08:41 PM9/29/2012 5:08:41 PM

Frameworks x 43

The average developer, however, needn’t care about all this. The Speech Synthesizer can be accessed
(among other ways) through the SpeechSynthesis.Framework, which itself is under Application-
Services (Carbon) or AppKit (Cocoa). This enables a C or Objective-C application to enable Text-
To-Speech — in one of the many voices on the system — in a matter of several lines of code, as is
demonstrated in the following example. The example shows a quick and dirty example of drawing
on OS X’s text-to-speech.

To not get into the quite messy Objective-C syntax, the next example, shown in Listing 2-3 is in C,
and therefore uses the ApplicationServices framework, rather than AppKit.

LISTING 2-3: Demonstrating a very simple (partial) implementation of the say(1) utility

#include <ApplicationServices/ApplicationServices.h>

// Quick and dirty (partial) implementation of OS X's say(1) command
// Compile with -framework ApplicationServices

void main (int argc, char **argv)
{

 OSErr rc;
 SpeechChannel channel;
 VoiceSpec vs;
 int voice;
 char *text = "What do you want me to say?";

 if (!argv[1]) { voice = 1; } else { voice = atoi(argv[1]); }

 if (argc == 3) { text = argv[2]; }

 // GetIndVoice gets the voice defined by the (positive) index
rc= GetIndVoice(voice, // SInt16 index,

 &vs); // VoiceSpec * voice)

 // NewSpeechChannel basically makes the voice usable
rc = NewSpeechChannel(&vs,// VoiceSpec * voice, /* can be NULL */

 &channel);

 // And SpeakText... speaks!
rc = SpeakText(channel, // SpeechChannel chan,

 text, // const void * textBuf,
 strlen(text)); //unsigned long textBytes)

 if (rc) { fprintf (stderr,"Unable to speak!\n"); exit(1);}

 // Because speech is asynchronous, wait until we are done.
 // Objective-C has much nicer callbacks for this.

 while (SpeechBusy()) sleep(1);
 exit(0);
}

c02.indd 43c02.indd 43 9/29/2012 5:08:42 PM9/29/2012 5:08:42 PM

44 x CHAPTER 2 E PLURIBUS UNUM: ARCHITECTURE OF OS X AND IOS

The speech framework can also be tapped by other means. There are various bridges to other
languages, such as Python and Ruby, and for non-programmers, there is the command line of
say(1) (which the example mimics), and/or Apple’s formidable scripting language, Applescript
(accessible via osascript(1)). To try this for yourself, have some fun with either command
(which can be an inexhaustible font of practical jokes, or other creative uses, as is shown in the
comic in Figure 2-3)

FIGURE 2-3: Other creative uses of OS X Speech, from the excellent site, http://XKCD.com/530

(incidentally, osascript -e “set Volume 10” is what he is looking for)

As stated, an application may be entirely dependent only on the frameworks, which is indeed the
case for many OS X and iOS apps. The frameworks themselves, however, are dependent on the
operating system libraries, which are discussed next.

LIBRARIES

Frameworks are just a special type of libraries. In fact, framework binaries are libraries, as can be
verifi ed with the file(1) command. Apple still draws a distinction between the two terms, and
frameworks tend to be more OS X (and iOS) specifi c, as opposed to libraries, which are common to
all UNIX systems.

OS X and iOS store their “traditional” libraries in /usr/lib (there is no /lib). The libraries are
suffi xed with a .dylib extension, rather than the customary .so (shared object) of ELF on other
UNIX. Aside from the different extension (and the different binary format, which is incompatible
with .so), they are still conceptually the same. You can still fi nd your favorite libraries from other
UNIX here, albeit with the .dylib format.

c02.indd 44c02.indd 44 9/29/2012 5:08:42 PM9/29/2012 5:08:42 PM

http://XKCD.com/530

Libraries x 45

If you try to look around the iOS fi le system — either on a live, jailbroken sys-
tem, or through an iOS software update image (.ipsw), you will see that many
of the libraries (and, for that matter, also frameworks), are missing! This is due
to an optimization (and possibly obfuscation) technique of library caching,
which is discussed in the next chapter. It’s easier, therefore to look at the iPhone
SDK, wherein the fi les can be found under /Developer/Platforms/iPhoneOS.
platform/Developer/SDKs/iPhoneOS#.#.sdk/.

The core library — libc — has been absorbed into Apple’s own libSystem.B.dylib. This library
also provides the functionality traditionally offered by the math library (libm), and PThreads
(libpthread) — as well as several others, which are all just symbolic links to libSystem, as you can
see in Output 2-4:

OUTPUT 2-4: Libraries in /usr/lib which are all implemented by libSystem.dylib

morpheus@Minion (/)$ ls -l /usr/lib | grep ^l | grep libSystem.dylib
lrwxr-xr-x 1 root wheel 17 Sep 26 02:08 libSystem.dylib -> libSystem.B.dylib
lrwxr-xr-x 1 root wheel 15 Sep 26 02:08 libc.dylib -> libSystem.dylib
lrwxr-xr-x 1 root wheel 15 Sep 26 02:08 libdbm.dylib -> libSystem.dylib
lrwxr-xr-x 1 root wheel 15 Sep 26 02:08 libdl.dylib -> libSystem.dylib
lrwxr-xr-x 1 root wheel 15 Sep 26 02:08 libinfo.dylib -> libSystem.dylib
lrwxr-xr-x 1 root wheel 15 Sep 26 02:08 libm.dylib -> libSystem.dylib
lrwxr-xr-x 1 root wheel 15 Sep 26 02:08 libpoll.dylib -> libSystem.dylib
lrwxr-xr-x 1 root wheel 15 Sep 26 02:08 libproc.dylib -> libSystem.dylib
lrwxr-xr-x 1 root wheel 15 Sep 26 02:08 libpthread.dylib -> libSystem.dylib
lrwxr-xr-x 1 root wheel 15 Sep 26 02:08 librpcsvc.dylib -> libSystem.dylib

Yet, libSystem itself relies on several libraries internal to it — which are found in /usr/lib/system.
It imports these libraries, and then re-exports their public symbols as if they are its own. In Snow
Leopard, there are fairly few such libraries. In Lion and iOS 5, there is a substantial number. This is
shown in Output 2-5, which demonstrates using XCode’s otool(1) to show library dependencies.
Note, that because libSystem is cached (and therefore not present in the iOS fi lesystem), it’s easier
to run it on the iPhone SDK’s copy of the library.

OUTPUT 2-5: Dependencies of iOS 5’s libSystem using otool(1).

morpheus@ergo (.../Developer/SDKs/iPhoneOS5.0.sdk/usr/lib)$ otool -L libSystem.B.dylib
libSystem.B.dylib (architecture armv7):
 /usr/lib/libSystem.B.dylib (compatibility version 1.0.0, current version 161.0.0)
 /usr/lib/system/libcache.dylib (compatibility version 1.0.0, current version 49.0.0)
 /usr/lib/system/libcommonCrypto.dylib (compatibility version 1.0.0, current version 40142.0.0)
 /usr/lib/system/libcompiler_rt.dylib (compatibility version 1.0.0, current version 16.0.0)

continues

c02.indd 45c02.indd 45 9/29/2012 5:08:46 PM9/29/2012 5:08:46 PM

46 x CHAPTER 2 E PLURIBUS UNUM: ARCHITECTURE OF OS X AND IOS

 /usr/lib/system/libcopyfile.dylib (compatibility version 1.0.0, current version 87.0.0)
 /usr/lib/system/libdispatch.dylib (compatibility version 1.0.0, current version 192.1.0)
 /usr/lib/system/libdnsinfo.dylib (compatibility version 1.0.0, current version 423.0.0)
 /usr/lib/system/libdyld.dylib (compatibility version 1.0.0, current version 199.3.0)
 /usr/lib/system/libkeymgr.dylib (compatibility version 1.0.0, current version 25.0.0)
 /usr/lib/system/liblaunch.dylib (compatibility version 1.0.0, current version 406.4.0)
 /usr/lib/system/libmacho.dylib (compatibility version 1.0.0, current version 806.2.0)
 /usr/lib/system/libnotify.dylib (compatibility version 1.0.0, current version 87.0.0)
/usr/lib/system/libremovefile.dylib (compatibility version 1.0.0, current version 22.0.0)
/usr/lib/system/libsystem_blocks.dylib (compatibility version 1.0.0, current version 54.0.0)
 /usr/lib/system/libsystem_c.dylib (compatibility version 1.0.0, current version 770.4.0)
 /usr/lib/system/libsystem_dnssd.dylib (compatibility version 1.0.0, current version 1.0.0)
 /usr/lib/system/libsystem_info.dylib (compatibility version 1.0.0, current version 1.0.0)
 /usr/lib/system/libsystem_kernel.dylib (compatibility version 1.0.0, current version 1878.4.20)
/usr/lib/system/libsystem_network.dylib (compatibility version 1.0.0, current version 1.0.0)
/usr/lib/system/libsystem_sandbox.dylib (compatibility version 1.0.0, current version 1.0.0)
 /usr/lib/system/libunwind.dylib (compatibility version 1.0.0, current version 34.0.0)
 /usr/lib/system/libxpc.dylib (compatibility version 1.0.0, current version 89.5.0)

The OS X loader, dyld(1), is also referred to as the Mach-O loader. This is discussed in great detail
in the next chapter, which offers an inside view on process loading and execution from the user
mode perspective.

OS X contains out-of-box many other open source libraries, which have been included in Darwin
(and in iOS). OpenSSL, OpenSSH, libZ, libXSLT, and many other libraries can either be obtained
from Apple’s open source site, or downloaded from SourceForge and other repositories, and com-
piled. Ironically enough, it’s not the fi rst (nor last) time these open source libraries were the source
of iOS jailbreaks (libTiff? FreeType, anyone?)

OTHER APPLICATION TYPES

The Application and App bundles discussed so far aren’t the only types of applications that can be
created. OS X (and, to a degree iOS) supports several other types of Applications as well.

Java (OS X only)
OS X includes a fully Java 1.6 compliant Java virtual machine. Just like other systems, Java applications
are provided as .class fi les. The .class fi le format is not native to OS X — meaning one still needs
to use the java(1) command-line utility to execute it, just like anywhere else. The JVM implementa-
tion, however, is maintained by Apple. The java command line utilities (java, javac, and friends)
are all part of the public JavaVM.framework. Two other frameworks, JavaEmbedding.framework and
JavaFrameEmbedding.framework, are used to link with and embed Java in Objective-C.

OUTPUT 2-5 (continued)

c02.indd 46c02.indd 46 9/29/2012 5:08:47 PM9/29/2012 5:08:47 PM

Other Application types x 47

The actual launching of the Java VM process is performed by the private JavaLaunching.frame-
work, and JavaApplicationLauncher.framework. iOS does not, at present, support Java.

Widgets
Dashboard widgets (or, simply, Widgets) are HTML/Javascript mini-pages, which can be presented
by dashboard. These mini-apps are very easy to program (as they are basically the same as web
pages), and are becoming increasingly popular.

Widgets are stored in /Library/Widgets, as bundles with the .wdgt extension. Each such bundle is
loosely arranged, containing:

 ‰ An HTML fi le (widgetname.html) which is the Widget’s UI. The UI is marked up just like
normal HTML, usually with two <div> elements — displaying the front and back of the
widget, respectively.

 ‰ A Javascript (JS) fi le (widgetname.js) which is the Widget’s “engine,” providing for its
interactivity

 ‰ A Cascading Style Sheet (CSS) fi le (widgetname.css), which provides styles, fonts, etc.

 ‰ Language directories, like other bundles, containing localized strings

 ‰ Any images or other fi les, usually stored in an Images/ subdirectory

 ‰ Any binary plugins, required when the widget cannot be fully implmeneted in Javascript.
This is optional (for example, Calculator.wdgt does not have one) and, if present, contains
another bundle, with a binary plugin (with a Mach-O binary subtype of “bundle”). These
can be loaded into Dashboard itself to provide complicated functionality that needs to break
out of the browser environment, for example to access local fi les.

BSD/Mach Native
Though the preferred language for both iOS and OS X is Objective-C, native applications may be
coded in C/C++, and may choose to forego frameworks, working directly with the system libraries
and the low-level interfaces of BSD and Mach instead. This allows for the relatively straightforward
porting of UNIX code bases, such as PHP, Apache, SSH, and numerous other open-source products.
Additionally, initiatives such as “MacPorts” and “fi nk” go the extra step by packaging these sources,
once compiled, into packages akin to Linux’s RPM/APT/DEB model, for quick binary installation.

OS X’s POSIX compliance makes it very easy to port applications to it, by relying on the standard
system calls, and the libraries discussed earlier. This also holds true for iOS, wherein developers
have ported everything but the kitchen sink, available through Cydia. There is, however, another
subset of APIs — Mach Traps, which remains OS X (and GNUStep) specifi c, and which coexists
with that of BSD. Both of these are explained from the user perspective next.

c02.indd 47c02.indd 47 9/29/2012 5:08:47 PM9/29/2012 5:08:47 PM

48 x CHAPTER 2 E PLURIBUS UNUM: ARCHITECTURE OF OS X AND IOS

SYSTEM CALLS

As in all operating systems, user programs are incapable of directly accessing system resources. Pro-
grams can manipulate the general-purpose registers and perform simple calculations, but in order to
achieve any signifi cant functionality, such as opening a fi le or a socket, or even outputting a simple
message — they must use system calls. These are entry points into predefi ned functions exported
by the kernel and accessible in user mode by linking against /usr/lib/libSystem.B.dylib. OS X
system calls are unusual in that the system actually exports two distinct “personalities” — that of
Mach and that of POSIX.

POSIX
Starting with Leopard (10.5), OS X is a certifi ed UNIX implementation. This means that it is fully
compliant with the Portable Operating System Interface, more commonly known as POSIX. POSIX
is a standard API that defi nes, specifi cally:

 ‰ System call prototypes: All POSIX system calls, regardless of underlying implementation,
have the same prototype — i.e., the same arguments and return value. Open(2), for example,
is defi ned on all POSIX systems as:

 int open(const char *path, int oflag, ...);

path is the name of the fi le name to be opened, and oflags is a bitwise OR of fl ags defi ned
in <fcntl.h> (for example, O_RDONLY, O_RDWR, O_EXCL).

This ensures that POSIX-compatible code can be ported — at the source level — between
any POSIX compatible operating system. Code from OS X can be ported to Linux, Free-
BSD, and even Solaris — as long as it relies on nothing more than POSIX calls and the
C/C++ standard libraries.

 ‰ System call numbers: The key POSIX functions, in addition to the fi xed prototype, have well-
defi ned system call numbers. This enables(to a limited extent) binary portability — meaning
that a POSIX-compiled binary can be ported between POSIX systems of the same underlying
architecture (for example, Solaris can run native Linux binaries — both are ELF). OS X does
not support this, however, because its object format, Mach-O, is incompatible with ELF.
What’s more, its system call numbers deviate from those of the standard.

The POSIX compatibility is provided by the BSD layer of XNU. The system-call prototypes are in
<unistd.h>. We discuss their implementations in Chapter 8.

Mach System Calls
Recall that OS X is built upon the Mach kernel, a legacy of NeXTSTEP. The BSD layer wraps the
Mach kernel, but its native system calls are still accessible from user mode. In fact, without Mach
system calls, common commands such as top wouldn’t work.

In 32-bit systems, Mach system calls are negative. This ingenious trick enables both POSIX and
Mach system calls to exist side by side. Because POSIX only defi nes non-negative system calls, the
negative space is left undefi ned, and therefore usable by Mach.

c02.indd 48c02.indd 48 9/29/2012 5:08:47 PM9/29/2012 5:08:47 PM

System Calls x 49

In 64-bit systems, Mach system calls are positive, but are prefi xed with 0x2000000 — which clearly
separates and disambiguates them from the POSIX calls, which are prefi xed with 0x1000000.

The online appendix at http://newosxbook.com lists the various POSIX and Mach system calls. We
will further cover the transition to Kernel mode in Chapter 8, and the Kernel perspective of system
calls and traps in Chapters 9 and 13.

Experiment: Displaying Mach and BSD system calls
System calls aren’t called directly, but via thin wrappers in libSystem.B.dylib. Using otool(1),
the default Mach-O handling tool and disassembler on OS X, you can disassemble (with the –tV
switch) any binary, and peek inside libSystem. This will enable you to see how the system call inter-
face in OS X works with both Mach and BSD calls.

On a 32-bit system, a Mach system call would look something like this:

Morpheus@Ergo (/) % otool –arch i386 –tV /usr/lib/libSystem.B.dylib | more
/usr/lib/libSystem.B.dylib:
(__TEXT,__text) section
_mach_reply_port:
000010c0 movl $0xffffffe6,%eax ; Load system call # into EAX
000010c5 calll __sysenter_trap
000010ca ret
000010cb nop ; padding to 32-bit boundary
_thread_self_trap:
000010cc movl $0xffffffe5,%eax ; Load system call # into EAX…
000010d1 calll __sysenter_trap
000010d6 ret
000010d7 nop ; padding to 32-bit boundary
__sysenter_trap:
000013d8 popl %edx
000013d9 movl %esp,%ecx
000013db sysenter ; Actually execute sysenter
000013dd nopl (%eax)

The system call number is loaded into the EAX register. Note the number is specifi ed as
0xFFFFxxxx. Treated as a signed integer, the Mach API calls would be negative. Looking at a BSD
system call:

Ergo (/) % otool –arch i386 –tV /usr/lib/libSystem.B.dylib –p _chown | more
/usr/lib/libSystem.B.dylib:
(__TEXT,__text) section
_chown:
0005d350 movl $0x000c0010,%eax ; load system call -
0005d355 calll 0x00000dd8 ; jump to __sysenter_trap
0005d35a jae 0x0005d36a ; if return code >= 0: jump to ret
0005d35c calll 0x0005d361
0005d361 popl %edx
0005d362 movl 0x0014c587(%edx),%edx
0005d368 jmp *%edx
0005d36a ret
0005d87c calll 0x0005d881 ; on error…

c02.indd 49c02.indd 49 9/29/2012 5:08:47 PM9/29/2012 5:08:47 PM

http://newosxbook.com

50 x CHAPTER 2 E PLURIBUS UNUM: ARCHITECTURE OF OS X AND IOS

0005d881 popl %edx
0005d882 movl 0x0014c063(%edx),%edx
0005d888 jmp *%edx
0005d88a ret

The same example, on a 64-bit architecture, reveals a slightly different implementation:

Ergo (/) % otool –arch x86_64 –tV /usr/lib/libSystem.B.dylib | more
/usr/lib/libSystem.B.dylib:
(__TEXT,__text) section
_mach_reply_port:
00000000000012a0 movq %rcx,%r10
00000000000012a3 movl $0x0100001a,%eax ; Load system call 0x1a with

; flag 0x01
00000000000012a8 syscall ; call syscall directly
00000000000012aa ret
00000000000012ab nop

And, for a POSIX (BSD) system call:

Ergo (/) % otool –arch x86_64 –tV /usr/lib/libSystem.B.dylib –p _chown | more
/usr/lib/libSystem.B.dylib:
(__TEXT,__text) section
___chown:
0000000000042f20 movl $0x02000010,%eax # Load system call (0x10),

 # with flag 0x02
0000000000042f25 movq %rcx,%r10
0000000000042f28 syscall # call syscall directly
0000000000042f2a jae 0x00042f31 # if >=0, jump to ret
0000000000042f2c jmp cerror # else jump to cerror

(return -1, set errno)
0000000000042f31 ret

If you continue this example and try the ARM architecture (for iOS) as well, you’ll see a similar
fl ow, with the system call number loaded into r12, the intra-procedural register, and executed
using the svc (also sometimes decoded by assemblers as swi, or SoftWare Interrupt) command. In
the example below (using GDB, though otool(1) would work just as well), BSD’s chown(2) and
Mach’s mach_reply_port are disassembled. Note the latter is loaded with “mvn” — Move Negative.
The return code is, as usual in ARM, in R0.

 (gdb) disass chown
0x30d2ad54 <chown>: mov r12, #16 ; 0x10
0x30d2ad58 <chown+4>: svc 0x00000080
0x32f9c758 <chown+8>: bcc 0x32f9c770 <chown+32> ; jump to exit on >= 0
0x32f9c75c <chown+12>: ldr r12, [pc, #4] ; 0x32f9c768 <chown+24>
0x32f9c760 <chown+16>: ldr r12, [pc, r12]
0x32f9c764 <chown+20>: b 0x32f9c76c <chown+28>
0x32f9c768 <chown+24>: bleq 0x321e2a50 ; to errno setting
0x32f9c76c <chown+28>: bx r12
0x32f9c770 <chown+32>: bx lr
(gdb) disass mach_reply_port
Dump of assembler code for function mach_reply_port:
0x32f99bbc <mach_reply_port+0>: mvn r12, #25 ; 0x19
0x32f99bc0 <mach_reply_port+4>: svc 0x00000080
0x32f99bc4 <mach_reply_port+8>: bx lr

c02.indd 50c02.indd 50 9/29/2012 5:08:47 PM9/29/2012 5:08:47 PM

A High-Level View of XNU x 51

A HIGH-LEVEL VIEW OF XNU

The core of Darwin, and of all of OS X, is its Kernel, XNU. XNU (allegedly an infi nitely recursive
acronym for XNU’s Not UNIX) is itself made up of several components:

 ‰ The Mach microkernel

 ‰ The BSD layer

 ‰ libKern

 ‰ I/O Kit

Additionally, the kernel is modular and allows for pluggable Kernel Extensions (KExts) to be
dynamically loaded on demand.

The bulk of this book — its entire second part — is devoted to explaining XNU in depth. Here,
however, is a quick overview of its components.

Mach
The core of XNU, its atomic nucleus, if you will, is Mach. Mach is a system that was originally
developed at Carnegie Mellon University (CMU) as a research project into creating a lightweight
and effi cient platform for operating systems. The result was the Mach microkernel, which handles
only the most primitive responsibilities of the operating system:

 ‰ Process and thread abstractions

 ‰ Virtual memory management

 ‰ Task scheduling

 ‰ Interprocess communication and messaging

Mach itself has very limited APIs and was not meant to be a full-fl edged operating system. Its APIs
are discouraged by Apple, although — as you will see — they are fundamental, and without them
nothing would work. Any additional functionality, such as fi le and device access, has to be imple-
mented on top of it — and that is exactly what the BSD layer does.

The BSD Layer
On top of Mach, but still an inseparable part of XNU, is the BSD layer. This layer presents a solid
and more modern API that provides the POSIX compatibility discussed earlier. The BSD layer pro-
vides higher-level abstractions, including, among others:

 ‰ The UNIX Process model

 ‰ The POSIX threading model (Pthread) and its related synchronization primitives

 ‰ UNIX Users and Groups

 ‰ The Network stack (BSD Socket API)

c02.indd 51c02.indd 51 9/29/2012 5:08:48 PM9/29/2012 5:08:48 PM

52 x CHAPTER 2 E PLURIBUS UNUM: ARCHITECTURE OF OS X AND IOS

 ‰ File system access

 ‰ Device access (through the /dev directory)

XNU’s BSD implementation is largely compatible with FreeBSD’s, but does have some noteworthy
changes. After covering Mach, this book turns to BSD, focusing on the implementations of the BSD
core, and providing specifi c detail about the virtual fi le system switch and the networking stack in
dedicated chapters.

libkern
Most kernels are built solely in C and low level Assembly. XNU, however, is different. Device driv-
ers — called I/O Kit drivers, and discussed next, can be written in C++. In order to support the C++
runtime and provide the base classes, XNU includes libkern, which is a built-in, self-contained
C++ library. While not exporting APIs directly to user mode, libkern is nonetheless a foundation,
without which a great deal of advanced functionality would not be possible.

I/O Kit
Apple’s most important modifi cation to XNU was the introduction of the I/O Kit device-driver
framework. This is a complete, self-contained execution environment in the kernel, which enables
developers to quickly create device drivers that are both elegant and stable. It achieves that by estab-
lishing a restricted C++ environment (of libkern), with the most important functionality offered by
the language — inheritance and overloading.

Writing an I/O Kit driver, then, becomes a greatly simplifi ed matter of fi nding an existing driver to
use as a superclass, and inheriting all the functionality from it in runtime. This alleviates the need
for boilerplate code copying, which could lead to stability bugs, and also makes driver code very
small — always a good thing under the tight memory constraints of kernel space. Any modifi cation
in functionality can be introduced by either adding new methods to the driver or overloading/hiding
existing ones.

Another benefi t of the C++ environment is that drivers can operate in an object-oriented envi-
ronment. This makes OS X drivers profoundly different than any other device drivers on other
operating systems, which are both limited to C and require hefty code for even the most basic func-
tionality. I/O Kit forms an almost self-contained system in XNU, with a rich environment consisting
of many drivers. It could easily be covered in a book of its own (and, in fact, is, in a recent book),
though this book dedicates chapter 18 to its architecture.

SUMMARY

This chapter explained the architecture of OS X and iOS. Though the two operating systems are
designed for different platforms, they are actually quite similar, with the gaps between them grow-
ing narrower still with every new release of either.

c02.indd 52c02.indd 52 9/29/2012 5:08:48 PM9/29/2012 5:08:48 PM

References x 53

The chapter provided a detailed overview, yet still remained at a fairly high level, getting into code
samples as little as possible. The next chapter goes deeper and discusses OS X specifi c APIs — with
plenty of actual code samples you can try.

REFERENCES

[1] Apple Developer — Bundle Programming Guide

[2] “OS X for UNIX Users” (Lion version): http://images.apple.com/macosx/docs/
OSX_for_UNIX_Users_TB_July2011.pdf

[3] Apple Developer — OS X Technology Overview: (details all the frameworks):
http://developer.apple.com/library/mac/#documentation/MacOSX/Conceptual/

OSX_Technology_Overview/SystemFrameworks/SystemFrameworks.html

[4] Details frameworks for iOS: http://developer.apple.com/library/
ios/#documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/

iPhoneOSFrameworks/iPhoneOSFrameworks.html

c02.indd 53c02.indd 53 9/29/2012 5:08:48 PM9/29/2012 5:08:48 PM

http://images.apple.com/macosx/docs/OSX_for_UNIX_Users_TB_July2011.pdf
http://developer.apple.com/library/mac/#documentation/MacOSX/Conceptual/OSX_Technology_Overview/SystemFrameworks/SystemFrameworks.html
http://developer.apple.com/library/ios/#documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/iPhoneOSFrameworks/iPhoneOSFrameworks.html
http://images.apple.com/macosx/docs/OSX_for_UNIX_Users_TB_July2011.pdf
http://developer.apple.com/library/mac/#documentation/MacOSX/Conceptual/OSX_Technology_Overview/SystemFrameworks/SystemFrameworks.html
http://developer.apple.com/library/ios/#documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/iPhoneOSFrameworks/iPhoneOSFrameworks.html
http://developer.apple.com/library/ios/#documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/iPhoneOSFrameworks/iPhoneOSFrameworks.html

c02.indd 54c02.indd 54 9/29/2012 5:08:48 PM9/29/2012 5:08:48 PM

3
On the Shoulders of Giants:
OS X and iOS Technologies

By virtue of being a BSD-derived system, OS X inherits most of the kernel features that are
endemic to that architecture. This includes the POSIX system calls, some BSD extensions
(such as kernel queues), and BSD’s Mandatory Access Control (MAC) layer.

It would be wrong, however, to classify either OS X or iOS as “yet another BSD system” like
FreeBSD and its ilk. Apple builds on the BSD primitive’s several elaborate constructs — fi rst
and foremost being the “sandbox” mechanism for application compartmentalization and
security. In addition, OS X and iOS enhance or, in some cases, completely replace BSD com-
ponents. The venerable /etc fi les, for example, traditionally used for system confi guration, are
entirely replaced. The standard UN*X syslog mechanism is augmented by the Apple System
Log. New technologies such as Apple Events and FSEvents are entirely proprietary.

This chapter discusses these features and more, in depth. We fi rst discuss the BSD-inspired
APIs, and then turn our attention to the Apple-specifi c ones. The APIs are discussed from the
user-mode perspective, including detailed examples and experiments to illustrate their usage.
For the kernel perspective of these APIs, where applicable, see Chapter 14, “Advanced BSD
Aspects.”

BSD HEIRLOOMS

While the core of XNU is undeniably Mach, its main interface to user mode is that of BSD. OS
X and iOS both offer the set of POSIX compliant system calls, as well as several BSD-specifi c
ones. In some cases, Apple has gone several extra steps, implementing additional features,
some of which have been back-ported into BSD and OpenDarwin.

c03.indd 55c03.indd 55 10/5/2012 4:12:53 PM10/5/2012 4:12:53 PM

56 x CHAPTER 3 ON THE SHOULDERS OF GIANTS: OS X AND IOS TECHNOLOGIES

sysctl
The sysctl(8) command is somewhat of a standardized way to access the kernel’s internal state.
Introduced in 4.4BSD, it can also be found on other UN*X systems (notably, Linux, where it is
backed by the /proc/sys directories). By using this command, an administrator can directly query
the value of kernel variables, providing important run-time diagnostics. In some cases, modifying
the value of the variables, thereby altering the kernel’s behavior, is possible. Naturally, only a fairly
small subset of the kernel’s vast variable base is exported in this way. Nonetheless, those variables
that are made visible play key roles in recording or determining kernel functionality.

The sysctl(8) command wraps the sysctl(3) library call, which itself wraps the __sysctl sys-
tem call (#202). The exported kernel variables are accessed by their Management Information Base
(MIB) names. This naming convention, borrowed from the Simple Network Management Protocol
(SNMP), classifi es variables by namespaces.

XNU supports quite a few hard-coded namespaces, as is shown in Table 3-1.

TABLE 3-1: Predefi ned sysctl Namespaces

NAMESPACE NUMBER STORES

debug 5 Various debugging parameters.

hw 6 Hardware-related settings. Usually all read only.

kern 1 Generic kernel-related settings.

machdep 7 Machine-dependent settings. Complements the hw namespace with

processor-specifi c features.

net 4 Network stack settings. Protocols are defi ned in their own

sub-namespaces.

vfs 3 File system-related settings. The Virtual File system Switch is the kernel’s

common fi le system layer.

vm 2 Virtual memory settings.

user 8 Settings for user programs.

As shown in the table, namespaces are translated to an integer representation, and thus the vari-
able can be represented as an array of integers. The library call sysctlnametomib(3) can translate
from the textual to the integer representation, though that is often unnecessary, because sysctlby-
name(3) can be used to look up a variable value by its name.

Each namespace may have variables defi ned directly in it (for example, kern.ostype, 1.1), or in
sub-namespaces (for example, kern.ipc.somaxconn, 1.32.2). In both cases accessing the variable
in question is possible, either by specifying its fully qualifi ed name, or by its numeric MIB specifi er.
Looking up a MIB number by its name (using sysctlnametomib(3)) is possible, but not vice versa.
Thus, one can walk the MIBs by number, but not retrieve the corresponding names.

c03.indd 56c03.indd 56 10/5/2012 4:12:59 PM10/5/2012 4:12:59 PM

BSD Heirlooms x 57

Using sysctl(8) you can examine the exported values, and set those that are writable. Due to
the preceding limitation, however, you cannot properly “walk” the MIBs — that is, traverse the
namespaces and obtain a listing of their registered variables, as one would with SNMP’s getNext().
The command does have an -A switch to list all variables, but this is done by checking a fi xed list,
which is defi ned in the <sys/sysctl.h> header (CTL_NAMES and related macros). This is not a prob-
lem with the OS X sysctl(8), because Apple does rebuild it to match the kernel version. In iOS,
however, Apple does not supply a binary, and the one available from Cydia (as part of the system-
cmds package) misses out on iOS-specifi c variables.

Kernel components can register additional sysctl values, and even entire namespaces, on the fl y.
Good examples are the security namespace (used heavily by the sandbox kext, as discussed in this
chapter) and the appleprofile namespace (registered by the AppleProfileFamily kexts — as dis-
cussed in Chapter 5, “Process Tracing and Debugging”). The kernel-level perspective of sysctls are
discussed in Chapter 14.

The gamut of sysctl(3) variables ranges from various minor debug variables to other read/write
variables that control entire subsystems. For example, the kernel’s little-known kdebug functional-
ity operates entirely through sysctl(3) calls. Likewise, commands such as ps(1) and netstat(1)
rely on sysctl(2) to obtain the list of PIDs and active sockets, respectively, though this could be
achieved by other means, as well.

kqueues
kqueues are a BSD mechanism for kernel event notifi cations. A kqueue is a descriptor that blocks
until an event of a specifi c type and category occurs. A user (or kernel) mode process can thus
wait on the descriptor, providing a simple but effective method for synchronization of one or more
processes.

kqueues and their kevents form the basis for asynchronous I/O in the kernel (and enable the POSIX
poll(2)/select(2), accordingly). A kqueue can be constructed in user mode by simply calling the
kqueue(2) system call (#362), with no arguments. Then, the specifi c events of interest can be speci-
fi ed using the EV_SET macro, which initializes a struct kevent. Calling the kevent(2) or
kevent64(2) system calls (#363 or #369, respectively) will set the event fi lters, and return if they
have been satisfi ed. The system supports several “predefi ned” fi lters, as shown in Table 3-2:

TABLE 3-2: Some of the predefi ned Event Filters in <sys/event.h>

EVENT FILTER CONSTANT USAGE

EVFILT_MACHPORT Monitors a Mach port or port set and returns if a message has been

received.

EVFILT_PROC Monitors a specifi ed PID for execve(2), exit(2), fork(2), wait(2), or

signals.

EVFILT_READ For fi les, returns when the fi le pointer is not at EOF.

For sockets, pipes, and FIFOs, returns when there is data to read (such as

select(2)).

continues

c03.indd 57c03.indd 57 10/5/2012 4:12:59 PM10/5/2012 4:12:59 PM

58 x CHAPTER 3 ON THE SHOULDERS OF GIANTS: OS X AND IOS TECHNOLOGIES

EVENT FILTER CONSTANT USAGE

EVFILT_SESSION Monitors an audit session (described in the next section).

EVFILT_SIGNAL Monitors a specifi c signal to the process, even if the signal is currently

ignored by the process.

EVFILT_TIMER A periodic timer with up to nanosecond resolution.

EVFILT_WRITE For fi les, unsupported.

For sockets, pipes, and FIFOs, returns when data may be written. Returns

buff er space available in event data.

EVFILT_VM Virtual memory Notifi cations. Used for memory pressure handling (discussed

in Chapter 14).

EVFILT_VNODE Filters fi le (vnode)-specifi c system calls such as rename(2), delete(2),

unlink(2), link(2), and others.

Listing 3-1 demonstrates using kevents to track process-level events on a particular PID:

LISTING 3-1: Using kqueues and kevents to fi lter process events

void main (int argc, char **argv)
{
 pid_t pid; // PID to monitor
 int kq; // The kqueue file descriptor
 int rc; // collecting return values
 int done;
 struct kevent ke;

 pid = atoi(argv[1]);

 kq = kqueue();

 if (kq == -1) { perror("kqueue"); exit(2); }

 // Set process fork/exec notifications

 EV_SET(&ke, pid, EVFILT_PROC, EV_ADD,
 NOTE_EXIT | NOTE_FORK | NOTE_EXEC , 0, NULL);

 // Register event

 rc = kevent(kq, &ke, 1, NULL, 0, NULL);
 if (rc < 0) { perror ("kevent"); exit (3); }

 done = 0;
 while (!done) {

TABLE 3-2 (continued)

c03.indd 58c03.indd 58 10/5/2012 4:12:59 PM10/5/2012 4:12:59 PM

BSD Heirlooms x 59

 memset(&ke, '\0', sizeof(struct kevent));

 // This blocks until an event matching the filter occurs
 rc = kevent(kq, NULL, 0, &ke, 1, NULL);
 if (rc < 0) { perror ("kevent"); exit (4); }

 if (ke.fflags & NOTE_FORK)
 printf("PID %d fork()ed\n", ke.ident);

 if (ke.fflags & NOTE_EXEC)
 printf("pid %d has exec()ed\n", ke.ident);

 if (ke.fflags & NOTE_EXIT)
 {
 printf("pid %d has exited\n", ke.ident);
 done++;
 }

 } // end while
}

Auditing (OS X)
OS X contains an implementation of the Basic Security Module, or BSM. This auditing subsystem
originated in Solaris, but has since been ported into numerous UN*X implementations (as Open-
BSM), among them OS X. This subsystem is useful for tracking user and process actions, though
may be costly in terms of disk space and overall performance. It is, therefore, of value in OS X, but
less so on a mobile system such as iOS, which is why it is not enabled in the latter.

Auditing, as the security-sensitive operation that it is, must be performed at the kernel level. In BSD
and other UN*X fl avors the kernel component of auditing communicates with user space via a spe-
cial character pseudo-device (for example, /dev/audit). In OS X, however, auditing is implemented
over Mach messages.

The Administrator’s View
Auditing is a self-contained subsystem in OS X. The main user-mode component is the auditd(8),
a daemon that is started on demand by launchd(8), unless disabled (in the com.apple.auditd
.plist fi le). The daemon does not actually write the audit log records; those are done directly by
the kernel itself. The daemon does control the kernel component, however, and so he who controls
the daemon controls auditing. To do so, the administrator can use the audit(8) command, which
can initialize (-i) or terminate (-t) auditing, start a new log (-n), or expire (-e) old logs. Normally,
auditd(8) times out after 60 seconds of inactivity (as specifi ed in its plist TimeOut key). Just
because auditd(8) is not running, therefore, implies nothing about the state of auditing.

Audit logs, unless otherwise stated, are collected in /var/audit, following a naming convention of
start_time.stop_time, with the timestamp accurate to the second. Logs are continuously gener-
ated, so (aside from crashes and reboots), the stop_time of a log is also a start_time of its succes-
sor. The latest log can be easily spotted by its stop_time of not_terminated, or a symbolic link to
current, as shown in Output 3-1.

c03.indd 59c03.indd 59 10/5/2012 4:12:59 PM10/5/2012 4:12:59 PM

60 x CHAPTER 3 ON THE SHOULDERS OF GIANTS: OS X AND IOS TECHNOLOGIES

OUTPUT 3-1: Displaying logs in the /var/audit directory

root@Ergo (/)# ls -ld /var/audit
drwx------ 3247 root wheel 110398 Mar 19 17:44 /var/audit

root@Ergo (/)# ls –l /var/audit
…
-r--r----- 1 root wheel 749 Mar 19 16:33 20120319203254.20120319203327
-r--r----- 1 root wheel 337 Mar 19 17:44 20120319203327.20120319214427
-r--r----- 1 root wheel 0 Mar 19 17:44 20120319214427.not_terminated
lrwxr-xr-x 1 root wheel 40 Mar 19 17:44 current ->
 /var/audit/20120319214427.not_terminated

The audit logs are in a compact binary format, which can be deciphered using the praudit(1) com-
mand. This command can print the records in a variety of human- and machine-readable formats,
such as the default CSV or the more elegant XML (using –x). To enable searching through audit
records, the auditreduce(1) command may be used with an array of switches to fi lter records by
event type (-m), object access (-o), specifi c UID (-e), and more.

Because logs are cycled so frequently, a special character device, /dev/auditpipe, exists to allow
user-mode programs to access the audit records in real time. The praudit(1) command can there-
fore be used directly on /dev/auditpipe, which makes it especially useful for shell scripts. As a
quick experiment, try doing so, then locking your screen saver, and authenticating to unlock it. You
should see something like Output 3-2.

OUTPUT 3-2: Using praudit(1) on the audit pipe for real-time events

root@Ergo (/)# praudit /dev/auditpipe
header,106,11,user authentication,0,Tue Mar 20 02:26:01 2012, + 180 msec
subject,root,morpheus,wheel,root,wheel,38,0,0,0.0.0.0
text,Authentication for user <morpheus>
return,success,0
trailer,106

Auditing must be performed at the time of the action, and can therefore have a noticeable impact on
system performance as well as disk space. The administrator can therefore tweak auditing using sev-
eral fi les, all in /etc/security, listed in Table 3-3.

TABLE 3-3: Files in /etc/security Used to Control Audit Policy

AUDIT CONTROL FILE USED FOR

audit_class Maps event bitmasks to human-readable names, and to the mnemonic classes

used in other fi les for events.

audit_control Specifi es audit policy and log housekeeping.

c03.indd 60c03.indd 60 10/5/2012 4:13:00 PM10/5/2012 4:13:00 PM

BSD Heirlooms x 61

AUDIT CONTROL FILE USED FOR

audit_event Maps event identifi ers to mnemonic class and human-readable name.

audit_user Selectively enables/disables auditing of specifi c mnemonic event classes on a

per-user basis. The record format is:

Username:classes_audited:classes_not_audited

audit_warn A shell script to execute on warnings from the audit daemon (for example,

“audit space low (< 5% free) on audit log fi le-system”). Usually passes the mes-

sage to logger(1).

The Programmer’s View
If auditing is enabled, XNU dedicates system calls #350 through #359 to enable and control
auditing, as shown in Table 3-4 (all return the standard int return value of a system call: 0 on
success, or -1 and set errno on error). On iOS, these calls are merely stubs returning –ENOSYS
(0x4E).

TABLE 3-4: System Calls Used for Auditing in OS X, BSM-Compliant

SYSTEM CALL USED TO

350 audit(const char *rec,

 u_int length);

Commit an audit record to the log.

359 auditctl(char *path); Open a new audit log in fi le specifi ed by path (similar to

audit –n)

351 auditon(int cmd,

 void *data,

 u_int length);

Confi gure audit parameters. Accepts various A_* com-

mands from <bsm/audit.h>.

355

356

getaudit

 (auditinfo_t *ainfo);

setaudit

 (auditinfo_t *ainfo);

Get or set audit session state. The auditinfo_t is

defi ned as

struct auditinfo {

au_id_t ai_auid;

au_mask_t ai_mask;

au_tid_t ai_termid;

au_asid_t ai_asid; };

These system calls are likely deprecated in Mountain

Lion.

continues

c03.indd 61c03.indd 61 10/5/2012 4:13:00 PM10/5/2012 4:13:00 PM

62 x CHAPTER 3 ON THE SHOULDERS OF GIANTS: OS X AND IOS TECHNOLOGIES

SYSTEM CALL USED TO

357

358

getaudit_addr

(auditinfo_addr_t *aa,

 u_int length);

setaudit_addr

(auditinfo_addr_t *aa,

 u_int length);

As getaudit or setaudit, but with support for >32-bit

termids, and an additional 64-bit ai_flags fi eld.

353

354

getauid(au_id_t *auid);

setauid(au_id_t *auid);

Get or set the audit session ID.

Apple deviates from the BSM standard and enhances it with three additional proprietary system
calls, tying the subsystem to the underlying Mach system. Unlike the standard calls, these are
undocumented save for their open source implementation, as shown in Table 3-5.

TABLE 3-5: Apple-Specifi c System Calls Used for Auditing

SYSTEM CALL USED FOR

428 mach_port_name_t

audit_session_self(void);
Returns a Mach port (send) for the cur-

rent audit session

429 audit_session_join

 (mach_port_name_t port);

Joins the audit session for the given

Mach port

432 audit_session_port(au_asid_t asid,

user_addr_t portnamep);
New in Lion and relocates fileport_

makeport. Obtains the Mach port

(send) for the given audit session asid.

Auditing is revisited from the kernel perspective in Chapter 14.

Mandatory Access Control
FreeBSD 5.x was the fi rst to introduce a powerful security feature known as Mandatory Access
Control (MAC). This feature, originally part of Trusted BSD[1], allows for a much more fi ne-grained
security model, which enhances the rather crude UN*X model by adding support for object-level
security: limiting access to certain fi les or resources (sockets, IPC, and so on) by specifi c processes,
not just by permissions. In this way, for example, a specifi c app could be limited so as not to access
the user’s private data, or certain websites.

A key concept in MAC is that of a label, which corresponds to a predefi ned classifi cation, which
can apply to a set of fi les or other objects in the system (another way to think of this is as sensitivity
tags applied to dossiers in spy movies — “Unclassifi ed,” “Confi dential,” “Top Secret,” etc). MAC
denies access to any object which does not comply with the label (Sun’s swan song, Trusted Solaris,
actually made such objects invisible!). OS X extends this further to encompass security policies (for
example “No network”) that can then be applied to various operations, not just objects.

TABLE 3-4 (continued)

c03.indd 62c03.indd 62 10/5/2012 4:13:00 PM10/5/2012 4:13:00 PM

BSD Heirlooms x 63

MAC is a framework — not in the OS X sense, but in the architectural one: it provides a solid
foundation into which additional components, which do not necessarily have to be part of the ker-
nel proper, may “plug-in” to control system security. By registering with MAC, specialized kernel
extensions can assume responsibility for the enforcement of security policies. From the kernel’s side,
callouts to MAC are inserted into the various system call implementations, so that each system call
must fi rst pass MAC validation, prior to actually servicing the user-mode request. These callouts are
only invoked if the kernel is compiled with MAC support, which is on by default in both OS X and
iOS. Even then, the callouts return 0 (approving the operation) unless a policy module (specialized
kernel extension) has registered for them, and provided its own alternate authorization logic. The
MAC layer itself makes no decisions — it calls on the registered policy modules to do so.

The kernel additionally offers dedicated MAC system calls. These are shown in Table 3-6. Most
match those of FreeBSD’s, while a few are Apple extensions (as noted by the shaded rows).

TABLE 3-6: MAC-Specifi c System Calls

SYSTEM CALL USED FOR

380 int __mac_execve(char *fname,

char **argp,

char **envp,

struct mac *mac_p);

As execve(2), but executes

the process under a given MAC

label

381 int __mac_syscall(char *policy,

int call,

user_addr_t arg);

MAC-enabled Wrapper for

indirect syscall.

382

383

int __mac_[get|set]_file

(char *path_p,

struct mac *mac_p);

Get or set label associated with

a pathname

384

385

int __mac_[get|set]_link

(char *path_p, struct mac *mac_p);

Get or set label associated with

a link

386

387

int __mac_[get|set]_proc(struct mac

*mac_p);
Retrieve or set the label of the

current process

388

389

int __mac_[get|set]_fd

(int fd,

struct mac *mac_p);

Get or set label associated with

a fi le descriptor. This can be a

fi le, but also a socket or a FIFO

390 int __mac_get_pid(pid_t pid,

struct mac *mac_p);
Get the label of another pro-

cess, specifi ed by PID

391 int __mac_get_lcid(pid_t lcid,

struct mac *mac_p);
Get login context ID

392

393

int __mac_[get|set]_lctx

(struct mac *mac_p);

Get or set login context ID

continues

c03.indd 63c03.indd 63 10/5/2012 4:13:00 PM10/5/2012 4:13:00 PM

64 x CHAPTER 3 ON THE SHOULDERS OF GIANTS: OS X AND IOS TECHNOLOGIES

SYSTEM CALL USED FOR

424 int __mac_mount(char *type,

char *path,

int flags,

caddr_t data,

struct mac *mac_p);

MAC enabled mount(2)

replacement

425 int __mac_get_mount(char *path,

 struct mac *mac_p);
Get Mount point label

information

426 int __mac_getfsstat(user_addr_t buf,

int bufsize,

user_addr_t mac,

int macsize,

int flags);

MAC enabled getfsstat(2)

replacement

The administrator can control enforcement of MAC policies on the various subsystems using sys-
ctl(8): MAC dynamically registers and exposes the top-level security MIB, which contain
enforcement fl ags, as shown in Output 3-3:

OUTPUT 3-3: The security sysctl MIBs exposed by MAC, on Lion

morpheus@Minion (/)$ sysctl security
security.mac.sandbox.sentinel: .sb-4bde45ee
security.mac.qtn.sandbox_enforce: 1
security.mac.max_slots: 7
security.mac.labelvnodes: 0
security.mac.mmap_revocation: 0 # Revoke mmap access to files on subject relabel
security.mac.mmap_revocation_via_cow: 0 # Revoke mmap access to files via copy on write
security.mac.device_enforce: 1
security.mac.file_enforce: 0
security.mac.iokit_enforce: 0
security.mac.pipe_enforce: 1
security.mac.posixsem_enforce: 1 # Posix semaphores
security.mac.posixshm_enforce: 1 # Posix shared memory
security.mac.proc_enforce: 1 # Process operation (including code signing)
security.mac.socket_enforce: 1
security.mac.system_enforce: 1
security.mac.sysvmsg_enforce: 1
security.mac.sysvsem_enforce: 1
security.mac.sysvshm_enforce: 1
security.mac.vm_enforce: 1
security.mac.vnode_enforce: 1 # VFS VNode operations (including code signing)

The proc_enforce and vnode_enforce MIBS are the ones which control, among other things, code
signing on iOS. A well known workaround for code signing on jailbroken devices was to manually
set both to 0 (i.e. disable their enforcement). Apple made those two settings read only in iOS 4.3 and
later, but kernel patching and other methods can still work around this.

TABLE 3-6 (continued)

c03.indd 64c03.indd 64 10/5/2012 4:13:00 PM10/5/2012 4:13:00 PM

OS X- and iOS-Specifi c Technologies x 65

MAC provides the substrate for OS X’s Compartmentalization (“Sandboxing”) and iOS’s entitle-
ments. Both are unique to OS X and iOS, and are described later in this chapter under “OS X and
iOS Security Mechanisms.” The kernel perspective of MAC (including an in-depth discussion of its
use in OS X and iOS) is described in Chapter 14.

OS X- AND IOS-SPECIFIC TECHNOLOGIES

Mac OS has, over the years, introduced several avant-garde technologies, some of which still remain
proprietary. The next section discusses these technologies, particularly the ones that are of interest
from an operating-system perspective.

User and Group Management (OS X)
Whereas other UN*X traditionally relies on the age-old password fi les (/etc/passwd and, com-
monly /etc/shadow, used for the password hashes), which are still used in single-user mode (and
on iOS), with /etc/master.passwd used as the shadow fi le. In all other cases, however, OS X
deprecates them in favor of its own directory service: DirectoryService(8) on Snow Leopard,
which has been renamed to opendirectoryd(8) as of Lion. The daemon’s new name refl ects its
nature: It is an implementation of the OpenLDAP project. Using a standard protocol such as the
Lightweight Directory Access Protocol (LDAP) enables integration with non-Apple directory ser-
vices as well, such as Microsoft’s Active Directory. (Despite the “lightweight” moniker, LDAP is
a lengthy Internet standard covered by RFCs 4510 through 4519. It is a simplifi ed version of DAP,
which is an OSI standard).

The directory service maintains more than just the users and groups: It holds many other aspects of
system confi guration, as is discussed under “System Confi guration” later in the chapter.

To interface with the daemon, OS X supplies a command line utility called dscl(8). You can use
this tool, among other things, to display the users and groups on the system. If you try dscl .
-read /Users/username on yourself (the “.” is used to denote the default directory, which is also
accessible as /Local/Default), you should see something similar to Output 3-4:

OUTPUT 3-4: Running dscl(8) to read user details from the local directory

morpheus@ergo(/)$ dscl . -read /Users/ `whoami `
dsAttrTypeNative:_writers_hint: morpheus
dsAttrTypeNative:_writers_jpegphoto: morpheus
dsAttrTypeNative:_writers_LinkedIdentity: morpheus
dsAttrTypeNative:_writers_passwd: morpheus
dsAttrTypeNative:_writers_picture: morpheus
dsAttrTypeNative:_writers_realname: morpheus
dsAttrTypeNative:_writers_UserCertificate: morpheus
AppleMetaNodeLocation: /Local/Default
AuthenticationAuthority: ;ShadowHash; ;Kerberosv5;;morpheus@LKDC:SHA1.3023D12469030DE9DB
FE2C2621A01C121615DC80;LKDC:SHA1.3013D12469030DE9DBFD2C2621A07C123615DC70;
AuthenticationHint:
GeneratedUID: 11E111F7-910C-2410-9BAB-ABB20FE3DF2A
JPEGPhoto:
 ffd8ffe0 00104a46 49460001 01000001 00010000 ffe20238 4943435f 50524f46 494c4500..

continues

c03.indd 65c03.indd 65 10/5/2012 4:13:01 PM10/5/2012 4:13:01 PM

mailto:morpheus@LKDC:SHA1.3023D12469030DE9DB

66 x CHAPTER 3 ON THE SHOULDERS OF GIANTS: OS X AND IOS TECHNOLOGIES

 ... User photo in JPEG format
NFSHomeDirectory: /Users/morpheus
Password: ********
PasswordPolicyOptions:
 <?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/
PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>failedLoginCount</key>
 <integer>0</integer>
 <key>failedLoginTimestamp</key>
 <date>2001-01-01T00:00:00Z</date>
 <key>lastLoginTimestamp</key>
 <date>2001-01-01T00:00:00Z</date>
 <key>passwordTimestamp</key>
 <date>2011-09-24T20:23:03Z</date>
</dict>
</plist>
Picture:
 /Library/User Pictures/Fun/Smack.tif
PrimaryGroupID: 20
RealName: Me
RecordName: morpheus
RecordType: dsRecTypeStandard:Users
UniqueID: 501
UserShell: /bin/zsh

You can also use the dscl(8) tool to update the directory and create new users. The shell script in
Listing 3-2 demonstrates the implementation of a command-line adduser, which OS X does not
provide.

LISTING 3-2: A script to perform the function of adduser (to be run as root)

#!/bin/bash
Get username, ID and full name field as arguments from command line
USER=$1
ID=$2
FULLNAME=$3
Create the user node
dscl . -create /Users/$USER
Set default shell to zsh
dscl . -create /Users/$USER UserShell /bin/zsh
Set GECOS (full name for finger)
dscl . -create /Users/$USER RealName "$FULLNAME"
dscl . -create /Users/$USER UniqueID $ID
Assign user to gid of localaccounts
dscl . -create /Users/$USER PrimaryGroupID 61
Set home dir (~$USER)
dscl . -create /Users/$USER NFSHomeDirectory /Users/$USER

OUTPUT 3-4 (continued)

c03.indd 66c03.indd 66 10/5/2012 4:13:01 PM10/5/2012 4:13:01 PM

http://www.apple.com/DTDs/PropertyList-1.0.dtd
http://www.apple.com/DTDs/PropertyList-1.0.dtd

OS X- and iOS-Specifi c Technologies x 67

Make sure home directory is valid, and owned by the user
mkdir /Users/$USER
chown $USER /Users/$USER
Optional: Set the password.
dscl . -passwd /Users/$USER "changeme"
Optional: Add to admin group
dscl . -append /Groups/admin GroupMembership $USER

One of Lion’s early security vulnerabilities was that dscl(8) could be used to
change passwords of users without knowing their existing passwords, even as a
non-root user. If you keep your OS X constantly updated, chances are this issue
has been resolved by a security update.

The standard UNIX utilities of chfn(1) and chsh(1), which enable the modi-
fi cation of the full name and shell for a given user, respectively, are implemented
transparently over directory services by launching the default editor to allow
root to type in the fi elds, rather than bother with dscl(8) directly. Most admin-
istrators, of course, probably use the system confi guration GUI — a much safer
option, though not as scalable when one needs to create more than a few users.

System Confi guration
Much like it deprecates /etc user database fi les, OS X does away with most other confi guration
fi les, which are traditionally used in UN*X as the system “registry.”

To maintain system confi guration, OS X and iOS use a specialized daemon: – configd(8). This
daemon can load additional loadable bundles (“plug-ins”) located in the /System/Library/
SystemConfiguration/ directory, which include IP and IPv6 confi guration, logging, and other
bundles. The average user, of course, is blissfully unaware of this, as the System Preferences applica-
tion can be used as a graphical front-end to all the confi guration tasks.

Command line-oriented power users can employ a specialized tool, scutil(8) in order to navigate
and query the system confi guration. This interactive utility can list and show keys as shown in the
following code snippet:

root@Padishah (~)# scutil
> list
 subKey [0] = Plugin:IPConfiguration
 subKey [1] = Plugin:InterfaceNamer
 subKey [2] = Setup:
 subKey [3] = Setup:/
 subKey [4] = Setup:/Network/Global/IPv4
 subKey [5] = Setup:/Network/HostNames
 ...
 subKey [50] = com.apple.MobileBluetooth
 subKey [51] = com.apple.MobileInternetSharing
 subKey [52] = com.apple.network.identification

> show com.apple.network.identification
<dictionary> {
 ActiveIdentifiers : <array> {
 0 : IPv4.Router=192.168.1.254;IPv4.RouterHardwareAddress=00:43:a3:f2:81:d9
 }

c03.indd 67c03.indd 67 10/5/2012 4:13:01 PM10/5/2012 4:13:01 PM

68 x CHAPTER 3 ON THE SHOULDERS OF GIANTS: OS X AND IOS TECHNOLOGIES

 PrimaryIPv4Identifier : IPv4.Router=192.168.1.254;IPv4.RouterHardwareAddress=
00:43:a3:f2:81:d9
 ServiceIdentifiers : <array> {
 0 : 12C4C9CC-7E42-1D2D-ACF6-AAF7FFAF2BFC
 }
}

The public SystemConfiguration.framework allows programmatic access to the system confi gura-
tion. Commands such as OS X’s pmset(1), which confi gures power management settings, link with
this framework. The framework exists in OS X and iOS, so the program shown in Listing 3-3 can
compile and run on both.

LISTING 3-3: Using the SystemConfi guration APIs to query values

#include <SystemConfiguration/SCPreferences.h>
// Also implicitly uses CoreFoundation/CoreFoundation.h

void dumpDict(CFDictionaryRef dict){
 // Quick and dirty way of dumping a dictionary as XML
 CFDataRef xml = CFPropertyListCreateXMLData(kCFAllocatorDefault,
 (CFPropertyListRef)dict);
 if (xml) {
 write(1, CFDataGetBytePtr(xml), CFDataGetLength(xml));
 CFRelease(xml);
 }
}

void main (int argc, char **argv)
{
 CFStringRef myName = CFSTR("com.technologeeks.SystemConfigurationTest");
 CFArrayRef keyList;
 SCPreferencesRef prefs = NULL;
 char *val;
 CFIndex i;
 CFDictionaryRef global;

 // Open a preferences session
 prefs = SCPreferencesCreate (NULL, // CFAllocatorRef allocator,
 myName, // CFStringRef name,
 NULL); // CFStringRef prefsID

 if (!prefs) { fprintf (stderr,"SCPreferencesCreate"); exit(1); }

 // retrieve preference namespaces
 keyList = SCPreferencesCopyKeyList (prefs);

 if (!keyList) { fprintf (stderr,"CopyKeyList failed\n"); exit(2);}

 // dump 'em
 for (i = 0; i < CFArrayGetCount(keyList); i++) {
 dumpDict(SCPreferencesGetValue(prefs, CFArrayGetValueAtIndex(keyList, i)));
 }

}

c03.indd 68c03.indd 68 10/5/2012 4:13:02 PM10/5/2012 4:13:02 PM

OS X- and iOS-Specifi c Technologies x 69

The dictionaries dumped by this program are naturally maintained in plist fi les. The default location for
these dictionaries is in /Library/Preferences/SystemConfiguration. If you compare the output of
this program with that of the preferences.plist fi le from that directory, you will see it matches.

Experiment: Using scutil(8) for Network Notifi cations
You can also use the scutil(8) command to watch for system confi guration changes, as demon-
strated in the following experiment:

1. Using scutil(8), set a watch on the state of the Airport interface (if you have one, other-
wise the primary Ethernet interface will do):

> n.add State:/Network/Interface/en0/AirPort
> n.watch
verify the notification was added
> n.list
 notifier key [0] = State:/Network/Interface/en0/AirPort

2. Disable Airport (or unplug your network cable). You should see notifi cation messages break
through the scutil prompt:

notification callback (store address = 0x10010a150).
 changed key [0] = State:/Network/Interface/en0/AirPort
notification callback (store address = 0x10010a150).
 changed key [0] = State:/Network/Interface/en0/AirPort
notification callback (store address = 0x10010a150).
 changed key [0] = State:/Network/Interface/en0/AirPort

3. Use the “show” subcommand to see the changed key. In this case, the power status value has
been changed:

> show State:/Network/Interface/en0/AirPort
<dictionary> {
 Power Status : 0
 SecureIBSSEnabled : FALSE
 BSSID : <data> 0x0013d37f84d9
 Busy : FALSE
 SSID_STR : AAAA
 SSID : <data> 0x41414141
 CHANNEL : <dictionary> {
 CHANNEL : 11
 CHANNEL_FLAGS : 10
 }
}

In order to watch for changes programmatically, you can use the SCDynamicStore class. Because
obtaining the network connectivity status is a common action, Apple provides the far simpler
SCNetworkReachability class. Apple Developer also provides sample code demonstrating the usage
of the class.[2]

Logging
With the move to a BSD-based platform, OS X also inherited support for the traditional UNIX Sys-
tem log. This support (detailed in Apple Technical Article TA26117[3]) provides the full compatibility
with the ages-old mechanism commonly referred to as syslogd(8).

c03.indd 69c03.indd 69 10/5/2012 4:13:03 PM10/5/2012 4:13:03 PM

70 x CHAPTER 3 ON THE SHOULDERS OF GIANTS: OS X AND IOS TECHNOLOGIES

The syslog mechanism is well detailed in many other references (including the aforementioned
technical article). In a nutshell, it handles textual messages, which are classifi ed by a message facil-
ity and severity. The facility is the class of the reporting element: essentially, the message source.
The various UNIX subsystems (mail, printing, cron, and so on) all have their own facilities, as does
the kernel (LOG_KERN, or “kern”). Severities range from LOG_DEBUG and LOG_INFO (“About to open
fi le…”), through LOG_ERR (“Unable to open fi le”), LOG_CRIT (“Is that a bad sector?”), LOG_ALERT
(“Hey, where’s the disk?!”), and fi nally, to LOG_EMERG (“Meltdown imminent!”). By using the con-
fi guration fi le /etc/syslog.conf, the administrator can decide on actions to take, corresponding to
facility/severity combinations. Actions include the following:

 ‰ Message certain usernames specifi ed

 ‰ Log to fi les or devices (specifi ed as a full path, starting with “/” so as to disambiguate fi les
from usernames)

 ‰ Pipe to commands (|/path/to/program)

 ‰ Send to a network host (@loghost)

Programmers interface with syslog using the syslog(3) API, consisting of a call to openlog()
(specifying their name, facility, and other options), through syslog(), which logs the messages with
a given priority. The syslog daemon intercepts the messages through a UNIX domain socket (tradi-
tionally /dev/log, though in OS X this has been changed to /var/run/syslog).

OS X 10.4 (Tiger) introduced a new model for logging called the Apple System Log, or ASL. This
new architecture (which is also used in iOS) aims to provide more fl exibility than is provided by
syslog. ASL is modeled after syslog, with the same levels and severities, but allows more features,
such as fi ltering and searching not offered by syslog.

ASL is modular in that it simultaneously offers four logging interfaces:

 ‰ The backward-compatible syslogd: Referred to as BSD logging, ASL can be confi gured to
accept syslog messages (using –bsd_in 1), and process them according to /etc/syslog.
conf (using –bsd_out 1). In OS X, these are enabled by default, but not so on iOS. The
messages, as in syslogd, come in through the /var/run/syslog socket.

 ‰ The network protocol syslogd: On the well-known UDP port 514, this protocol may
be enabled by –udp_in 1. It is actually enabled by default, but ASL/syslogd relies on
launchd(8) for its socket handling, and therefore the socket is not active by default.

 ‰ The kernel logging interface: Enabled (the default) by –klog_in 1, this interface accepts ker-
nel messages from /dev/log (a character device, incorrectly specifi ed in the documentation
as a UNIX domain socket).

 ‰ The new ASL interface: By using –asl_in 1, which is naturally enabled by default, ASL mes-
sages can be obtained from clients of the asl(3) API using asl_log(3) and friends. These
messages come in through the /var/run/asl_input socket, and are of a different format
than the syslogd ones (hence the need for two separate sockets).

ASL logs are collected in /var/log/asl. They are managed (rotated/deleted) by the aslmanager(8)
command, which is automatically run by launchd (from com.apple.aslmanager.plist). You may
also run the command manually.

c03.indd 70c03.indd 70 10/5/2012 4:13:03 PM10/5/2012 4:13:03 PM

OS X- and iOS-Specifi c Technologies x 71

ASL logs, unlike syslog fi les, are binary, not text. This makes them somewhat smaller in size, but
not as grep(1)-friendly as syslog’s. Apple includes the syslog(1) command in OS X to display
and view logs, as well as perform searches and fi lters.

Experiment: Enabling System Logging on a Jailbroken iOS
Apple has intentionally disabled the legacy BSD syslog interface, but re-enabling it is a fairly simple
matter for the root user via a few simple steps:

1. Create an /etc/syslog.conf fi le. The easiest way to create a valid fi le is to simply copy a
fi le from an OS X installation. The default syslog.conf looks something like Listing 3-4:

LISTING 3-4: A default /etc/syslog.conf, from an OS X system

*.notice;authpriv,remoteauth,ftp,install,internal.none /var/log/system.log
kern.* /var/log/kernel.log

Send messages normally sent to the console also to the serial port.
To stop messages from being sent out the serial port, comment out this line.
#*.err;kern.*;auth.notice;authpriv,remoteauth.none;mail.crit /dev/tty.serial

The authpriv log file should be restricted access; these
messages shouldn't go to terminals or publically-readable
files.
auth.info;authpriv.*;remoteauth.crit /var/log/secure.log

lpr.info /var/log/lpr.log
mail.* /var/log/mail.log
ftp.* /var/log/ftp.log
install.* /var/log/install.log
install.* @127.0.0.1:32376
local0.* /var/log/appfirewall.log
local1.* /var/log/ipfw.log

*.emerg *

2. Enable the –bsd_out switch for syslogd. The syslogd process is started both in iOS and
OS X by launchd(8). To change its startup parameters, you must modify its property list
fi le. This fi le is aptly named com.apple.syslogd.plist, and you can fi nd it in the standard
location for all launch daemons: /System/Library/LaunchDaemons.

The fi le, however, like all plists on iOS, is in binary form. Copy the fi le to /tmp and use
plutil –convert xml1 to change it to the more readable XML form. After it is in XML,
just edit it so that the ProgramArguments key contains –bsd_out 1. Because the key
expects an array, the arguments have to be written separately, as follows:

<key>ProgramArguments</key>
 <array>
 <string>/usr/sbin/syslogd</string>

<string>-bsd_out</string>
<string>1</string>

 </array>

After this is done, convert the fi le back to the binary format (plutil –convert binary1
should do the trick), and copy it back to /System/Library/LaunchDaemons.

c03.indd 71c03.indd 71 10/5/2012 4:13:03 PM10/5/2012 4:13:03 PM

mailto:@127.0.0.1:32376

72 x CHAPTER 3 ON THE SHOULDERS OF GIANTS: OS X AND IOS TECHNOLOGIES

3. Restart launchd, and then syslogd. A kill –HUP 1 will take care of launchd, and — after
you fi nd the process ID of syslogd — a kill –TERM on its PID will cause launchd to restart it,
this time with the –bsd_out 1 argument, as desired. A ps aux will verify that is indeed the
case, as will the log fi les in /var/log.

Apple Events and AppleScript
One of OS X’s oft-overlooked, though truly powerful features, lies in its scripting capabilities.
AppleScript has its origins traced back to OS 7(!) and a language called HyperCard. It has since
evolved considerably, and become the all-powerful mechanism behind the osascript(1) command
and the friendly (but neglected) Automator.

In a somewhat similar way to how iPhone’s SIRI recognizes English patterns, AppleScript allows a
semi-natural language interface to scriptable applications. The “semi” is because commands must
follow a given grammar. If the grammar is adhered to, however, it allows for a large range of free-
dom. The OS X built-in applications can be almost fully automated. For those wary of scripts, the
Automator provides a feature-oriented drag-and-drop GUI, as shown in Figure 3-1. Note the rich
“Library” composed of actions and defi nitions in /System/Library/Automator.

FIGURE 3-1: Automator and its built-in templates.

c03.indd 72c03.indd 72 10/5/2012 4:13:03 PM10/5/2012 4:13:03 PM

OS X- and iOS-Specifi c Technologies x 73

The mechanism allowing AppleScript’s magic is called AppleEvents. AppleScript can be extended
to remote hosts, either via the (now obsolete) AppleTalk protocol, or over TCP/IP. In the latter case,
the protocol is known as “eppc,” and is a proprietary, undocumented protocol that uses TCP port
3031. The remote functionality is only enabled if Remote Apple Events are enabled from the Sharing
applet of System Preferences. This tells launchd(8) to listen on the eppc port, and — when requests
are received — start the AppleEvents server, AEServer (found in the Support/ directory of the
AE.framework, which is internal to CoreServices). launchd(8) is responsible for starting many on-
demand services from their respective plist fi les in /System/Library/LaunchDaemons. AEServer’s
is com.apple.eppc.plist.

Though covering it is far beyond the scope of this book, AppleScript is a great mechanism for
automating tasks. Outside Apple’s own reference, two books devoted to the topic can be found
elsewhere.[4,5] The simple experiment described next, however, shows you the fl urry of events that
occurs behind the scenes when you run AppleScript or Automator.

Experiment: Viewing Apple Events
You can easily see what goes on in the Apple Events plane via two simple environment variables —
AEDebugSends and AEDebugReceives. Then, using osascript (or, in some cases, Automator), will
generate plenty of output. In Output 3-5, note the debug info only pertains to events sent or received
by the shell and its children, not events occurring elsewhere in the system.

OUTPUT 3-5: Output of AppleEvents driving Safari application launch

morpheus@ergo(/)$ export AEDebugSends=1 AEDebugReceives=1
morpheus@ergo(/)$ osascript -e 'tell app "Safari" to activate'
{ 1 } 'aevt': ascr/gdte (i386){
 return id: -16316 (0xffffc044)
 transaction id: 0 (0x0)
 interaction level: 64 (0x40)
 reply required: 1 (0x1)
 remote: 0 (0x0)
 for recording: 0 (0x0)
 reply port: 0 (0x0)
 target:
 { 2 } 'psn ': 8 bytes {
 { 0x0, 0x5af5af } (Safari)
 }
 fEventSourcePSN: { 0x1,0xc044 } ()
 optional attributes:
 < empty record >
 event data:
 { 1 } 'aevt': - 1 items {
 key '----' -
 { 1 } 'long': 4 bytes {
 0 (0x0)
 }
 }
}

continues

c03.indd 73c03.indd 73 10/5/2012 4:13:04 PM10/5/2012 4:13:04 PM

74 x CHAPTER 3 ON THE SHOULDERS OF GIANTS: OS X AND IOS TECHNOLOGIES

{ 1 } 'aevt': aevt/ansr (****){
 return id: -16316 (0xffffc044)
 transaction id: 0 (0x0)
 interaction level: 112 (0x70)
 reply required: 0 (0x0)
 remote: 0 (0x0)
 for recording: 0 (0x0)
 reply port: 0 (0x0)
 target:
 { 1 } 'psn ': 8 bytes {
 { 0x1, 0xc044 } (<process { 1, 49220 } not found>
)
 }
 fEventSourcePSN: { 0x0,0x5af5af } (Safari)
 optional attributes:
 < empty record >
 event data:
 { 1 } 'aevt': - 1 items {
 key '----' -
 { 1 } 'aete': 9952 bytes {
 000: 0100 0000 0000 0500 0a54 7970 6520 4e61 -Type Na
 001: 6d65 731a 4f74 6865 7220 636c 6173 7365 mes.Other classe
 ...: // etc, etc, etc…

FSEvents
All modern operating systems offer their developers APIs for fi le system notifi cation. These enable
quick and easy response by user programs for additions, modifi cations, and deletions of fi les. Thus,
Windows has its MJ_DIRECTORY_CONTROL, Linux has inotify. Mac OS X and iOS (as of version
5.0) both offer FSEvents.

FSEvents is conceptually somewhat similar to Linux’s inotify — in both, a process (or thread)
obtains a fi le descriptor, and attempts to read(2) from it. The system call blocks until some
event occurs — at which time the received buffer contains the event details by which the pro-
gram can tell what happened, and then act accordingly (for example, display a new icon in the
fi le browser).

FSEvents is, however, a tad more complicated (and, some would say, more elegant) than inotify. In
it, the process proceeds as follows:

 ‰ The process (or thread) requests to get a handle to the FSEvents mechanism. This is /dev/
fsevents, a pseudo-device.

 ‰ The requestor then issues a special ioctl(2), FSEVENTS_CLONE. This ioctl enables
the specifi c fi ltering of events so that only events of interest — specifi c operations on
particular fi les — are delivered. Table 3-7 lists the types that are currently supported.
Supporting these events is possible because FSEvents is plugged into the kernel’s fi le
system-handling logic (VFS, the Virtual File system Switch — see Chapter 15 for more on
that topic). Each and every supported event will add a pending notifi cation to the cloned
fi le descriptor.

OUTPUT 3-5 (continued)

c03.indd 74c03.indd 74 10/5/2012 4:13:04 PM10/5/2012 4:13:04 PM

OS X- and iOS-Specifi c Technologies x 75

TABLE 3-7: FSEvent Types

FSEVENT CONSTANT INDICATES

FSE_CREATE_FILE File creation.

FSE_DELETE File/directory has been removed.

FSE_STAT_CHANGED stat(2) of fi le or directory has been changed.

FSE_RENAME File/directory has been renamed.

FSE_CONTENT_MODIFIED File has been modifi ed.

FSE_EXCHANGE The exchangedata(2) system call.

FSE_FINDER_INFO_CHANGED File fi nder information attributes have changed.

FSE_CREATE_DIR A new directory has been created.

FSE_CHOWN File/directory ownership change.

FSE_XATTR_MODIFIED File/directory extended attributes have been modifi ed.

FSE_XATTR_REMOVED File/directory extended attributes have been removed.

 ‰ Using ioctl(2), the watcher can modify the exact event details requested in the notifi cation.
The control codes defi ned include FSEVENTS_WANT_COMPACT_EVENTS (to get less informa-
tion), FSEVENTS_WANT_EXTENDED_INFO (to get even more information), and NEW_FSEVENTS_
DEVICE_FILTER (to fi lter on devices the watcher is not interested in watching).

 ‰ The requestor (also called the “watcher”) then enters a read(2) loop. Each time the sys-
tem call returns, it populates the user-provided buffer with an array of event records. The
read can be tricky, because a single operation might return multiple records of variable size.
If events have been dropped (due to kernel buffers being exceeded), a special event (FSE_
EVENTS_DROPPED) will be added to the event records.

If you check Apple’s documentation, the manual pages, or the include fi les, your search will come
out quite empty handed. <sys/fsevents.h> did make an early cameo appearance when FSEvents
was introduced, but has since been thinned and deprecated (and might disappear in Mountain Lion
altogether). This is because, even though the API remains public, it only has some three offi cial
users:

 ‰ coreservicesd: This is an Apple internal daemon supporting aspects of Core Services, such
as launch services and others.

 ‰ mds: The Spotlight server. Spotlight is a “heavy” user of FSEvents, relying on notifi cations to
fi nd and index new fi les.

 ‰ fseventsd: A generic user space daemon that is buried inside the CoreServices framework
(alongside coreservicesd). FSEventsd can be told to not log events by a “no_log” fi le in
the .fseventsd directory, which is created on the root of every volume.

Both Objective-C and C applications can use the CoreServices Framework (Carbon) APIs of
FSEventStreamCreate and friends. This framework is a thin layer on top of the actual mechanism,

c03.indd 75c03.indd 75 10/5/2012 4:13:04 PM10/5/2012 4:13:04 PM

76 x CHAPTER 3 ON THE SHOULDERS OF GIANTS: OS X AND IOS TECHNOLOGIES

which allows integration of the “real” API with the RunLoop model, events, and callbacks. In essence,
this involves converting the blocking, synchronous model to an asynchronous, event-driven one. Apple
documents this well.[6] The rest of this section, therefore, concentrates on the lower-level APIs.

Experiment: A File System Event Monitor
Listing 3-5 shows a barebones FSEvents client that will listen on a particular path (given as an argu-
ment) and display events occurring on the path. Though functionally similar to fs_usage(1), the
latter does not use FSEvents (it uses the little-documented kdebug API, described in Chapter 5,
“Process Tracing and Debugging”).

LISTING 3-5: A bare bones FSEvents-based fi le monitor

#include <stdio.h>
#include <fcntl.h>
#include <stdlib.h>
#include <sys/ioctl.h> // for _IOW, a macro required by FSEVENTS_CLONE
#include <sys/types.h> // for uint32_t and friends, on which fsevents.h relies
#include <sys/fsevents.h>

// The struct definitions are taken from bsd/vfs/vfs_events.c
// since they are no long public in <sys/fsevents.h>

#pragma pack(1)
typedef struct kfs_event_a {
 uint16_t type;
 uint16_t refcount;
 pid_t pid;
} kfs_event_a;

typedef struct kfs_event_arg {
 uint16_t type;
 uint16_t pathlen;
 char data[0];
} kfs_event_arg;

#pragma pack()

int print_event (void *buf, int off)
{
 // Simple function to print event – currently a simple printf of "event!".
 // The reader is encouraged to improve this, as an exercise.
 // This book's website has a much better (and longer) implementation
 printf("Event!\n");
 return (off);

}

void main (int argc, char **argv)
{

 int fsed, cloned_fsed;
 int i;

c03.indd 76c03.indd 76 10/5/2012 4:13:05 PM10/5/2012 4:13:05 PM

OS X- and iOS-Specifi c Technologies x 77

 int rc;
 fsevent_clone_args clone_args;
 char buf[BUFSIZE];

 fsed = open ("/dev/fsevents", O_RDONLY);

 int8_t events[FSE_MAX_EVENTS];

 if (fsed < 0)
 {
 perror ("open"); exit(1);
 }

 // Prepare event mask list. In our simple example, we want everything
 // (i.e. all events, so we say "FSE_REPORT" all). Otherwise, we
 // would have to specifically toggle FSE_IGNORE for each:
 //
 // e.g.
 // events[FSE_XATTR_MODIFIED] = FSE_IGNORE;
 // events[FSE_XATTR_REMOVED] = FSE_IGNORE;
 // etc..

 for (i = 0; i < FSE_MAX_EVENTS; i++)
 {
 events[i] = FSE_REPORT;
 }

 memset(&clone_args, '\0', sizeof(clone_args));
 clone_args.fd = &cloned_fsed; // This is the descriptor we get back
 clone_args.event_queue_depth = 10;
 clone_args.event_list = events;
 clone_args.num_events = FSE_MAX_EVENTS;

 // Request our own fsevents handle, cloned

 rc = ioctl (fsed, FSEVENTS_CLONE, &clone_args);

 if (rc < 0) { perror ("ioctl"); exit(2);}
 printf ("So far, so good!\n");
 close (fsed);

 while ((rc = read (cloned_fsed, buf, BUFSIZE)) > 0)
 {

// rc returns the count of bytes for one or more events:
 int offInBuf = 0;

 while (offInBuf < rc) {

 struct kfs_event_a *fse = (struct kfs_event_a *)(buf + offInBuf);
 struct kfs_event_arg *fse_arg;

 struct fse_info *fse_inf;

 if (offInBuf) { printf ("Next event: %d\n", offInBuf);};
continues

c03.indd 77c03.indd 77 10/5/2012 4:13:05 PM10/5/2012 4:13:05 PM

78 x CHAPTER 3 ON THE SHOULDERS OF GIANTS: OS X AND IOS TECHNOLOGIES

 offInBuf += print_event(buf,offInBuf); // defined elsewhere

 } // end while offInBuf..
 if (rc != offInBuf)
 { fprintf (stderr, "***Warning: Some events may be lost\n"); }

 } // end while rc = ..

} // end main

If you compile this example on either OS X or iOS 5 and, in another terminal, make some fi le modi-
fi cations (for example, by creating a temporary fi le), you should see printouts of fi le system event
occurrences. In fact, even if you don’t do anything, the system periodically creates and deletes fi les,
and you will be able to receive notifi cations.

Note this fairly rudimentary example can be improved on in many ways, not the least of which is dis-
play event details. Singh’s book has an “fslogger” application (which no longer compiles on Snow Leop-
ard due to missing dependencies). One nifty GUI-based app is FernLightning’s “fseventer,” [7] which is
conceptually very similar to this example, but whose interface is far richer (yet has not been updated in
recent years). The book’s companion website offers a tool, fi lemon, which improves this example and
can prove quite useful, especially on iOS 5. Output 3-6 shows a sample output of this tool.

OUTPUT 3-6: Output of an fsevents-based fi le monitoring tool

File /private/tmp/xxxxx has been modified
 PID: 174 (/tmp/a)
 INODE: 7219206 DEV 40007 UID 501 (morpheus) GID 501
File /Users/morpheus/Library/PubSub/Database/Database.sqlite3-journal has been created
 PID: 43397 (mysqld)
 INODE: 7219232 DEV 40007 UID 501 (morpheus) GID 501
File /Users/morpheus/Library/PubSub/Database/Database.sqlite3-journal has been modified
 PID: 43397 (mysqld)
 INODE: 7219232 DEV 40007 UID 501 (morpheus) GID 501
File /Users/morpheus/Library/PubSub/Database/Database.sqlite3-journal has been deleted
Type: 1 (Deleted) refcount 0 PID: 43397
 PID: 43397 (mysqld)
 INODE: 7219232 DEV 40007 UID 501 (morpheus) GID 501
...

Notifi cations
OS X provides a systemwide notifi cation mechanism. This is a form of distributed IPC, by means of
which processes can broadcast or listen on events. The heart of this mechanism is the notifyd(8)
daemon, which is started at boot time: this is the Darwin notifi cation server. An additional daemon,
distnoted(8), functions as the distributed notifi cation server. Applications may use the notify(3)
API to pass messages to and from the daemons. The messages are for given names, and Apple rec-
ommends the use of reverse DNS namespaces here, as well (for example, com.myCompany.myNoti-
fi cation) to avoid any collisions.

LISTING 3-5 (continued)

c03.indd 78c03.indd 78 10/5/2012 4:13:05 PM10/5/2012 4:13:05 PM

OS X and iOS Security Mechanisms x 79

The API is very versatile and allows requesting notifi cations by one of several methods. The well-
documented <notify.h> lists functions to enable the notifi cations over UNIX signals, Mach ports,
and fi le descriptors. Clients may also manually suspend or resume notifi cations. The notifyd(8)
handles most notifi cations, by default using Mach messages and registering the Mach port of com.
apple.system.notification_center.

A command line utility, notifyutil(1), is available for debugging. Using this utility, you can wait
for (-w) and post (-p) notifi cations on arbitrary keys.

An interesting feature of notifyd(8) is that it is one of the scant few daemons to use Apple’s fi le-
port API. This enables fi le descriptors to be passed over Mach messages.

Additional APIs of interest
Additional Apple-specifi c APIs worth noting, but described elsewhere in this book include:

 ‰ Grand Central Dispatch (Chapter 4): A system framework for parallelization using work
queue extensions built on top of pthread APIs.

 ‰ The Launch Daemon (Chapter 7): Fusing together many of UN*X system daemons (such as
init, inetd, at, crond and others), along with the Mach bootstrap server.

 ‰ XPC (Chapter 7): A framework for advanced IPC, enabling privilege separation between
processes

 ‰ kdebug (Chapter 5): A little-known yet largely-useful facility for kernel-level tracing of sys-
tem calls and Mach traps.

 ‰ System sockets (Chapter 17): Sockets in the PF_SYSTEM namespace, which allow communica-
tion with kernel mode components

 ‰ Mach APIs (Chapters 9, 10, and 11): Direct interfaces to the Mach core of XNU, which sup-
ply functionality matching the higher level BSD/POSIX interfaces, but in some cases well
exceeding them.

 ‰ The IOKit APIs (Chapter 19): APIs to communicate with device drivers, providing a plethora of
diagnostics information as well as powerful capabilities for controlling drivers from user mode.

OS X AND IOS SECURITY MECHANISMS

Viruses and malware are rare on OS X, which is something Apple has kept boasting for many years as
an advantage for Mac, in their commercials of “Mac versus PC.” This, however, is largely due to the
Windows monoculture. Put yourself in the role of Malware developer, concocting your scheme for the
next devious bot. Would you invest time and effort in attacking over 90% of the world, or under 5%?

Indeed, OS X (and, to an extent, Linux) remain healthy, in part, simply because they do not attract much
attention from malware “providers” (another reason is that UN*X has always adhered to the principle
of least privilege, in this case not allowing the user root access by default). This, however, is changing, as
with OS X’s slow but steady increase in market share, so increases its allure for malware. The latest Mac
virus, “Flashback” (so called because it is a Trojan masquerading as an Adobe Flash update) infected
some 600,000 users in the United States alone. Certain industry experts were quick to pillory Apple for
its hubris, chiding their security mechanisms as being woefully ineffi cient and backdated.

c03.indd 79c03.indd 79 10/5/2012 4:13:05 PM10/5/2012 4:13:05 PM

80 x CHAPTER 3 ON THE SHOULDERS OF GIANTS: OS X AND IOS TECHNOLOGIES

In actuality, however, Apple’s application security is light years (if not parsecs) ahead of its peers.
Windows’ User Account Control (UAC) has been long present in OS X. iOS’s hardening makes
Android seem riddled in comparison. Nearly all so called “viruses” which do exist in Mac are actu-
ally Trojans — which rely on the cooperation (and often utter gullibility) of the unwitting user.
Apple is well aware of that, and is determined to combat malware. The arsenal with which to do
that has been around since Leopard, and Apple is investing ongoing efforts to upgrade it in OS X
and, even more so in iOS.

Code Signing
Before software can be secured, its origin must be authenticated. If an app is downloaded from
some random site on the Internet, there is a signifi cant risk it is actually malware. The risk is greatly
mitigated, however, if the software’s origin can be verifi ably determined, and it can further be
assured that it has not been modifi ed in transit.

Code signing provides the mechanism to do just that. Using the same X.509v3 certifi cates that SSL
uses to establish the identity of websites (by signing their public key with the private key of the issuer),
Apple encourages developers to sign their applications and authenticate their identity. Since the crux
of a digital signature is that the signer’s public key must be a priori known to the verifi er, Apple
embeds its certifi cates into both OS X and iOS’s keychains (much like Microsoft does in Windows),
and is effectively the only root authority. You can easily verify this using the security(1) utility,
which (among its many other functions) can dump the system keychains, as shown in Output 3-7:

OUTPUT 3-7: Using security(1) to display Apple’s built-in certifi cates on OS X

morpheus@Minion (~)$ security –i # Interactive mode
security> list-keychains
 "/Users/morpheus/Library/Keychains/login.keychain" # User's passwords, etc
 "/Library/Keychains/System.keychain" # Wi-Fi password,s and certificates

Non-Interactive mode

morpheus@Minion (~)$ security dump-keychain /Library/Keychains/System.keychain |
grep labl # Show only labels

 "labl"<blob>="com.apple.systemdefault"
 "labl"<blob>="com.apple.kerberos.kdc"
 "labl"<blob>="Apple Code Signing Certification Authority"
 "labl"<blob>="Software Signing"
 "labl"<blob>="Apple Worldwide Developer Relations Certification Authority"

Apple has developed a special language to defi ne code signing requirements, which may be displayed
with the csreq(1) command. Apple also provides the codesign(1) command to allow develop-
ers to sign their apps (as well as verify/display existing signatures), but codesign(1) won’t sign
anything without a valid, trusted certifi cate, which developers can only obtain by registering with
Apple’s Developer Program. Apple’s Code Signing Guide[8] covers the code signing process in depth,
with Technical Note 2250[9] discussing iOS.

Whereas in OS X code signing is optional, in iOS it is very much mandatory. If, by some miracle,
an unsigned application makes its way to the fi le system, it will be killed by the kernel upon any
attempted execution. This is what makes jailbreakers’ life so hard: The system simply refuses to run

c03.indd 80c03.indd 80 10/5/2012 4:13:06 PM10/5/2012 4:13:06 PM

OS X and iOS Security Mechanisms x 81

unsigned code, and so the only way in is by exploiting vulnerabilities in existing, signed applica-
tions (and later the kernel itself). Jailbreakers must therefore seek faults in iOS’s system apps and
libraries (e.g. MobileSafari, Racoon, and others). Alternatively, they may seek faults in the code-
signing mechanism itself, as was done by renowned security researcher Charlie Miller in iOS 5.0.[10]

Disclosing this to Apple, however, proved a Pyrrhic victory. Apple quickly patched the vulnerability
in 5.0.1, and another future jailbreak door slammed shut forever. Mr. Miller himself was controver-
sially banned from the iOS Developer Program.

Code-signed applications may still be malicious. Any applications that violate the terms of service,
however, would quickly lead to their developer becoming a persona non grata at Apple, banned
from the Mac/iOS App Stores (q.v. Mr. Miller). Since registering with Apple involves disclosing
personal details, these malicious developers could also be the target of a lawsuit. This is why you
won’t fi nd any apps in iOS’s App Store attempting to spawn /bin/bash or mimic its functionality.
Nobody wants to get on Apple’s bad side.

Compartmentalization (Sandboxing)
Originally considered a vanguard, nice-to-have feature, compartmentalization is becoming an inte-
gral part of the Apple landscape. The idea is a simple, yet principal tenet of application security:
Untrusted applications must run in a compartment, effectively a quarantined environment wherein
all operations are subject to restriction. Formerly known in Leopard as seatbelt, the mechanism has
since been renamed sandbox, and has been greatly improved in Lion, touted as one of its stronger
suits. A thorough discussion of the sandbox mechanism (as it was implemented in Snow Leopard)
can be found in Dionysus Blazakis’s Black Hat DC 2011 presentation[11], though the sandbox has
undergone signifi cant improvements since.

iOS — the Sandbox as a jail
In iOS, the sandbox has been integrated tightly since inception, and has been enhanced further to
create the “jail” which the “jailbreakers” struggle so hard to break. The limitations in an App’s
“jail” include, but are not limited to:

 ‰ Inability to break out of the app’s directory. The app effectively sees its own directory (/var/
mobile/Applications/<app-GUID>) as the root, similar to the chroot(2) system call. As a
corollary, the app has no knowledge of any other installed apps, and cannot access system fi les.

 ‰ Inability to access any other process on the system, even if that process is owned by the same
UID. The app effectively sees itself as the only process executing on the system.

 ‰ Inability to directly use any of the hardware devices (camera, GPS, and others) without going
through Apple’s Frameworks (which, in turn, can impose limitations, such as the familiar
user prompts).

 ‰ Inability to dynamically generate code. The low-level implementations of the mmap(2) and
mprotect(2) system calls (Mach’s vm_map_enter and vm_map_protect, respectively, as
discussed in Chapter 13) are intentionally modifi ed to circumvent any attempts to make writ-
able memory pages also executable. This is discussed in Chapter 11.

 ‰ Inability to perform any operations but a subset of the ones allowed for the user mobile.
Root permissions for an app (aside for Apple’s own) are unheard of.

c03.indd 81c03.indd 81 10/5/2012 4:13:06 PM10/5/2012 4:13:06 PM

82 x CHAPTER 3 ON THE SHOULDERS OF GIANTS: OS X AND IOS TECHNOLOGIES

Entitlements (discussed later) can release some well-behaving apps from solitary confi nement, and
some of Apple’s own applications do possess root privileges.

Voluntary Imprisonment
Execution in a sandbox is still voluntary (at least, in OS X). A process must willingly call sandbox_
init(3) to enter a sandbox, with one of the predefi ned profi les shown in Table 3-8. (This, however,
can also be accomplished by a thin wrapper, which is exactly what the command line sandbox-
exec(1) is used for, along with the –n switch and a profi le name).

TABLE 3-8: Predefi ned Sandbox Profi les

KSBXPROFILE CONSTANT PROFILE NAME

(FOR sandbox-exec –n)

PROHIBITS

NoInternet no-internet AF_INET/AF_INET6 sockets

NoNetwork no-network socket(2) call

NoWrite no-write File system write operations

NoWriteExceptTemporary no-write-except-

temporary
File system write operations except tem-

porary directories

PureComputation pure-computation Most system calls

The sandbox_init(3) function in turn, calls the mac_execve system call (#380), and the profi le
corresponds to a MAC label, as discussed earlier in this chapter. The profi le imposes a set of pre-
defi ned restrictions on the process, and any attempt to bypass these restrictions results in an error
at the system-call level (usually a return code of –EPERM). The seatbelt may well have been renamed
to “quicksand,” instead, because once a sandbox is entered, there is no way out. The benefi t of a
tight sandbox is that a user can run an untrusted application in a sandbox with no fear of hidden
malware succeeding in doing anything insidious (or anything at all, really), outside the confi nes of
the defi ned profi le. The predefi ned profi les serve only as a point of departure, and profi les can be
created on a per-application basis.

Apple has recently announced a requirement for all Mac Store apps to be sandboxed, so the “vol-
untary” nature of sandboxing will soon become “mandatory,” by the time this book goes to print.
Because it still requires a library call in the sandboxed program, averting the sandbox remains a trivial
manner — by either hooking sandbox_init(3) prior to executing the process[12] or not calling it at all.
Neither or these are really a weakness, however. From Apple’s perspective, the user likely has no incen-
tive to do the former, because the sandbox only serves to enhance his or her security. The developer
might very well be tempted to do the latter, yet Apple’s review process will likely ensure that all
submitted apps willingly accept the shackles in return for a much-coveted spot in the Mac store.

Controlling the Sandbox
In addition to the built-in profi les, it is possible to specify custom profi les in .sb fi les. These fi les are
written in the sandbox’s Scheme-like dialect. The fi les specify which actions to be allowed or denied, and
are compiled at load-time by libSandbox.dylib, which contains an embedded TinySCHEME library.

c03.indd 82c03.indd 82 10/5/2012 4:13:06 PM10/5/2012 4:13:06 PM

OS X and iOS Security Mechanisms x 83

You can fi nd plenty of examples in /usr/share/sandbox and /System/Library/Sandbox/Profiles
(or by searching for *.sb fi les). A full explanation of the syntax is beyond the scope of this book
Listing 3-6, however, serves to demonstrate the key aspects of the syntax by annotating a sample profi le.

LISTING 3-6: A sample custom sandbox profi le, annotated

(version 1)
(deny default) ; deny by default – least privilege
(import "system.sb") ; include another profile as a point of departure

(allow file-read*) ; Allow all file read operations
(allow network-outbound) ; Allow outgoing network connections
(allow sysctl-read)
(allow system-fsctl)
(allow distributed-notification-post)

(allow appleevent-send (appleevent-destination "com.apple.systempreferences"))

(allow ipc-posix-shm system-audit system-sched mach-task-name process-fork process-exec)

(allow iokit-open ; Allow the following I/O Kit calls
 (iokit-connection "IOAccelerator")
 (iokit-user-client-class "RootDomainUserClient")
 (iokit-user-client-class "IOAccelerationUserClient")
 (iokit-user-client-class "IOHIDParamUserClient")
 (iokit-user-client-class "IOFramebufferSharedUserClient")
 (iokit-user-client-class "AppleGraphicsControlClient")
 (iokit-user-client-class "AGPMClient"))
)

allow file-write* ; Allow write operations, but only to the following path:
 (subpath "/private/tmp")
 (subpath (param "_USER_TEMP"))
)

(allow mach-lookup ; Allow access to the following Mach services
 (global-name "com.apple.CoreServices.coreservicesd")
)

If a trace directive is used, the user-mode daemon sandboxd(8)will generate rules, allowing the
operations requested by the sandboxed application. A tool called sandbox-simplify(1) may then
be used in order to coalesce rules, and simplify the generated profi le.

Entitlements: Making the Sandbox Tighter Still
The sandbox mechanism is undoubtedly a strong one, and far ahead of similar mechanisms in other
operating systems. It is not, however, infallible. The “black list” approach of blocking known danger-
ous operations is only as effective as the list is restrictive. As an example, consider that in November
2011 researchers from Core Labs demonstrated that, while Lion’s kSBXProfileNoNetwork indeed
restricts network access, it does not restrict AppleEvents.[13] What follows is that a malicious app can
trigger AppleScript and connect to the network via a non-sandboxed proxy process.

c03.indd 83c03.indd 83 10/5/2012 4:13:06 PM10/5/2012 4:13:06 PM

84 x CHAPTER 3 ON THE SHOULDERS OF GIANTS: OS X AND IOS TECHNOLOGIES

The sandbox, therefore, has been revamped in Lion, and will likely be improved still in Mountain
Lion, where it has been rebranded as “GateKeeper” and is a combination of an already-existing
mechanism: HFS+’s quarantine, with a “white list” approach (that is, disallowing all but that which
is known to be safe) that aims to deprecate the “black list” of the current sandboxing mechanism.
Specifi cally, applications downloaded will have the “quarantine” extended attribute set, which is
responsible for the familiar “…is an application downloaded from the Internet” warning box, as
before. This time, though, the application’s code signature will be checked for the publisher’s iden-
tity as well as any potential tampering and known reported malware.

Containers in Lion
Lion introduces a new command line, asctl(1), which enables fi ner tuning of the sandbox mecha-
nism. This utility enables you to launch applications and trace their sandbox activity, building a
profi le according to the application requirements. It also enables to establish a “container” for an
application, especially those from the Mac Store. The containers are per-application folders stored in
the Library/Containers directory. This is shown in the next experiment.

It is more than likely that Mac Store applications will, sooner or later, only be allowed to execute
according to specifi c entitlements, as is already the case in iOS. Entitlements are very similar in con-
cept to the declarative permission mechanism used in .NET and Java (which also forms the basis for
Android’s Dalvik security). The entitlements are really nothing more than property lists. In Lion (as
the following experiment illustrates) the entitlements are part of the container’s plist.

Experiment: Viewing Application Containers in Lion
If you have downloaded an app from the Mac Store, you can see that a container for it has likely
been created in your Library/Containers/ directory. Even if you have not, two apps already thus
contained are Apple’s own Preview and TextEdit, as shown in Output 3-8:

OUTPUT 3-8: Viewing the container of TextEdit, one of Apple’s applications

morpheus@Minion (~)$ asctl container path TextEdit
~/Library/Containers/com.apple.TextEdit
morpheus@Minion (~)$ cd Library/Containers
morpheus@Minion (~/Library/Containers)$ ls
com.apple.Preview com.apple.TextEdit
morpheus@Minion (~/Library/Containers)$ cd com.apple.TextEdit
morpheus@Minion (~/…Edit)$ find .
./Container.plist
./Data
./Data/.CFUserTextEncoding
./Data/Desktop
./Data/Documents
./Data/Downloads
./Data/Library
...
./Data/Library/Preferences
...
./Data/Library/Saved Application State
./Data/Library/Saved Application State

c03.indd 84c03.indd 84 10/5/2012 4:13:07 PM10/5/2012 4:13:07 PM

OS X and iOS Security Mechanisms x 85

./Data/Library/Saved Application State/com.apple.TextEdit.savedState

./Data/Library/Saved Application State/com.apple.TextEdit.savedState/data.data

./Data/Library/Saved Application State/com.apple.TextEdit.savedState/window_1.data

./Data/Library/Saved Application State/com.apple.TextEdit.savedState/windows.plist

./Data/Library/Sounds

./Data/Library/Spelling

./Data/Movies

./Data/Music

./Data/Pictures

The Data/ folder of the container forms a jail for the app, in the same way that iOS apps are lim-
ited to their own directory. If global fi les are necessary for the application to function, it is a simple
matter to create hard or soft links for them. The various preferences fi les, for example, are symbolic
links, and the fi les in Saved Application State/ (which back Lion’s Resume feature for apps) are
hard links to fi les in ~/Library/Saved Application State.

The key fi le in any container is the Container.plist, This is a property list fi le, though in binary
format. Using plutil(1) to convert it to XML will reveal its contents, as shown in Output 3-9:

OUTPUT 3-9: Displaying the container.plist of TextEdit

morpheus@Minion (~/Library/Containers)$ cp com.apple.TextEdit/Container.plist /tmp
morpheus@Minion (~/Library/Containers)$ cd /tmp
morpheus@Minion (/tmp)$ plutil –convert xml1 Container.plist
morpheus@Minion (/tmp)$ more !$
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>Identity</key>
 <array>
 <data>
 +t4MAAAAADAAAAABAAAABgAAAAIAAAASY29tLmFwcGxlLlRleHRFZGl0AAAA
 AAAD
 </data>
 </array>
 <key>SandboxProfileData</key>
 <data>
 AAD5AAwA9wD2APIA9wD3APcA9wDxAPEA8ADkAPEAjgCMAPgAiwDxAPEAfwB/AHsAfwB/
 AH8AfwB/AH8AfwB/AHoAeQD3AHgA9wD3AGsAaQD3APcA9wD4APcA9wD3APcA9wD3APgA
 ... Base64 encoded compiled profile data ...
 AAACAAAALwAAAC8=
 </data>
 <key>SandboxProfileDataValidationInfo</key>
 <dict>
 <key>SandboxProfileDataValidationEntitlementsKey</key>
 <dict>
 <key>com.apple.security.app-protection</key>
 <true/>
 <key>com.apple.security.app-sandbox</key>
 <true/>

continues

c03.indd 85c03.indd 85 10/5/2012 4:13:07 PM10/5/2012 4:13:07 PM

http://www.apple.com/DTDs/PropertyList-1.0.dtd

86 x CHAPTER 3 ON THE SHOULDERS OF GIANTS: OS X AND IOS TECHNOLOGIES

 <key>com.apple.security.documents.user-selected.read-write</key>
 <true/>
 <key>com.apple.security.files.user-selected.read-write</key>
 <true/>
 <key>com.apple.security.print</key>
 <true/>
 </dict>
 <key>SandboxProfileDataValidationParametersKey</key>
 <dict>
 <key>_HOME</key>
 <string>/Users/morpheus</string>
 <key>_USER</key>
 <string>morpheus</string>
 <key>application_bundle</key>
 <string>/Applications/TextEdit.app</string>
 <key>application_bundle_id</key>
 <string>com.apple.TextEdit</string>
 ...
 </dict>
 <key>SandboxProfileDataValidationSnippetDictionariesKey</key>
 <array>
 <dict>
 <key>AppSandboxProfileSnippetModificationDateKey</key>
 <date>2012-02-06T15:50:18Z</date>
 <key>AppSandboxProfileSnippetPathKey</key>
 <string>/System/Library/Sandbox/Profiles/application.sb</string>
 </dict>
 </array>
 <key>SandboxProfileDataValidationVersionKey</key>
 <integer>1</integer>
 </dict>
 <key>Version</key>
 <integer>24</integer>
</dict>
</plist>

The property list shown above has been edited for readability. It contains two key entries:

 ‰ SandboxProfileData: The compiled profi le data. Since the output of the compilation is
binary, the data is encoded as Base64.

 ‰ SandboxProfileDataValidationEntitlementsKey: Specifying a dictionary of entitlements
this application has been granted. Apple currently lists about 30 entitlements, but this list is
only likely to grow as the sandbox containers are adopted by more developers.

Mountain Lion’s version of the asctl(1) command contains a diagnose subcommand, which can
be used to trace the sandbox mechanism. This functionality wraps other diagnostic commands —
/usr/libexec/AppSandBox/container_check.rb (a Ruby script), and codesign(1) with the
--display and --verify arguments. Although Lion does not contain the subcommand, these com-
mands may be invoked directly, as shown in Output 3-10:

OUTPUT 3-9 (continued)

c03.indd 86c03.indd 86 10/5/2012 4:13:07 PM10/5/2012 4:13:07 PM

OS X and iOS Security Mechanisms x 87

OUTPUT 3-10: Using codesign(1) --display directly on TextEdit:

morpheus@Minion (~)$ codesign --display --verbose=99 --entitlements=:- \
/Applications/TextEdit.app
Executable=/Applications/TextEdit.app/Contents/MacOS/TextEdit
Identifier=com.apple.TextEdit
Format=bundle with Mach-O universal (i386 x86_64)
CodeDirectory v=20100 size=987 flags=0x0(none) hashes=41+5 location=embedded
Hash type=sha1 size=20
CDHash=7b9b2669bddfaf01291478baafd93a72c61eee99
Signature size=4064
Authority=Software Signing
Authority=Apple Code Signing Certification Authority
Authority=Apple Root CA
Info.plist entries=30
Sealed Resources rules=11 files=10

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>com.apple.security.app-sandbox</key>
 <true/>
 <key>com.apple.security.files.user-selected.read-write</key>
 <true/>
 <key>com.apple.security.print</key>
 <true/>
 <key>com.apple.security.app-protection</key>
 <true/>
 <key>com.apple.security.documents.user-selected.read-write</key>
 <true/>
</dict>
</plist>

Entitlements in iOS
In iOS, the entitlement plists are embedded directly into the application binaries and digitally signed
by Apple. Listing 3-7 shows a sample entitlement from iOS’s debugserver, which is part of the
SDK’s Developer Disk Image:

LISTING 3-7: A sample entitlements.plist for iOS’s debugserver

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>com.apple.springboard.debugapplications</key>
 <true/>
 <key>get-task-allow</key>
 <true/>
 <key>task_for_pid-allow</key>
 <true/>

continues

c03.indd 87c03.indd 87 10/5/2012 4:13:07 PM10/5/2012 4:13:07 PM

http://www.apple.com/DTDs/PropertyList-1.0.dtd
http://www.apple.com/DTDs/PropertyList-1.0.dtd

88 x CHAPTER 3 ON THE SHOULDERS OF GIANTS: OS X AND IOS TECHNOLOGIES

 <key>run-unsigned-code</key>
 <true/>
</dict>
</plist>

The entitlements shown in the listing are among the most powerful in iOS. The task-related ones allow
low-level access to the Mach task, which is the low-level kernel primitive underlying the BSD processes. As
Chapter 10 shows, obtaining a task port is equivalent to owning the task, from its virtual memory down
to its last descriptor. Another important entitlement is dynamic-codesigning, which enables code gen-
eration on the fl y (and creating rwx memory pages), currently known to be granted only to MobileSafari.

Apple doesn’t document the iOS entitlements (and isn’t likely to do so in the near future, at least those
which pertain to their own system services), but fortunately the embedded plists remain unencrypted
(at least, until the time of this writing). Using cat(1)on key iOS binaries and apps (like MobileMail,
MobileSafari, MobilePhone, and others) will display, towards the end of the output, the entitlements
they use. For example, consider Listing 3-8, which shows the embedded plist in MobileSafari:

LISTING 3-8: using cat(1) to display the embedded entitlement plist in MobileSafari

root@podicum (/)# cat –tv /Applications/MobileSafari.app/MobileSafari | tail -31 | more
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
^I<key>com.apple.coreaudio.allow-amr-decode</key>
^I<true/>
^I<key>com.apple.coremedia.allow-protected-content-playback</key>
^I<true/>
^I<key>com.apple.managedconfiguration.profiled-access</key>
^I<true/>
^I<key>com.apple.springboard.opensensitiveurl</key>
^I<true/>
^I<key>dynamic-codesigning</key> <!-- Required for Safari's Javascript engine !-->
^I<true/>
^I<key>keychain-access-groups</key>
^I<array>
^I^I<string>com.apple.cfnetwork</string>
^I^I<string>com.apple.identities</string>
^I^I<string>com.apple.mobilesafari</string>
^I^I<string>com.apple.certificates</string>
^I</array>
^I<key>platform-application</key>
^I<true/>
^I<key>seatbelt-profiles</key>
^I<array>
^I^I<string>MobileSafari</string> <!-- Safari has its own seatbelt/sandbox profile !-->
^I</array>
^I<key>vm-pressure-level</key>
^I<true/>
</dict>
</plist>

LISTING 3-7 (continued)

c03.indd 88c03.indd 88 10/5/2012 4:13:08 PM10/5/2012 4:13:08 PM

http://www.apple.com/DTDs/PropertyList-1.0.dtd

OS X and iOS Security Mechanisms x 89

iOS developers can only embed entitlements allowed by Apple as part of their developer license.
The allowed entitles are themselves, embedded into the developer’s own certifi cate. Applications
uploaded to the App Store have the entitlements embedded in them, so verifying application security
in this way is a trivial matter for Apple. More than likely, this will be the case going forward for OS
X, though at the time of this writing, this remains an educated guess.

Enforcing the Sandbox
Behind the scenes, XNU puts a lot of effort into maintaining the sandboxed environment. Enforce-
ment in user mode is hardly an option due to the many hooking and interposing methods possible.
The BSD MAC layer (described earlier) is the mechanism by which both sandbox and entitlements
work. If a policy applies for the specifi c process, it is the responsibility of the MAC layer to call-
out to any one of the policy modules (i.e. specialized kernel extensions). The main kernel extension
responsible for the sandbox is sandbox.kext, common to both OS X and iOS. A second kernel
extension unique to iOS, AppleMobileFileIntegrity (affectionately known as AMFI), enforces
entitlements and code signing (and is a cause for ceaseless headaches to jailbreakers everywhere).
As noted, the sandbox also has a dedicated daemon, /usr/libexec/sandboxd, which runs in user
mode to provide tracing and helper services to the kernel extension, and is started on demand (as
you can verify if you use sandbox-exec(1) to run a process). In iOS, AMFI also has its own helper
daemon, /usr/libexec/amfid. The OS X architecture is displayed in Figure 3-2.

Sandboxed process

1. Process makes a system call

2. System call contains MAC callouts

3. MAC layer checks for any policy to

apply for this process

4. If there is a policy, the list of

registered policy modules is walked

5. If sandbox.kext registered a callback for

this particular operation, it is invoked

6. sandbox.kext calls on AppleMatch.kext

to perform regular expression matching

7. sandbox.kext may also send Mach

messages to sandboxd, mostly for

tracing purposes

8. sandbox.kext either approves

the request, or denies it (EPERM)

9. Additional policy modules (like iOS’s

AMFI) can be registered, in which case

they are also consulted in turn

10. System call returns to user

sandboxd

User mode

Kernel mode
System calls and Mach traps

Mandatory access control (MAC) layer

sandbox

kext

AppleMatch

kext

Additional policy

modules

FIGURE 3-2: The sandbox architecture

c03.indd 89c03.indd 89 10/5/2012 4:13:08 PM10/5/2012 4:13:08 PM

90 x CHAPTER 3 ON THE SHOULDERS OF GIANTS: OS X AND IOS TECHNOLOGIES

Chapter 14 discusses the MAC layer in depth from the kernel perspective, and elaborates more on
the enforcement of its policies, by both the sandbox and AMFI.

SUMMARY

This chapter gave a programmatic tour of the APIs that are idiosyncratic to Apple. These are spe-
cifi c APIs, either at the library or system-call level, providing the extra edge in OS X and iOS. From
the features adopted from BSD, like sysctl and kqueue, OpenBSM and MAC, through fi le-system
events and notifi cations, to the powerful and unparalleled automation of AppleEvents. This chapter
fi nally discussed the security architecture of OS X and iOS from the user’s perspective, explaining
the importance of code signing, and highlighting the use the BSD MAC layer as the foundation for
the Apple-proprietary technologies of sandboxing and entitlements.

The next chapters delve deeper into the system calls and libraries, and focus on process internals
and using specifi c APIs for debugging.

REFERENCES

[1] “The TrustedBSD MAC Framework: Extensible Kernel Access Control for FreeBSD 5.0,”
http://www.trustedbsd.org/trustedbsd-usenix2003freenix.pdf

[2] Apple Developer. “Sample Code — Reachability,” http://developer.apple.com/
library/ios/#samplecode/Reachability/Introduction/Intro.html

[3] Apple Technical Note 26117. “Mac OS X Server – The System Log,” http://support
.apple.com/kb/TA26117

[4] Sanderson and Rosenthal. Learn AppleScript: The Comprehensive Guide to Scripting and
Automation on Mac OS X (3E), (New York: APress, 2010).

[5] Munro, Mark Conway. AppleScript (Developer Reference), (New York: Wiley, 2010).

[6] Apple Developer. “File System Events Programming Guide,” http://developer.apple
.com/library/mac/#documentation/Darwin/Conceptual/FSEvents_ProgGuide/

[7] http://fernlightning.com/doku.php?id=software%3afseventer%3astart

[8] Apple Developer. “Code Signing Guide,” https://developer.apple.com/library/
mac/#documentation/Security/Conceptual/CodeSigningGuide/

[9] Technical Note 2250. “iOS Code Signing Setup, Process, and Troubleshooting,”
http://developer.apple.com/library/ios/#technotes/tn2250/_index.html

[10] “Charlie Miller Circumvents Code Signing For iOS Apps,” http://apple.slashdot.org/
story/11/11/07/2029219/charlie-miller-circumvents-code-signing-for-ios-apps

[11] Blazakis, Dionysus. “The Apple SandBox,” http://www.semantiscope.com/research/
BHDC2011/

[12] https://github.com/axelexic/SanboxInterposed

[13] Core Labs Security. “CORE-2011-09: Apple OS X Sandbox Predefi ned Profi les Bypass,”
http://corelabs.coresecurity.com/index.php?module=Wiki&action=view&type=

advisory&name=CORE-2011-0919

c03.indd 90c03.indd 90 10/5/2012 4:13:08 PM10/5/2012 4:13:08 PM

http://www.trustedbsd.org/trustedbsd-usenix2003freenix.pdf
http://developer.apple.com/library/ios/#samplecode/Reachability/Introduction/Intro.html
http://support.apple.com/kb/TA26117
http://developer.apple.com/library/mac/#documentation/Darwin/Conceptual/FSEvents_ProgGuide/
http://fernlightning.com/doku.php?id=software%3afseventer%3astart
https://developer.apple.com/library/mac/#documentation/Security/Conceptual/CodeSigningGuide/
http://developer.apple.com/library/ios/#technotes/tn2250/_index.html
http://apple.slashdot.org/story/11/11/07/2029219/charlie-miller-circumvents-code-signing-for-ios-apps
http://www.semantiscope.com/research/BHDC2011/
https://github.com/axelexic/SanboxInterposed
http://corelabs.coresecurity.com/index.php?module=Wiki&action=view&type=advisory&name=CORE-2011-0919
http://developer.apple.com/library/ios/#samplecode/Reachability/Introduction/Intro.html
http://support.apple.com/kb/TA26117
http://developer.apple.com/library/mac/#documentation/Darwin/Conceptual/FSEvents_ProgGuide/
https://developer.apple.com/library/mac/#documentation/Security/Conceptual/CodeSigningGuide/
http://apple.slashdot.org/story/11/11/07/2029219/charlie-miller-circumvents-code-signing-for-ios-apps
http://www.semantiscope.com/research/BHDC2011/
http://corelabs.coresecurity.com/index.php?module=Wiki&action=view&type=advisory&name=CORE-2011-0919

4
Parts of the Process: Mach-O,
Process, and Thread Internals

Operating systems are designed as a platform, on top of which applications may execute.
Each instance of a running application constitutes a process. This chapter discusses the user
mode perspective of processes, beginning with their executable format, through the process of
loading them into memory, and the memory image which results. The chapter concludes with
a discussion of virtual memory from a system-wide perspective, as it pertains to memory
utilization and swapping.

A NOMENCLATURE REFRESHER

Before delving into the internals of how processes are implemented, it might be wise to spend a
few minutes revising the basic terminology of processes and signals, as interpreted in UNIX. If
you are well versed, feel free to skip this section.

Processes and Threads
Much like any other pre-emptive multi-tasking system, UNIX was built around the concept
of a process as an instance of an executing program. Such an instance is uniquely defi ned by a
Process ID (which will hence be referred to as a PID). Even though the same executable may be
started concurrently in multiple instances, each will have a different PID. Processes may fur-
ther belong to process groups. These are primarily used to allow the user to control more than
one process — usually by sending signals (see the following section) to a group, rather than a
specifi c process. A process may join a group by calling setpgrp(2).

A process will also retain its kinship with its parent process — as kept in its Parent Process
Identifi er, or PPID. This is needed because, in UNIX, it is actually the norm for the parent
to outlive its children. A parent can fork (or posix_spawn) children, and actually expects
them to die. UNIX processes, unlike some humans, have a very distinct and clear meaning in

c04.indd 91c04.indd 91 10/1/2012 5:56:45 PM10/1/2012 5:56:45 PM

92 x CHAPTER 4 PARTS OF THE PROCESS: MACH-O, PROCESS, AND THREAD INTERNALS

life — to run, and then return a single integer value, which is collected by their parent process. This
return value is what the process passes to the exit(2) system call (or, alternatively, returns from its
main()).

Modern operating systems no longer treat processes as the basic units of operation, instead work
with threads. A thread is merely a distinct register state, and more than one can exist in a given
process. All threads share the virtual memory space, descriptors and handles. The process abstrac-
tion remains as a container of one or more threads. When we next discuss “processes,” it is impor-
tant to remember that, more often than not, these can be multi-threaded. When a process is single
threaded, the terms can be used interchangeably. When multiple threads exist in the same process,
however, some things — such as execution state — are applicable separately to the individual
threads. Threads are discussed in more detail towards the end of this chapter.

The Process Lifecycle
The full lifecycle of a UNIX process, and therefore that of an OS X one, can be illustrated in the fol-
lowing fi gure. The SXXX constants refer to the ones defi ned in the kernel, and visible in
<sys/proc.h> as shown in Figure 4-1:

Quantum expired
or preemption

scheduled

I/O or resource wait

Signal

exit()

mother wait()s

SRUN
(executing)

SRUN
(queued)

SIDL
(forked)

SSLEEP
(sleeping)

SSTOP
(SIGSTP, TSTP)

Dead
(process has exited)

SZOMB
(In process exit)

FIGURE 4-1: The process lifecycle

A process begins its life in the SIDL state, which represents a momentarily idle process, that has just
been created by forking from its parent. In this state, the process is still defi ned as “initializing,”
and does not respond to any signals or perform any action while its memory layout is set up, and its
required dependencies load. Once all is ready, the process can start executing, and does not return
to SIDL. A process in SIDL is always single threaded, since threads can only be spawned later.

When a process is executing, it in the SRUN state. This state, however, is actually made up of two
distinct states: runnable and running. A process is runnable if it is queued to run, but is not actually
executing, since the CPU is busy with some other process. Only when the CPU’s registers are loaded
with those belong to a process (technically, to one of its threads), is a process truly in the running

c04.indd 92c04.indd 92 10/1/2012 5:56:50 PM10/1/2012 5:56:50 PM

A Nomenclature Refresher x 93

state. Since scheduling is volatile, however, the kernel doesn’t bother to differentiate between the
two distinct states. A running process may also be “kicked out” of the CPU and back to the queue if
its time slice has expired, or if another process of higher priority ousts it.

A process will spend its time in the running/runnable state of SRUN for as long as possible, unless it
waits on a resource. In this context, a “resource” is usually I/O-related (such as a fi le or a device).
Resources also include synchronization objects (such as mutexes or locks). When a process is wait-
ing, it makes no sense to occupy the CPU, or even consider it in the run queue. It is therefore “put to
sleep” (the SSLEEP state). A process will sleep until the resource becomes available, at which point
it will be queued again for execution — usually immediately after the current process, or some-
times even in place of it. A sleeping process can also be woken up by a signal (discussed next in this
chapter).

The main advantage of multithreading is that individual thread states may diverge from one
another. Thus, while one thread may be sleeping, another can be scheduled on the CPU. The threads
will spend their time between the runnable/running and sleeping (or “blocked”) state.

Using a special signal (TSTOP or TOSTOP), it is possible to stop a process. This “freezes” the process
(i.e. simultaneously suspending all of its threads), essentially putting it into a “deep sleep” state. The
only way to resume such a process is with another signal (CONT), which puts the process back into a
runnable state, enabling once more the scheduling of any of its threads.

When a process is done, either by a return from its main(), or by calling exit(2), it is cleared from
memory, and is effectively terminated. Doing so will terminate all of its threads simultaneously.
Before this can be done, however, the process must briefl y spend time in the zombie state.

The Zombie State
Of all process states, the one which is least understood is the zombie state. Despite the undead con-
text, it is a perfectly normal state, and every process usually spends an infi nitesimal amount of time,
just before it can rest in peace.

Recall, that the “meaning of life” for a process is to return a value to its parent. Parent processes
bear no responsibility to rear and care for their children. The only thing that is requested of them,
however, is to wait(2) for them, so their return value is collected. There is an entire family of
wait() calls, consisting of wait(2), waitpid(2), wait3(2), and wait4(2). All expect an integer
pointer amongst their parameters in which the operating system will deliver the dying child’s last
(double or quad) word.

In cases where the child process does outlive the parent, it is “adopted” by its great ancestor, PID
1 (in UNIX and pre-Tiger OS X, init, now reborn as launchd), which is the one process that out-
lives all others, persisting from boot to shutdown. Parents who outlive, yet forsake their children
and move on to other things, will damn the children to be stuck in the quasi-dead state of a zombie.
Zombies are, for all intents and purposes, quite dead. They are the empty shells of processes, which
have released all resources but still cling to their PID and show up on the process list as <defunct>
or with a status of Z. Zombies will rest in peace only if their parent eventually remembers to wait
for them — and collect their return value — or if the parent dies, granting them rest by allowing
them to be adopted, albeit briefl y, by PID 1.

c04.indd 93c04.indd 93 10/1/2012 5:56:51 PM10/1/2012 5:56:51 PM

94 x CHAPTER 4 PARTS OF THE PROCESS: MACH-O, PROCESS, AND THREAD INTERNALS

The code in Listing 4-1 artifi cially creates a zombie. After a while, when its parent exits, the zombie
disappears.

LISTING 4-1: A program to artifi cially create a zombie

#include <stdio.h>
int main (int argc, char **argv)
{
 int rc = fork(); // This returns twice
 int child = 0;
 switch (rc)
 {
 case -1:

/**
 * this only happens if the system is severely low on resources,
 * or the user's process limit (ulimit -u) has been exceeded
 */
 fprintf(stderr, "Unable to fork!\n");
 return (1);
 case 0:
 printf("I am the child! I am born\n");
 child++;
 break;
 default:
 printf ("I am the parent! Going to sleep and now wait()ing\n");
 sleep(60);
 }
 printf ("%s exiting\n", (child?"child":"parent"));
 return(0);
}

OUTPUT 4-1: Output of the sample program from Listing 4-1

Morpheus@Ergo (~)$ cc a.c –o a # compiling the program
cc a.c -o a
Morpheus@Ergo (~)$./a & # running the program in the background
[2] 3620
I am the parent! *Yawn* Going to sleep..
I am the child! I am born!
child exiting

Morpheus@Ergo (~)$ ps a # ps "a" shows the STAT column.
 PID TT STAT TIME COMMAND
 264 s000 Ss 0:00.03 login -pf morpheus
 265 s000 S 0:00.10 -bash
 3611 s000 T 0:00.03 vi a.c
 3620 s000 S 0:00.00 ./a
 3621 s000 Z 0:00.00 (a)
 3623 s000 R+ 0:00.00 ps a 3601 s000 R+ 0:00.00 ps a

c04.indd 94c04.indd 94 10/1/2012 5:56:51 PM10/1/2012 5:56:51 PM

A Nomenclature Refresher x 95

pid_suspend and pid_resume
OS X (and iOS) added two new system calls in Snow Leopard for process control: pid_suspend and
pid_resume. The former “freezes” a process, and the latter “thaws” it. The effect, while similar to
sending the process STOP/CONT signals, is different. First, the process state remains SSLEEP, seem-
ingly a normal “sleep,” though in effect a much deeper one. This is because the underlying suspen-
sion is performed at a lower level (of the Mach task) rather than that of the process. Second, these
calls can be used multiple times, incrementing and decrementing the process suspend count. Thus,
for every call to pid_suspend, there needs to be a matching call to pid_resume. A process with a
non-zero suspend count will remain suspended.

The system calls calls are private to Apple, and their prototypes are not published in header fi les,
save for a mention of the system call numbers in <sys/syscall.h>. These numbers, however, must
not be relied upon, as they have changed between Snow Leopard (wherein they were #430 and #431,
respectively) and Lion/iOS (wherein they are #433 and #434). The previous system call numbers are
now used by the fileport mechanism. The system calls are also largely unused in OS X, but iOS’s
SpringBoard makes good use of them (as some processes are suspended when the user presses the
i-Device’s home button).

iOS further adds a private system call, which does not exist in OS X, called pid_shutdown_sockets
(#435). This system call enables shutting down all of a process’s sockets from outside the process.
The call is used exclusively by SpringBoard, likely when suspending a process.

UNIX Signals
While alive, processes usually mind their own business and execute in a sequential, sometimes
parallelized sequential, manner (the latter, if using threads). They may, however, encounter signals,
which are software interrupts indicating some exception made on their part, or an external event.
OS X, like all UNIX systems, supports the concept of signals — asynchronous notifi cations to a pro-
gram, containing no data (or, some would argue, containing a single bit of data). Signals are sent to
processes by the operating system, indicating the occurrence of some condition, and this condition
usually has its cause in some type of hardware fault or program exception.

There are 31 defi ned signals in OS X (signal 0 is supported, but unused). They are defi ned in
<sys/signal.h>. The numbers are largely the same as one would expect from other UNIX systems.
Table 4-1 summarizes the signals and their default behavior.

TABLE 4-1: UNIX signals in OS X, with scope and default behaviors

SIG ORIGIN MEANING P/T DEFAULT

1 HUP Tty Terminal hangup (for daemons: reload conf). P K

2 INT Tty Generated by terminal driver on stty intr. P K

3 QUIT Tty Generated by terminal driver on stty quit. P K,C

4 ILL HW Illegal instruction. T K,C

5 TRAP HW Debugger trap/assembly ("int 3"). T K,C

(continues)

c04.indd 95c04.indd 95 10/1/2012 5:56:51 PM10/1/2012 5:56:51 PM

96 x CHAPTER 4 PARTS OF THE PROCESS: MACH-O, PROCESS, AND THREAD INTERNALS

SIG ORIGIN MEANING P/T DEFAULT

6 ABRT OS abort() P K,C

7 POLL OS If _POSIX_C_SOURCE — pollable event. P K,C

Else, emulator trap. T K,C

8 FPE HW Floating point exception, or zero divide. T K,C

9 KILL User, OS (rare) The 9mm bullet. Kills, no saving throw. Usually

generated by user (kill -9).

P K

10 BUS HW Bus error. T K,C

11 SEGV HW Segmentation violation/fault — NULL dereference,

or access protection or other memory.

T K,C

12 SYS OS Interrupted system call. T K,C

13 PIPE OS Broken pipe (generated when P on read of a pipe

is terminated).

T K

14 ALRM HW Alarm. P K

15 TERM OS Termination. P K

16 URG OS Urgent condition. P I

17 STOP User Stop (suspend) process. Send by terminal on stty

stop.

P S

18 TSTP Tty Terminal stop (stty tostop, or full screen in bg). P S,T

19 CONT User Resume (inverse of STOP/TSTOP). P I

20 CHLD OS Sent to parent on child’s demise. P I

21 TTIN Tty TTY driver signals pending input. P S,T

22 TTOU Tty TTY driver signals pending output. P S,T

23 IO OS Input/output. P I

24 XCPU OS ulimit –t exceeded. P K

25 XFSZ OS ulimit –f exceeded. P K

26 VTALRM OS Virtual time alarm. P K

27 PROF OS Profi ling alarm. P K

28 WINCH Tty Sent on terminal window resize. P I

29 INFO OS Information. P I

30 USR1 User User-defi ned signal 1. P K

31 USR2 User User-defi ned signal 2. P K

TABLE 4-1 (continued)

c04.indd 96c04.indd 96 10/1/2012 5:56:51 PM10/1/2012 5:56:51 PM

A Nomenclature Refresher x 97

Legend:

Origin — Signal originates from:

 ‰ HW: A hardware exception or fault (for example, MMU trap)

 ‰ OS: Operating system, somewhere in kernel code

 ‰ Tty: Terminal driver

 ‰ User: User, by using kill(1) command (user can also use this command to emulate all other
signals)

Default — actions to take upon a signal, if no handler is registered:

 ‰ C — SA_CORE: Process will dump core, unless otherwise stated.

 ‰ I — SA_IGNORE: Signal ignored, even if no signal handler is set.

 ‰ K — SA_KILL: Process will be terminated unless caught.

 ‰ S — SA_STOP: Process will be stopped unless caught

 ‰ T — SA_TTYSTOP: As SA_STOP, but reserved for TTY.

Signals were traditionally sent to processes, although POSIX does allow sending signals to indi-
vidual threads.

A process can use several system calls to either mask (ignore) or handle any of the signals in Table 4-1,
with the exception of SIGKILL. LibC exposes the legacy signal(3) function, which is built over
these system calls.

Process Basic Security
UNIX has traditionally been a multi-user system, wherein more than one user can run more than
one process concurrently. To provide both security and isolation, each process holds on to two pri-
mary credentials: its creator user identifi er (UID) and primary group identifi er (GID). These are also
known as the real UID and real GID of the process, but are only part of a larger set of credentials,
which also includes any additional group memberships and the effective UID/GID. The latter two
are commonly equal to the real UID, unless invoked by an executable marked setuid (+s, chmod
4xxx) or setgid (+g, 2xxx) on the fi le system.

Unlike Linux, there is no support for the setfsuid/setfsgid system calls in XNU, both of which
set the above IDs selectively, only for fi le system checks — but maintain the real and effective IDs
otherwise. This call was originally introduced to deal with NFS, wherein UIDs and GIDs needed to
be carried across host boundaries, and often mismatched.

Also, unlike Linux, OS X does not support capabilities. Capabilities are a useful mechanism for
applying the principle of least privilege, by breaking down and delegating root privileges to non-root
processes. This alleviates the need for a web server, for example, to run as root just to be able to get a
binding on the privileged port 80. Capabilities made a cameo appearance in POSIX but were removed
(and therefore are not mandated to be supported in OS X), although Linux has eagerly adopted them.

In place of capabilities, OS X and iOS support “entitlements,” which are used in the sandbox compart-
mentalization mechanism. These, along with code signing, provide a powerful mechanism to contain
rogue applications and malware (and, on iOS, any jailbreaking apps) from executing on the system.

c04.indd 97c04.indd 97 10/1/2012 5:56:52 PM10/1/2012 5:56:52 PM

98 x CHAPTER 4 PARTS OF THE PROCESS: MACH-O, PROCESS, AND THREAD INTERNALS

EXECUTABLES

A process is created as a result of loading a specially crafted fi le into memory. This fi le has to
be in a format that is understood by the operating system, which in turn can parse the fi le, set
up the required dependencies (such as libraries), initialize the runtime environment, and begin
execution.

In UNIX, anything can be marked as executable by a simple chmod +x command. This, however,
does not ensure the fi le can actually execute. Rather, it merely tells the kernel to read this fi le into
memory and seek out one of several header signatures by means of which the exact executable
format can be determined. This header signature is often referred to as a “magic,” as it is some
predefi ned, often arbitrarily chosen constant value. When the fi le is read, the “magic” can provide
a hint as to the binary format, which, if supported, results in an appropriate loader function being
invoked. Table 4-2 provides a list of executable formats.

TABLE 4-2: Executable formats, their signatures, and native OSes

EXECUTABLE FORMAT MAGIC USED FOR

PE32/PE32+ MZ Portable executables: The native format in Win-

dows and Intel’s Extensible Firmware Interface

(EFI) binaries. Although OS X does not support this

format, its boot loader does and loads boot.efi.

ELF \x7FELF Executable and Library Format: Native in Linux

and most UNIX fl avors. ELF is not supported

on OS X.

Script #! UNIX interpreters, or script: Used primarily for

shell scripts, but also common for other inter-

preters such as Perl, AWK, PHP, and so on. The

kernel looks for the string following the #!, and

executes it as a command. The rest of the fi le

is passed to that command via standard input

(stdin).

Universal (fat)

binaries

0xcafebabe (Little-Endian)

0xbebafeca (Big-Endian)

Multiple-architecture binaries used exclusively

in OS X.

Mach-O 0xfeedface (32-bit)

0xfeedfacf (64-bit)

OS X native binary format.

Of these various executable formats, OS X currently supports the last three: interpreters, univer-
sal binaries, and Mach-O. Interpreters are really just a special case of binaries, as they are merely
scripts pointing to the “real” binary, which eventually gets executed. This leaves us to discuss two
formats, then — Universal binaries, and Mach-O.

c04.indd 98c04.indd 98 10/1/2012 5:56:52 PM10/1/2012 5:56:52 PM

Universal Binaries x 99

UNIVERSAL BINARIES

With OS X, Apple has touted its rather novel concept of “Universal Binaries.” The idea is to provide
one binary format that would be fully portable and could execute on any architecture. OS X, which
was originally built on the PowerPPC architecture, was ported to the Intel architecture (with Tiger,
v10.4.7). Universal binaries would allow binaries to execute on both PPC and x86 processors.

In practice, however, “Universal” binaries are nothing more than archives of the respective archi-
tectures they support. That is, they contain a fairly simple header, followed by back-to-back copies
of the binary for each supported architecture. Most binaries in Snow Leopard contain only Intel
images but still use the universal format to support both 32- and 64-bit compiled code. A few, how-
ever, still contain a PowerPC image as well. Up to and including Snow Leopard, OS X contained an
optional component, called “Rosetta,” which allowed PowerPC emulation on Intel-based proces-
sors. With Lion, however, support for PowerPC has offi cially been discontinued, and binaries no
longer contain any PPC images.

As the following example in Output 4-2 shows, /bin/ls contains two architectures: the 32-bit Intel
version (i386), and the 64-bit Intel version (x86_64). A few binaries in Snow Leopard — such as
/usr/bin/perl — further contain a PowerPC version (ppc).

OUTPUT 4-2: Examining universal binaries using the fi le(1) command

morpheus@Ergo (/) % file /bin/ls # On snow leopard
/bin/ls: Mach-O universal binary with 2 architectures
/bin/ls (for architecture x86_64): Mach-O 64-bit executable x86_64
/bin/ls (for architecture i386): Mach-O executable i386
morpheus@Ergo (/) % file /usr/bin/perl
/usr/bin/perl: Mach-O universal binary with 3 architectures
/usr/bin/perl (for architecture x86_64): Mach-O 64-bit executable x86_64
/usr/bin/perl (for architecture i386): Mach-O executable i386
/usr/bin/perl (for architecture ppc7400): Mach-O executable ppc

#
Some fat binaries, like gdb(1) from the iPhone SDK, can contain different
architectures, e.g. ARM and intel, side by side
#
morpheus@Ergo (/) cd /Developer/Platforms/iPhoneOS.platform/Developer/usr/libexec/gdb
morpheus@Ergo (.../gdb)$ gdb-arm-apple-darwin
gdb-arm-apple-darwin: Mach-O universal binary with 2 architectures
gdb-arm-apple-darwin (for architecture i386): Mach-O executable i386
gdb-arm-apple-darwin (for architecture armv7): Mach-O executable arm

Containing multiple copies of the same binaries in this way obviously greatly increases the size
of the binaries. Indeed, universal binaries are often quite bloated, which has earned them the less
marketable, but more catchy, alias of “fat” binaries. The universal binary tool is, thus, aptly named
lipo. It can be used to “thin down” the binaries by extracting, removing, or replacing specifi c
architectures. It can also be used to display the fat header details (as you will see in an upcoming
experiment).

This universal binary format is defi ned in <mach-o/fat.h> as is shown in Figure 4-2.

c04.indd 99c04.indd 99 10/1/2012 5:56:52 PM10/1/2012 5:56:52 PM

100 x CHAPTER 4 PARTS OF THE PROCESS: MACH-O, PROCESS, AND THREAD INTERNALS

magic

nfat_arch

cputype

Fixed value (0xCAFEBABE), identifying this as a universal binary

Number of architectures present in this universal binary

fat_header

cpusubtype

offset

align

size

fat_arch

Cpu type from <mach/machine.h>

Machine specifier from <mach/machine.h>

Offset of this architecture inside the universal binary

Size of the inner binary

Alignment–Page boundary (4 K), specified as a power of 2 (i.e. 12)

FIGURE 4-2: Fat header format

While universal binaries may take up a lot of space on disk, their structure enables OS X to auto-
matically pick the most suitable binary for the underlying platform. When a binary is invoked, the
Mach loader fi rst parses the fat header and determines the available architectures — much as the
lipo command demonstrates. It then proceeds to load only the most suitable architecture. Architec-
tures not deemed as relevant, thus, do not take up any memory. In fact, the images are all optimized
to fi t on page boundaries so that the kernel need only load the fi rst page of the binary to read its
header, effectively acting as a table of contents, and then proceed to load the appropriate image.

The system picks the image with the cputype and cpusubtype most closely matching the processor.
(This can be overridden with the arch(1) command.) Specifi cally, matching the binary to the archi-
tecture is handled by functions in <mach-o/arch.h>. Architectures are stored in an NXArchInfo
struct, which holds the CPU type, cpusubtype, and byteordering (as well as a textual descrip-
tion). NXGetLocalArchInfo() is used to obtain the host’s architecture, and NXFindBestFatArch()
returns the best matching architecture (or NULL, if none match). The code in Listing 4-2 demon-
strates some of these APIs.

LISTING 4-2: Handling multiple architectures and universal (fat) binaries

#include <stdio.h>
#include <mach-o/arch.h>

const char *ByteOrder(enum NXByteOrder BO)
{
 switch (BO)
 {
 case NX_LittleEndian: return ("Little-Endian");
 case NX_BigEndian: return ("Big-Endian");
 case NX_UnknownByteOrder: return ("Unknown");
 default: return ("!?!");
 }

}
int main()
{

c04.indd 100c04.indd 100 10/1/2012 5:56:52 PM10/1/2012 5:56:52 PM

Universal Binaries x 101

 const NXArchInfo *local = NXGetLocalArchInfo();
 const NXArchInfo *known = NXGetAllArchInfos();

while (known && known->description)
{
 printf ("Known: %s\t%x/%x\t%s\n", known->description,
 known->cputype, known->cpusubtype,
 ByteOrder(known->byteorder));
 known++;

}
if (local) {
printf ("Local - %s\t%x/%x\t%s\n", local->description,
 local->cputype, local->cpusubtype,
 ByteOrder(local->byteorder));
}

 return(0);

}

Experiment: Displaying Universal Binaries with lipo(1) and arch(1)
Using the lipo(1) command, you can inspect the fat headers of the various binaries, in this exam-
ple, Snow Leopard’s Perl interpreter:

morpheus@Ergo (/) % lipo -detailed_info /usr/bin/perl # Display specific information.
 # Can also use otool -f
Fat header in: /usr/bin/perl
fat_magic 0xcafebabe
nfat_arch 3
architecture x86_64
 cputype CPU_TYPE_X86_64
 cpusubtype CPU_SUBTYPE_X86_64_ALL
 offset 4096
 size 26144
 align 2^12 (4096)
architecture i386
 cputype CPU_TYPE_I386
 cpusubtype CPU_SUBTYPE_I386_ALL
 offset 32768
 size 25856
 align 2^12 (4096)
architecture ppc7400
 cputype CPU_TYPE_POWERPC
 cpusubtype CPU_SUBTYPE_POWERPC_7400
 offset 61440
 size 24560
 align 2^12 (4096)

Using the arch(1) command, you can force a particular architecture to be loaded from the binary:

morpheus@Ergo (/) % arch -ppc /usr/bin/perl # Force perl binary to be loaded
You need the Rosetta software to run perl. The Rosetta installer is in Optional Installs
on your Mac OS X installation disc.

c04.indd 101c04.indd 101 10/1/2012 5:56:52 PM10/1/2012 5:56:52 PM

102 x CHAPTER 4 PARTS OF THE PROCESS: MACH-O, PROCESS, AND THREAD INTERNALS

The Rosetta installer was indeed included in the Optional Installs on the Mac OS X installation disc
up to Snow Leopard, but was fi nally removed in Lion. If you’re trying this on Lion, you won’t see
any PPC binaries — but looking at the iPhone SDK’s gdb will reveal a mixed platform gdb:

morpheus@minion (/)$ cd /Developer/Platforms/iPhoneOS.platform/Developer/usr/libexec/gdb
morpheus@minion (.../gdb)$ lipo -detailed_info gdb-arm-apple-darwin
Fat header in: gdb-arm-apple-darwin
fat_magic 0xcafebabe
nfat_arch 2
architecture i386
 cputype CPU_TYPE_I386
 cpusubtype CPU_SUBTYPE_I386_ALL
 offset 4096
 size 2883872
 align 2^12 (4096)
architecture armv7
 cputype (12)
 cpusubtype cpusubtype (9)
 offset 2891776
 size 2537600
 align 2^12 (4096)

Mach-O Binaries
UN*X has largely standardized on a common, portable binary format called the Executable and
Library Format, or ELF. This format is well documented, has a slew of binutils to maintain and
debug it, and even allows for binary portability between UN*X of the same CPU architecture (say,
Linux and Solaris — and, indeed, Solaris x86 can execute some Linux binaries natively). OS X,
however, maintains its own binary format, the Mach-Object (Mach-O), as another legacy of its
NeXTSTEP origins.[2]

The Mach-O format (explained in Mach-O(5)) and in various Apple documents[3,4] begins with a
fi xed header. This header, detailed in <mach-o/loader.h>, looks like the example in Figure 4-3.

0xFEEDFACE for a 32-bit binary, 0xFEEDFACF for a 64-bit binary

CPU type and subtype, from <mach/machine.h> (as in fat binaries)

File type (Executable, Library, Core dump, Kernel Extension, etc..)

Number and size of loader “load commands” (see below)

Flags for dynamic linker (dyld)

64-bit only: Reserved, FFU

magic

cputype

cpusubtype

filetype

ncmds

sizeofncmds

flags

Reserved

mach_header

FIGURE 4-3: Mach-O header

c04.indd 102c04.indd 102 10/1/2012 5:56:53 PM10/1/2012 5:56:53 PM

Universal Binaries x 103

The header begins with a magic value that enables the loader to quickly determine if it is intended
for a 32-bit (MH_MAGIC, #defined as 0xFEEDFACE) or 64-bit architecture (0xFEEDFACF, #defi ned
as MH_MAGIC_64). Following the magic value are the CPU type and subtype fi eld, which serve the
same functionality as in the universal binary header — and ensure that the binary is suitable to be
executed on this architecture. Other than that, there are no real differences in the header structure
between 32 and 64-bit architectures: while the 64-bit header contains one extra fi eld, it is currently
reserved, and is unused.

Because the same binary format is used for multiple object types (executable, library, core fi le, or
kernel extension), the next fi eld, filetype, is an int, with values defi ned in <mach-o/loader.h> as
macros. Common values you’ll see in your system include those shown in Table 4-3.

TABLE 4-3: Mach-O fi le types

FILE TYPE USED FOR EXAMPLE

MH_OBJECT(1) Relocatable object fi les: inter-

mediate compilation results,

also 32-bit kernel extensions.

(Generated with gcc –c)

MH_EXECUTABLE(2) Executable binaries. Binaries in /usr/bin, and application

binary fi les (in Contents/MacOS)

MH_CORE(4) Core dumps. (Generated in a core dump)

MH_DYLIB(6) Dynamic Libraries. Libraries in /usr/lib, as well as frame-

work binaries

MH_DYLINKER(7) Dynamic Linkers. /usr/lib/dyld

MH_BUNDLE(8) Plug-ins: Binaries that are not

standalone but loaded into

other binaries. These diff er

from DYLIB types in that they

are explicitly loaded by the

executable, usually by

NSBundle (Objective-C) or

CFBundle (C).

(Generated with gcc –bundle)

QuickLook plugins at /System/Library

/QuickLook

Spotlight Importers at /System

/Library/Spotlight

Automator actions at /System/Library

/Automator

MH_DSYM(10) Companion symbol fi les and

debug information.

(Generated with gcc –g)

MH_KEXT_BUNDLE(11) Kernel extensions. 64-bit kernel extensions

The header also includes important fl ags, which are defi ned in <mach-o/loader.h> as well (see
Table 4-4).

c04.indd 103c04.indd 103 10/1/2012 5:56:53 PM10/1/2012 5:56:53 PM

104 x CHAPTER 4 PARTS OF THE PROCESS: MACH-O, PROCESS, AND THREAD INTERNALS

TABLE 4-4: Mach-O Header Flags

FILE TYPE USED FOR

MH_NOUNDEFS Objects with no undefi ned symbols. These are mostly static binaries,

which have no further link dependencies

MH_SPLITSEGS Objects whose read-only segments have been separated from read-

write ones.

MH_TWOLEVEL Two-level name binding (see “dyld features,” discussed later in the

chapter).

MH_FORCEFLAT Flat namespace bindings (cannot occur with MH_TWOLEVEL).

MH_WEAK_DEFINES Binary uses (exports) weak symbols.

MH_BINDS_TO_WEAK Binary links with weak symbols.

MH_ALLOW_STACK_EXECUTION Allows the stack to be executable. Only valid in executables, but

generally a bad idea. Executable stacks are conducive to code injec-

tion in case of buff er overfl ows.

MH_PIE Allow Address Space Layout Randomization for executable types

(see later in this chapter).

MH_NO_HEAP_EXECUTION Make the heap non-executable. Useful to prevent the “Heap spray”

attack vector, wherein hackers overwrite large portions of the heap

blindly with shellcode, and then jump blindly into an address therein,

hoping to fall on their code and execute it.

As you can see in the preceding table, there are two fl ags dealing with “execu-
tion”: MH_ALLOW_STACK_EXECUTION and MH_NO_HEAP_EXECTION. Both of these
relate to data execution prevention, commonly referred to as NX (Non-eXecut-
able, referring to the page protection bit of the same name). By making memory
pages associated with data non-executable, this (supposedly) thwarts hacker
attempts at code injection, as the hacker cannot readily execute code that relies
in a data segment. Trying to do so results in a hardware exception, and the pro-
cess is terminated — crashing it, but avoiding the execution of the injected code.

Because the common technique of code injection is by stack (or automatic) variables, the stack is marked
non-executable by default, and the fl ag may be (dangerously) used to override that. The heap, by default,
remains executable. It is considered harder, although far from impossible, to inject code via the heap.

Both settings can be set on a system-wide basis, by using sysctl(8) on the variables vm.allow_
stack_exec and vm.allow_heap_exec. In case of confl ict, the more permissive setting (i.e. false
before true) applies. In iOS, the sysctls are not exposed, and the default is for neither heap nor
stack to be executable.

The main functionality of the Mach-O header, however, lies in the load commands. These are speci-
fi ed immediately after the header, and the two fi elds — ncmds and sizeofncmds — are used to parse
them. I describe those next.

c04.indd 104c04.indd 104 10/1/2012 5:56:53 PM10/1/2012 5:56:53 PM

Universal Binaries x 105

Experiment: Using otool(1) to Investigate Mach-O Files
The otool(1) command (part of Darwin’s cctools) is the native utility to manipulate Mach-O
fi les — and serves as the replacement for the functionality obtained in other UN*X through ldd
or readelf, as well as specifi c functionality that is only applicable to Mach-O fi les. The following
experiment, using only one of its many switches, -h, shows the mach_header discussed previously:

morpheus@Ergo(/)% otool -hV /bin/ls
/bin/ls:
Mach header
 magic cputype cpusubtype caps filetype ncmds sizeofcmds flags
MH_MAGIC_64 X86_6 ALL LIB64 EXECUTE 13 1928 NOUNDEFS DYLDLINK TWOLEVEL
morpheus@Ergo(/)% otool –arch i386 -hV /bin/ls # force otool to show the 32-bit header
/bin/ls:
Mach header
 magic cputype cpusubtype caps filetype ncmds sizeofcmds flags
MH_MAGIC I386 ALL 0x00 EXECUTE 13 1516 NOUNDEFS DYLDLINK TWOLEVEL

morpheus@Ergo(/)% gcc –g a.c –o a # Compile any file, but use “-g”
morpheus@Ergo(/)% ls -ld a.*
-rw-r--r-- 1 morpheus staff 16 Jan 22 08:29 a.c
drwxr-xr-x 3 morpheus staff 102 Jan 22 08:29 a.dSYM

morpheus@Ergo(/)% otool -h a.dSYM/Contents/Resources/DWARF/a
a.dSYM/Contents/Resources/DWARF/a:
Mach header
 magic cputype cpusubtype caps filetype ncmds sizeofcmds flags
 0xfeedfacf 16777223 3 0x00 10 7 1768 0x00000000

Sample using otool on a quick look plugin, which is an MH_BUNDLE:
morpheus@Ergo(/)% otool -h /System/Library/QuickLook/PDF.qlgenerator/Contents/MacOS/PDF
/System/Library/QuickLook/PDF.qlgenerator/Contents/MacOS/PDF:
Mach header
 magic cputype cpusubtype caps filetype ncmds sizeofcmds flags
 0xfeedfacf 16777223 3 0x00 8 13 1824 0x00000085

Of course, we could have used the verbose mode here..
morpheus@Ergo(/) % otool -hV /System/Library/QuickLook/PDF.qlgenerator/Contents/MacOS/PDF
/System/Library/QuickLook/PDF.qlgenerator/Contents/MacOS/PDF:
Mach header
 magic cputype cpusubtype caps filetype ncmds sizeofcmds flags
MH_MAGIC_64 X86_64 ALL 0x00 BUNDLE 13 1824 NOUNDEFS
DYLDLINK TWOLEVEL

otool(1) is good in analyzing load commands and text segments, but leaves
much to be desired in analyzing data segments, and other areas. The book’s com-
panion website features an additional binary, jtool, which aims to improve on
otool’s functionality. The tool can handle all objects up to and including those
of iOS 5.1 and Mountain Lion. It integrates features from nm(1), strings(1),
segedit(1), size(1), and otool(1) into one binary, especially suited for
scripting, and adds several new features, as well.

Note the –g, which usually embeds symbols
inside the binary in other UN*X systems, does
so on OS X in a companion fi le

c04.indd 105c04.indd 105 10/1/2012 5:56:54 PM10/1/2012 5:56:54 PM

106 x CHAPTER 4 PARTS OF THE PROCESS: MACH-O, PROCESS, AND THREAD INTERNALS

Load Commands
The Mach-O header contains very detailed instructions, which clearly direct how to set up and load
the binary, when it is invoked. These instructions, or “load commands,” are specifi ed immediately
after the basic mach_header. Each command is itself a type-length-value: A 32-bit cmd value speci-
fi es the type, a 32-bit value cmdsize (a multiple of 4 for 32-bit, or 8 for 64-bit), and the command
(of arbitrary len, specifi ed in cmdsize) follows. Some of these commands are interpreted directly by
the kernel loader (bsd/kern/mach_loader.c). Others are handled by the dynamic linker.

There are over 30 such load commands. Table 4-5 describes those the kernel uses. (We discuss the
rest, which are used by the link editor, later.)

TABLE 4-5: Mach-O Load Commands Processed by the Kernel

COMMAND KERNEL HANDLER FUNCTION

(BSD/KERN/MACH/LOADER.C)

USED FOR

0x01

0x19

LC_SEGMENT

LC_SEGMENT_64

load_segment Maps a (32- or 64-bit) segment of the

fi le into the process address space.

These are discussed in more detail

in “process memory map.”

0x0E LC_LOAD_DYLINKER load_dylinker Invoke dyld (/usr/lib/dyld).

0x1B LC_UUID Kernel copies UUID into

internal mach object

representation

Unique 128-bit ID. This matches a

binary with its symbols

0x04 LC_THREAD load_thread Starts a Mach Thread, but does not

allocate the stack (rarely used out-

side core fi les).

0x05 LC_UNIXTHREAD load_unixthread Start a UNIX Thread (initial stack

layout and registers). Usually, all reg-

isters are zero, save for the instruc-

tion pointer/program counter. This

is deprecated as of Mountain Lion,

replaced by dyld’s LC_MAIN.

0x1D LC_CODE_SIGNATURE load_code_signature Code Signing. (In OS X — occasion-

ally used. In iOS — mandatory.)

0x21 LC_ENCRYPTION_INFO set_code_unprotect() Encrypted binaries. Also largely

unused in OS X, but ubiquitous in iOS.

The kernel portion of the loading process is responsible for the basic setup of the new pro-
cess — allocating virtual memory, creating its main thread, and handling any potential code signing/

c04.indd 106c04.indd 106 10/1/2012 5:56:55 PM10/1/2012 5:56:55 PM

Universal Binaries x 107

encryption. For dynamically linked (read: the vast majority of) executables, however, the actual
loading of libraries and resolving of symbols is handled in user mode by the dynamic linker specifi ed
in the LC_LOAD_DYLINKER command. Control will be transferred to the linker, which in turn further
processes other load commands in the header. (Loading of libraries is discussed later in this chapter)

A more detailed discussion of these load commands follows.

LC_SEGMENT and the Process Virtual Memory Setup
The main load command is the LC_SEGMENT (or LC_SEGMENT64) commands, which instructs the ker-
nel how to set up the memory space of the newly run process. These “segments” are directly loaded
from the Mach-O binary into memory.

Each LC_SEGMENT[_64] command provides all the necessary details of the segment layout (see
Table 4-6).

TABLE 4-6: LCSEGMENT or LC_SEGMENT_64 Parameters

PARAMETER USE

segname load_segment

vmaddr Virtual memory address of segment described

vmsize Virtual memory allocated for this segment

fileoff Marks the segment beginning off set in the fi le

filesize Specifi es how many bytes this segment occupies in the fi le

maxprot Maximum memory protection for segment pages, in octal (4=r, 2=w, 1=x)

initprot Initial memory protection for segment pages

nsects Number of sections in segment, if any

flags Miscellaneous bit fl ags

Setting up the process’s virtual memory thus becomes a straightforward operation of following the
LC_SEGMENT commands. For each segment, the memory is loaded from the fi le: filesize bytes from
offset fileoff, to vmsize bytes at address vmaddr. Each segment’s pages are initialized according
to initprot, which specifi es the initial page protection in terms of read/write/execute bits.
A segment’s protection may be dynamically changed, but cannot exceed the values specifi ed in
maxprot. (In iOS, specifying +x is mutually exclusive to +w.)

LC_SEGMENTs are provided for __PAGEZERO (NULL pointer trap), _TEXT (program code), _DATA (pro-
gram data), and _LINKEDIT (symbol and other tables used by linker). Segments may optionally be
further broken up into sections. Table 4-7 shows some of these sections.

c04.indd 107c04.indd 107 10/1/2012 5:56:55 PM10/1/2012 5:56:55 PM

108 x CHAPTER 4 PARTS OF THE PROCESS: MACH-O, PROCESS, AND THREAD INTERNALS

TABLE 4-7: Common segments and sections in Mach-O executables

SECTION USE

__text Main program code

__stubs, __stub_helper Stubs used in dynamic linking

__cstring C hard-coded strings in the program

__const const keyworded variables and hard coded constants

__TEXT.__objc_methname Objective-C method names

__TEXT.__objc_methtype Objective-C method types

__TEXT.__objc_classname Objective-C class names

__DATA.__objc_classlist Objective-C class list

__DATA.__objc_protolist Objective-C prototypes

__DATA.__objc_imginfo Objective-C image information

__DATA.__objc_const Objective-C constants

__DATA.__objc_selfrefs Objective-C Self (this) references

__DATA.__objc_protorefs Objective-C prototype references

__DATA.__objc_superrefs Objective-C superclass references

__DATA.__cfstring Core Foundation strings (CFStringRefs) in the program

__DATA.__bss BSS

Segments may also have certain fl ags set, defi ned in <mach/loader.h>. One such fl ag used by
Apple is SG_PROTECTED_VERSION_1 (0x08), denoting the segment pages are “protected” — i.e.,
encrypted. Apple encrypts select binaries using this technique — for example, the Finder, as shown
in Output 4-3.

OUTPUT 4-3: Using otool(1) on the Finder, displaying the encrypted section

morpheus@ergo (/) otool –lV /System/Library/CoreServices/Finder.app/Contents/MacOS
 /Finder
/System/Library/CoreServices/Finder.app/Contents/MacOS/Finder:
Load command 0
 cmd LC_SEGMENT_64
..
 segname __PAGEZERO
 ..
Load command 1
 cmd LC_SEGMENT_64

c04.indd 108c04.indd 108 10/1/2012 5:56:56 PM10/1/2012 5:56:56 PM

Universal Binaries x 109

 cmdsize 872
 segname __TEXT
 vmaddr 0x0000000100000000
 vmsize 0x00000000003ad000
 fileoff 0
 filesize 3854336
 maxprot rwx
 initprot r-x
 nsects 10
 flags PROTECTED_VERSION_1

To enable this code encryption, XNU — the kernel — contains a specifi c a custom (external) vir-
tual memory manager called “Apple protect,” which is discussed in Chapter 12, “Mach Virtual
Memory.”

XCode’s ld(1) can be instructed to create segments when constructing Mach-O objects, by using
the –segcreate switch. XCode likewise, contains a special tool, segedit(1), which can be used to
extract or replace segments from a Mach-O fi le. This can be useful for extracting embedded textual
information, like the sections PRELINK_INFO of the kernel, as will be demonstrated in chapter 17.
Alternatively, the book’s companion tool — jtool — offers this functionality as well. The jtool also
provides the functionality of a third XCode tool, size(1), which prints the sizes and addresses of
the segments.

LC_UNIXTHREAD
Once all the libraries are loaded, dyld’s job is done, and the LC_UNIXTHREAD command is respon-
sible for starting the binary’s main thread (and is thus always present in executables, but not in
other binaries, such as libraries). Depending on the architecture, it will list all the initial register
states, with a particular fl avor that is i386_THREAD_STATE, x86_THREAD_STATE64, or — in iOS
binaries — ARM_THREAD_STATE. In any of the fl avors, most of the registers will likely be initialized to
zero, save for the Instruction Pointer (on Intel) or the Program Counter (r15, on ARM), which hold
the address of the program’s entry point.

Before Apple completely abandoned the PPC platform in Lion, there was also a
PPC_THREAD_STATE. This is still visible on some of the PPC-code containing fat
binaries (try otool –arch ppc –l /mach_kernel on Snow Leopard. Register
srr0 is the code entry point in this case.

LC_THREAD
Similar to LC_UNIXTHREAD, LC_THREAD is used in core fi les. The Mach-O core fi les are, in essence, a
collection of LC_SEGMENT (or LC_SEGMENT_64) commands that set up the memory image of the (now
defunct) process, and a fi nal LC_THREAD. The LC_THREAD contains several “fl avors,” for each of the
machine states (i.e. thread, fl oat, and exception). You can confi rm that easily by generating a core
dump (which is, alas, all too easy), and then inspecting it with otool –l.

c04.indd 109c04.indd 109 10/1/2012 5:56:56 PM10/1/2012 5:56:56 PM

110 x CHAPTER 4 PARTS OF THE PROCESS: MACH-O, PROCESS, AND THREAD INTERNALS

LC_MAIN
As of Mountain Lion, a new load command, LC_MAIN supersedes the LC_UNIXTHREAD command.
This command is used to set the entry point address and stack size of the main thread of the
program. This makes more sense than using LC_UNIXTHREAD, as in any case all the registers save
for the program counter are set to zero. With no LC_UNIXTHREAD, it is impossible to run Moun-
tain Lion binaries that use LC_MAIN on previous OS X versions (causing dyld(1) to crash on
loading).

LC_CODE_SIGNATURE
An interesting feature of Mach-O binaries is that they can be digitally signed. In OS X this is still
largely unused, although it is gaining popularity as code signing ties into the newly improved sand-
box mechanism. In iOS, code signing is mandatory, in another attempt by Apple to lock down the
system as much as it possibly can: The only signature recognized in iOS is that of Apple. In OS X,
the codesign(1) utility may be used to manipulate and display code signatures. The man page, as
well as Apple’s code signing guide and Mac OS X Code Signing In Depth[1] all detail code signing
from the administrator’s perspective.

The LC_CODE_SIGNATURE contains the code signature of the Mach-O binary, and — if it does not
match the code (or, in iOS, does not exist) — the process is killed immediately by the kernel with
a SIGKILL. No questions asked, no saving throw. Prior to iOS 4, it was possible to disable code
signature checks with two sysctl(8) commands, to overwrite the kernel variables responsible for
enforcement, using the kernel’s MAC (Mandatory Access Control) component:

sysctl -w security.mac.proc_enforce=0 // disable MAC for process
sysctl -w security.mac.vnode_enforce=0 // disable MAC for VNode

In later iOSes, however, Apple realized that — upon getting root — jailbreakers would also be able
to overwrite the variables. So the variables were made read-only. The “untethered” jailbreaks are
able to set the variables anyway due to a kernel-based exploit. The variable default value, however,
is enabled, and so the “tethered” jailbreaks result in the non–Apple-signed applications crash-
ing — unless the i-Device is booted in a tethered manner.

Alternatively, a fake code signature can be embedded in the Mach-O, using a tool like Saurik’s ldid.
This tool, an alternative to OS X’s codesign(1), enables the generation of fake signatures with self-
signed certifi cates. This is especially important in iOS, as signatures are tied to the sandbox model’s
application “entitlements,” which are mandatory in iOS. Entitles are declarative permissions (in
plist form), which must be embedded in the Mach-O and sealed by signing, in order to allow run-
time privileges for security-sensitive operations.

Both OS X and iOS contain a special system call, csops (#169), for code signing operations. Code
signatures and MAC are explained in detail from the kernel’s perspective in Chapter 12.

c04.indd 110c04.indd 110 10/1/2012 5:56:57 PM10/1/2012 5:56:57 PM

Dynamic Libraries x 111

Experiment: Observing Load Commands and Dynamic Loading — Stage I
Recall /bin/ls in the previous experiment, and that otool -h reported 13 load commands. To dis-
play them, we use otool –l (some commands have been omitted from this sample). As before, we
examine a 64-bit binary (see Figure 4-4). You are encouraged to examine a 32-bit binary by specify-
ing –arch i386 to otool.

DYNAMIC LIBRARIES

As discussed in the previous chapter, executables are seldom standalone. With the exception of very
few statically linked ones, most executables are dynamically linked, relying on pre-existing libraries,
supplied either as part of the operating system, or by third parties. This section turns to discussing
the process of library loading: During application launch, or runtime.

Launch-Time Loading of Libraries
The previous section covered the setup performed by the kernel loader (in bsd/kern/mach_
loader.c) to initialize the process address space according to the segments and other directives.
This suffi ces for very few processes, however, as virtually all programs on OS X are dynamically
linked. This means that the Mach-O image is fi lled with “holes” — references to external librar-
ies and symbols — which are resolved when the program is launched. This is a job for the dynamic
linker. This process is also referred to as symbol “binding.”

The dynamic linker, you’ll recall, is started by the kernel following an LC_DYLINKER load command.
Typically, it is /usr/lib/dyld — although any program can be specifi ed as an argument to this
command. The linker assumes control of the fl edgling process, as the kernel sets the entry point of
the process to that of the linker.

The linker’s job is to, literally, “fi ll the holes” — that is, it must seek out any symbol and library
dependencies and resolve them. This must be done recursively, as it is often the case that libraries
have dependencies on other libraries still.

dyld is a user mode process. It is not part of the kernel and is maintained as a
separate open source project (though still part of Darwin) by Apple at
http://www.opensource.apple.com/source/dyld. As far as the kernel is con-
cerned, dyld is a pluggable component and it may be replaced with a
third-party linker. Despite (and, actually, because of) being in user mode, the
link editor plays an important part in loading processes. Loading libraries from
kernel mode would be much harder because fi les as we see them in user mode do
not exist in kernel mode.

The linker scans the Mach-O header for specifi c load commands of interest (see Table 4-8).

c04.indd 111c04.indd 111 10/1/2012 5:56:57 PM10/1/2012 5:56:57 PM

http://www.opensource.apple.com/source/dyld

112 x CHAPTER 4 PARTS OF THE PROCESS: MACH-O, PROCESS, AND THREAD INTERNALS

Ergo (/) % otool -l /bin/ls

Load command 0

cmd LC_SEGMENT_64

cmdsize 72

segname __PAGEZERO

vmaddr 0x0000000000000000

vmsize 0x0000000100000000

fileoff 0

maxprot 0x00000000

filesize 0

initprot 0x00000000

nsects 0

flags 0x0

Load command 1

cmd LC_SEGMENT_64

cmdsize 632

segname __TEXT

vmaddr 0x0000000100000000

vmsize 0x0000000000006000

fileoff 0

filesize 24576

maxprot 0x00000007

initprot 0x00000005

nsects 7

flags 0x0

Section

sectname __text

segname __TEXT

addr 0x0000000100001478

size 0x00000000000038ef … …

... (other sections omitted) ..

......

Load command 7

cmd LC_LOAD_DYLINKER

cmdsize 32

name /usr/lib/dyld (offset 12)

maxprot: Maximum protection for this segment (rwx)

initprot: Initial protection for this segment (r-x)

Seven sections follow in this segment (omitted). Note,

though, the __text segment, starting at 0x0100001478.

The reference to /usr/lib/dyld, which

loads and parses the other headers

The linker can be instructed to trace LC_SEGMENT commands by setting the

DYLD_PRINT_SEGMENTS to some non-zero value

Ergo% export DYLD_PRINT_SEGMENTS=1

Ergo () % ls

dyld: Main executable mapped /bin/ls

__PAGEZERO at 0x00000000->0x100000000

__TEXT at 0x100000000->0x100006000

__DATA at 0x100006000->0x100007000

__LINKEDIT at 0x100007000->0x10000A000

<.. rest of setup performed by dyld for loading libraries, etc ..>

Note PAGEZERO didn’t take up any space on disk (filesize:0). Other segments

are loaded mmap()ed from their offset in the file directly into memory

c04.indd 112c04.indd 112 10/1/2012 5:56:58 PM10/1/2012 5:56:58 PM

Dynamic Libraries x 113

Load command 9

cmd LC_UNIXTHREAD

cmdsize 184

flavor x86_THREAD_STATE64

count x86_THREAD_STATE64_COUNT

rax 0x0000000000000000 rbx 0x0000000000000000 rcx 0x0000000000000000

rdx 0x0000000000000000 rdi 0x0000000000000000 rsi 0x0000000000000000

rbp 0x0000000000000000 rsp 0x0000000000000000 r8 0x0000000000000000

r9 0x0000000000000000 r10 0x0000000000000000 r11 0x0000000000000000

r12 0x0000000000000000 r13 0x0000000000000000 r14 0x0000000000000000

r15 0x0000000000000000 rip 0x0000000100001478

rflags 0x0000000000000000 cs 0x0000000000000000 fs 0x0000000000000000

gs 0x0000000000000000

Load command 10

cmd LC_LOAD_DYLIB

cmdsize 56

name /usr/lib/libncurses.5.4.dylib (offset 24)

Load command 11

cmd LC_LOAD_DYLIB

cmdsize 56

name /usr/lib/libSystem.B.dylib (offset 24)

time stamp 2 Wed Dec 31 19:00:02 1969

current version 125.2.0

compatibility version 1.0.0

Load command 12

cmd LC_CODE_SIGNATURE

cmdsize 16

dataoff 34160

datasize 5440

Ergo (/) % otool -tV /bin/ls

/bin/ls:

(__TEXT,__text) section

0000000100001478 pushq $0x00

000000010000147a movq %rsp,%rbp

000000010000147d andq $0xf0,%rsp

..

These are the libraries this binary

depends on — to be loaded by dyld

RIP will point to the binary’s entry.

As in this case, it commonly also

happens to be the address of the

text section

FIGURE 4-4: Load Commands of a simple binary

c04.indd 113c04.indd 113 10/1/2012 5:56:59 PM10/1/2012 5:56:59 PM

114 x CHAPTER 4 PARTS OF THE PROCESS: MACH-O, PROCESS, AND THREAD INTERNALS

TABLE 4-8: Load Commands Processed by dyld

LOAD COMMAND USED FOR

0x02

0x0B

LC_SYMTAB

LC_DSYMTAB
Symbol tables. The symbol tables and string tables are pro-

vided separately, at an off set specifi ed in these commands.

0x0C LC_LOAD_DYLIB Load additional dynamic libraries. This command super-

sedes LC_LOAD_FVMLIB, used in NeXTSTEP.

0x20 LC_LAZY_LOAD_DYLIB As LC_LOAD_DYLIB, but defer actual loading until use of

fi rst symbol from library

0x0D LC_ID_DYLIB Found in dylibs only. Specifi es the ID, the timestamp, ver-

sion, and compatibility version of the dylib.

0x1F LC_REEXPORT_DYLIB Found in dynamic libraries only. Allows a library to re-export

another library’s symbols as its own. This is how Cocoa and

Carbon serve as umbrella frameworks for many others, as

well as libSystem (which exports libraries in /usr/lib/

system).

0x24

0x25

LC_VERSION_MIN_IPHONEOS

LC_VERSION_MIN_MACOSX

Minimum operating system version expected for this binary.

As of Lion, many binaries are set to 10.7 at a minimum.

0x26 LC_FUNCTION_STARTS Compressed table of function start addresses. New in

Mountain Lion

0x2A LC_SOURCE_VERSION Version of source code used to build this binary. Informa-

tional only and does not aff ect linking in any known way.

0x2B ?? (Name unknown) Code Signing sections from dylibs

The library dependencies can be displayed by using otool –L (the OS X equivalent to the function-
ality provided in other UN*X by ldd). As in other operating systems, however, the nm command
can be used to display the symbol table of a Mach-O binary, as you will see in the upcoming experi-
ment. The OS X nm(1) supports a -m switch, which allows to not only display the symbols, but also
to follow their resolution. Alternatively, the dyldinfo(1) command (part of XCode) may be used
for this purpose. Using this command, you can also display the opcodes used by the linker when
loading the libraries, as shown in Output 4-4:

OUTPUT 4-4: Displaying dyld’s binding opcodes

morpheus@ergo (/)$ dyldinfo -opcodes /bin/ls | more
...
lazy binding opcodes:
0x0000 BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB(0x02, 0x00000014)
0x0002 BIND_OPCODE_SET_DYLIB_ORDINAL_IMM(2)

c04.indd 114c04.indd 114 10/1/2012 5:56:59 PM10/1/2012 5:56:59 PM

Dynamic Libraries x 115

0x0003 BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM(0x00, ___assert_rtn)
0x0012 BIND_OPCODE_DO_BIND()
0x0013 BIND_OPCODE_DONE
0x0014 BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB(0x02, 0x00000018)
0x0016 BIND_OPCODE_SET_DYLIB_ORDINAL_IMM(2)
0x0017 BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM(0x00, ___divdi3)
0x0022 BIND_OPCODE_DO_BIND()
0x0023 BIND_OPCODE_DONE

Binaries that use functions and symbols defi ned externally have a section (__stubs) in their text
segment, with placeholders for the undefi ned symbols. The code is generated with a call to the sym-
bol stub section, which is resolved by the linker during runtime. The linker resolves it by placing
a JMP instruction at the called address. The JMP transfers control to the real function’s body, but
without modifi cation of the stack in any way. The real function can thus return normally, as if it
had been called directly.

LC_LOAD_DYLIB commands instruct the linker where the symbols can be found. Each library speci-
fi ed is loaded and searched for the matching symbols. The library to be linked has a symbol table,
which links the symbol names to the addresses. The address can be found in the Mach-O object
at the symoff specifi ed by the LC_SYMTAB load command. The corresponding symbol names are at
stroff, and there are a total of nsyms.

Like all other UN*X, Mach-O libraries can be found in /usr/lib (there is no /lib in OS X or iOS).
There are two main differences, however:

 ‰ Libraries are not “shared objects” (.so), as OS X is not ELF-compatible, and this concept
does not exist in Mach-O. Rather, they are “dynamic library” fi les, with a .dylib extension.

 ‰ There is no libc. Developers may be familiar with the C Runtime library on other UN*X (or
MSVCRT, on Windows). But the corresponding library, /usr/lib/libc.dylib, exists only
as a symbolic link to libSystem.B.dylib. libSystem provides LibC functionality, as well
as additional functions, which in UN*X are provided by separate libraries — for example,
mathematical functions (-lm), hostname resolution (-lnsl), and threads (-lpthread).

libSystem is the absolute prerequisite of all binaries on the system, C, C++, Objective-C, or oth-
erwise. This is because it serves as the interface to the lower-level system calls and kernel services,
without which nothing would get done. It actually serves as an umbrella library for the various
libraries in /usr/lib/system, which it re-exports (using the LC_REEXPORT_LIB load command). In
Snow Leopard, only eight or so libraries are re-exported. The number increases dramatically in Lion
and iOS to well over 20.

Experiment: Viewing Symbols and Loading
Consider the following simple “hello world” program. It calls on printf() twice, then exits:

morpheus@Ergo (~) % cat a.c
void main (int argc, char **argv) {
printf ("Salve, Munde!\n");
printf ("Vale!\n");
exit(0);
}

c04.indd 115c04.indd 115 10/1/2012 5:56:59 PM10/1/2012 5:56:59 PM

116 x CHAPTER 4 PARTS OF THE PROCESS: MACH-O, PROCESS, AND THREAD INTERNALS

Using Xcode’s dyldinfo(1) nm(1) you can resolve the binding and fi gure out which symbols are
exported, and what libraries they are linked against.

morpheus@Ergo (~) % dyldinfo -lazy_bind a
lazy binding information (from lazy_bind part of dyld info):
segment section address index dylib symbol
__DATA __la_symbol_ptr 0x100001038 0x0000 libSystem _exit
__DATA __la_symbol_ptr 0x100001040 0x000C libSystem _puts

Using XCode’s otool(1), you can go “under the hood” and actually see things at the assembly level
(Output 4-5A and 3-5B):

OUTPUT 4-5A: Demonstrating otool’s disassembly of a simple binary

morpheus@Ergo (~) % otool -p _main -tV a # use otool to disassemble, starting at _main:
a:
(__TEXT,__text) section
_main:
0000000100000ed0 pushq %rbp
0000000100000ed1 movq %rsp,%rbp
0000000100000ed4 subq $0x20,%rsp
0000000100000ed8 movl %edi,%eax
0000000100000eda movl $0x00000000,%ecx
0000000100000edf movl %eax,0xfc(%rbp)
0000000100000ee2 movq %rsi,0xf0(%rbp)
0000000100000ee6 leaq 0x00000057(%rip),%rax
0000000100000eed movq %rax,%rdi
0000000100000ef0 movl %ecx,0xec(%rbp)
0000000100000ef3 callq 0x100000f18 ; symbol stub for: _puts
0000000100000ef8 leaq 0x00000053(%rip),%rax
0000000100000eff movq %rax,%rdi
0000000100000f02 callq 0x100000f18 ; symbol stub for: _puts
0000000100000f07 movl 0xec(%rbp),%eax
0000000100000f0a movl %eax,%edi
0000000100000f0c callq 0x100000f12 ; symbol stub for: _exit

OUTPUT 4-5B: Disassembling the same program, in its iOS form

Podicum:~ root# otool -tV -p _main a.arm
a.arm:
(__TEXT,__text) section
_main:
00002f9c b580 push {r7, lr}
00002f9e 466f mov r7, sp
00002fa0 b084 sub sp, #16
00002fa2 9003 str r0, [sp, #12]
00002fa4 9102 str r1, [sp, #8]
00002fa6 f2400032 movw r0, 0x32
00002faa f2c00000 movt r0, 0x0
00002fae 4478 add r0, pc
00002fb0 f000e812 blx 0x2fd8 @ symbol stub for: _puts
00002fb4 9001 str r0, [sp, #4]
00002fb6 f2400030 movw r0, 0x30
00002fba f2c00000 movt r0, 0x0

c04.indd 116c04.indd 116 10/1/2012 5:56:59 PM10/1/2012 5:56:59 PM

Dynamic Libraries x 117

00002fbe 4478 add r0, pc
00002fc0 f000e80a blx 0x2fd8 @ symbol stub for: _puts
00002fc4 9000 str r0, [sp, #0]
00002fc6 2000 movs r0, #0
00002fc8 f000e800 blx 0x2fcc @ symbol stub for: _exit

As the example shows, calls to exit() and printf (optimized by the compiler to puts, because it
prints a constant, newline-terminated string rather than a format string) are left unresolved, as a
call to specifi c addresses. These addresses are the symbol-stub table and are left up to the Linker to
initialize. You can next use the otool –l again to show the load commands, in particular focusing
on the stubs section. Output 4-6 shows the output of doing so, aligning OS X with iOS:

OUTPUT 4-6: Running otool(1) on OS X and iOS, to display symbol tables

 Mac OS X (x86_64) iOS 5.0 (armv7)

morpheus@Ergo (~) % otool –l –V a morpheus@Ergo (~) % otool –l –V a.arm

Section
 sectname __stubs
 segname __TEXT
 addr 0x0000000100000f12
 size 0x000000000000000c
 offset 3880
 align 2^1 (2)
 reloff 0
 nreloc 0
 type S_SYMBOL_STUBS
attributes PURE_INSTRUCTIONS SOME_INSTRUCTIONS
 reserved1 0 (index into indirect symbol table)
 reserved2 6 (size of stubs)

Section
 sectname __stub_helper
 segname __TEXT
 addr 0x0000000100000f20
 size 0x0000000000000024
 offset 3872 No __stub_helper section
 align 2^2 (4)
 reloff 0
 nreloc 0
 type S_REGULAR
attributes PURE_INSTRUCTIONS SOME_INSTRUCTIONS
 reserved1 0
 reserved2 0
...

Section
 sectname __nl_symbol_ptr
 segname __DATA
 addr 0x0000000100001028
 size 0x0000000000000010
 offset 4136
 align 2^3 (8)

Section
 sectname __symbol_stub4
 segname __TEXT
 addr 0x0000209c
 size 0x00000018
 offset 4252
 align 2^2 (4)
 reloff 0
 nreloc 0
 type S_SYMBOL_STUBS
attributes PURE_INSTRUCTIONS SOME_INSTRUCTIONS
 reserved1 0 (index into indirect symbol table)
 reserved2 12 (size of stubs)

Section
 sectname __nl_symbol_ptr
 segname __DATA
 addr 0x0000301c
 size 0x00000008
 offset 8220
 align 2^2 (4)

c04.indd 117c04.indd 117 10/1/2012 5:57:00 PM10/1/2012 5:57:00 PM

118 x CHAPTER 4 PARTS OF THE PROCESS: MACH-O, PROCESS, AND THREAD INTERNALS

 reloff 0
 nreloc 0
 type S_NON_LAZY_
SYMBOL_POINTERS
attributes (none)
 reserved1 2 (index into indirect symbol table)
 reserved2 0

Section
 sectname __la_symbol_ptr
 segname __DATA
 addr 0x0000000100001038
 size 0x0000000000000010
 offset 4152
 align 2^3 (8)
 reloff 0
 nreloc 0
 type S_LAZY_SYMBOL_POINTERS
attributes (none)
 reserved1 4 (index into indirect symbol table)
 reserved2 0
...

Load command 5
 cmd LC_SYMTAB
 cmdsize 24
 symoff 8360
 nsyms 11
 stroff 8560
 strsize 112
...
Load command 10
 cmd LC_LOAD_DYLIB
 cmdsize 56
 name /usr/lib/libSystem.B.dylib (offset 24)
 time stamp 2 Wed Dec 31 19:00:02 1969
 current version 125.2.11
compatibility version 1.0.0

 Finally, you can use nm to display the unresolved symbols. These are the same in OS X and iOS.

morpheus@Ergo (~) % nm a | grep "U " # and here are our three unresolved symbols
 U _exit
 U _puts
 U dyld_stub_binder
morpheus@Ergo (~) % nm a | wc –l # How many symbols in table, overall?
 11 # (12 on ARM - also__dyld_func_lookup)

And you can use gdb to dump the symbol stubs and the stub_helper. Note the stub is a JMP to a
symbol table:

Section
 sectname __la_symbol_ptr
 segname __DATA
 addr 0x00003024
 size 0x00000008
 offset 8228
 align 2^2 (4)
 reloff 0
 nreloc 0
 type S_LAZY_SYMBOL_POINTERS
attributes (none)
 reserved1 4 (index into indirect symbol table)
 reserved2 0

Load command 4
 cmd LC_SYMTAB
 cmdsize 24
 symoff 12296
 nsyms 12
 stroff 1246
 strsize 148

 reloff 0
 nreloc 0
 type S_NON_LAZY_
SYMBOL_POINTERS
attributes (none)
 reserved1 2 (index into indirect symbol table)
 reserved2 0

OUTPUT 4-6 (continued)

c04.indd 118c04.indd 118 10/1/2012 5:57:00 PM10/1/2012 5:57:00 PM

Dynamic Libraries x 119

morpheus@Ergo (~) % gdb ./a
GNU gdb 6.3.50-20050815 (Apple version gdb-1472) (Wed Jul 21 10:53:12 UTC 2010)
..
done

(gdb) x/2i 0x100000f12 # Dump the address as (2) instructions
0x100000f12 <dyld_stub_exit>: jmpq *0x120(%rip) # 0x100001038
0x100000f18 <dyld_stub_puts>: jmpq *0x122(%rip) # 0x100001040

(gdb) x/2g 0x100001038 # Dump the address as (2) 64 bit pointers
0x100001038: 0x0000000100000f20 0x0000000100000f2a // Both in __stub_helper

(gdb) x/2i 0x100000f20 # dump the stub code for exit
0x100000f20: pushq $0x0 // pushes "0" on the stack
0x100000f25: jmpq 0x100000f34

(gdb) x/2i 0x100000f2a // dump the stub code for puts
0x100000f2a: pushq $0xc // pushes „12" on the stack
0x100000f2f: jmpq 0x100000f34

Both jump to 0x100000f34 – so let's inspect that:

(gdb) x/3i 0x100000f34 // All stubs end up here
0x100000f34: lea 0xf5(%rip),%r11 # 0x100001030
0x100000f3b: push %r11
0x100000f3d: jmpq *0xe5(%rip) # 0x100001028 // dyld_stub_binder

// note the address we jump to is ... empty!
(gdb) x/2g 0x100001028
0x100001028: 0x0000000000000000 0x0000000000000000

Setting a breakpoint on main() in gdb, and then running it, will break the program right after
dynamic linkage is complete but before anything gets executed. This will give you a chance to see
the address of dyld_stub_linker populated:

(gdb) b main # set breakpoint
Breakpoint 1 at 0x100000ef3
(gdb) r # We don't really want to run – we just dyld(1) to link
Starting program: /Users/morpheus/a
Reading symbols for shared libraries +. done

Breakpoint 1, 0x0000000100000ef3 in main ()

(gdb) x/2g 0x100001028 // revisiting the mystery address:
0x100001028: 0x00007fff89527f94 0x0000000000000000

(gdb) disass 0x00007fff89527f94 // Address now contains dyld_stub_binder
Dump of assembler code for function dyld_stub_binder:
0x00007fff89527f94 <dyld_stub_binder+0>: push %rbp
0x00007fff89527f95 <dyld_stub_binder+1>: mov %rsp,%rbp
0x00007fff89527f98 <dyld_stub_binder+4>: sub $0xc0,%rsp
. . .

c04.indd 119c04.indd 119 10/1/2012 5:57:00 PM10/1/2012 5:57:00 PM

120 x CHAPTER 4 PARTS OF THE PROCESS: MACH-O, PROCESS, AND THREAD INTERNALS

DISASSEMBLY OF THE SAME SYMBOL, ON IOS:

(gdb) x/2i dyld_stub_exit
0x2fcc <dyld_stub_exit>: ldr r12, [pc, #0] ; 0x2fd4 <dyld_stub_exit+8>
0x2fd0 <dyld_stub_exit+4>: ldr pc, [r12]

(gdb) x/2i dyld_stub_puts
0x2fd8 <dyld_stub_puts>: ldr r12, [pc, #0] ; 0x2fe0 <dyld_stub_puts+8>
0x2fdc <dyld_stub_puts+4>: ldr pc, [r12]

(gdb) x/x 0x2fd4
0x2fd4 <dyld_stub_exit+8>: 0x00003024
(gdb) x/x 0x2fe0
0x2fe0 <dyld_stub_puts+8>: 0x00003028

(gdb) x/2x 0x3024
0x3024: 0x00002f70 0x00002f70

(gdb) disass 0x2f70
Dump of assembler code for function dyld_stub_binding_helper:
0x00002f70 <dyld_stub_binding_helper+0>: push {r12} ; (str r12, [sp, #-4]!)
0x00002f74 <dyld_stub_binding_helper+4>: ldr r12, [pc, #12] ; 0x2f88
0x00002f78 <dyld_stub_binding_helper+8>: ldr r12, [pc, r12]
0x00002f7c <dyld_stub_binding_helper+12>: push {r12} ; (str r12, [sp, #-4]!)
0x00002f80 <dyld_stub_binding_helper+16>: ldr r12, [pc, #4] ; 0x2f8c
0x00002f84 <dyld_stub_binding_helper+20>: ldr pc, [pc, r12]
... # Following instructions irrelevant since "ldr pc" effectively jumps
End of assembler dump.
(gdb) x/2x 0x2f88
0x2f88 <dyld_stub_binding_helper+24>: 0x000000ac 0x00000074

If you trace through the program, setting a breakpoint on the fi rst and second calls to dyld_stub_
puts (in their respective offsets in _main) will reveal an interesting trick: The fi rst time the stub is
called, dyld_stub_binder is indeed called, and — through a rather lengthy process — binds all the
symbols. The next time, however, dyld_stub_puts directly jumps to puts:

(gdb) break *0x0000000100000ef3 # as in Listing 4-xyz-a
Breakpoint 1 at 0x100000ef3
(gdb) break *0x0000000100000f02 # as in Listing 4-xyz-a
Breakpoint 2 at 0x100000f02
(gdb) r
Starting program: /Users/morpheus/a
Reading symbols for shared libraries +. done
Breakpoint 1, 0x0000000100000ef3 in main ()
(gdb) disass 0x0000000100000f18 # again, q.v. Listing 4-xyz-a
Dump of assembler code for function dyld_stub_puts:
0x0000000100000f18 <dyld_stub_puts+0>: jmpq *0x122(%rip) # 0x100001040
End of assembler dump.
(gdb) x/g 0x100001040
0x100001040: 0x0000000100000f2a # the path to dyld_stub_linked ..
(gdb) c
Continuing.
Salve, Munde!

c04.indd 120c04.indd 120 10/1/2012 5:57:00 PM10/1/2012 5:57:00 PM

Dynamic Libraries x 121

Breakpoint 2, 0x0000000100000f02 in main ()
(gdb) x/g 0x100001040
0x100001040: 0x00007fff894a5eca # Now patched to link to puts

As the old adage goes, there is no knowledge that is not power. And — if you’ve followed this long
experiment all the way here, the reward is at hand: by patching the stub addresses before the func-
tions are called, it is possible to hook functions. Although dyld(1) has a similar mechanism, func-
tion interposing, (which is described later in this chapter), patching the table directly is often more
powerful.

Shared Library Caches
Another mechanism supported by dyld is that of shared library caches. These are libraries that are
stored, pre-linked, in one fi le on the disk. Shared caches are especially important in iOS, wherein
most common libraries are cached. The concept is somewhat similar to Android’s prelink-map,
wherein libraries are pre-linked into fi xed offsets in the address space.

If you search on iOS for most libraries, such as libSystem, you’ll be wasting your time. Although
all the binaries have the dependency, the actual fi le is not present on the fi le system. To save time on
library loading, iOS’s dyld employs a shared, pre-linked cache, and Apple has moved all the base
libraries into it as of iOS 3.0.

In OS X, the dyld shared caches are in /private/var/db/dyld. On iOS, the shared cache can be
found in /System/Library/Caches/com.apple.dyld. The cache is a single fi le, dyld_shared_
cache_armv7. The OS X shared caches also have an accompanying .map fi le, whereas the iOS one
does not.

Figure 4-5 shows the cache header format, which is listed in the dyld source fi les.

magic

mappingOffset

mappingCount

imagesOffset

imagesCount

dyldBaseAddress

uint32 specifying offset of mappings

uint32 specifying how many mappings are in the cache

“dyldv1 i386” on 32-bit Intel

“dyldv1 x86_64” on 64-bit Intel

FIGURE 4-5: The dyld cache format

The shared caches, on both OS X on iOS, can grow very large. OS X’s contains well over 200 fi les.
iOS’s contains over 500(!) and is some 200 MB in size. The jailbreaking community takes special
interest in these fi les and has written various cache “unpackers” to extract the libraries and frame-
works inside them. The libraries in their individual form can be found in the iPhoneOS.platform
directories of the iOS SDK.

c04.indd 121c04.indd 121 10/1/2012 5:57:00 PM10/1/2012 5:57:00 PM

122 x CHAPTER 4 PARTS OF THE PROCESS: MACH-O, PROCESS, AND THREAD INTERNALS

Runtime Loading of Libraries
Normally, developers declare the libraries and symbols they will use when they #include various
headers and, optionally, specify additional libraries to the linker using -l. An executable built in
this way will not load until all its dependencies are resolved, as you have seen earlier. An alternative,
however, is to use the functions supplied in <dlfcn.h> to load libraries during runtime. This allows
for greater fl exibility: The library name needs to be committed to, or known at compile time. In this
way, the developer can prepare several libraries and load the most appropriate one based on the fea-
tures or requirements during runtime. Additionally, if a library load fails, an error code is returned
and can be handled by the program.

The API for runtime dynamic library loading in OS X is similar to the one found in POSIX. Its
implementation, however, is totally different:

 ‰ dlopen (const char *path) is used to fi nd and load the library or bundle specifi ed by
path.

 ‰ dlopen_preflight(const char *path) is a Leopard and later extension that simulates the
loading process of dlopen() but does not actually load anything.

 ‰ dlsym(void *handle, char *sym) is used to locate a symbol in a handle previously
opened by dlopen().

 ‰ dladdr(char *addr, Dl_Info *info) populates the DL_Info structure with the name of
the bundle or library residing at address addr. This is the same as the GNU extension.

 ‰ dlerror() is used to provide an error message in case of an error by any of the other
functions.

Cocoa and Carbon offer higher-level wrappers for the dl* family of functions, as well as a
CFBundle/NSBundle object, which can be used to load Mach-O bundle fi les.

One way to check loaded libraries and symbols — from within the program itself — is to use the
low-level dyld APIs, which are defi ned in <mach-o/dyld.h>. The header also defi nes a mechanism
for callbacks on image load and removal. The dyld APIs can also be used alongside the dl* APIs
(specifi cally, dladdr(3)). This is shown in Listing 4-3:

LISTING 4-3: Listing all Mach-O Images in the process

#include <dlfcn.h> // for dladdr(3)
#include <mach-o/dyld.h> // for _dyld_ functions

void listImages (void)
{
 // List all mach-o images in a process
 uint32_t i;
 uint32_t ic = _dyld_image_count();

 printf ("Got %d images\n",ic);
 for (i = 0; i < ic; i++)
 {

c04.indd 122c04.indd 122 10/1/2012 5:57:01 PM10/1/2012 5:57:01 PM

Dynamic Libraries x 123

 printf ("%d: %p\t%s\t(slide: %p)\n",
 i,
 _dyld_get_image_header(i),
 _dyld_get_image_name(i),
 _dyld_get_image_slide(i));
 }

}

void add_callback(const struct mach_header* mh, intptr_t vmaddr_slide)
{
 // Using callbacks from dyld, we can get the same functionality
 // of enumerating the images in a binary

 Dl_info info;
 // Should really check return value of dladdr here...
 dladdr(mh, &info);
 printf ("Callback invoked for image: %p %s (slide: %p)\n",
 mh, info.dli_fname, vmaddr_slide);
void main (int argc, char **argv)
{
 // Calling listImages will enumerate all Mach-O objects loaded into
 // our address space, using the _dyld functions from mach-o/dyld.h
 listImages();

 // Alternatively, we can register a callback on add. This callback
 // will also be invoked for existing images at this point.
 _dyld_register_func_for_add_image(add_callback);

}

The listImages() function is self-contained and can be inserted into any program, given the
dyld.h fi le is included (dyld.h contains function for checking symbols, as well). If run as is, the
program in Listing 4-3 yields the following in Output 4-7:

OUTPUT 4-7: Running the code from Listing 4-3

morpheus@Ergo (~) morpheus$./lsimg
Got 3 images
0: 0x100000000 /Users/morpheus/./lsimg (slide: 0x0)
1: 0x7fff87869000 /usr/lib/libSystem.B.dylib (slide: 0x0)
2: 0x7fff8a2cb000 /usr/lib/system/libmathCommon.A.dylib (slide: 0x0)

Callback invoked for image: 0x100000000 /Users/morpheus/./lsimg (slide: 0x0)
Callback invoked for image: 0x7fff87869000 /usr/lib/libSystem.B.dylib (slide: 0x0)
Callback invoked for image: 0x7fff8a2cb000 /usr/lib/system/libmathCommon.A.dylib (slide:
0x0)

The same, of course, works on iOS, although in this case many more dylibs are preloaded. There is
also a non-zero “slide” value, due to Address Space Layout Randomization (ASLR), discussed later
in this chapter.

Output 4-8 shows the output of the sample program, on an iOS 5 system. Libraries in bold are new
to iOS 5.

c04.indd 123c04.indd 123 10/1/2012 5:57:01 PM10/1/2012 5:57:01 PM

124 x CHAPTER 4 PARTS OF THE PROCESS: MACH-O, PROCESS, AND THREAD INTERNALS

OUTPUT 4-8: Running the code from Listing 4-3 on iOS 5

root@Podicum (~)# ./lsimg
Got 24 images
0: 0x1000 /private/var/root/./lsimg (slide: 0x0)
1: 0x304c9000 /usr/lib/libgcc_s.1.dylib (slide: 0x353000)
2: 0x3660f000 /usr/lib/libSystem.B.dylib (slide: 0x353000)
3: 0x362c6000 /usr/lib/system/libcache.dylib (slide: 0x353000)
4: 0x33e60000 /usr/lib/system/libcommonCrypto.dylib (slide: 0x353000)
5: 0x34a79000 /usr/lib/system/libcompiler_rt.dylib (slide: 0x353000)
6: 0x30698000 /usr/lib/system/libcopyfile.dylib (slide: 0x353000)
7: 0x3718d000 /usr/lib/system/libdispatch.dylib (slide: 0x353000)
8: 0x34132000 /usr/lib/system/libdnsinfo.dylib (slide: 0x353000)
9: 0x3660d000 /usr/lib/system/libdyld.dylib (slide: 0x353000)
10: 0x321a3000 /usr/lib/system/libkeymgr.dylib (slide: 0x353000)
11: 0x360b4000 /usr/lib/system/liblaunch.dylib (slide: 0x353000)
12: 0x3473b000 /usr/lib/system/libmacho.dylib (slide: 0x353000)
13: 0x362f6000 /usr/lib/system/libnotify.dylib (slide: 0x353000)
14: 0x3377a000 /usr/lib/system/libremovefile.dylib (slide: 0x353000)
15: 0x357c7000 /usr/lib/system/libsystem_blocks.dylib (slide: 0x353000)
16: 0x36df7000 /usr/lib/system/libsystem_c.dylib (slide: 0x353000)
17: 0x33ccc000 /usr/lib/system/libsystem_dnssd.dylib (slide: 0x353000)
18: 0x32aa9000 /usr/lib/system/libsystem_info.dylib (slide: 0x353000)
19: 0x32ac7000 /usr/lib/system/libsystem_kernel.dylib (slide: 0x353000)
20: 0x3473f000 /usr/lib/system/libsystem_network.dylib (slide: 0x353000)
21: 0x34433000 /usr/lib/system/libsystem_sandbox.dylib (slide: 0x353000)
22: 0x339d9000 /usr/lib/system/libunwind.dylib (slide: 0x353000)
23: 0x32272000 /usr/lib/system/libxpc.dylib (slide: 0x353000)

... (callback output is same, and is omitted for brevity) ...

Weakly Defi ned Symbols
An interesting feature in Mac OS is its ability to defi ne symbols as “weak.” Typically, symbols
are strongly defi ned, meaning they must all be resolved prior to starting the executable. Failure to
resolve symbols in this case would lead to a failure to execute the program (usually in the form of a
debugger trap).

By contrast, a weak symbol — which may be defi ned by specifying __attribute__((weak_import)
in its declaration — does not cause a failure in program linkage if it cannot be resolved. Rather, the
dynamic linker sets it to NULL, allowing the programmer to recover and specify some alternative
logic to handle the condition. This is similar to the modus operandi used in dynamic loading (the
same effect as dlopen(3) or dlsym(3) returning NULL).

Using nm with the –m switch will display weak symbols with a “weak” specifi er.

dyld Features
Being a proprietary loader, dyld offers some unique features, which other loaders can only envy.
This section discusses a few of the useful ones.

c04.indd 124c04.indd 124 10/1/2012 5:57:01 PM10/1/2012 5:57:01 PM

Dynamic Libraries x 125

Two-Level Namespace
Unlike the traditional UN*X ld, OS X’s dyld sports a two-level namespace. This feature, intro-
duced in 10.1, means that symbol names also contain their library information. This approach
is better, as it allows for two different libraries to export the same symbol — which would result
in link errors in other UN*X. At times, it may be desirable to remove this behavior, restrict-
ing a fl at namespace (for example, if you want to inject a different library, with the same symbol
name, commonly for function hooking). This can be accomplished by setting the DYLD_FORCE_
FLAT_NAMESPACE environment variable to a non-zero variable. An executable may also force a fl at
namespace on all its loaded libraries by setting the MH_FORCE_FLAT fl ag in its header.

Function Interposing
Another feature of dyld that isn’t in the classic ld is function interposing. The macro DYLD_INTER-
POSE enables a library to interpose (read: switch) its function implementation for some other func-
tion. The snippet in Listing 4-4, from the source of dyld, demonstrates this:

LISTING 4-4: DYLD_INTERPOSE macro defi nition in dyld’s include/mach-o/dyld-interposing.h

#if !defined(_DYLD_INTERPOSING_H_)
#define _DYLD_INTERPOSING_H_
/* Example:
 * static
 * int
 * my_open(const char* path, int flags, mode_t mode)
 * {
 * int value;
 * // do stuff before open (including changing the arguments)
 * value = open(path, flags, mode);
 * // do stuff after open (including changing the return value(s))
 * return value;
 * }
 * DYLD_INTERPOSE(my_open, open)
 */

#define DYLD_INTERPOSE(_replacment,_replacee) \
 __attribute__((used)) static struct{ const void* replacment; const void* replacee; }
interpose##_replacee \
 __attribute__ ((section ("__DATA,__interpose"))) = { (const void*)(unsigned
long)&_replacment, (const void*)(unsigned long)&_replacee };

#endif

Interposing simply consists of providing a new __DATA section, called __interpose, in which the
interposing and the interposed are listed, back-to-back. The dyld takes care of all the rest.

A good example of a library that uses interposing is OS X’s GuardMalloc library (a.k.a /usr/lib/
libgmalloc.dylib). This library replaces malloc()-related functionality in libSystem.B.dylib
with its own implementations, which provide powerful debugging and memory error tracing

c04.indd 125c04.indd 125 10/1/2012 5:57:01 PM10/1/2012 5:57:01 PM

126 x CHAPTER 4 PARTS OF THE PROCESS: MACH-O, PROCESS, AND THREAD INTERNALS

functionality (try man libgmalloc). The library can be forcefully injected into applications, a pri-
ori, by setting the DYLD_INSERT_LIBRARIES variable. You are encouraged to check the manual page
for libgmalloc(3) for more details.

Looking at libgmalloc with otool –l, you will see one of the load commands for the __DATA seg-
ment sets up a section called interpose (Output 4-9).

OUTPUT 4-9: Dumping the interpose section of libgmalloc

morpheus@Ergo (/)% otool -lV /usr/lib/libgmalloc.dylib
/usr/lib/libgmalloc:
..
Load command 1
 cmd LC_SEGMENT_64
 cmdsize 632
 segname __DATA
..
Section
 sectname __interpose
 segname __DATA
 addr 0x0000000000005200
 size 0x0000000000000240
 offset 20992
 align 2^4 (16)
 reloff 0
 nreloc 0
 type S_INTERPOSING
attributes (none)
 reserved1 0
 reserved2 0

To examine the contents of this section, you can use another Mach-O command, pagestuff(1).
This command will show the symbols in the fi le’s logical pages. Output 4-10 is concerned with the
interpose-related symbols, which are on logical page 6. (Note that you can also use the -a switch for
all pages.)

OUTPUT 4-10: Running pagestuff (1) to show interpose symbols in libgmalloc.

morpheus@Ergo(/)% pagestuff/usr/lib/libgmalloc.dylib 6
File Page 6 contains contents of section (__DATA,__nl_symbol_ptr) (x86_64)
File Page 6 contains contents of section (__DATA,__la_symbol_ptr) (x86_64)
File Page 6 contains contents of section (__DATA,__const) (x86_64)
File Page 6 contains contents of section (__DATA,__data) (x86_64)
File Page 6 contains contents of section (__DATA,__interpose) (x86_64)
File Page 6 contains contents of section (__DATA,__bss) (x86_64)
File Page 6 contains contents of section (__DATA,__common) (x86_64)
Symbols on file page 6 virtual address 0x5000 to 0x6000
 . . .
 0x0000000000005200 __interpose_malloc_set_zone_name

c04.indd 126c04.indd 126 10/1/2012 5:57:01 PM10/1/2012 5:57:01 PM

Dynamic Libraries x 127

 0x0000000000005210 __interpose_malloc_zone_batch_free
 0x0000000000005220 __interpose_malloc_zone_batch_malloc
 0x0000000000005230 __interpose_malloc_zone_unregister
 0x0000000000005240 __interpose_malloc_zone_register
 0x0000000000005250 __interpose_malloc_zone_realloc
 . . .
 0x00000000000053b0 __interpose_free
 0x00000000000053c0 __interpose_malloc

The interposing mechanism is extremely powerful. Function interposing can easily be used to inter-
cept functions such as open() and close() — for example, to monitor fi le system access and even
provide a thin layer of virtualization (by redirecting the fi le during the open operation to some other
fi le, as all other operations that follow use the fi le descriptor, anyway). Interposing will be used in
this book to uncover “behind-the-scenes” operations, as in the following experiment.

Experiment: Using Interposing to Trace malloc()
Listing 4-5 shows a simple application of interposing to provide functionality similar to GLibC’s
mtrace (2) (which OS X does not offer). This function provides a trace of malloc() and free()
operations, printing the pointer value in the operations. In fairness, libgmalloc has more powerful
features, as do malloc zones (described later in this chapter), but this example demonstrates just how
easy implementing those features, as well as others, can be.

LISTING 4-5: GLibC’s mcheck-like() functionality, via function interposing

#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>
#include <stdlib.h>
#include <malloc/malloc.h> // for malloc_printf()

// This is the expected interpose structure
typedef struct interpose_s {
 void *new_func;
 void *orig_func;
} interpose_t;

// Our prototypes - requires since we are putting them in
// the interposing_functions, below
void *my_malloc(int size); // matches real malloc()
void my_free (void *); // matches real free()

static const interpose_t interposing_functions[] \
 __attribute__ ((section("__DATA, __interpose"))) = {
 { (void *)my_free, (void *)free },
 { (void *)my_malloc, (void *)malloc },
 };

void *my_malloc (int size)
{
 // In our function we have access to the real malloc() -
 // and since we don't want to mess with the heap ourselves,

continues

c04.indd 127c04.indd 127 10/1/2012 5:57:01 PM10/1/2012 5:57:01 PM

128 x CHAPTER 4 PARTS OF THE PROCESS: MACH-O, PROCESS, AND THREAD INTERNALS

 // just call it.
 void *returned = malloc(size);

 // call malloc_printf() because the real printf() calls malloc()
 // internally - and would end up calling us, recursing ad infinitum
 malloc_printf ("+ %p %d\n", returned, size);
 return (returned);
}

void my_free (void *freed)
{
 // Free - just print the address, then call the real free()
 malloc_printf ("- %p\n", freed);
 free(freed);
}

Note the use of malloc_printf, rather than the usual printf. This is required because classic
printf() uses malloc() internally, which would lead to a rather messy segmentation fault. In gen-
eral, when using function interposing on functions provided by libSystem, special caution must be
taken when relying on libC functions, which are in turn provided by libSystem itself.

Using this simple library yields clear output, which is easily grep-able (matching + and -, respec-
tively) and enables the quick pinpointing of leaky pointers. To force-load it into an unsuspecting
process, we use the DYLD_INSERT_LIBRARIES environment variable, as shown in Output 4-11:

OUTPUT 4-11: Running the program from Listing 4-5

morpheus@Ergo(~)$ cc -dynamiclib l.c -o libMTrace.dylib –Wall // compile to dylib
morpheus@Ergo(~)$ DYLD_INSERT_LIBRARIES=libMTrace.dylib ls // force insert into ls
ls(24346) malloc: + 0x100100020 88
ls(24346) malloc: + 0x100800000 4096
ls(24346) malloc: + 0x100801000 2160
ls(24346) malloc: - 0x100800000
ls(24346) malloc: + 0x100801a00 3312
... // etc.

Environment Variables
The OS X dyld is highly confi gurable and can be modifi ed using environment variables. Table 4-9
lists all variables and how they modify the linker’s behavior.

TABLE 4-9: DYLD Environment variables and their use

ENVIRONMENT VARIABLE USE

DYLD_FORCE_FLAT_NAMESPACE Disable two-level namespace of libraries (for INSERT). Oth-

erwise, symbol names also include their library name.

DYLD_IGNORE_PREBINDING Disable prebinding for performance testing.

LISTING 4-5 (continued)

c04.indd 128c04.indd 128 10/1/2012 5:57:01 PM10/1/2012 5:57:01 PM

Dynamic Libraries x 129

DYLD_IMAGE_SUFFIX Search for libraries with this suffi x. Commonly

set to _debug, or _profile so as to load /usr

/lib/libSystem.B_debug.dylib or /usr/lib

/libSystem.B_profile instead of libSystem.

DYLD_INSERT_LIBRARIES Force insertion of one or more libraries on program load-

ing — same idea as LD_PRELOAD on UN*X.

DYLD_LIBRARY_PATH Same as LD_LIBRARY_PATH on UN*X.

DYLD_FALLBACK_LIBRARY_PATH Used when DYLD_LIBRARY_PATH fails.

DYLD_FRAMEWORK_PATH As DYLD_LIBRARY_PATH, but for frameworks.

DYLD_FALLBACK_FRAMEWORK_PATH Used when DYLD_FRAMEWORK_PATH fails.

Additionally, the following control debug printing options in dyld:

 ‰ DYLD_PRINT_APIS: Dump dyld API calls (for example dlopen).

 ‰ DYLD_PRINT_BINDINGS: Dump symbol bindings.

 ‰ DYLD_PRINT_ENV: Dump initial environment variables.

 ‰ DYLD_PRINT_INITIALIZERS: Dump library initialization (entry point) calls.

 ‰ DYLD_PRINT_LIBRARIES: Show libraries as they are loaded.

 ‰ DYLD_PRINT_LIBRARIES_POST_LAUNCH: Show libraries loaded dynamically, after load.

 ‰ DYLD_PRINT_SEGMENTS: Dump segment mapping.

 ‰ DYLD_PRINT_STATISTICS: Show runtime statistics.

Further detail is well documented in the dyld(1) man page.

Example: DYLD_INSERT_LIBRARIES and Its Resulting Insecurities
Of all the various DYLD options in the last section, none is as powerful as DYLD_INSERT_
LIBRARIES. This environment variable is used for the same functionality that LD_PRELOAD offers on
UNIX — namely, the forced injection of a library into a newly-created process’s address space.

By using DYLD_INSERT_LIBRARIES, it becomes a simple matter to defeat one of Apple’s key soft-
ware protection mechanisms — code encryption. Rather than brute force the decryption, it is trivial
to inject the library into the target process and then read the formerly encrypted sections, in clear
plaintext. The technique is straightforward and requires only the crafting of such a library. Then,
insertion involves only a simple prefi xing of the variable to the application to be executed.

Noted researcher Stephan Esser (known more by his handle, i0n1c) has demonstrated this in a very
simple library. The library (called dumpdecrypted, part of the Esser’s git repository at https://
github.com/stefanesser) is force loaded into a Mach-O executable, and then reads the executable,
processes its load commands, and simply fi nds the encrypted section (from the LC_ENCRYPTION_
INFO) in its own memory. Because the library is part of process memory, and by that time process
memory is decrypted, “decrypting” is a simple matter of copying the address range — which is now

c04.indd 129c04.indd 129 10/1/2012 5:57:02 PM10/1/2012 5:57:02 PM

https://github.com/stefanesser
https://github.com/stefanesser

130 x CHAPTER 4 PARTS OF THE PROCESS: MACH-O, PROCESS, AND THREAD INTERNALS

plaintext — to disk. The same effect can be achieved from outside the process by using the Mach VM
APIs, which this book explores in Chapter 10.

DYLD_INSERT_LIBRARIES and the function interposing feature of dyld twice played a key feature in
the untethered jailbreak (“spirit” and “star”) of iOS, up to and including 4.0.x, by forcefully inject-
ing a fake libgmalloc.dylib into launchd, the very fi rst user mode process. The Trojan library
interposes several functions (unsetenv and others) used by launchd, injecting a Return-Oriented-
Programming (ROP) payload. This means the interposing functions aren’t provided by the library
(as its code cannot be signed, as is required by iOS), but — rather — by launchd itself. The inter-
posing function of dyld was patched in iOS 4.1 to ensure the interposing functions belong to the
library, which helps mitigate the attack.

PROCESS ADDRESS SPACE

One of the benefi ts of user mode is that of isolated virtual memory. Processes enjoy a private address
space, ranging from 2-3GB (on iOS), through 4GB (on 32-bit OS X), and up to an unimaginable 16
exabytes on 64-bit OS X. As the previous section has discussed, this address space is populated with
segments from the executable and various libraries, using the various LC_SEGMENT[64] commands.
This section discusses the address space layout, in detail.

The Process Entry Point
As with all standard C programs, executables in OS X have the standard entry point, by default
named “main”. In addition to the usual three arguments, however — argc, argv and, envp —
Mach-O programs can expect a fourth arguments, a char ** known as “apple.”

The “apple” argument, up to and including Snow Leopard, only held a single string – the program’s
full path, i.e. the fi rst argument of the execve() system call used to start it. This argument is used
by dyld(1) during process loading. The argument is considered to be for internal use only.

Starting with Lion, the “apple” argument has been expanded to a full vector, which now contains
two new additional parameters, likewise for internal use only: stack_guard and malloc_entropy.
The former is used by GCC’s “stack protector” feature (-fstack-protector), and the latter by
malloc, which uses it to add some randomness to the process address space. These arguments are
initialized by the kernel during the Mach-O loading (more on that in Chapter 12) with random
values.

The following example (Listing 4-6 and Output 4-12) will display these values, when compiled on
Lion, or on iOS 4 and later:

LISTING 4-6: Printing the “apple” argument to Mach-O programs

void main (int argc, char **argv, char **envp, char **apple)
{

 int i = 0;
 for (i=0; i < 4; i++)
 printf ("%s\n", apple[i]);

}

c04.indd 130c04.indd 130 10/1/2012 5:57:02 PM10/1/2012 5:57:02 PM

Process Address Space x 131

OUTPUT 4-12: Output of the program from the previous listing

Padishah:~ root# ./apple
./apple
stack_guard=0x9e9b3f22f9f1db64
malloc_entropy=0x2b655014ad0fa0c5,0x2f0c9c660cd3fed0
(null)

Cocoa applications also start with a standard C main(), although it is common practice to imple-
ment the main as a wrapper over NSApplicationMain(), which in turn shifts to the Objective-C pro-
gramming model.

Address Space Layout Randomization
Processes start up in their own virtual address space. Traditionally, process startup was performed
in the same deterministic fashion every time. This meant, however, that the initial process’ virtual-
memory image was virtually identical for a given program on a given architecture. The problem was
further exacerbated by the fact that, even during the process lifetime, most allocations were per-
formed in the same manner, which led to very predictable addresses in memory.

While this offered an advantage for debugging, it provided an even bigger boon for hackers. The pri-
mary attack vector hackers use is code injection: By overwriting a function pointer in memory, they
can subvert program execution to code they provide — as part of their input. Most commonly, the
method used to overwrite is a buffer overfl ow (exceeding the bounds of an array on the stack due to
an unchecked memory copy operation), and the overwritten pointer is the function’s return address.
Hackers have even more creative techniques, however, including subverting printf() format strings
and heap-based overfl ows. What’s more, any user pointer or even a structured exception handler
enables the injection of code. Key here is the ability to determine what to overwrite the pointer
with — that is, to reliably determine where the injected code will reside in memory.

The common hacking motto is, to paraphrase java, exploit once — hack everywhere. Whatever
the vulnerability — buffer overfl ow, format string attack, or other — a hacker can invest (much)
directed effort in dissecting a vulnerable program and fi nding its address layout, and then craft a
method to reliably reproduce the vulnerability and exploit it on similar systems.

Address Space Layout Randomization (ASLR), a technique that is now employed in most operating
systems, is a signifi cant protection against hacking. Every time the process starts, the address space
is shuffl ed slightly — shaken, not stirred. The basic layout is still the same, text, data, libraries — as
we discuss in the following pages. The exact addresses, however, are different — suffi ciently, it is
hoped, to thwart the hacker’s address guesses. This is done by having the kernel “slide” the Mach-O
segments by some random factor.

Leopard was the fi rst version of OS X to introduce address space layout randomization, albeit in a
very limited form. The randomization only occurred on system install or update, and randomized
only the loading of libraries. Snow Leopard made some improvements, but the heap and stack were
both predictable — and the assigned address space persisted across reboots.

Lion is the fi rst version of OS X to support full randomization in user space — including the text
segments. Lion provides 16-bit randomization in the text segments and up to 20-bit randomization
elsewhere, per invocation of the program. The 64-bit Mach-O binaries are fl agged with MH_PIE

c04.indd 131c04.indd 131 10/1/2012 5:57:02 PM10/1/2012 5:57:02 PM

132 x CHAPTER 4 PARTS OF THE PROCESS: MACH-O, PROCESS, AND THREAD INTERNALS

(0x00200000), specifying to the kernel that the binary should be loaded at a random address. 32-bit
programs still have no randomization. Likewise, iOS 4.3 is the fi rst version of iOS to introduce
ASLR in user space. For Apple, doing so in iOS is even more important, as code injection is the
underlying technique behind jailbreaking the various i-Devices. ASLR can be selectively disabled (by
setting _POSIX_SPAWN_DISABLE_ASLR in call to posix_spawnattr_setflags(), if using posix_
spawn() to create the process), but is otherwise enabled by default.

Mountain Lion further improves on its predecessors and introduces ASLR into the kernel space. A
new system call, kas_info (#439) is offered to obtain kernel address space information. At the time
of this writing, iOS does not offer kernel space randomization. It is more than likely, however, that
the next update of iOS will do so as well, in an attempt at thwarting jailbreakers from injecting code
into the iOS kernel. The code has also been compiled with aggressive stack-checking logic in many
function epilogs, just in case.

It should be noted that ASLR, while a signifi cant improvement, is no panacea. (Neither, for that
matter, is the NX protection, discussed earlier.) Hackers still fi nd clever ways to hack. In fact, the
now infamous “Star 3.0” exploit, which jailbroke iOS 4.3 on the iPad 2, defeated ASLR. This was
done by using a technique called “Return-Oriented Programming,” (ROP), in which the buffer
overfl ow corrupts the stack to set up entire stack frames, simulating calls into libSystem. The same
technique was used in the iOS 5.0.1 “corona” exploit, which has been successfully used to break all
Apple devices, including the latest and greatest iPhone 4S.[5]

The only real protection against attacks is to write more secure code and subject it to rigorous code
reviews, both automated and manual.

32-Bit (Intel)
While no longer the default, 32-bit address spaces are still possible — in older programs or by specif-
ically forcing 32-bit (compiling with –arch i386). The 32-bit address space is capped at 4 GB (232
= 4,294,967,296 bytes). Unlike other operating systems, however, all the 4 GB is accessible from
user space — there is no reservation for kernel space.

Windows traditionally reserves 2 GB (0x80000000-) and Linux 1 GB
(0xC0000000-) for Kernel space. Even though this memory is technically
addressable by the process, trying to access it from user mode generates a gen-
eral protection fault, and usually leads to a segmentation fault, which kills the
process. OS X (in 32-bit mode) uses a different approach, assigning the kernel its
own 4 GB address space, thereby freeing the top 1 GB for user space. So instead
of Windows’ 2/2 and Linux’s 3/1, OS X gives a full 4 GB to both kernel and
user spaces. This comes at a cost, however, of a full address space switch (CR3
change and TLB fl ush). This is no longer the case in 64-bit, or on iOS.

64-Bit
64 bits allow for a huge address space of up to 16 exabytes (that is, 16 giga-gigabytes). While this
is never actually needed in practice (and, in fact, most hardware architectures support only 48–52

c04.indd 132c04.indd 132 10/1/2012 5:57:02 PM10/1/2012 5:57:02 PM

Process Address Space x 133

bits for addressing), it does allow for a sparser address space. The layout is still essentially the same,
except that now segments are much farther apart from one another.

It should be noted, that even 64-bit is not true 64-bit. Due to the overhead associated with virtual to
physical address translation, the Intel architecture uses only 48 bits of the virtual address. This is a
hardware restriction, which is imposed also on Linux and Windows. The highest accessible region
of the user memory space, therefore, lies at 0x7FFF-FFFF-FFFF.

In 64-bit mode, there is such a huge amount of memory available anyway that it makes sense to fol-
low the model used in other operating systems, namely to map the kernel’s address space into each
and every process. This is a departure from the traditional OS X model, which had the kernel in its
own address space, but it makes for much faster user/kernel transition (by sharing CR3, the control
register containing the page tables).

32-Bit (iOS)
The iOS address space is even more restricted than its 32-bit Intel counterpart. For starters, unlike
32-bit OS X, the kernel is mapped to 0xC0000000 (iOS 3), or 0x80000000 (iOS 4 and 5), consuming
a good 1–2 GB of the space. Further, addresses over 0x30000000 are reserved for the various librar-
ies and frameworks.

A simple program to allocate 1 MB at a time will fail sooner, rather than later. For example, on an
iPad, the program croaks at about 80 MB:

Root@Padishah:~ root# ./a
a(12236) malloc: *** mmap(size=1048576) failed (error code=12)
*** error: can't allocate region
*** set a breakpoint in malloc_error_break to debug
a(12236) malloc: *** mmap(size=16777216) failed (error code=12)
*** error: can't allocate region
*** set a breakpoint in malloc_error_break to debug
She won't hold, Cap'n! Total allocation was 801112064 MB

This low limit makes perfect sense, if one takes into account the fact the there is no swap space on
i-Devices. Swap and fl ash storage do not get along very well because of the former’s need for many
write/delete operations and the latter’s limitations in doing so. So, while on a hard drive swap raises
no issues (besides the unavoidable hit on performance), on a mobile device swap is not an option.

As a consequence, virtual memory on mobile devices is, by its nature, limited. Tricks such as
implicit sharing can give the illusion of more space than exists on a system-wide level, but any single
process may not consume more than the available RAM, which is less than the device’s physical
RAM because of memory used by other processes and by the kernel itself.

General Address Space Layout
Because of ASLR, the address space of processes is very fl uid. But while exact addresses may “slide”
by some small random offsets, the rough layout remains the same.

The memory segments are as follows:

 ‰ __PAGEZERO: On 32-bit systems, this is a single page (4 KB) of memory, with all of its
access permissions revoked. On 64-bit systems, this corresponds to the entire 32-bit address

c04.indd 133c04.indd 133 10/1/2012 5:57:03 PM10/1/2012 5:57:03 PM

134 x CHAPTER 4 PARTS OF THE PROCESS: MACH-O, PROCESS, AND THREAD INTERNALS

space — i.e. the fi rst 4 GB. This is useful for trapping NULL pointer references (as NULL is really
“0”), or integer-as-pointer references (as all values up to 4,095 in 32-bit, or 4 GB in 64-bit, fall
within this page). Because access permissions — read, write, and execute — are all revoked,
any attempt to dereference memory addresses that lie within this page will trigger a hardware
page fault from the MMU, which in turn leads to a trap, which the kernel can trap. The kernel
will convert the trap to a C++ exception or a POSIX signal for a bus error (SIGBUS).

PAGEZERO is not meant to be used by the process, but it has become somewhat of
a cozy breeding ground for malicious code. Attackers wishing to infect a Mach-
O with “additional” code often fi nd PAGEZERO to be convenient for that pur-
pose. PAGEZERO is normally not part of the fi le, (its LC_SEGMENT specifi ed fi lesize
is 0), there is no strict requirement this be the case.

 ‰ __TEXT: This is the program code. As in all operating systems, text segments are marked as
r-x, meaning read-only and executable. This not only helps protect the binary from modifi -
cation in memory, but optimizes memory usage by making the section shareable. This way,
multiple instances of the same program use up only one __TEXT copy. The text segment usu-
ally contains several sections, with the actual code in _text. It can also contain other read-
only data, such as constants and hard-coded strings.

 ‰ __LINKEDIT: For use by dyld, this section contains tables of strings, symbols, and other data.

 ‰ __IMPORT: Used for the import tables on i386 binaries.

 ‰ __DATA: Used for readable/writable data.

 ‰ __MALLOC_TINY: For allocations of less than page size.

 ‰ __MALLOC_SMALL: For allocations of several pages.

 ‰ __MALLOC_LARGE: For allocations of over 1 MB.

Another segment which doesn’t show up in vmmap is the commpage. This is a set of pages
exported by the kernel to all user mode processes, similar in concept to Linux’s vsyscall and
vdso. The pages are shared (read-only) in all processes at a fi xed address: 0xffff0000 in i386,
0x7fffffe00000 in x86_64, and 0x40000000 in ARM. They hold various CPU and platform
related functions.

The commpage is largely a relic of the days of Mach on the PPC, wherein it was used frequently.
Apple is phasing it out, with scant remnants, like libSystem using it to accelerate gettimeofday()
and (up until Lion and iOS 5) pthread_mutex_lock(). Code in the commpage has the unique prop-
erty that it can be made temporarily non-preemptible, if it resides in the Preemption Free Zone
(PFZ). This is discussed further in Chapters 8 and 11.

We discuss the internals of memory management, from the user mode perspective, next. The kernel
mode perspective is discussed in Chapter 12. Mach-O segment and section loading is covered in
Chapter 13.

c04.indd 134c04.indd 134 10/1/2012 5:57:04 PM10/1/2012 5:57:04 PM

Process Address Space x 135

Experiment: Using vmmap(1) to Peek Inside a Process’s
Address Space

Using the vmmap(1) command, you can view the memory layout of a process. Carrying the pre-
vious experiment further, you use vmmap –interleaved, which dumps the address space in a
clear way. The –interleaved switch sorts the output by address, rather than readable/writable
sections.

Consider the following program in Listing 4-7:

LISTING 4-7: A sample program displaying its own address space

#include <stdlib.h>
int global_j;
const int ci = 24;
void main (int argc, char **argv)
{
 int local_stack = 0;
 char *const_data = "This data is constant";
 char *tiny = malloc (32); /* allocate 32 bytes */
 char *small = malloc (2*1024); /* Allocate 2K */
 char *large = malloc (1*1024*1024); /* Allocate 1MB */

 printf ("Text is %p\n", main);
 printf ("Global Data is %p\n", &global_j);
 printf ("Local (Stack) is %p\n", &local_stack);
 printf ("Constant data is %p\n",&ci);
 printf ("Hardcoded string (also constant) are at %p\n",const_data);
 printf ("Tiny allocations from %p\n",tiny);
 printf ("Small allocations from %p\n",small);
 printf ("Large allocations from %p\n",large);
 printf ("Malloc (i.e. libSystem) is at %p\n",malloc);
 sleep(100); /* so we can use vmmap on this process before it exits */
}

Compiling it on a 32-bit system (or with –arch i386) and running it will yield the results shown in
Figure 4-6.

The vmmap(1) output shows the region names, address ranges, permissions (current and maximum),
and the name of the mapping (usually the backing Mach-O object), if any.

For example, __PAGEZERO is exactly 4 KB (0x00000000–0x00001000) and is empty (SM=NUL) and set
with no permissions (current permissions: ---, max permissions: ---).

Other regions are defi ned as COW — meaning copy-on-write. This makes them shareable, as long as
they are not modifi ed — that is, up to the point where one of the sharing processes requests to write
data to that page. Because that would mean that the two processes would now be seeing different
data, the writing process triggers a page fault, which gets the kernel to copy that page.

c04.indd 135c04.indd 135 10/1/2012 5:57:05 PM10/1/2012 5:57:05 PM

136 x CHAPTER 4 PARTS OF THE PROCESS: MACH-O, PROCESS, AND THREAD INTERNALS

Ergo:~ morpheus$ cc a.c -o a -arch i386

Ergo:~ morpheus$./a &

Ergo:~ morpheus$ Text is 0x1d72

Global Data is 0x2040

Local (Stack) is 0xbffffb1c

Constant data is 0x1e84

Tiny allocations from 0x100130

Small allocations from 0x800000

Large allocations from 0x200000

Malloc (i.e. libSystem) is at 0x946ba246

==== regions for process 6396 (non-writable and writable regions are interleaved)

Hardcoded string (also constant) are at 0x1e88

[1] 6331

__PAGEZERO 00000000-00001000 [4K] ---/--- SM=NUL /Users/morpheus/a

__TEXT 00001000-00002000 [4K] r-x/rwx SM=COW /Users/morpheus/a

__TEXT 8fe00000-8fe42000 [264K] r-x/rwx SM=COW /usr/lib/dyld

__TEXT 946b7000-9485f000 [1696K] r-x/r-x SM=COW /usr/lib/libSystem.B.dylib

__TEXT 9496f000-94973000 [16K] r-x/r-x SM=COW

__DATA 8fe42000-8fe6f000 [180K] rw-/rwx SM=COW /usr/lib/dyld

__IMPORT 8fe6f000-8fe70000 [4K] rwx/rwx SM=COW /usr/lib/dyld

__LINKEDIT 8fe70000-8fe84000 [80K] r--/rwx SM=COW /usr/lib/dyld

__DATA 00002000-00003000 [4K] rw-/rwx SM=PRV /Users/morpheus/a

__LINKEDIT 00003000-00004000 [4K] r--/rwx SM=COW /Users/morpheus/a

STACK GUARD 00004000-00005000 [4K] ---/rwx SM=NUL

MALLOC (admin) 00005000-00006000 [4K] rw-/rwx SM=COW

MALLOC (admin) 00008000-00013000 [44K] rw-/rwx SM=COW

MALLOC (admin) 00015000-00020000 [44K] rw-/rwx SM=COW

MALLOC (admin) 00021000-00022000 [4K] r--/rwx SM=COW

MALLOC_LARGE 00022000-00023000 [4K] rw-/rwx SM=COW DefaultMallocZone_0x5000

MALLOC_LARGE 00200000-00300000 [1024K] rw-/rwx SM=NUL DefaultMallocZone_0x5000

MALLOC_SMALL 00800000-01000000 [8192K] rw-/rwx SM=COW DefaultMallocZone_0x5000

MALLOC_TINY 00100000-00200000 [1024K] rw-/rwx SM=COW DefaultMallocZone_0x5000

STACK GUARD 00006000-00008000 [8K] ---/rwx SM=NUL

STACK GUARD 00013000-00015000 [8K] ---/rwx SM=NUL

STACK GUARD 00020000-00021000 [4K] ---/rwx SM=NUL

FIGURE 4-6: Virtual address space layout of a 32-bit process

c04.indd 136c04.indd 136 10/1/2012 5:57:05 PM10/1/2012 5:57:05 PM

Process Address Space x 137

On a 64-bit system, the map is similar:

OUTPUT 4-13: Address space layout of a 64-bit binary

Listing …: Address space layout of a 64-bit binary

Virtual Memory Map of process 16565 (a)
Output report format: 2.2 -- 64-bit process

==== regions for process 16565 (non-writable and writable regions are interleaved)
__TEXT 0000000100000000-0000000100001000 [4K] r-x/rwx SM=COW
 /Users/morpheus/a
__DATA 0000000100001000-0000000100002000 [4K] rw-/rwx SM=PRV
 /Users/morpheus/a
__LINKEDIT 0000000100002000-0000000100003000 [4K] r--/rwx SM=COW
 /Users/morpheus/a
MALLOC guard page 0000000100003000-0000000100004000 [4K] ---/rwx SM=NUL
MALLOC metadata 0000000100004000-0000000100005000 [4K] rw-/rwx SM=COW
MALLOC guard page 0000000100005000-0000000100007000 [8K] ---/rwx SM=NUL
MALLOC metadata 0000000100007000-000000010001c000 [84K] rw-/rwx SM=COW
MALLOC guard page 000000010001c000-000000010001e000 [8K] ---/rwx SM=NUL
MALLOC metadata 000000010001e000-0000000100033000 [84K] rw-/rwx SM=COW
MALLOC guard page 0000000100033000-0000000100034000 [4K] ---/rwx SM=NUL
MALLOC metadata 0000000100034000-0000000100035000 [4K] r--/rwx SM=COW
MALLOC_LARGE metadata 0000000100035000-0000000100036000 [4K] rw-/rwx SM=COW
 DefaultMallocZone_0x100004000
MALLOC_TINY 0000000100100000-0000000100200000 [1024K] rw-/rwx SM=COW
 DefaultMallocZone_0x100004000
MALLOC_LARGE (reserved 0000000100200000-0000000100300000 [1024K] rw-/rwx SM=NUL
 DefaultMallocZone_0x100004000
MALLOC_SMALL 0000000100800000-0000000101000000 [8192K] rw-/rwx SM=COW
 DefaultMallocZone_0x100004000
STACK GUARD 00007fff5bc00000-00007fff5f400000 [56.0M] ---/rwx SM=NUL
 stack guard for thread 0
Stack 00007fff5f400000-00007fff5fbff000 [8188K] rw-/rwx SM=ZER
 thread 0
Stack 00007fff5fbff000-00007fff5fc00000 [4K] rw-/rwx SM=COW
 thread 0
__TEXT 00007fff5fc00000-00007fff5fc3c000 [240K] r-x/rwx SM=COW
 /usr/lib/dyld
__DATA 00007fff5fc3c000-00007fff5fc7b000 [252K] rw-/rwx SM=COW
 /usr/lib/dyld
__LINKEDIT 00007fff5fc7b000-00007fff5fc8f000 [80K] r--/rwx SM=COW
 /usr/lib/dyld
__DATA 00007fff701b2000-00007fff701d5000 [140K] rw-/rwx SM=COW
 /usr/lib/libSystem.B.dylib
__TEXT 00007fff8111b000-00007fff812dd000 [1800K] r-x/r-x SM=COW
 /usr/lib/libSystem.B.dylib
__TEXT 00007fff87d0f000-00007fff87d14000 [20K] r-x/r-x SM=COW
 /usr/lib/system/libmathCommon.A.dylib
__LINKEDIT 00007fff8a886000-00007fff8cc7e000 [36.0M] r--/r-- SM=COW
 /usr/lib/system/libmathCommon.A.dylib
. . .

c04.indd 137c04.indd 137 10/1/2012 5:57:05 PM10/1/2012 5:57:05 PM

138 x CHAPTER 4 PARTS OF THE PROCESS: MACH-O, PROCESS, AND THREAD INTERNALS

Cydia packages for iOS do not have vmmap(1), but — as open source — it can be compiled for iOS.
Alternatively, the same information can be obtained using gdb. By attaching to a process in gdb, you
can issue one of three commands, which would give you the following information:

 ‰ Info mach-regions

 ‰ Maintenance info section

 ‰ Show fi les

The same information can be obtained by walking through the load commands (otool –l)

Later in this book, we discuss Mach virtual memory and regions, and show an
actual implementation of vmmap(1) from the ground up, using the underlying
Mach trap, mach_vm_region. You will also be able to use it on iOS.

PROCESS MEMORY ALLOCATION (USER MODE)

One of the most important aspects of programming is maintaining memory. All programs rely on
memory for their operation, and proper memory management can make the difference between a
fast, effi cient program, and poor and faulty one.

Like all systems, OS X offers two types of memory allocations — stack-based and heap-based.
Stack-based allocations are usually handled by the compiler, as it is the program’s automatic vari-
ables that normally populate the stack. Dynamic memory is normally allocated on the heap. Note,
that these terms apply only in user mode. At the kernel level, neither user heap nor stack exists.
Everything is reduced to pages. The following section discusses only the user mode perspective.
Kernel virtual memory management is itself deserving of its own chapter. Apple also provides
documentation about user mode memory allocation.[6]

The alloca() Alternative
Although the stack is, traditionally, the dwelling of automatic variables, in some cases a program-
mer may elect to use the stack for dynamic memory allocation, using the surprisingly little known
alloca(3). This function has the same prototype as malloc(3), with the one notable excep-
tion — that the pointer returned is on the stack, and not the heap.

From an implementation perspective, alloca(3) is preferable to malloc(3) for two main reasons:

 ‰ The stack allocation is usually nothing more than a simple modifi cation of the stack pointer
register. This is a much faster method than walking the heap and trying to fi nd a proper zone
or free list from which to obtain a chunk. Additionally, the stack memory pages are already
resident in memory, mitigating the concern of page faults — which, while unnoticeable in
user mode, still have a noticeable effect on performance.

 ‰ Stack allocation automatically clears up when the function allocating the space returns. This
is assured by the function prolog (which usually sets up the stack frame by saving the stack

c04.indd 138c04.indd 138 10/1/2012 5:57:05 PM10/1/2012 5:57:05 PM

Process Memory Allocation (User Mode) x 139

pointer on entry), and epilog (which resets the stack pointer to its value from the entry). This
makes dreaded memory leaks a non-issue. Given how happily programmers malloc()— yet
how little they free()— addressing memory leaks automatically is a great idea.

All these advantages, however, come at a cost — and that is of stack space. Stack space is generally
far more limited than that of the heap. This makes alloca(3) suitable for small allocations of
relatively short-lived functions, but inadequate for code paths that involve deep nesting (or worse,
recursion). Stack space can be controlled by setrlimit(3) on RLIMIT_STACK (or, from the com-
mand line, ulimit(1) –s). If the stack overfl ows, alloca(3) will return NULL and the process will
be sent a SIGSEGV.

Heap Allocations
The heap is a user-mode data structure maintained by the C runtime library, which frees the pro-
gram from having to directly allocate pages. The term “heap” originated from the data structure
used — a binary heap — although today’s heaps are far more complex. What’s more, every operat-
ing system has its own preference for heap management, with Windows, Linux, and Darwin taking
totally different approaches. The approach taken by Darwin’s LibC is especially suited for use by
its biggest client, the Objective-C runtime.

Darwin’s LibC uses a special algorithm for heap allocation, based on allocation zones. These are
the tiny, small, large and huge areas shown in the output of vmmap(1) in Figure 4-6 and Out-
put 4-13. Each zone has its own allocator with different semantics, which are optimized for the
allocation size. Prior to Snow Leopard, the scalable allocator was used, which is now superseded by
the magazine allocator. The allocation logic of both allocators is fairly similar, but allocation maga-
zines are thread-specifi c, and therefore less prone to locking or contention. The magazine allocator
also does away with the huge zones. The Foundation.Framework encapsulates malloc zones with
NSZones.

New zones can be added fairly easily (by calling NSCreateZone/malloc_create_zone, or directly
initializing a malloc_zone_t and calling malloc_zone_register), and malloc can be redirected
to allocated from a specifi c zone (by calling malloc_zone_malloc). Memory management func-
tions in a zone may be hooked. For debugging purposes, however, it suffi ces to use the introspect
structure and provide user-defi ned callbacks. As shown in Figure 4-7, introspection allows detailed
debugging of the zone, including presenting its usage, statistics, and all pointers. The <malloc
/malloc.h> header provides many other functions which are useful for debugging and diagnostics,
the most powerful of which is malloc_get_all_zones(), which (unlike most others) can be called
from outside the process for external memory monitoring.

Snow Leopard and later support purgeable zones, which underlie libcache and Cocoa’s
NSPurgeableData. Lion further adds support for discharged pointers and VM pressure relief. VM
pressure is a concept in XNU (more accurately, in Mach), which signals to user mode that the sys-
tem is low on RAM (i.e. too many pages are resident). The pressure relief mechanism then kicks in
and attempts to automatically free a supplied goal of bytes. RAM is especially important in iOS,
where the VM pressure mechanism is tied to Jetsam, a mechanism similar to Linux’s Out-Of-
Memory (OOM) killer. Most objective-C developers interface with the mechanism when they imple-
ment a didReceiveMemoryWarning, to free as much memory as possible and pray they will not be
ruthlessly killed by Jetsam.

c04.indd 139c04.indd 139 10/1/2012 5:57:06 PM10/1/2012 5:57:06 PM

140 x CHAPTER 4 PARTS OF THE PROCESS: MACH-O, PROCESS, AND THREAD INTERNALS

reserved1

reserved2

size

malloc

calloc

valloc

free

realloc

zone_name

batch_malloc

batch_free

introspect

version

memalign

free_definite_size

pressure_relief

enumerator

good_size

check

print

log

force_lock

force_unlock

statistics

zone_locked

discharge

enable_discharge_checking

enumerate_discharged…

disable_discharge_checking

malloc_zone_t

malloc_introspection_t

Returns size allocated by pointer, or 0 if not in zone

The implementation of malloc(3) for this zone

The implementation of calloc(3) (memset to 0) for this zone

The implementation of valloc(3) (calloc + page align) for this zone

The implementation of free(3) for this zone

The implementation of realloc(3) for this zone

String name of this zone

Allocate multiple buffers pointing to same size

Free array of pointers

Enumerates all malloc’ed pointers

Returns minimal size for allocation without padding

Checks zone consistency

Prints out zone, potentially verbose

Logs zone activity

Locks zone

Unlocks zone

Provides statistics

Returns true if zone is locked

Check for discharged pointers

Disable check for discharged pointers

Force discharge of pointer

If blocks support is compiled, show discharged pointers

Zone API version

Free ptr of given size

VM pressure handler

2k-aligned malloc

FIGURE 4-7: The structure of malloc zone objects

Virtual Memory — The sysadmin Perspective
It is assumed the reader is no stranger to virtual memory and the page lifecycle. Because the nomen-
clature used differs slightly with each operating system, however, the following serves both to
refresh and adapt the terms to those used in Mach-dom:

c04.indd 140c04.indd 140 10/1/2012 5:57:06 PM10/1/2012 5:57:06 PM

Process Memory Allocation (User Mode) x 141

Page Lifecycle
Physical memory pages spend their lives in one of several states, as shown in Table 4-10 and
Figure 4-8

TABLE 4-10: Physical Page States

PAGE STATE APPLIES WHEN

Free Physical page is not used for any virtual memory page. It may be instantly

reclaimed, if the need arises.

Active Physical page is currently used for a virtual memory page and has been recently

referenced. It is not likely to be swapped out, unless no more inactive pages

exist. If the page is not referenced in the near future, it will be deactivated.

Inactive Physical page is currently used for a virtual memory page but has not been

recently referenced by any process. It is likely to be swapped out, if the need

arises. Alternatively, if the page is referenced at any time, it will be reactivated.

Speculative Pages are speculatively mapped. Usually this is the result of a guessed alloca-

tion about possibly needing the memory, but it is not active yet (nor really inac-

tive, as it might be accessed shortly).

Wired down Physical page is currently used for a virtual memory page but cannot be paged

out, regardless of referencing.

Wired Active Inactive

Speculative

Page access

Page access

Timeout

Timeoutmlock, vm_wire

munlock, vm_unwire

FIGURE 4-8: Physical page state transitions

vm_stat(1)
The vm_stat(1) utility (not to be confused with the UNIX vmstat, which is different) displays the
in-kernel virtual memory counters. The Mach core maintains these statistics (in a vm_statistics64
struct), and so this utility simply requests them from the kernel and prints them out (how exactly it does
so is shown in a more detailed example in Chapter 10). Its output looks something like the following:

morpheus@ergo (/)$ vm_stat
Mach Virtual Memory Statistics: (page size of 4096 bytes)
Pages free: 5366.
Pages active: 440536.
Pages inactive: 267339.
Pages speculative: 19096.

c04.indd 141c04.indd 141 10/1/2012 5:57:07 PM10/1/2012 5:57:07 PM

142 x CHAPTER 4 PARTS OF THE PROCESS: MACH-O, PROCESS, AND THREAD INTERNALS

Pages wired down: 250407.
"Translation faults": 18696843.
Pages copy-on-write: 517083.
Pages zero filled: 9188179.
Pages reactivated: 98580.
Pageins: 799179.
Pageouts: 42569.

The vm_stat utility lists the counts of pages in various lifecycle stages, and additionally displays
cumulative statistics since boot, which include:

 ‰ Translation faults: Page fault counts

 ‰ Pages copy-on-write: Number of pages copied as a result of a COW fault

 ‰ Pages zero fi lled: Pages that were allocated and initialized

 ‰ Pageins: Fetches of pages from

 ‰ Pageouts: Pushes of pages to swap

sysctl(8)
The sysctl(8) command, which is a UNIX standard command to view and toggle kernel variables,
can also be used to manage virtual memory settings. Specifi cally, the vm namespace holds the fol-
lowing variables shown in Table 4-11:

TABLE 4-11: sysctl variables to control virtual memory settings

VARIABLE USED FOR

vm.allow_stack_exec Executable stacks. Default is 0.

vm.allow_data_exec Executable heaps. Default is 1.

vm.cs_* Miscellaneous settings related to code signing. These are

discussed under “Code Signing” in Chapter 12.

vm.global_no_user_wire_amount

vm.global_user_wire_limit

vm.user_wire_limit

Global and per user settings for wired (mlocked) memory.

vm.memory_pressure Is system low on virtual memory?

kern.vm_page_free_target

page_free_wanted
Target number of pages that should always be free.

shared_region_* Miscellaneous settings pertaining to shared memory regions.

dynamic_pager(8)
OS X is unique in that, following Mach, swap is not managed directly at the kernel level. Instead, a
dedicated user process, called the dynamic_pager(8) handles all swapping requests. It is started at
boot by launchd, from a property list fi le called com.apple.dynamic_pager.plist (found amidst

c04.indd 142c04.indd 142 10/1/2012 5:57:07 PM10/1/2012 5:57:07 PM

Threads x 143

the other startup programs, in /System/Library/LaunchDaemons, as discussed in Chapter 6). It is
possible to disable swapping altogether, by unloading (or removing) the property list from launchd,
but this is not recommended.

The dynamic_pager is responsible for managing the swap space on the disk. The launchd starts the
pager with the swap set to /private/var/vm/swapfile. This can be changed with the –F switch,
to specify another fi le path and prefi x. Other settings the pager responds to are shown in
Table 4-12:

TABLE 4-12: Switches used by dynamic_pager(8)

SWITCH USED FOR

-F Path and prefi x of swap fi les. Default set by launchd is /private/var/vm/swapfile.

-S File size, in bytes, for additional swap fi le.

-H High water mark: If there are fewer pages free than this, swap fi les are needed.

-L Low water mark: If there are more pages free than this, the swap fi les may be coalesced.

For obvious reasons, it must hold that -L >= -S + H, as the coalescing will free a swap

fi le of S bytes.

The dynamic_pager has its own property list fi le (Library/Preferences/com.apple.virtual-
Memory.plist). The only key defi ned, at present, is a Boolean — prior to Lion, useEncryptedSwap
(default, no), and as of Lion, disableEncryptedSwap (default, yes). Because the encrypted swap fea-
ture follows the hard-coded default (true for laptops, false for desktops/servers), this fi le should be cre-
ated if the default is to be changed — which may be accomplished with the defaults(1) command.

The above mentioned sysctl(8) command can be used to view (among other things) the swap utili-
zation, by vm.swapusage.

THREADS

Processes as we know them are a thing of the past. Modern operating systems, OS X and iOS
included, see only threads. Apple raises the notch a few levels higher by supporting far richer APIs
than other operating systems, to facilitate the work with multiple threads. This section reviews the
ideas behind threads, then discusses the OS X/iOS-specifi c features.

Unraveling Threads
Originally, UNIX was designed as a multi-processed operating system. The process was the funda-
mental unit of execution, and the container of the various resources needed for execution: virtual
memory, fi le descriptors, and other objects. Developers wrote sequential programs, starting with the
entry point — main — and ending when the main function returned (or when exit(2) was called.
Execution was thus serialized, and easy to follow.

This, however, soon proved to be too rigid an approach, offering little fl exibility to tasks which
needed to be executed concurrently. Chief among those was I/O: calls such as read(2) and

c04.indd 143c04.indd 143 10/1/2012 5:57:07 PM10/1/2012 5:57:07 PM

144 x CHAPTER 4 PARTS OF THE PROCESS: MACH-O, PROCESS, AND THREAD INTERNALS

write(2) could block indefi nitely — especially when performed on sockets. A blocking read meant
that socket code, for example, could not keep on sending data while waiting to read. The select(2)
and poll(2) system calls provided somewhat of workaround, by enabling a process to put all its fi le
descriptors into one array, thereby facilitating I/O multiplexing. Coding in this way is neither scal-
able nor very effi cient, however.

Another consideration was that most processes block on I/O sooner rather than later. This means
that a large portion of the process timeslice is effectively lost. This greatly impacts performance,
because the cost of process context switching is considered expensive.

Threads were thus introduced, at the time, primarily as a means of maximizing the process
timeslice: By enabling multiple threads, execution could be split into seemingly concurrent subtasks.
If one subtask would block, the rest of the timeslice could be allocated to another subtask. Addition-
ally, polling would no longer be required: One thread could simply block read and wait for data
indefi nitely, while another would be free to keep on doing other things, such as write(2), or any
other operation.

CPUs at the time were still limited, and even multi-threaded code could only run one thread at a
time. The thread preemption of a process was a smaller-scale rendition of the preemptive multitask-
ing the system did for processes. At that point, it started making more sense for most operating
systems to switch their scheduling policies to threads, rather than processes. The cost of switching
between threads is minimal — merely saving and restoring register state. Processes, by contrast,
involve switching the virtual memory space as well, including low-level overhead such as fl ushing
caches, and the Translation Lookaside Buffer (TLB).

With the advent of multi-processor, and — in particular — multi-core architectures, threads took
a life of their own. Suddenly, it became possible to actually run two threads in a truly concurrent
manner. Multiple cores are especially hospitable to threads because cores share the same caches
and RAM – facilitating the sharing of virtual memory between threads. Multiple processors,
by contrast, can actually suffer due to non-uniform memory architecture, and cache coherency
considerations.

UN*X systems adopted the POSIX thread model. Windows chose its own API. Mac OS X natu-
rally followed in the UN*X footsteps, but has taken a few steps further with its introduction
of higher-level APIs — those of Objective-C and (as of Snow Leopard) — the Grand Central
Dispatcher.

POSIX Threads
The POSIX thread model is effectively the standard threading API in all systems but Windows
(which clings to the Win32 Threading APIs). OS X and iOS actually support more of pthread than
other operating systems. A simple man –k pthread will reveal the extent of functions supported, as
will a look at <pthread.h>.

The pthread APIs, as in other systems, are mapped to native system calls which direct the kernel
to create the threads. Table shows this mapping. Unlike other operating systems, XNU also con-
tains specifi c system calls meant to facilitate pthread’s synchronization objects to be managed in
kernel mode (collectively known as psynch). This makes thread management more effi cient, than

c04.indd 144c04.indd 144 10/1/2012 5:57:07 PM10/1/2012 5:57:07 PM

Threads x 145

leaving the objects in user mode. These calls, however, are not necessarily enabled (being condition-
ally compiled in the kernel). libSystem dynamically checks, and — if supported — uses internal
new _pthread_* functions in place of the “old” pthread ones (e.g. new_pthread_mutex_init,
new_pthread_rwlock_rdlock, and the like). Note that the psynch APIs (shown in table 4-13) aren’t
necessarily supported.

TABLE 4-13: Some pthread APIs and their corresponding system calls in XNU.

PTHREAD API UNDERLYING SYSTEM CALL

pthread_create bsdthread_create

pthread_sigmask pthread_sigmask

pthread_cancel pthread_markcancel

pthread_rwlock_rdlock psynch_rw_rdlock

pthread_cond_signal psynch_cvsignal

pthread_cond_wait psynch_cvwait

pthread_cond_broadcast psynch_cvbroad

Grand Central Dispatch
Snow Leopard introduces a new API for multi-processing called the Grand Central Dispatch (GCD).
Apple promotes this API as an alternative to threads. This presents a paradigm shift: Rather than
think about threads and thread functions, developers are encouraged to think about functional
blocks. GCD maintains an underlying thread pool implementation to support the concurrent and
asynchronous execution model, relieving the developer from the need to deal with concurrency
issues, and potential pitfalls such as deadlocking. This mechanism can also deal with other asyn-
chronous notifi cations, such as signals and Mach messages. Lion further extends this to support
asynchronous I/O. Another advantage of using GCD is that the system automatically scales to the
number of available logical processors.

The developer implements the work units as either functions, or functional block. A functional
block, quite like a C block, is enclosed in curly braces, but — like a C function — can be pointed to
(albeit with a caret (^) rather than an asterisk (*)). The dispatch APIs can work well with either.

Work is performed by one of several dispatch queues:

 ‰ The global dispatch queues: are available to the application by calling dispatch_get_
global_queue(), and specifying the priority requested: DISPATCH_QUEUE_PRIORITY_
DEFAULT, _LOW, or _HIGH.

 ‰ The main dispatch queue: which integrates with Cocoa applications’ run loop. It can be
retrieved by a call to dispatch_get_main_queue().

c04.indd 145c04.indd 145 10/1/2012 5:57:08 PM10/1/2012 5:57:08 PM

146 x CHAPTER 4 PARTS OF THE PROCESS: MACH-O, PROCESS, AND THREAD INTERNALS

 ‰ Custom queues: Created manually by a call to dispatch_queue_create(), can be used to
obtain greater control over dispatching. These can either be serial queues (in which tasks are
executed FIFO) or concurrent ones.

The APIs of the Grand Central Dispatch are all declared in <dispatch/dispatch.h>, and imple-
mented in libDispatch.dylib, which is internal to libSystem. The APIs themselves are built over
pthread_workqueue APIs, which XNU supports with its workq system calls (#367, #368).
Chapter 14 discusses these system calls in more detail. A good documentation on the user mode
perspective can be found in Apple’s own GCD Reference[7] and Concurrency Programming Guide.[8]

It should be noted that Objective-C further wraps these APIs by those exposed by the NSOperation-
related objects.

REFERENCES

1. Apple Technical Note — TN2206: “Mac OS X Code Signing In Depth”

2. NeXTSTEP 3.3 DevTools documentation, Chapter 14, “Mach Object Files” — Documents
the original Mach-O format (which remains largely unchanged in OS X).

3. Apple Developer: Mach-O Programming Topics — Basic architecture and loading

4. Apple Developer: Mac OS X ABI Mach-O File Format Reference — Discussion on load
commands

5. Dream Team — Absinthe and Corona Jailbreaks for iOS 5.0.1: http://conference.hitb
.org/hitbsecconf2012ams/materials/

6. Apple Developer: Memory Management — Discusses memory management from the user
mode perspective

7. Apple Developer: Grand Central Dispatcher Reference

8. Apple Developer: Concurrency Programming Guide

c04.indd 146c04.indd 146 10/1/2012 5:57:08 PM10/1/2012 5:57:08 PM

http://conference.hitb.org/hitbsecconf2012ams/materials/
http://conference.hitb.org/hitbsecconf2012ams/materials/

5
Non Sequitur:
Process Tracing and Debugging

Sooner or later, any developer — and often, the system administrator as well — are required to
call on debugging skills. Whether it is their own code, an installed application, or sometimes
the system itself, and whether they are just performing diagnostics or trying to reverse engi-
neer, debugging techniques prove invaluable.

Debugging can quickly turn into a quagmire, and often requires that you unleash the might
of GDB — the GNU Debugger, and go deep into the nether regions of architecture-specifi c
assembly. OS X contains a slew of debugging tools and enhancements, which can come in very
handy, and help analyze the problem before GDB is invoked. Apple dedicates two TechNotes
for what they call “Debugging Magic”[1,2], but there are even more arcane techniques worth
discussing. We examine these next.

DTRACE

First and foremost mention amongst all debugging tools in OS X must be given to DTrace.
DTrace is a major debugging platform, which was ported from Sun’s (Oracle’s) Solaris. Out-
side Solaris, OS X’s adoption of DTrace is the most complete. Detailing the nooks and cran-
nies of DTrace could easily fi ll up an entire book, and in fact does[3], and therefore merits the
following section.

The D Language
The “D” in Dtrace stands for the D language. This is a complete tracing language, which
enables the creation of specialized tracers, or probes.

D is a rather constrained language, with a rigorous programming model, which follows that
of AWK. It lacks even the basic fl ow control, and loops have been removed from the language
altogether. This was done quite intentionally, because the D scripts are compiled and executed
by kernel code, and loops run the risk of being too long, and possibly infi nite. Despite these

c05.indd 147c05.indd 147 10/5/2012 4:15:28 PM10/5/2012 4:15:28 PM

148 x CHAPTER 5 NON SEQUITUR: PROCESS TRACING AND DEBUGGING

constraints, however, DTrace offers spectacular tracing capabilities, which rival — and in some cases
greatly exceed — those of ptrace(2). This is especially true in OS X, where the implementation of the
latter is (probably intentionally) crippled, and hence deserves little mention in this book.

Both the DTrace and ptrace(2) facilities in OS X are not operating at their
full capacity. Quite likely, this is due to Apple’s concerns about misuse of the
tremendous power these mechanisms provide, which could give amateurs and
hackers the keys to reverse engineer functionality. This holds even stronger in
iOS, wherein DTrace functionality is practically non-existent.

The ptrace(2) functionality is especially impaired: Unlike its Linux counter-
part, which allows the full tracing and debugging of a process (making it the
foundation of Linux’s strace, ltrace, and gdb), the OS X version is severely
crippled, not supporting any of the PT_READ_* or PT_WRITE_* requests, leaving
only the basic functions of attachment and stopping/continuing the process.

Apple’s protected processes, such as iTunes, make use of a P_LNOATTACH fl ag to
completely deny tracing (although this could be easily circumvented by recompil-
ing the kernel).

DTrace forms the basis of XCode’s Instruments tool, which is, at least in this author’s opinion, the best
debugging and profi ling tool to come out of any operating system. Instruments allow the creation of
“custom” instruments, which are really just wrappers over the raw D scripts, as shown in Figure 5-1.

FIGURE 5-1: Instruments’ custom instrument dialog box, a front-end to DTrace

c05.indd 148c05.indd 148 10/5/2012 4:15:33 PM10/5/2012 4:15:33 PM

DTrace x 149

Many of Solaris’s D scripts have been copied verbatim (including the Solaris-oriented comments) to
OS X. They are generally one of two types:

 ‰ Raw D scripts: These are clearly identifi able by their .d extension and are set to run under
/usr/sbin/dtrace –s, using the #! magic that is common to scripts in UNIX. When the
kernel is requested to load them, the #! redirects to the actual DTrace binary. These scripts
accept no arguments, although they may be tweaked by direct editing and changing of some
variables.

 ‰ D script wrappers: These are shell scripts (#!/bin/sh), that use the shell functionality to
process user arguments and embed them in an internal D script (by simple variable interpo-
lation). The actual functionality is still provided by DTrace (/usr/sbin/dtrace –n) but is
normally invisible.

Because of the .d extension, it is easy to fi nd all raw scripts in a system (try find / -name "*.d"
2>/dev/null). The wrapped scripts, however, offer no hint as to their true nature. Fortunately, both
types of scripts have corresponding man pages, and a good way to fi nd both types is to search by the
dtrace keyword: they all have “Uses DTrace” in their description, as shown in Output 5-1:

OUTPUT 5-1: Displaying DTrace related programs on OS X using the man “–k” switch

morpheus@ergo (/) man –k dtrace
bitesize.d(1m) - analyse disk I/O size by process. Uses DTrace
cpuwalk.d(1m) - Measure which CPUs a process runs on. Uses DTrace
creatbyproc.d(1m) - snoop creat()s by process name. Uses DTrace
dappprof(1m) - profile user and lib function usage. Uses DTrace
dapptrace(1m) - trace user and library function usage. Uses DTrace
diskhits(1m) - disk access by file offset. Uses DTrace
dispqlen.d(1m) - dispatcher queue length by CPU. Uses DTrace
dtrace(1) - generic front-end to the DTrace facility
dtruss(1m) - process syscall details. Uses DTrace
errinfo(1m) - print errno for syscall fails. Uses DTrace
execsnoop(1m) - snoop new process execution. Uses DTrace
fddist(1m) - file descriptor usage distributions. Uses DTrace
filebyproc.d(1m) - snoop opens by process name. Uses DTrace
hotspot.d(1m) - print disk event by location. Uses DTrace
httpdstat.d(1m) - realtime httpd statistics. Uses DTrace
iofile.d(1m) - I/O wait time by file and process. Uses DTrace
iofileb.d(1m) - I/O bytes by file and process. Uses DTrace
iopattern(1m) - print disk I/O pattern. Uses DTrace
iopending(1m) - plot number of pending disk events. Uses DTrace
iosnoop(1m) - snoop I/O events as they occur. Uses DTrace
iotop(1m) - display top disk I/O events by process. Uses DTrace
kill.d(1m) - snoop process signals as they occur. Uses DTrace
lastwords(1m) - print syscalls before exit. Uses DTrace
loads.d(1m) - print load averages. Uses DTrace
newproc.d(1m) - snoop new processes. Uses DTrace
opensnoop(1m) - snoop file opens as they occur. Uses DTrace
pathopens.d(1m) - full pathnames opened ok count. Uses DTrace
pidpersec.d(1m) - print new PIDs per sec. Uses DTrace
plockstat(1) - front-end to DTrace to print statistics about POSIX mutexes
 and read/write locks

continues

c05.indd 149c05.indd 149 10/5/2012 4:15:34 PM10/5/2012 4:15:34 PM

150 x CHAPTER 5 NON SEQUITUR: PROCESS TRACING AND DEBUGGING

priclass.d(1m) - priority distribution by scheduling class. Uses DTrace
pridist.d(1m) - process priority distribution. Uses DTrace
procsystime(1m) - analyse system call times. Uses DTrace
runocc.d(1m) - run queue occupancy by CPU. Uses DTrace
rwbypid.d(1m) - read/write calls by PID. Uses DTrace
rwbytype.d(1m) - read/write bytes by vnode type. Uses DTrace
rwsnoop(1m) - snoop read/write events. Uses DTrace
sampleproc(1m) - sample processes on the CPUs. Uses DTrace
seeksize.d(1m) - print disk event seek report. Uses DTrace
setuids.d(1m) - snoop setuid calls as they occur. Uses DTrace
sigdist.d(1m) - signal distribution by process. Uses DTrace
syscallbypid.d(1m) - syscalls by process ID. Uses DTrace
syscallbyproc.d(1m) - syscalls by process name. Uses DTrace
syscallbysysc.d(1m) - syscalls by syscall. Uses DTrace
topsyscall(1m) - top syscalls by syscall name. Uses DTrace
topsysproc(1m) - top syscalls by process name. Uses DTrace
weblatency.d(1m) - website latency statistics. Uses DTrace

The (hopefully intrigued) reader is encouraged to check out these scripts on his or her own.
Although not all work perfectly, those that are functional offer a staggering plethora of information.
The potential uses (for tracing/debugging) and misuses (reversing/cracking) are equally vast.

dtruss
Of the many DTrace-enabled tools in OS X, one deserves an honorable mention. The dtruss(1)
tool is a DTrace-powered equivalent of Solaris’s longtime truss tool (which is evident by its man
page, which still contains references to it). The truss tool may be more familiar to Linux users by
its counterpart, strace. Both enable the tracing of system calls by printing the calls in C-like form,
showing the system call, arguments, and return value. This is invaluable as a means of looking
“under the hood” of user mode, right down to the kernel boundary.

Unlike Linux’s strace, dtruss isn’t smart enough to go the extra step and dereference pointers to
structures, providing detailed information on fi elds. It is, however, powerful enough to display char-
acter data, which makes it useful for most system calls that accept fi le names or string data. There
are three modes of usage:

 ‰ Run a process under dtruss: By specifying the command and any arguments after those of
dtruss

 ‰ Attach to a specifi c instance of a running process: By specifying its PID as an argument to
dtruss –p

 ‰ Attach to named processes: By specifying the name as an argument to dtruss –n

Another useful feature of dtruss is its ability to automatically latch onto subprocesses (specify –f).
This is a good idea when the process traced spawns others.

It is possible to use dtruss as both a tracer and a profi ler. The default use will trace all system calls,
presenting a very verbose output. Output 5-2 shows a sample, truncated for brevity.

OUTPUT 5-1 (continued)

c05.indd 150c05.indd 150 10/5/2012 4:15:34 PM10/5/2012 4:15:34 PM

DTrace x 151

OUTPUT 5-2: A sample output of dtruss

SYSCALL(args) = return
getpid(0x7FFF5FBFF970, 0x7FFFFFE00050, 0x0) = 5138 0

... // Loading the required libraries

bsdthread_register(0x7FFF878A2E7C, 0x7FFF87883A98, 0x2000) = 0 0
thread_selfid(0x7FFF878A2E7C, 0x7FFF87883A98, 0x0) = 69841 0
open_nocancel("/dev/urandom\0", 0x0, 0x7FFF70ED5C00) = 3 0

 // read random data from /dev/urandom

 // various sysctls…

getrlimit(0x1008, 0x7FFF5FBFF520, 0x7FFF8786D2EC) = 0 0
open_nocancel("/usr/share/locale/en_US.UTF-8/LC_CTYPE\0", 0x0, 0x1B6) = 3 0
 // read various locale (language) settings
read_nocancel(0x3, "RuneMagAUTF-8\0", 0x1000) = 4096 0
read_nocancel(0x3, "\0", 0x1000) = 4096 0
 // …
read_nocancel(0x3, "@\004\211\0", 0xDB70) = 56176 0
close_nocancel(0x3) = 0 0

 // open the file in question

open("/etc/passwd\0", 0x0, 0x0) = 3 0
fstat64(0x1, 0x7FFF5FBFF9D0, 0x0) = 0 0
mmap(0x0, 0x20000, 0x3, 0x1002, 0x3000000, 0x0) = 0x6E000 0
mmap(0x0, 0x1000, 0x3, 0x1002, 0x3000000, 0x0) = 0x8E000 0

 // read the data

read(0x3, „##\n# User Database\n# \n# Note that this file is consulted directly only
when the system is running\n# in single-user mode. At other times this information
is provided by\n# Open Directory.\n#\n# This file will not be consulted for
authentication unless the BSD", 0x20000)
 = 3662 0
..

The various system calls can be quickly looked up in the man (section 2). Even more valuable output
can be obtained from adding -s, which offers a stack trace of the calls leading up to the system call.
This makes it useful to isolate which part of the executable, or a library thereof, was where the call
originated. If you have the debugging symbols (that is, compiled with –g, and have the companion
.dSym fi le), this can quickly pinpoint the line of code, as well.

For profi ling, the –c, -d, -e, and –o switches come in handy. The fi rst prints the summary of system
calls, and the others print various times spent in the system call. Note that sifting through so much
information is no mere feat by itself. The primary advantages of using DTrace scripts and dtruss
are remote execution and textual format, which is relatively easily grep(1)-pable. If a Graphical User
Interface (GUI) is preferable, the Instruments application provides a superb GUI, which enables a
timeline-based navigation and arbitrary levels of zooming in and out on the data.

c05.indd 151c05.indd 151 10/5/2012 4:15:34 PM10/5/2012 4:15:34 PM

152 x CHAPTER 5 NON SEQUITUR: PROCESS TRACING AND DEBUGGING

How DTrace Works
DTrace achieves its debugging magic by enabling its probes to execute in the kernel. The user mode
portion of DTrace is carried out by /usr/lib/dtrace.dylib, which is common to both Instru-
ments and /usr/sbin/dtrace, the script interpreter. This is the runtime system that compiles the D
script. For most of the useful scripts, however, the actual execution, is in kernel mode. The DTrace
library uses a special character device (/dev/device) to communicate with the kernel component.

Snow Leopard has some 40 DTrace providers and Lion has about 55, although only a small part
of them are in the kernel. Using dtrace –l will yield a list of all providers, but those include PID
instances, with multiple instances for function names. To get a list of the actual provider names, it
makes sense to strip the PID numbers and then fi lter out only unique matches. A good way to do so
is shown in Output 5-3.

OUTPUT 5-3: Displaying unique DTrace providers

root@ergo(/)# dtrace -l | # List all providers
 tr -d '[0-9]' | # Remove numbers (pids , etc)
 tr -s ' ' | # Squeeze spaces (so output can be cut)
 cut -d' ' -f2 | # isolate second field (provider)
 sort –u # Sort, and only show unique providersCalAlarmAgentProbe
Cocoa_Autorelease
CoreData
CoreImage
ID
JavaScriptCore
MobileDevice
PrintCore
QLThumbnail
QuickTimeX
RawCamera
..

The key registered DTrace providers in the kernel are shown in Table 5-1:

TABLE 5-1: Registered DTrace providers in OS X (partial list)

PROVIDER PROVIDERS

dtrace DTrace itself (used for BEGIN, END, and ERROR).

fbt Function boundary tracing: low-level tracing of function entry/exit.

mach_trap Mach traps (entry and return).

proc Process provider: Enables monitoring a process by PID.

profile Profi ling information. Used to provide a tick in scripts that require periodic sampling.

sched The Mach scheduler.

syscall BSD system calls (entry and return).

vminfo Virtual memory information.

c05.indd 152c05.indd 152 10/5/2012 4:15:35 PM10/5/2012 4:15:35 PM

DTrace x 153

Exercise: Demonstrating deep kernel system call tracing
As another great example of just how powerful DTrace is, consider the script in Listing 5-1:

LISTING 5-1: A D script to trace system calls — all the way into kernel space

#pragma D option flowindent /* Auto-indent probe calls */

syscall::open:entry
{
 self->tracing = 1; /* From now on, everything is traced */
 printf("file at: %x opened with mode %x", arg0, arg1);
}

fbt:::entry
/self->tracing/
{
 printf("%x %x %x", arg0, arg1,arg2); /* Dump arguments */
}

fbt::open:entry
/self->tracing/
{
 printf ("PID %d (%s) is opening \n" ,
 ((proc_t)arg0)->p_pid , ((proc_t)arg0)->p_comm);
}

fbt:::return
/self->tracing/
{
 printf ("Returned %x\n", arg1);
}
syscall::open:return
/self->tracing/
{
 self->tracing = 0; /* Undo tracing */
 exit(0); /* finish script */
}

The script begins with a syscall probe, in this case probing open(2) — you can modify the script eas-
ily by simply replacing the system call name. On entry, the script sets a Boolean fl ag — tracing. The
use of the “self” object makes this fl ag visible in all other probes, effectively serving as a global variable.

From the moment open(2) is called, the script activates two fbt probes. The fi rst simply dumps
up to three arguments of the function. The second is a specialized probe, exploiting the fact we
know exactly which arguments open(2) expects in kernel mode — in this case, the fi rst argument
is a proc_t structure. By casting the fi rst argument, we can access its subfi elds — as is shown by
printing out the value of p_pid and p_comm. This is possible because the argument is in the provid-
ing module’s address space (in this case, the kernel address space, since the providing module is
mach_kernel).

Finally, on return from any function, its return value — accessible in arg1 — is printed. When the
open function fi nally returns, the tracing fl ag is disabled, and the script exits.

c05.indd 153c05.indd 153 10/5/2012 4:15:35 PM10/5/2012 4:15:35 PM

154 x CHAPTER 5 NON SEQUITUR: PROCESS TRACING AND DEBUGGING

Running this script will produce an output similar to Output 5-4:

OUTPUT 5-4: Running the example from Listing 5-1

CPU FUNCTION
 3 => open file at: 10f80bdf0 openeed with mode 4
 3 -> open PId 69 (mds) is opening

 3 | open:entry ffffff801561aa80 ffffff80158ac6d4
 ffffff801837a608
 3 -> __pthread_testcancel 1 ffffff80158ac6d4 ffffff801837a608
 3 <- __pthread_testcancel Returned ffffff801837a5c0

 3 -> vfs_context_current ffffff8015fe0ec0 ffffff80158ac6d4 0
 3 <- vfs_context_current Returned ffffff801837a718

 3 -> vfs_context_proc ffffff801837a718 ffffff80158ac6d4 0
 3 -> get_bsdthreadtask_info ffffff8015fe0ec0 ffffff80158ac6d4 0
 3 <- get_bsdthreadtask_info Returned ffffff801561aa80
 3 <- vfs_context_proc Returned ffffff801561aa80
...
 (output truncated for brevity)
...
 3 -> proc_list_unlock ffffff8013ed5970 10 ffffff8013ed5970
 3 <- proc_list_unlock Returned ffffff80008d91b0

 3 -> lck_mtx_unlock ffffff8013ed5970 10 ffffff8013ed5970
 3 <- lck_mtx_unlock Returned 1f0000

 3 <- open Returned 0

As an exercise, try adapting the D-Script from Listing 5-1 to intercept Mach traps, rather than BSD
system calls.

OTHER PROFILING MECHANISMS

DTrace is fast becoming the tracing mechanism of choice in OS X, but it is not the only one. Other
alternatives exist, which is especially important in iOS, wherein DTrace does not exist.

The Decline and Fall of CHUD
OS X and iOS had a framework called CHUD (Computer Hardware Understanding and Devel-
opment). This framework, made private in Snow Leopard and apparently removed as of Lion,
was an exceptionally powerful framework, which could be used to register callbacks at various
points in the kernel. The CHUD APIs were used by many of the XCode profi ling tools back
when OS X was primarily PPC-based, chiefl y the now obsolete applications such as Reggie_SE
and Shark (made extinct by Instruments). The APIs were utilized by specialized kernel exten-
sions, which still exist in Snow Leopard (CHUDKernLib, CHUDProf, and CHUDUtils). These no
longer appear in public as of Lion. CHUD still has a dedicated system call (#185), but it returns
EINVAL unless a callback has been registered (usually by the CHUDProf kext), and CHUD has
been enabled.

c05.indd 154c05.indd 154 10/5/2012 4:15:35 PM10/5/2012 4:15:35 PM

Other Profi ling mechanisms x 155

Before the move to Intel, XNU had architecture-specifi c calls for PPC to enable CHUD. It seems
that, with the fall from grace of PPC, so too has CHUD lost its charm. The APIs are now reserved
for Apple’s internal use, mostly in iOS. The CHUD.Framework, required to access CHUD functional-
ity from user space, is private in Snow Leopard, and has disappeared completely from OS X in Lion.
The framework still exist in in the iOS SDK DiskDeveloperImage (/Developer/Library/Private-
Frameworks), and some tools, notably chudRemoteCtrl, rely on it. Additionally, both the iOS and
OS X kernels contain the CHUD symbols, but the APIs are not made public in any way. It is likely
that Apple still uses CHUD privately, especially in iOS.

AppleProfi leFamily: The Heir Apparent
CHUD may have gone missing, but its essence remains. Profi ling in both OS X and iOS is taken over by
the private AppleProfileFamily.framework (and the CoreProfile.framework, which builds on it).
This framework is quite similar to CHUD, in that it makes use of the latter’s abandoned kernel callbacks,
and communicates with various dedicated profi ling kexts. The kexts, shown in Table 5-2, resided with
their ilk in /System/Library/Extensions in Snow Leopard, but have since been moved (in Lion) into
the AppleProfileFamily.Framework/resources in OS X. Putting kexts into a framework is a rather
curious decision, but likely help keeps them private. In iOS these kexts are pre-linked into the kernel.

TABLE 5-2: AppleProfi leFamily kexts common to OS X and iOS

KEXT DESCRIPTION

AppleProfi leFamily Provides foundation and base class for other extensions. This kext

also apparently claims the CHUD callbacks in XNU.

AppleProfi leCallstackAction Traces function call stacks.

Registers the appleprofile.actions.callstack sysctls.

AppleProfi leKEventAction Traces kevents.

Registers appleprofile.actions.kevent sysctls.

AppleProfi leReadCounterAction Reads performance Monitor counters.

Registers appleprofile.pmcs sysctls.

AppleProfi leRegisterStateAction Saves register state during profi ling.

Registers appleprofile.actions.register_state sysctls.

AppleProfi leTimestampAction Handles accurate timestamps during events.

Registers appleprofile.actions.timestamp sysctls.

AppleProfi leThreadInfoAction Profi les threads.

Registers appleprofile.actions.threadinfo sysctls.

OS X has an additional kext for Intel (or IntelPenryn) profi ling. As shown above, the kexts register
several sysctl MIBs under the appleprofile parent (triggers, actions, and pmcs), mostly to con-
trol buffer and memory sizes. None are, at present, documented, though sysctl appleprofile can
display them, and using strings(1) on the AppleProfileFamily kext provides a rough description
for them. Another component, /usr/libexec/appleprofilepolicyd, remains in user mode and
serves as the arbiter and policy decision maker.

c05.indd 155c05.indd 155 10/5/2012 4:15:35 PM10/5/2012 4:15:35 PM

156 x CHAPTER 5 NON SEQUITUR: PROCESS TRACING AND DEBUGGING

PROCESS INFORMATION

In addition to DTrace, which is powerful enough, OS X provides two key mechanisms to obtain
detailed process information, such as open handles, memory utilization, and other statistics, the
likes of which are used by ps(1), lsof(1), netstat(1), and friends.

sysctl
The sysctl mechanism, which has already been discussed in the previous chapters, offers variables to
display statistics pertaining to processes. This mechanism is crucial in order to obtain the list of the
process IDs (and is, in fact, the means by which this list is obtained in ps(1) and top(1)).

The kern namespace exposes the KERN_PROCARGS and KERN_PROCARGS2 MIBs under CTL_KERN.
These may be used with the third level MIB value of any PID on the system, in order to retrieve the
argument and environment of that process.

proc_info
OS X and iOS both offer the proc_info system call. This undocumented system call (#336) is
fundamental for many system utilities, such as lsof(1) and fuser(1). Though it merits its own
include fi le (<sys/proc_info.h>), the system call remains well hidden, and should be accessed via
<libproc.h>, the header fi le for libproc.dylib, which is part of Darwin’s LibC (and therefore
part of libSystem)

 Using proc_info, it is possible to query many aspects of processes and their threads. Chief among
those is their use of fi le descriptors and sockets (hence the importance for lsof(1)-like tools). This
is cardinal in systems wherein /dev/kmem is not available (which, by default, is all systems), as
sysctl(8) can show addresses in kernel space, but cannot read them.

The proc_info system call accepts a callnum argument, and a flavor. Each callnum results in dif-
ferent functionality, according to one of the unnamed integer values in Table 5-3. These values are
wrapped in <libproc.h> by functions:

TABLE 5-3: callnum values accepted by proc_info

CALLNUM USED FOR

1 List all PIDs. Wrapped by proc_listpids() and others. In this

case, the PID argument is taken to be one of the following:

#define PROC_ALL_PIDS 1

#define PROC_PGRP_ONLY 2

#define PROC_TTY_ONLY 3

#define PROC_UID_ONLY 4

#define PROC_RUID_ONLY 5

c05.indd 156c05.indd 156 10/5/2012 4:15:35 PM10/5/2012 4:15:35 PM

Process Information x 157

CALLNUM USED FOR

2 Return PID information for a specifi c PID. Wrapped by proc_

pidinfo(). In this case, the fl avor argument is taken to be one of

the following:

PROC_PIDLISTFDS: for fi le descriptors

PROC_PIDTBSDINFO: for BSD task information info

PROC_PIDTASKINFO: for Mach task information info

PROC_PIDTASKALLINFO: Both Mach and BSD information

PROC_PIDTHREADINFO: list of task’s threads

PROC_PIDWORKQUEUEINFO: kernel work queues held by task

PROC_PIDREGIONINFO: list of memory regions (q.v. vmmap(1))

Lion further adds:

PROC_BSDSHORTINFO: summary information of BSD attributes

PROC_PIDVNODEPATHINFO: list of vnodes held by this PID

PROC_PIDLISTFILEPORTS: List of fi leports

3 Return fi le descriptor information for a specifi c PID. Wrapped by

proc_pidfdinfo(). In this case, fl avor is:

PROC_PIDFDVNODEINFO: VNodes

PROC_PIDFDVNODEPATHINFO: VNodes, with path

PROC_PIDFDSOCKETINFO: Socket information

PROC_PIDFDPSHMINFO: Shared memory descriptors

PROC_PIDFDPIPEINFO: Pipes

PROC_PIDFDKQUEUEINFO: Kernel queues

PROC_PIDFDATALKINFO: AppleTalk descriptors

4 Return the kernel message buff er. Wrapped by proc_kmsgbuf()

5 Set process control parameters. Wrapped by

proc_setpcontrol();

6 New in Lion and iOS 4.3: Return information about fi leports for a

specifi c PID. Wrapped by proc_pidfileportinfo().

All of these values, save for the fi fth, are informational only. The fi fth callnum, however, can be
used to set process control parameters.

LibProc wraps proc_info with several useful functions, as shown in Table 5-4:

TABLE 5-4: Functions in <libproc.h>

FUNCTION PROTOTYPE USAGE

int proc_listpids

 (uint32_t type,

 uint32_t typeinfo,

void *buffer,

int buffersize);

Returns in buffer a list of all PIDs in the system. Used as the basis

for other functions.

continues

c05.indd 157c05.indd 157 10/5/2012 4:15:35 PM10/5/2012 4:15:35 PM

158 x CHAPTER 5 NON SEQUITUR: PROCESS TRACING AND DEBUGGING

FUNCTION PROTOTYPE USAGE

int proc_listpidspath

 (uint32_t type,

 uint32_t typeinfo,

 const char *path,

 uint32_t pathflags,

 void *buffer,

 int buffersize);

Returns in buffer all PIDs holding a reference to path according to

pathflags.

(essentially, fuser(1) in a library call version).

Return value is amount of bytes used in buff er.

int proc_pidfdinfo

(int pid,

 int fd,

 int flavor,

void *buffer,

 int buffersize);

Return in buffer a proc_xxx_info structure corresponding to the

fi le descriptor fd of process with PID pid. The exact type of infor-

mation is determined by fl avor, which is as in callnum 3 (which this

function wraps).

Return value is amount of bytes used in buff er.

proc_name(int pid,

 void *buffer,

uint32_t buffersize);

proc_path(int pid,

 void *buffer,

 uint32_t buffersize);

Return in buffer the name (proc_name) or the full path (proc_path)

of the process matching pid.

Return value is amount of bytes used in buffer.

int proc_regionfilename

 (int pid,

 uint64_t address,

 void *buffer,

 uint32_t buffersize);

Return in buffer the name of the fi le mapping (if any) to which the

address in the process matching pid belongs.

Return value is amount of bytes used in buffer.

int proc_kmsgbuf

 (void *buffer,

 uint32_t buffersize);

Return up to buff ersize bytes from the kernel ring buff er in buff er.

This is the same output as one gets from the dmesg(8) command

(which, in fact, is built around this function). Wraps callnum 4.

Return value is amount of bytes actually returned.

TABLE 5-4 (continued)

c05.indd 158c05.indd 158 10/5/2012 4:15:35 PM10/5/2012 4:15:35 PM

Process and System Snapshots x 159

Lion and iOS add several more informational wrappers, such as proc_listallpids, proc_list-
pgrppids (list processes according to process group), and proc_listchildpids (for process chil-
dren) — but these are all nothing more than simple fi lters around the basic listpids call.

The book’s companion website contains a tool, psleuth, demonstrating the many uses of proc_info
for diagnostics.

PROCESS AND SYSTEM SNAPSHOTS

In addition to DTrace and Instruments, there are several tools in OS X which enable taking “snap-
shots” of the system or process state.

system_profi ler(8)
The system_profiler(8) utility is the command line version of the graphical System Profiler.app,
which most users know as About This Mac More Info. Whereas the graphical version is useful (and
provides the memorable Speak Serial Number option), it is not as handy as its command-line counter-
part, which can be run from a terminal and generate what is, essentially, the same output, albeit with
greater fi ltering options. The report can be saved to either plain text or XML.

sysdiagnose(1)
New in Lion, sysdiagnose(1) is a one-stop comprehensive diagnostics utility. It generates a bar-
rage of logiles, which are compressed and archived into a gzipped tar. The tool is meant to provide
Apple with a complete diagnostics of the system, and produce a report which can be sent to Apple.

In reality, sysdiagnose(1) is really nothing more than a wrapper, which runs several other utilities
(of which the important ones are described in this book) one after the other, and collects ASL logs
and other fi les, as shown in Output 5-5:

OUTPUT 5-5: Running sysdiagnose(1):

root@simulacrum (/)# sysdiagnose
This diagnostic tool generates files that allow Apple to investigate issues with your
computer and help Apple to improve its products. The generated files may contain some
of your personal information, which may include, but not be limited to, the serial
number or similar unique number for your device, your user name, or your computer name.
The information is used by Apple in accordance with its privacy policy (www.apple.com
/privacy)and is not shared with any third party. By enabling this diagnostic tool and
sending a copy of the generated files to Apple, you are consenting to Apple?s use of
the content of such files.

Please press 'Enter' to continue # If you want the output, you don't have a choice,
do you?

Helpful Hint: If a single process appears to be slowing down the system, pass in the

continues

c05.indd 159c05.indd 159 10/5/2012 4:15:36 PM10/5/2012 4:15:36 PM

http://www.apple.com/privacy
http://www.apple.com/privacy

160 x CHAPTER 5 NON SEQUITUR: PROCESS TRACING AND DEBUGGING

process ID or name as the argument: sysdiagnose [pid | process_name]
Gathering time sensitive information
====================================
Running fs_usage, spindump and top

Done gathering time sensitive information. Proceeding to gather non time sensitive data
===
Running zprint
Running kextstat
Collecting BootCache Statistics
Running netstat
Running lsof
Running pmset diagnostics
Running allmemory. This will take a couple of minutes
Running system profiler
Copying kernel and system logs
Copying spin and crash reports
Running df
Running ioreg
sysdiagnose results written to /var/tmp/sysdiagnose_Apr.26.2012_03-40-56.tar.gz

A handy feature of this tool is that it can be run from Finder, by a key-chord (Control-Option-
Command-Shift-Period, for which you’ll likely need both hands!). Running from the command line
offers the advantages of specifying a PID or process name (to run vmmap(1) and other memory tracing
tools, discussed later in this chapter under “Memory Leaks”). Additionally, thorough mode may be spec-
ifi ed (using the –t switch) in which it provides a full kernel trace and unfl attered allmemory(1) data.

allmemory(1)
The allmemory(1) tool is used to capture a snapshot of all memory utilization by user mode pro-
cesses. When run, the tool iterates over each and every process in the system, and dumps their mem-
ory maps into fi les in /tmp/allmemoryfiles (or elsewhere, as may be specifi ed by the –o switch).
The dumps are in a simple plist format, making them suitable for parsing by third party tools, or by
allmemory(1) itself, when run in “diff” mode, to compare snapshots. Unlike the process-specifi c
vmmap(1), allmemory(1) can display a system wide view of memory utilization, by comparing the
utilization of similar memory segments by different processes, and focuses on shared memory.

After all process memory snapshots have been acquired, allmemory(1) goes on to display the aggre-
gate statistics for each process, as well as for framework memory utilization, as shown in Output 5-6:

stackshot(1)
A little-known, but very useful feature in OS X and iOS is the ability to take a snapshot of the pro-
cess execution state. Both systems offer a private and undocumented system call, stack_snapshot
(#365), which can be used to capture the state of all the threads of a given process.

The main user of this system call is the stackshot(1) command, technically an on-demand daemon,
which is hidden away in /usr/libexec. The command is meant to be run by launchd(1)
(from com.apple.stackshot.plist), but is even more useful when run manually. It is possible to
either single out a specifi c PID (with -p), or take on all the processes in the system. The default log fi le

OUTPUT 5-5 (continued)

c05.indd 160c05.indd 160 10/5/2012 4:15:36 PM10/5/2012 4:15:36 PM

 161

O
U

TP
U

T
5

-6
:

S
am

p
le

 o
ut

p
ut

 o
f t

he
 a

llm
em

or
y(

1)
 to

ol

r
o
o
t
@
E
r
g
o

(
/
)
#

a
l
l
m
e
m
o
r
y

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

P
r
o
c
e
s
s

N
a
m
e

[
P
I
D
]

A
r
c
h
i
t
e
c
t
u
r
e

P
r
i
v
a
t
e
R
e
s
/
N
o
S
p
e
c

C
o
p
i
e
d

D
i
r
t
y

S
w
a
p
p
e
d

S
h
a
r
e
d
/
N
o
S
p
e
c

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

=
=
=
=
=
=
=
=
=
=
=
=

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

=
=
=
=
=
=
=
=
=

=
=
=
=
=
=
=
=

=
=
=
=
=
=
=
=

=
=
=
=
=
=
=
=
=
=
=
=
=

v
m
w
a
r
e
-
v
m
x

[
2
8
7
4
9
]
:

6
4
-
b
i
t

2
5
1
6
9
1

/

2
5
1
6
9
1

2
4
4

7
4
0
9
1

8

3
1
0
9
8

/

3
1
0
8
7

f
i
r
e
f
o
x

[

1
3
3
]
:

6
4
-
b
i
t

1
3
2
3
6
0

/

1
3
2
3
6
0

3
6
6
0
4

1
0
6
1
1
1

4
3
4
9
3

4
0
2
2
0

/

4
0
0
6
6

.
.
.

.
.
.

A
L
L

P
R
O
C
E
S
S
E
S

P
R
I
V
A
T
E

T
O
T
A
L
:

5
9
3
8
1
5

/

5
9
1
7
8
5

5
4
3
7
1

3
0
0
6
5
6

1
3
1
8
8
9

0

/

0

D
Y
L
D

S
H
A
R
E
D

C
A
C
H
E

S
H
A
R
E
D
:

2
9
2
2
6

/

2
9
2
1
3

0

0

3
5

2
9
2
2
6

/

2
9
2
1
3

T
o
t
a
l
R
e
s

/

N
o
S
p
e
c

C
o
p
i
e
d

D
i
r
t
y

S
w
a
p
p
e
d

S
h
a
r
e
d
/
N
o
S
p
e
c

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

=
=
=
=
=
=
=
=

=
=
=
=
=
=
=
=
=

=
=
=
=
=
=
=
=
=

=
=
=
=
=
=
=
=
=
=
=
=
=

A
L
L

P
R
O
C
E
S
S
E
S

T
O
T
A
L
:

6
6
5
7
7
9

/

6
6
3
2
7
4

5
4
3
7
1

3
2
7
0
8
4

1
4
1
7
2
0

7
1
9
6
4

/

7
1
4
8
9

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

M
a
p
p
e
d

f
i
l
e
:

2
5
0
2
0
3

/

2
5
0
1
1
9

1
2
2
0

6
0
9
5
7

1
3
1
8

4
4
5
6

/

4
3
7
2

N
o

t
a
g
:

1
2
5
2
5
4

/

1
2
5
2
5
4

3
5
7
0
4

1
0
2
5
3
8

4
5
4
8
6

1
7
6
5

/

1
7
2
0

M
A
L
L
O
C
_
S
M
A
L
L
:

6
3
1
4
6

/

6
3
0
7
0

6
8
7
3

3
7
5
1
8

2
6
5
1
5

1
2
3
2

/

1
2
3
2

I
O
K
i
t
:

3
9
3
9
1

/

3
9
3
9
1

0

3
7
8
4
7

4
6
8
6

1
3
9
3
7

/

1
3
9
3
7

M
A
L
L
O
C
_
T
I
N
Y
:

3
1
0
1
5

/

3
1
0
1
1

1
7
7

2
4
1
5
2

8
3
0
3

3
1
5

/

3
1
5

M
A
L
L
O
C
_
L
A
R
G
E
:

2
9
7
8
0

/

2
9
7
8
0

4
2

1
5
7
6
3

1
8
0
6
5

0

/

0

D
Y
L
D

s
h
a
r
e
d

c
a
c
h
e
:

2
9
2
5
0

/

2
9
2
4
8

4
4
0
1

2
8
4
2

2
9
0
8

2
4
8
4
9

/

2
4
8
4
7

.
.
.

F
r
a
m
e
w
o
r
k
/
I
m
a
g
e

N
a
m
e

A
r
c
h
i
t
e
c
t
u
r
e

R
e
s
i
d
e
n
t
/
N
o
S
p
e
c

C
o
p
i
e
d

D
i
r
t
y

S
w
a
p
p
e
d

F
i
l
e
s
i
z
e

(
p
a
g
e
s
)

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

=
=
=
=
=
=
=
=
=
=
=
=

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

=
=
=
=
=
=
=
=
=

=
=
=
=
=
=
=
=
=

=
=
=
=
=
=
=
=

=
=
=
=
=
=
=
=
=

X
U
L
:

6
4
-
b
i
t

4
5
7
2

/

4
5
7
2

4
7
1

5
5

1
3
6

1
4
7
9
2

C
o
r
e
F
P
1
:

3
2
-
b
i
t

2
7
2
5

/

2
7
2
5

7

1
0

1
0
2
5

8
9
4
7

A
p
p
K
i
t
:

6
4
-
b
i
t

2
5
8
0

/

2
5
8
0

5
6
3

3
4
7

1
7
3

1
1
1
0
1

W
e
b
C
o
r
e
:

6
4
-
b
i
t

1
7
4
1

/

1
7
4
1

5
7

2
0

5

1
6
9
3
7

.
.
.

c05.indd 161c05.indd 161 10/5/2012 4:15:36 PM10/5/2012 4:15:36 PM

162 x CHAPTER 5 NON SEQUITUR: PROCESS TRACING AND DEBUGGING

is saved to /Library/Logs/stackshot.log, unless overridden with a –f switch. It is also possible to
send the log to a remote server by specifying a Trace Server key in the daemon’s plist. Any number
of snapshots can be taken (with the –n switch), though the common use is to use the –i switch to take
an immediate snapshot and exit. Incidentally, the man page erroneously states “-u” as a switch to
enable symbolifi cation of the output, even though that switch is not supported from the command line.

The stackshot(1) command has been enhanced in Lion by integrating it with the sysdiagnose(1)
command. This command, discussed above, collects the stack snapshots of all processes along with
the myriad other data and logs. Stackshot also has its own keychord, to run independently of
sysdiagnose(1). iOS used to include stackshot(1), but it has mysteriously disappeared in iOS 5.
The system call, however, is still available, and can be used as is shown next.

The stack_snapshot System Call
XNU’s stack_snapshot system call only gets an obligatory mention in <sys/syscall.h>, by vir-
tue of its being system call number 365. Otherwise, it remains an undocumented system call. Even
the stackshot(1) command invokes it via the syscall wrapper (which you can easily verify using
dtruss(1) and/or disassembly). The following exercise demonstrates using the system call, by mim-
icking the functionality of stackshot(1).

Exercise: Using stack_snapshot
Even though stack_snapshot is undocumented in user mode, not all is lost. XNU remains open
source, and looking at XNU’s sources, (in particular, bsd/kern/kdebug.c) reveals the system call
expects a pid (or –1, for all), a buffer to put the snapshot in, a buffer size, and some options. The actual
implementation of the snapshot mechanism is tucked deep within the Mach microkernel. Specifi cally,
osmfk/kern/debug.h reveals the structures and constants used by the logic. The APIs are declared
private and unstable, but have been around for quite a while, and are also present in iOS. Because they
are part of the kernel sources and not the standard #includes, the following example copies them.

Listing 5-2 should compile cleanly on either OS X or iOS, and bring back to iOS the missing
stackshot(1) functionality.

LISTING 5-2: Do-it-yourself stackshot for OS X and iOS

#include <stdlib.h> // for malloc
#include <stdio.h>
#include <string.h>

struct frame {
 void *retaddr;
 void *fp;
};

// The following are from osfmk/kern/debug.h
#define STACKSHOT_TASK_SNAPSHOT_MAGIC 0xdecafbad
#define STACKSHOT_THREAD_SNAPSHOT_MAGIC 0xfeedface
#define STACKSHOT_MEM_SNAPSHOT_MAGIC 0xabcddcba

struct thread_snapshot {
 uint32_t snapshot_magic;

c05.indd 162c05.indd 162 10/5/2012 4:15:36 PM10/5/2012 4:15:36 PM

Process and System Snapshots x 163

 uint32_t nkern_frames;
 uint32_t nuser_frames;
 uint64_t wait_event;
 uint64_t continuation;
 uint64_t thread_id;
 uint64_t user_time;
 uint64_t system_time;
 int32_t state;
 char ss_flags;
} __attribute__ ((packed));

struct task_snapshot {
 uint32_t snapshot_magic;
 int32_t pid;
 uint32_t nloadinfos;
 uint64_t user_time_in_terminated_threads;
 uint64_t system_time_in_terminated_threads;
 int suspend_count;
 int task_size; // pages
 int faults; // number of page faults
 int pageins; // number of actual pageins
 int cow_faults; // number of copy-on-write faults
 char ss_flags;
 char p_comm[17];
} __attribute__ ((packed));

int stack_snapshot(int pid, char *tracebuf, int bufsize, int options)
{
 return syscall (365, pid, tracebuf, bufsize, options);
}

int dump_thread_snapshot(struct thread_snapshot *ths)
{

 if (ths->snapshot_magic != STACKSHOT_THREAD_SNAPSHOT_MAGIC)
 {
 fprintf(stderr,"Error: Magic %p expected, Found %p\n",
 STACKSHOT_TASK_SNAPSHOT_MAGIC, ths->snapshot_magic);
 return;
 }

 printf ("\tThread ID: 0x%x ", ths->thread_id) ;
 printf ("State: %x\n" , ths->state);
 if (ths->wait_event) printf ("\tWaiting on: 0x%x ", ths->wait_event) ;
 if (ths->continuation) {
 printf ("\tContinuation: %p\n", ths->continuation);

 }
 if (ths->nkern_frames || ths->nuser_frames)
 printf ("\tFrames: %d kernel %d user\n", ths->nkern_frames, ths->nuser_frames);

continues

c05.indd 163c05.indd 163 10/5/2012 4:15:36 PM10/5/2012 4:15:36 PM

164 x CHAPTER 5 NON SEQUITUR: PROCESS TRACING AND DEBUGGING

 return (ths->nkern_frames + ths->nuser_frames);
}

void dump_task_snapshot(struct task_snapshot *ts)
{
 if (ts->snapshot_magic != STACKSHOT_TASK_SNAPSHOT_MAGIC) {
 fprintf(stderr,"Error: Magic %p expected, Found %p\n",
 STACKSHOT_TASK_SNAPSHOT_MAGIC, ts->snapshot_magic);
 return;
 }
 fprintf(stdout, "PID: %d (%s)\n", ts->pid, ts->p_comm);

}

#define BUFSIZE 50000 // Sufficiently large..

int main (int argc, char **argv)
{
 char buf[BUFSIZE];
 int rc = stack_snapshot(-1, buf, BUFSIZE,100);
 struct task_snapshot *ts;
 struct thread_snapshot *ths;
 int off = 0;
 int warn = 0;
 int nframes = 0;

 if (rc <0) { perror ("stack_snapshot"); return (-1); }

 while (off< rc) {
// iterate over buffer, which is a contiguous dump of snapshot structures

 ts = (struct task_snapshot *) (buf + off);
 ths = (struct thread_snapshot *) (buf + off);

 switch (ts->snapshot_magic)
 {
 case STACKSHOT_TASK_SNAPSHOT_MAGIC:
 dump_task_snapshot(ts);
 off+= (sizeof(struct task_snapshot));
 warn = 0;
 break;
 case STACKSHOT_THREAD_SNAPSHOT_MAGIC:
 nframes = dump_thread_snapshot(ths);
 off+= (sizeof(struct thread_snapshot));
 off+=8;
 if (nframes)
 { printf("\t\tReturn Addr\tFrame Ptr\n");}
 while (nframes)
 {
 struct frame *f = (struct frame *) (buf + off);
 printf ("\t\t%p\t%p\n", f->retaddr, f->fp);
 off += sizeof(struct frame);
 nframes--;
 }

LISTING 5-2 (continued)

c05.indd 164c05.indd 164 10/5/2012 4:15:36 PM10/5/2012 4:15:36 PM

kdebug x 165

 warn = 0;
 break;
 case STACKSHOT_MEM_SNAPSHOT_MAGIC:
 printf ("MEM magic – left as an exercise to the reader\n");
 break;
 default:
 if (!warn) {
 warn++;
 fprintf(stdout, "Magic %p at offset %d?"
 "Seeking to next magic\n",
 ts->snapshot_magic, off);}
 off++;;

 } // end switch

 } // end while
}

KDEBUG

XNU contains a built-in kernel trace facility called kdebug. This very powerful, yet poorly docu-
mented facility is present in both OS X and iOS, though it is often disabled by default, unless
enabled by a sysctl(8) setting. At various points throughout, the kernel is laced with special
KERNEL_DEBUG_CONSTANT macros. These macros enable the tracing of noteworthy events, such
as system calls, Mach traps, fi le system operations and IOKit traces, albeit in compressed form,
described later. This means that very little extra information besides the event occurrence itself can
be recorded in this manner.

kdebug-based Utilities
OS X provides three utilities which utilize the kdebug facility. The tools — fs_usage(1),
sc_usage(1), and latency(1), all require root privileges to operate, but provide valuable debug-
ging and tracing information. Since kdebug messages are in compressed, encoded form, these utilities
(in particular sc_usage(1)) rely on the existence of a “code” fi le, /usr/share/misc/trace.codes.
This fi le does not exist in iOS, but can be copied.

sc_usage
The sc_usage(1) tool is used to display system call information on a per-process basis. The com-
mand can attach to an existing process (specifi ed as a PID or process name), or can execute a new
one (when invoked with –E). The tool can run in “watch” style mode, continuously updating the
screen, or (if invoked with –l) display output continuously.

fs_usage
Much like its sister utility, fs_usage(1) can be used to display system calls, but in this case ones
relating to fi les, sockets, and directories. Unlike its sibling, it can display calls performed system-
wide (if invoked with a PID or command argument).

latency
The latency(1) tool displays latency values of interrupts and scheduling. It shows context switches and
interrupt handlers falling within thresholds, which can be set with the –it or –st switches, respectively.

c05.indd 165c05.indd 165 10/5/2012 4:15:36 PM10/5/2012 4:15:36 PM

166 x CHAPTER 5 NON SEQUITUR: PROCESS TRACING AND DEBUGGING

kdebug codes
kdebug uses kernel buffers for logging, and buffer space is extremely limited. Every debug “mes-
sage,” therefore, uses a 32-bit integer code, into which a class, a subclass, and a code must be
squeezed. The format is defi ned in <sys/kdebug.h> as shown in Listing 5-3:

LISTING 5-3: The kdebug message format

/* The debug code consists of the following
*
* --
*| | | |Func |
*| Class (8) | SubClass (8) | Code (14) |Qual(2)|
* --
* The class specifies the higher level
*/

The kdebug message classes correspond to kernel subsystems, and have, in turn, subclasses which
are specifi c. These are also defi ned in <sys/kdebug.h>, though the header fi le also has some sub-
classes which are unused in practice. Key classes and subclasses are shown in Table 5-5:

TABLE 5-5: kdebug classes and subclasses. Shaded classes are for user space:

KDEBUG CLASS (DBG_) SUBCLASSES

(.. DENOTES CLASS #DEFINE)

USED FOR

MACH (1) …_EXCP_* Kernel hardware exceptions and traps

…_VM(0x30) Virtual memory subsystem

…_MACH_LEAKS(0x31) Memory allocations

…_SCHED (0x40) Scheduler subsystem

NETWORK (2) DBG_NETIP (1)

DBG_NETARP (2)

DBG_NETUDP (3)

DBG_NETTCP (4)

…

Various networking protocols supported

in XNU (IP, TCP, UDP, IPSEC, etc). Calls

are wrapped with a

NETDBG_CODE macro

FSYSTEM (3) These messages are fi ltered by

fs_usage(1)

DBG_FSRW (1)

DBG_DKRW (2)

DBG_FSLOOOKUP (4)

DBG_JOURNAL (5)

DBG_IOCTL (6)

…

Various fi lesystem operations. Calls are

wrapped with an FSDBG_CODE macro.

FileSystem drivers can register additional

subclasses (e.g. DBG_HFS, DBG_EXFAT,

etc).

c05.indd 166c05.indd 166 10/5/2012 4:15:36 PM10/5/2012 4:15:36 PM

kdebug x 167

KDEBUG CLASS (DBG_) SUBCLASSES

(.. DENOTES CLASS #DEFINE)

USED FOR

BSD (4) The BSD Subsystem. Calls wrapped with

BSDDBG_CODE

…_PROC (1) BSD Processes. Tracks process exit and

forced exit events

…_EXCP_SC (0x0C) BSD System calls. These are fi ltered by

sc_usage(1)

…_AIO (0x0D) Asynchronous I/O

…_SC_EXTENDED_INFO (0x0E)

…_SC_EXTENDED_INFO2 (0x0F)

Extended information on system calls such

as mmap(2), pread(2), and pwrite(2),

encoding sizes and pointers

IOKIT (5) IOKit Drivers. Codes up to 32 are internal to

IOKit. Other IOKit classes defi ne 32 and up.

IOKit is described in detail in chapter 19.

DRIVERS (6) Used by drivers of various buses. Not

used in the kernel proper.

TRACE (7) Various debug trace messages. Subcodes

are _DATA(0), _STRING(1), and _INFO(2).

DLIL (8) Used by the Data Link Interface Layer

(Layer II support, in bsd/net/dlil.c). Calls

wrapped with DLILDBG_CODE.

SECURITY (9) Reserved for security modules and sub-

systems. Calls wrapped with

SECURITYDBG_CODE, but not used in ker-

nel proper

CORESTORAGE (10) New in Lion, to support CoreStorage logi-

cal volume management. Undocumented,

not used in kernel proper.

CG (11) New in Mountain Lion. Undocumented.

Possibly CoreGraphics

MISC (20) Reserved for miscellaneous uses.

Undocumented.

DYLD(31) Reserved for dyld(1) use.

QT(32) Reserved for QuickTime. Undocumented.

DBG_APPS(33) Used by Applications.

continues

c05.indd 167c05.indd 167 10/5/2012 4:15:37 PM10/5/2012 4:15:37 PM

168 x CHAPTER 5 NON SEQUITUR: PROCESS TRACING AND DEBUGGING

KDEBUG CLASS (DBG_) SUBCLASSES

(.. DENOTES CLASS #DEFINE)

USED FOR

LAUNCHD(34) Used exclusively by launchd(1).

DBG_PERF(37) New in Mountain Lion. Undocumented,

likely for performance

DBG_MIG(255) Used by the the Mach Interface Generator

to trace sending and receiving of mes-

sages. MIG is described in chapter 9.

When used for function tracing, the last two bits of the code are defi ned for a “qualifi er,” which can
specify DBG_FUNC_START or DBG_FUNC_END.

Writing kdebug messages
The kdebug facility is extensively used in XNU, but applications can also use it to log their own
messages, as in fact some of Apple’s own applications do. The kdebug_trace system call (#180),
however, is purposely undocumented: Even those open source applications which do use it, do so by
invoking syscall directly. This can be seen in launchd(1), for example, as in Listing 5-3:

LISTING 5-3: Using kdebug through syscall directly.

void
runtime_ktrace1(runtime_ktrace_code_t code)
{
 void *ra = __builtin_extract_return_addr(__builtin_return_address(1));

/* This syscall returns EINVAL when the trace isn’t enabled. */
 if (do_apple_internal_logging) {
 syscall(180, code, 0, 0, 0, (long)ra);
 }
}

The kdebug_trace system call can actually use up to six arguments (the maximum for a system
call). The KERNEL_DEBUG_CONSTANT pre-initializes some of these arguments, namely the fi fth, with
the identity of the current thread. The system call implementation and the KERNEL_DEBUG_CONSTANT
code paths both eventually end up at kernel_debug_internal(), which performs the actual debug-
ging. In both cases, though, the path to actual kdebugging fi rst checks if the global kernel variable
kdebug_enable is set, which is optimized by a gcc “improbable,” as this variable is zero, unless
manually set). The kernel_debug_internal() function takes the six arguments and writes them
into a struct kd_buf, along with a timestamp, where they await to be read. If CHUD is enabled, a
callback can be registered, to be invoked on every kdebug event.

TABLE 5-5 (continued)

c05.indd 168c05.indd 168 10/5/2012 4:15:37 PM10/5/2012 4:15:37 PM

kdebug x 169

Reading kdebug messages
Applications can enable kdebug and read messages from user mode using sysctl(2) calls. Before
kdebug can be used, kdebug_enable must be set to a non-zero value. This variable is not visible
from user mode, but sysctl(2) can be used here, as well, as shown in Listing 5-4:

LISTING 5-4: Enabling or disabling kdebug_enable from user mode via sysctl

int set_kdebug_enable(int value)
{
 int rc;
 int mib[4];

 mib[0] = CTL_KERN;
 mib[1] = KERN_KDEBUG;
 mib[2] = KERN_KDENABLE;
 mib[3] = value;
 if ((rc = sysctl(mib, 4, NULL, &oldlen, NULL, 0) < 0) {perror("sysctl");}
 return (rc);
}

The KERN_KDENABLE operation(3) is only one of the control codes which may be passed in the CTL_
KERN.KERN_KDEBUG sysctl. The currently defi ned operations are listed in Table 5-6:

TABLE 5-6: Defi ned operations for KERN_KD*

KERN_KD* OPERATION USAGE

EFLAGS(1) Enable user fl ags specifi ed (bitwise OR).

DFLAGS(2) Disable user fl ags specifi ed (bitwise AND-NOT).

ENABLE(3) Enable/disable kdebug, as per above example.

SETBUF(4)

GETBUF(5)

Set or get the number of kdebug buff ers. The number of buff ers should be

called prior to KD_ENABLE.

SETUP(6) Used to reinitialize kdebug.

REMOVE(7) Clear kdebug buff ers.

SETREG(8)

GETREG(9)

Set values used for checking and fi ltering kdebug messages. Can

KDBG_CLASSTYPE, KDBG_SUBCLSTYPE, KDBG_RANGETYPE, or

KDBG_VALCHECK. KD_GETREG is #ifdef’ed out.

READTR(10) Read trace buff er from kernel.

PIDTR(11) Set only a particular PID for kdebug traces.

THRMAP(12) Read thread map. Thread maps contain thread information, and the execut-

able command (argv[0]).

continues

c05.indd 169c05.indd 169 10/5/2012 4:15:37 PM10/5/2012 4:15:37 PM

170 x CHAPTER 5 NON SEQUITUR: PROCESS TRACING AND DEBUGGING

KERN_KD* OPERATION USAGE

PIDEX(14) Exclude a given PID from kdebug traces, but enable system-wide tracing.

SETRTCDEC(15) Set a decrement value.

KDGETENTROPY(16) Request system entropy. This is used by security software to generate

stronger pseudo-random numbers (independent of /dev/random and

/dev/urandom).

APPLICATION CRASHES

An unfortunate fact of life is that, sooner or later, most applications crash. In UNIX, a crash is
associated with a signal. The true reason for the crash lies in the kernel code, which generates the
signal as a last resort, after determining the process simply cannot continue execution. (Kernel crash
reports, or “panics,” are somewhat similar in concept, but contain different contents. They are dis-
cussed in Chapter 9.)

Core Dumps
When a process crashes, a core dump may optionally be generated. This is dependent on the pro-
cess’s RLIMIT_CORE resource limit. Processes may restrict this value using setrlimit(2), although
it is more common for the user to do so by means of the ulimit(1) command. A value of 0 reported
by ulimit –c means no core dump will be created. Otherwise, a core fi le of up to the specifi ed size
will be created, usually in the /cores directory. The core can then be debugged with gdb, as shown
in Listing 5-5.

LISTING 5-5: Demonstrating program crashes, with and without core.

morpheus@Ergo (~)$ cat test.c
#include <stdio.h>
int main ()
{
 int j = 24;
 printf ("%d\n",j/0);
 return (0); // not that we ever get here..
}
morpheus@Ergo (~)$ cc test.c –o test
test.c: In function 'main':
test.c:5: warning: division by zero # just in case it's not clearly obvious J

morpheus@Ergo (~)$ ulimit –c
0
morpheus@Ergo (~)$./test # first run: signal kill, no core
Floating point exception

morpheus@Ergo (~)$ ulimit –c 99999999999 # ulimit increased
morpheus@Ergo (~)$./test
Floating point exception (core dumped) # second run: core generated

TABLE 5-6 (continued)

c05.indd 170c05.indd 170 10/5/2012 4:15:37 PM10/5/2012 4:15:37 PM

Application Crashes x 171

morpheus@Ergo (~)$ ls -l /cores/ # and can be found in /cores
total 591904
-r-------- 1 morpheus admin 303054848 Nov 19 00:30 core.6267

morpheus@Ergo (~)$ file /cores/core.6267 # The file is of type Mach-O core
/cores/core.6267: Mach-O 64-bit core x86_64
morpheus@Ergo (~)$ cd ~/Library/Logs/CrashReporter # Go to where all logs are located
morpheus@Ergo (~)$ ls –l test* # and note both examples generated

reports
-rw------- 1 morpheus staff 1855 Nov 19 00:59 test_2011-11-19-005918_Ergo.crash
-rw------- 1 morpheus staff 1855 Nov 19 01:09 test_2011-11-19-010917_Ergo.crash

Core fi le creation is usually disabled at the user level by default, that is, ulimit –c is set to 0. This
is for good reason: As the example in Listing 4-2 shows, even a three-line program produces a core
of close to 300 MB! It can be re-enabled on a global basis by setting launchd’s limits — as all pro-
cesses in the system are its eventual descendants.

At the system level, core fi les may be controlled by sysctl(8). The settings shown in Table 5-7 are
applicable:

TABLE 5-7: sysctl settings relating to core fi les

SYSCTL SETTING DEFAULT USED FOR

kern.corefile /cores/

core.%P
Name of core generated. %P is a placeholder for the PID,

which allows multiple core fi les to be collected in /cores.

kern.coredump 1 Enabling/disabling core dumps, system-wide.

Note: RLIMIT_CORE limit must hold per process.

kern.

sugid_coredump

0 Dump core for setuid and setgid programs. Set to 0 because

these programs often contain sensitive information.

Crash Reporter
Rather than deal with huge core fi les, both iOS and OS X contain a CrashReporter, which is trig-
gered automatically on a process abend (abnormal end, i.e. crash), and generate a detailed crash
log. This mechanism performs a quick, rudimentary analysis on the process before its quietus, and
records the highlights in a crash log. The crash reporter is key for application developers, especially
on iOS, and Apple dedicates several TechNotes to its documentation.[4,5]

In both iOS and OS X, CrashReporter logs are sent to the user’s Library/Logs/CrashReporter,
or the system-wide /Library/Logs/CrashReporter. In recent version of OS X, these directories
are a symbolic link to ../DiagnosticReports. In iOS, the logs are made available to the host when
the device is connected. The report name follows a convention of process _name _YYYY-MM-DD-

HHMMSS_hostname.crash.

The crash report provides a basic, but oftentimes suffi cient, analysis of what went wrong. Depend-
ing on architecture — i386, x86_64, or ARM — the format may be different, but it always follows
the same basic structure, shown in Output 5-7. The output is from an iOS process crash, and the
fi elds in italics are specifi c to iOS.

c05.indd 171c05.indd 171 10/5/2012 4:15:37 PM10/5/2012 4:15:37 PM

172 x CHAPTER 5 NON SEQUITUR: PROCESS TRACING AND DEBUGGING

OUTPUT 5-7: A sample crash report.

Incident Identifier: C15D9ACD-DD6E-4124-857F-24FBBCC18C10
CrashReporter Key: 0941d515f2e15ef3202751ef6776efc732ce4713
Hardware Model: iPod4,1
Process: MobileNotes [9123] // process name, with [PID]
Path: /Applications/MobileNotes.app/MobileNotes
Identifier: MobileNotes
Version: ??? (???)
Code Type: ARM (Native) // or i386 or X86-64
Parent Process: launchd [1]

Date/Time: 2011-11-19 10:16:00.896 +0800
OS Version: iPhone OS 5.0 (9A334) // Mac OS X 10.6.8 (10K549) , etc..
Report Version: 104

Exception Type: EXC_CRASH (SIGFPE) // Mach exception code (UNIX signal)
Exception Codes: 0x00000000, 0x00000000 // Exception code, if any
Crashed Thread: 0 // Thread number of faulting thread

// Thread call stacks follow. Faulting thread (in this case, 0) is specified:
Thread 0 name: Dispatch queue: com.apple.main-thread
Thread 0 Crashed:
0 libsystem_kernel.dylib 0x327ea010 0x327e9000 + 4112
1 libsystem_kernel.dylib 0x327ea206 0x327e9000 + 4614
// ..
8 MobileNotes 0x00016c14 0x15000 + 7188
9 MobileNotes 0x000163f8 0x15000 + 5112

..

 // faulting thread register state is presented:
 // State is architecture specific. For iOS(ARM), r0-r15 and CPSR are shown:
 // OS X would have x86_64 or i386 thread state, similar to LC_UNIXTHREAD
Thread 0 crashed with ARM Thread State:

r0: 0x00000000 r1: 0x07000006 r2: 0x00000000 r3: 0x00000c00
r4: 0x00001203 r5: 0xffffffff r6: 0x00000000 r7: 0x2fe1306c
r8: 0x00000000 r9: 0x0011b200 r10: 0x07000006 r11: 0xffffffff
ip: 0xffffffe1 sp: 0x2fe13030 lr: 0x327ea20d pc: 0x327ea010

cpsr: 0x400f0010

Binary Images:
 // Listing of process memory space, with all binaries loaded
 0x15000 - 0x43fff +MobileNotes armv7 <53ff805c06ec3aa785e0c0e98b5900b1>
/Applications/MobileNotes.app/MobileNotes
0x2fe14000 - 0x2fe35fff dyld armv7 <be7c0b491a943054ad12eb5060f1da06> /usr/lib/dyld
0x300b9000 - 0x300c6fff libbsm.0.dylib armv7 <a6414b0a5fd53df58c4f0b2f8878f81f>
/usr/lib/libbsm.0.dylib
0x301eb000 - 0x301ebfff libgcc_s.1.dylib armv7 <69d8dab7388b33d38b30708fd6b6a340>
/usr/lib/libgcc_s.1.dylib
......

c05.indd 172c05.indd 172 10/5/2012 4:15:37 PM10/5/2012 4:15:37 PM

Application Crashes x 173

The stack trace of the faulting thread often pinpoints the problem. Even if there are no debugging
symbols to tie directly to the source code, it is possible to use a disassembler such as otool –tV to
fi gure out the sequence of events leading up to the call trace.

It’s interesting to note that Absinthe, the 5.0.1 jailbreak, makes use of the crash log to deduce the
address space layout. Because of ASLR, libraries “slide” on iOS, so calling library functions from
shellcode can be diffi cult. The jailbreak intentionally crashes the iOS BackupAgent, inspects its
crash log, and deduces the address of libcopyfile.dylib.

Changing Crash Reporter Preferences
If you have Xcode, you will fi nd that /Developer/Applications/Utilities contains a small
application called CrashReporterPrefs. You will see the dialog box shown in Figure 5-2 when you
start it.

FIGURE 5-2: Crash Reporter preferences

Alternatively, you can use OS X’s defaults(1) utility to achieve the same purpose, by toggling the
DialogType property to basic, developer, or server.

At this point, you might be asking yourself, “How is it possible to run an appli-
cation automatically when another crashes?” Doing so in UN*X is hardly
trivial, as the parent process would be the only one to receive notifi cation of its
child’s untimely demise. The mechanism which enables this in OS X and iOS is
tied to the exception ports of the Mach task, which underlies the BSD-layer pro-
cess. This is discussed, along with tasks, in Chapter 11, “Mach Scheduling.”

Application Hangs and Sampling
Sometimes applications don’t crash — they merely hang, indefi nitely. Oftentimes, this is more frus-
trating, as the user is left in a state of limbo, gazing at the Spinning Rainbow Wheel of Death (or,

c05.indd 173c05.indd 173 10/5/2012 4:15:37 PM10/5/2012 4:15:37 PM

174 x CHAPTER 5 NON SEQUITUR: PROCESS TRACING AND DEBUGGING

more adequately, of paralysis), totally at the mercy of the application, which may or may not choose
to become responsive again.

The GUI offers the Force Quit option, which is really just sending a signal to the errant application.
Optionally, the user may opt for a “report.” The report in question is generated using spindump(8),
which probes each and every process on the system and obtains its current call stack (this tool is
also part of Lion’s sysdiagnose(1) tools). The log is then written to the user’s (or the system’s)
Library/Logs/DiagnosticReports, similar to CrashReporter logs, but with an extension
of .hang.

The root user can execute spindump manually. Alternatively, it is possible to use sample(1) to take
a snapshot for a specifi c process. This tool (which takes the same arguments as spindump) can be
run by non-root users if the sampling is performed on the user’s own processes. The sample log is
also in CrashReporter format, providing detailed stack traces and loaded dylib information.

In both cases, the sampling method is similar — the processes are suspended, their stack trace is
recorded (spindump(8) uses the stack_snapshot syscall, described above), and then they are
resumed. The sampling interval is usually about 10 milliseconds, and the sampling takes place over
a span of 10 seconds. Both settings are confi gurable.

XCode offers another tool — Spin Control. This small app performs sampling automatically each
time the rainbow wheel is displayed (via CoreGraphics). Its only advantage is its call-graph browser,
which is somewhat more intuitive than following the textual report. There exists, however, another
utility called filtercalltree(1), whose only reason for being is to process call trace logs such as
those of sample(1) or malloc_history(1), which is a tool we discuss next.

Memory Corruption Bugs
Memory corruption is a common cause for bugs in programs. The main causes of application
crashes are buffer overfl ows (both stack and heap) and heap corruptions. The problem is that, in
many cases, the cause and effect are many lines of code apart, and it can sometimes take minutes or
more before the bug causes a crash.

Memory Safeguards in LibC
OS X’s LibC is highly confi gurable, and its memory allocation can be controlled by any one of sev-
eral environment variables, documented in the malloc(3) page, as shown in Table 5-8.

TABLE 5-8: LibC’s malloc(3) Features

ENVIRONMENT VARIABLE USED FOR

MallocLogFile Set the malloc debugging to write to a fi le.

MallocCheckHeapStart

MallocCheckHeapEach

MallocCheckHeapSleep/Abort

Periodically (every ...Each allocations) check heap

after ...Start allocations. If a heap is inconsistent,

either sleep (allowing debugging) or abort(3)

(crashing with SIGABRT).

c05.indd 174c05.indd 174 10/5/2012 4:15:38 PM10/5/2012 4:15:38 PM

Application Crashes x 175

ENVIRONMENT VARIABLE USED FOR

MallocErrorAbort

MallocCorruptionAbort

Call abort(3) (SIGABRT) on any error, or just mem-

ory corruption errors

MallocGuardEdges

MallocDoNotProtectPrelude

MallocDoNotProtectPostlude

Add guard pages before (unless MallocDoNot-

ProtectPrelude is set) and after (unless Malloc-

DoNotProtectPostlude is set) large blocks.

MallocScribble Fill allocated memory with 0xAA and freed memory

with 0x55.

MallocStackLogging

MallocStackLoggingNoCompact

MallocStackLoggingDirectory

Log all stack traces during malloc operations to /tmp

(or to MallocStackLoggingDirectory). Programs

such as leaks(1) or malloc_history(1) can then

be called. The latter requires NoCompact.

Because the environment variables affect all processes launched when they are set (including the
commands that process their output), I recommend that you prefi x the traced command with the
setting of the variable, rather than export the variable. What’s more, exporting variables such as
MallocStackLogging can only be countered with “unset,” as LibC doesn’t really care about its
value, so much as it being set.

OS X’s memory-leak detection tools, described later, build on these features of LibC to provide
extensive capabilities for tracking down memory allocations.

LibGMalloc
If the memory protection features so far do not suffi ce, OS X offers a special library, libgmalloc
.dylib, which can be used to intercept and debug memory allocations. This powerful library works
by interposing the allocation functions of LibSystem (as discussed under the “Function Interposing”
feature of dyld(1), in Chapter 4). Once the functions are hooked, it becomes easy to replace them
with verbose counterparts, which also set more constraints on memory allocation, in the hope of
making any slight transgression result in a crash.

Specifi cally, libgmalloc uses the following techniques:

 ‰ Adding its own custom header to each allocated chunk, which contains debug information
recording important allocation details: The header records the thread ID and backtrace at the
time of allocation, along with a constant value (“magic number”) of 0xDEADBEEF, which is
useful in detecting errors in allocations and reallocations of the same buffer. The header can
be seen in Figure 5-3.

 ‰ Allocating chunks on their own pages, making the neighboring page unwritable (if
MALLOC_ALLLOW_READS is set), or wholly inaccessible: The allocated chunk is also pushed
to the end of its page (unless MALLOC_PROTECT_BEFORE is set). As a consequence, read/write
operations past the end of the buffer automatically become read/write operations past the
page boundary, and cause an unhandled page fault, crashing the process on the spot with

c05.indd 175c05.indd 175 10/5/2012 4:15:38 PM10/5/2012 4:15:38 PM

176 x CHAPTER 5 NON SEQUITUR: PROCESS TRACING AND DEBUGGING

a bus error (SIGBUS). Setting the MALLOC_PROTECT_BEFORE environment variable fl ips this
behavior to protect against buffer underruns, rather than overruns.

 ‰ Freeing chunks deallocates memory: The library deallocates its pages on free(), once again
causing a bus error if a read or write operation is performed on the freed buffer.

size

Allocating TID

0xDEADBEEF

Padding to
Alignment
boundary

0x60 + sizeof (buffer) + sizeof(padding)

Backtrace of up to 20 frames (or 0s)

Magic number used for header checks

Backtrace (1)

. . .

. . .

Backtrace (20)

Thread ID of thread performing allocation

FIGURE 5-3: The GuardMalloc header

The bus faults that occur automatically reveal the presence of a memory handling bug, as it hap-
pens, and make debugging relatively simple. By attaching gdb, you can pinpoint the crash, and — by
inspecting the custom header — work back to the allocation, and either change the buffer allocation
parameters or remove the offending operation.

MEMORY LEAKS

Another common application bug is leaking memory. Memory leaks occur when a programmer allo-
cates memory or some object, but neglects to call free() or delete. Memory leaks are hard to fi nd
because they don’t constitute a critical bug. Rather, they slowly weigh on the process’ address space,
as — once a pointer is lost — there is no way to reclaim the memory.

In 32-bit processes, this can turn into a serious problem because, sooner or later, the leaks can
exhaust the available process memory. In 64-bit processes, with their huge address space, it is less
of an exigent concern, but can still take a noticeable toll on physical memory (especially in mobile
devices) or swap.

In addition to the tools described in this section, XCode’s Instruments provide
an interactive, much more detailed way to sift through the vast amounts of sam-
pling output with a timeline-based GUI. Instruments contain tools for pretty
much everything, including specialized tools for tracking memory allocations
and leaks (shown in Figure 5-4). The command-line tools, however, do offer the
advantage of being lighter and can be run in a terminal.

c05.indd 176c05.indd 176 10/5/2012 4:15:38 PM10/5/2012 4:15:38 PM

Memory Leaks x 177

Allocations Leaks

FIGURE 5-4: Instruments specifi cally designed for memory debugging

heap(1)
The heap(1) tool lists all the allocated buffers in a given process’s heap. The tool is very easy to
use — just pass a PID or partial process name. The tool is particularly useful for Objective-C com-
piled binaries or CoreFoundation-dependent libraries, as it can discern the class names.

leaks(1)
The leaks(1) tool walks the process heap to detect suspected memory leaks. It samples the process
to produce a report of pointers, which have been allocated but not freed. For example, consider the
program in Listing 5-6.

LISTING 5-6: A simple memory leak demonstration

#include <stdio.h>
int f()
{
 char *c = malloc(24);
}
void main()
{
 f();
 sleep(100);
}

Running leaks on the program produces an output similar to Output 5-8. Note the part in italic,
which is displayed if MallocStackLogging is set.

OUTPUT 5-8: A leaks(1) generated report for the program from the previous listing

morpheus@ergo (/tmp)$ MallocStackLogging=1 ./m &
[1] 8368 # Run process in background to get PID.
m(8368) malloc: recording malloc stacks to disk using standard recorder
m(8368) malloc: stack logs being written into /tmp/stack-logs.8368.m.KaQPVh.index
morpheus@ergo (/tmp) $ leaks 8368
Process: m [8368]
Path: /tmp/m

continues

c05.indd 177c05.indd 177 10/5/2012 4:15:42 PM10/5/2012 4:15:42 PM

178 x CHAPTER 5 NON SEQUITUR: PROCESS TRACING AND DEBUGGING

Load Address: 0x100000000
Identifier: m
Version: ??? (???)
Code Type: X86-64 (Native)
Parent Process: bash [6519]

Date/Time: 2011-11-22 07:27:49.322 -0500
OS Version: Mac OS X 10.6.8 (10K549)
Report Version: 7

leaks Report Version: 2.0
Process 8311: 3 nodes malloced for 1 KB
Process 8311: 1 leak for 32 total leaked bytes.
Leak: 0x100100080 size=32 zone: DefaultMallocZone_0x100004000
 0x00000000 0x00000000 0x00000000 0x00000000
 0x00000000 0x00000000 0x00000000 0x00000000
Call stack: [thread 0x7fff70ed8cc0]: | 0x1 | start | main | f | malloc |
malloc_zone_malloc

Binary Images:
0x100000000 - 0x100000ff7 +m (??? - ???)

<18B7E067-D1EB-30CB-8097-04ED600B3628>
/Users/morpheus/m

0x7fff5fc00000 - 0x7fff5fc3bdef dyld (132.1 - ???) <DB8B8AB0-0C97-B51C-BE8B-
B79895735A33> /usr/lib/dyld
...

malloc_history(1)
The malloc_history(1) tool, which requires MallocStackLogging or MallocStackLoggingNo-
Compact to be set, provides a detailed account of every memory allocation that occurred in the pro-
cess, including the initial ones made by dyld(1). Its report format is very similar to those discussed
in sample(1) and leaks(1), previously. In fact, using the –callTree arguments generates a report
that is exactly like sample(1)’s, and can be further processed with filtercalltree(1). Additional
arguments when displaying the call tree include –showContent, which can even peek inside the
memory allocated, similar to the leaks(1) output shown previously.

This tool can be used to show all allocations in the process (using –allBySize or –allByCount) and
even deallocations (-allEvents), demonstrating that there really can be too much of a good thing.
A more useful form for tracking memory leaks, however, is to specify just the addresses in question
as an argument.

STANDARD UNIX TOOLS

In addition to its proprietary tools, OS X provides the standard UNIX utilities found on other sys-
tems, albeit sometimes “tweaked” to deal with OS X idiosyncrasies. This section briefl y describes
these tools.

OUTPUT 5-8 (continued)

c05.indd 178c05.indd 178 10/5/2012 4:15:43 PM10/5/2012 4:15:43 PM

Standard UNIX Tools x 179

Process listing with ps(1)
The standard UNIX command ps(1), used to display the process listing, is naturally available in
OS X (and in iOS, when installed as part of the adv–cmds package). The term “standard,” when
applied to ps(1), is somewhat fl uid, since the command actually has three versions (BSD, System V,
and GNU’s). Darwin’s ps(1), unsurprisingly enough, closely follows that of BSD, though offers
some compatibility with System V’s. As in just about any UNIX, ps(1) uses most letters of the
alphabet (in mixed case) as switches. The useful ones are described in Table 5-9:

TABLE 5-9: Useful switches for ps(1)

SWITCH USAGE

–A/–e All/every process

–f “full” information, including start time, CPU time, and TTY.

–M Shows threads

–l Long information – including priority/nice, user mode address (paddr)

and kernel mode wait address (wchan)

u Classic “top” like display, including CPU and MEM %, virtual size, and

resident set size.

–v Similar to “u”, but also includes text size and memory limit, among

other things.

–j Job information — including session leader

System-Wide View with top(1)
The UNIX top(1) command, a key tool for obtaining an ongoing system-wide view, is present in
OS X (and iOS), with some modifi cations. The changes all stem from the adaptation of the tool to
the underlying Mach architecture, as it is able to present both the UNIX terms (from XNU’s BSD
layer) and those of Mach. As top(1) is part of Darwin’s open source, it can be compiled for iOS as
well (and a binary version can be found on Cydia).

top dynamically adapts to the terminal window size (via a SIGWINCH signal handler) and requires
about 210 column terminals for its full splendor. On a standard terminal, you are likely to see some-
thing like Output 5-9.

OUTPUT 5-9: top(1) on a standard terminal (82x25)

Processes: ## total, # running, ## sleeping, ## threads HH:MM:SS
Load Avg: 0.72, 0.60, 0.53 CPU usage: 15.56% user, 8.49% sys, 75.94% idle
SharedLibs: 6404K resident, 4900K data, 0B linkedit.
MemRegions: 11835 total, 761M resident, 18M private, 1238M shared.

continues

c05.indd 179c05.indd 179 10/5/2012 4:15:43 PM10/5/2012 4:15:43 PM

180 x CHAPTER 5 NON SEQUITUR: PROCESS TRACING AND DEBUGGING

PhysMem: 1224M wired, 1709M active, 1034M inactive, 3968M used, 128M free.
VM: 171G vsize, 1043M framework vsize, 796984(0) pageins, 42562(0) pageouts.
Networks: packets: 3041149/3182M in, 2416182/525M out.
Disks: 423708/12G read, 233719/12G written.

PID COMMAND %CPU TIME #TH #WQ #POR #MREG RPRVT RSHRD RSIZE VPRVT
5558 top 5.4 00:01.39 1/1 0 24 33 1432K 244K 2012K 17M
5348 Xcode 0.0 00:27.79 9 2 233 873 61M 88M 155M 356M
5346 Image Captur 0.0 00:00.24 2 1 81 74 2184K 10M 7104K 31M
5328 ssh 0.0 00:00.18 1 0 22 24 576K 244K 1844K 17M
5263 vim 0.0 00:00.01 1 0 17 36 520K 244K 1704K 19M
5131 bash 0.0 00:00.11 1 0 17 24 408K 764K 1064K 17M
5128 bash 0.0 00:00.00 1 0 17 25 368K 764K 1064K 9656K
5127 login 0.0 00:00.06 1 0 22 53 536K 312K 1644K 19M
5111 bash 0.0 00:00.04 1 0 17 24 392K 764K 1020K 17M
3206 AppleSpell 0.0 00:00.24 2 1 36 49 608K 5728K 4204K 21M
3194- soffice 0.1 01:27.29 5 1 111 767 38M 19M 88M 83M
2348 iTunesHelper 0.0 00:00.30 3 1 52 74 1068K 4268K 3320K 30M
2077 bash 0.0 00:00.49 1 0 17 24 328K 764K 848K 17M
1167 vmware-vmx 6.0 75:11.73 10 1 142 562 17M 57M 894M 46M
507 Preview 0.0 00:13.68 3 2 112+ 154+ 13M+ 25M 28M+ 38M+
425 bash 0.0 00:00.08 1 0 17 25 280K 764K 624K 9648K
424 login 0.0 00:00.01 1 0 22 53 536K 312K 1548K 19M

The OS X top(1) is slightly different from the standard GNU top, in that it is adapted not only
to the BSD nomenclature — PID, UID, PGRP, SYSBSD, and so on — but also the Mach one; spe-
cifi cally, Mach regions (MREG), messages sent (MSGSENT) and received (MSGRECV), and Mach traps
(SYSMACH) are also viewable. Additionally, because top(1) feeds on kernel-provided statis-
tics, it also allows viewing page faults and copy-on-write faults, which the kernel maintains per
task.

File Diagnostics with lsof(1) and fuser(1)
Sooner or later, it becomes interesting to see which fi les are used by a certain processes, or which
processes use a certain fi le. The now ubiquitous utilities of lsof(1) and fuser(1) can accomplish
these, respectively.

lsof(1) provides a complementary service to fs_usage, described earlier because the latter will
see only new fi le operations and not any existing open fi les. lsof(1) displays a mapping of all fi le
descriptors (including sockets!) owned by a process (or processes). On the other hand, fs_usage(1)
can run continuously, whereas lsof usually generates a single snapshot.

fuser(1) provides a reverse mapping — from the fi le to the process owning it. Its main use is to
diagnose fi le locks or “in use” problems, which most often manifest themselves as a “fi le system
busy” message, which fails a umount(8) operation. Using fuser (-c on mount points) enables you
to see exactly which processes are holding fi les in the fi le system and must be dealt with prior to
unmounting.

The lsof package provided on Cydia for iOS at the time of this writing (33-4) does not work prop-
erly, due to incorrect invocation of the underlying proc_info system call. The tool accompanying
this book, however, works properly.

OUTPUT 5-9 (continued)

c05.indd 180c05.indd 180 10/5/2012 4:15:43 PM10/5/2012 4:15:43 PM

Using GDB x 181

USING GDB

The GNU Debugger’s rich syntax and powerful capabilities have made it the de facto standard debug-
ging tool on all UN*X platforms. Apple has offi cially ported GDB to Darwin, and it is available for
both OS X and iOS, as part of XCode or (in source form) as a tarball from Apple’s open source site.

Apple’s GDB port, however, is derived from a rather outdated version of GDB — 6.3.50, in
2005. GDB has since long progressed, with the latest version at the time of this writing being 7.4.
Apple’s GDB fork is also regularly updated with new releases of XCode, resulting in two concur-
rent branches of GDB: The GNU version, and the Apple offi cial one. The GNU version is, by many
reports, “broken,” in a sense that many of the Mach-O features, such as fat binaries and PIE, are
improperly handled. This section, therefore, focuses on the offi cial Apple port. We assume the
reader is familiar with GDB, and discusses the Darwin specifi c extensions.

GDB Darwin extensions
As discussed throughout this book, while XNU presents a UNIX-compatible persona with full
POSIX APIs to user mode, the underlying implementation of the most basic primitives is that of
Mach. GDB is aware of the underlying Mach structures, and contains commands suited specifi cally
to display them. The info command contains the options shown in Table 5-10:

TABLE 5-10: Options for the info Command

COMMAND USAGE

info mach-tasks

info mach-task <task>
Displays a list of all Mach tasks on the system. Roughly speaking, each

task corresponds to a PID. Further information can be obtained per

task, though this information (TASK_BASIC_INFO) is largely useless.

info mach-threads <task>

info mach-thread

<thread>

Obtain a list of all Mach threads in a given task. Likewise, further infor-

mation can be obtained per thread (THREAD_BASIC_INFO), which is a

little bit more useful than the corresponding TASK_BASIC_INFO.

info mach-regions

info mach-region

<address>

A vmmap(1) like display of all the memory regions in the current

debuggee. Alternatively, an address may be specifi ed to seek a par-

ticular region.

info mach-ports <task>

Info mach-port <task>

<port>

Obtain a list of all Mach ports in a given task. Likewise, further obtain

information on a specifi c port. This command prints out the raw hex

values, however, and is therefore less usable.

get/set inferior-auto-

start-dyld
Controls debugging of dyld(1) shared libraries.

get/set inferior-bind-

exception-port
Controls whether or not GDB takes over the task’s exception port.

Doing so enables controlling Mach exceptions, even before they are

converted to UNIX signals.

get/set inferior-

ptrace[-on-attach]
Controls the use of the ptrace(2) API to attach to the debuggee.

Ports are explained in Chapter 9. Tasks and Threads are discussed in Chapter 10.

c05.indd 181c05.indd 181 10/5/2012 4:15:43 PM10/5/2012 4:15:43 PM

182 x CHAPTER 5 NON SEQUITUR: PROCESS TRACING AND DEBUGGING

GDB on iOS
The Cydia supplied port of GDB for ARM and iOS is an extremely unstable one, and often crashes.
Apple’s own GDB works well, and is actually a fat binary, containing an ARM Mach-O side-by-
side the i386 one. If you try it on iOS, however, it will fail, complaining, “Unable to access task for
process-id xxx,” even if used on non-privileged processes. This is because debugging requires access
to the low level Mach task structure, underlying the BSD process.

On a jail broken device, however, just about anything is possible, including working around this
annoyance. The call required, task_for_pid, can be enabled if the executable requesting it is digi-
tally signed with entitlements (as discussed in Chapter 3), or if The AppleMobileFileSecurity kext
is disabled. When debugging through XCode, an intermediary process, debugserver (found on the
Developer Disk Image), is signed and contains the necessary entitlements (which were demonstrated
in Listing 3-7, in that chapter). If the same entitlements are copied onto gdb, and it is signed (using a
pseudo-signing tool such as Saurik’s ldid), the result is a fully functional GDB on iOS.

LLDB
With Apple’s shift to LLVM-gcc, it has also introduced LLDB as an alternative to GDB. LLDB is,
for the most part, similar in syntax to GDB, but is considered more advanced in its debugging capa-
bilities. As GDB is still the more widely known and used of the two, the book relies on it, rather
than LLDB, for examples and illustrations.

SUMMARY

This chapter provided an overview of debugging techniques in OS X and iOS, which can be
employed to deal with the common issues and troubles plaguing developers: system call and func-
tion tracing, memory bugs, sampling the call stack, application hangs, and crashes. The poorly
documented system calls of proc_info and stack_snapshot have been detailed, as have their appli-
cations in the OS X debugging tools. The chapter also served as a refresher to the common UNIX
tools that are included in Darwin.

REFERENCES AND FURTHER READING

1 Apple TN2124 — Mac OS Debugging Magic

2 Apple TN2239 — iOS Debugging Magic

3 Gregg and Mauro, DTrace: Dynamic Tracing in Oracle Solaris, Mac OS X and FreeBSD.
(New Jersey: Prentice Hall, 2011)

4 Apple TN2123 — Crash Reporter

5 Apple TN2151 — iOS Crash Reports

c05.indd 182c05.indd 182 10/5/2012 4:15:43 PM10/5/2012 4:15:43 PM

6
Alone in the Dark:
The Boot Process: EFI and iBoot

The previous chapters have covered the basic aspects of system operation. We now turn our
attention to the boot process. Booting is that often overlooked aspect of system startup, which
occurs from the moment the machine is powered on, until the CPU starts executing the oper-
ating system code. At this most nascent stage, the CPU executes standard startup code. The
code is meant to probe the devices around it, fi nd the most likely operating system, and start it
up, with any user-defi ned arguments.

Whereas other operating systems rely on default, or generic boot loaders, both OS X and iOS
use custom boot loaders of their own. In this chapter, we describe in detail the operation of
the OS X boot loader, which operates in the pre-boot fi rmware environment.

Another aspect, closely tied to boot is installation and upgrade. This chapter therefore devotes
a section to explaining the installation images of both OS X and iOS.

TRADITIONAL FORMS OF BOOT

Prior to its Intel days, the architecture of choice for Mac OS computers was PowerPC. The
PowerPC architecture differs in many ways from Intel, not the least of which being the boot
process. Intel-based machines traditionally relied on a Basic Input Output System — a BIOS,
whereas PowerPC, like many other systems, employed fi rmware.

Most PCs, at the time of this writing, still use BIOS, as is evident when a special startup
key — usually DEL or F2 — is pressed. The BIOS provides a set of simple menus by means
of which the user can toggle board parameters, boot device order, and other settings. This is
the BIOS User Interface. From its other end, a BIOS has a processor interface, which is usu-
ally accessible by means of a specialized machine instruction (commonly Int 13h). Using this
instruction, the CPU can invoke specifi c BIOS-provided functions for device I/O.

c06.indd 183c06.indd 183 9/29/2012 5:23:19 PM9/29/2012 5:23:19 PM

184 x CHAPTER 6 ALONE IN THE DARK: THE BOOT PROCESS: EFI AND IBOOT

Firmware can be thought of as software, which has been put into a chip, hence it is “fi rm.” The
fi rmware code itself can reside in Read-Only Memory (ROM), or — as is more commonly the
case — Programmable Read Only Memory (PROM), or Electronically-Erasable (EEPROM). The lat-
ter form makes the fi rmware read-only, but allows its updating by a process known as fl ashing,
in which the ROM as a whole is reinitialized and updated with newer versions.

Firmware and BIOS exist to serve the same underlying task: to load the CPU with some basic boot-
strap code. This code is responsible for the Power On Self Test phase, in which the CPU “reaches
out” to the various hardware buses, and probes them for whatever devices are present. When a com-
puter is fi rst turned on the CPU is, quite literally, in the dark and needs to “prod” its buses to see
what devices are reported there. It is the bootstrap code — BIOS or Firmware — which is respon-
sible for locating the boot device, and execute a boot loader program, which in turn fi nds the oper-
ating system of choice, and passes its kernel any necessary command-line arguments.

Technically, BIOS is a type of fi rmware, but a distinction is drawn between the two, as fi rmware
is generally perceived to be more advanced and more feature-capable than BIOS. Firmware
interfaces — both user and processor — are generally richer than those of a BIOS. The standard
PC BIOS is wracked with legacy pains. Its origins are in the old days of XTs and ATs, and thus
BIOS is still 16-bit compatible.

BIOS — true to its name — is very basic. Most BIOS supports a very simple partitioning
scheme — called Master Boot Record partitioning. The name refl ects the fact that virtually all parti-
tioning and boot logic resides in one record — the fi rst 512 bytes of the boot disk. When the system
is started, BIOS fi nds the boot disk — as preconfi gured by the user — and starts executing code
directly from logical block 0, or cylinder 0, head 0, sector 0. It expects to fi nd exactly 440 bytes of
loader code there. Usually, these 440 bytes are very simple and directed. They are:

 ‰ Read the partition table (at offset 446 of the very same sector, i.e. 6 bytes later).

 ‰ The partition table contains exactly four records, each 16 bytes. One of them should be desig-
nated as bootable, or active (marked by the most signifi cant bit of the fi rst byte in the record).

 ‰ The loader then reads the fi rst sector of the active partition, called the partition boot record
(PBR), wherein it expects to fi nd the operating system loader code. In Windows’ case, this is
where the familiar NTLDR (or, post-Vista, BootMGR) can be found.

This type of scheme is hardly scalable. If you’ve ever tried to install more than one operating sys-
tem side by side on a BIOS based system, you have no doubt run into problems which affect the
bootability of one, or both of the systems. Only one system can be marked as active, which leads to
the need of a boot loader, which is often third party software. Probably the most famous example of
a boot loader is GNU’s Grand and Unifi ed Bootloader, affectionately referred to as GRUB, which is
the de facto standard in UNIX and BSD. GRUB itself is a BIOS-based program (i.e. running before
the operating system has been loaded), that takes over, to offer a boot menu. Boot loaders offer
some reprieve, but still cannot get past highly restrictive BIOS limitations.

Traditional BIOS can only access about 1 MB of memory. Even this 1 MB is segmented, as 16-bit can
only access 64 K of memory. By using the CPU’s segment registers, 64 K can be expanded — but the 1
MB serves as a hard limit, and places severe restrictions on code execution. In fact, of the 1 MB, only
the lower 640 K (10 segments) were for general purpose RAM, with the top 384 K usually used for
shared video memory.

c06.indd 184c06.indd 184 9/29/2012 5:23:24 PM9/29/2012 5:23:24 PM

EFI Demystifi ed x 185

Additionally, traditional BIOS can’t interface with today’s advanced graphics. If you’ve ever paid
close attention to the way Windows or Linux boot, you see that they start in text mode, then go
into graphics mode — but a limited, VGA mode, wherein the screen resolution is usually 640¥480,
before the screen resets to a higher resolution. This is because, at fi rst, these operating systems draw
on the BIOS to access the graphics card. Only when the processor switches to protected mode, and
specifi c device drivers are loaded, is BIOS no longer necessary.

BIOS is also far from extensible, as is probably evident to PC users who add improved bus control-
lers, like FireWire and USB 3.0 to their systems. The manufacturer BIOS is very rigid, and — while
it is possible to “fl ash” BIOS, much in the same manner as fi rmware — this is generally a potentially
risky operation, and requires specifi c updates for various BIOS versions. BIOS has no concept of a
driver which could be plugged in, much like a kernel driver is to a running operating system.

If all those limitations are not enough, throw in that BIOS is tightly coupled with the MBR parti-
tioning scheme, which allows for only four bootable, or primary partitions in a disk. Due to the
fi xed format of the boot sector, BIOS cannot split a disk into more than four partitions. A work-
around exists in the form of extended partitions (A trick which enables repartitioning of a primary
partition), but extended partitions are unbootable. Another restriction, which is becoming more
serious at the time of writing, is BIOS’s limitations for disks of up to 2 TB. While, back in the day, 2
TB might have seemed an unimaginably large number, let’s also not forget the paradigm at the time
was “640 K ought to be enough for everybody.” With today’s hard drives already offering 2 TB, the
partitioning scheme itself is becoming a backward-compatibility induced limitation, which does not
scale well to today’s, much less tomorrow’s standards.

It is these limitations of BIOS, and others, which led Apple to adopt a newer 32- or 64-bit compat-
ible standard of the Extensible Firmware Interface — or EFI. Contrary to BIOS, EFI is a full fl edged
runtime environment, which offers a far more capable interface during boot, and even later during
runtime. XNU, the OS X kernel, relies on many of EFI’s features, as is discussed next.

EFI DEMYSTIFIED

With the transition to Intel-based architectures, Mac OS X opted to deviate away from the main-
stream BIOS architecture, and be the fi rst major OS to adopt EFI. EFI is more complicated, and was
initially more costly than BIOS. Apple’s tight control and integration with its hardware, however,
allowed it to adopt EFI. Given that OS X on PPC relied on OpenFirmware and its rich feature-set,
it was only natural for Apple to seek similar capabilities for use with Intel processors; it found those
capabilities in EFI.

EFI started as an initiative by Intel, which carried it forward to version 1.10[1], but later merged it
with an open standard called Universal EFI — UEFI. The current version of UEFI (at the time of
writing) is 2.3.1[2]. Apple’s EFI implementation, however, differs somewhat from both standards,
and Apple — as Apple — makes little effort to document its changes. Apple’s EFI is mostly compli-
ant with EFI 1.10, but also implements some features from UEFI.

Much of the detail this book leaves off can be found in either of the standards. The reader is encour-
aged to peruse the standards, though the following sections will cover the basics required for under-
standing EFI as implemented on Macs.

c06.indd 185c06.indd 185 9/29/2012 5:23:25 PM9/29/2012 5:23:25 PM

186 x CHAPTER 6 ALONE IN THE DARK: THE BOOT PROCESS: EFI AND IBOOT

UEFI is processor-agnostic, and has implementations on Intel platforms (naturally), but also on
ARM, as well. In iOS, however, Apple employs a custom boot-loader, called iBoot, which is not
EFI-based.

Basic Concepts of EFI
Whereas BIOS is a set, usually closed program, EFI is an interface. It can be thought more of as
a runtime environment, specifying a set of application programming interfaces which EFI-aware
programs can draw on and use. EFI programs are generally boot loaders (like Linux’s GRUB, or
Apple’s boot.efi, and Boot Camp, both discussed next), but can be diagnostics routines (like
Apple’s Hardware Test), or even user programs which were compiled to link with EFI APIs, as you
will see later in this chapter. Figure 6-1 shows a view of the EFI architecture:

Software

EFI
Binaries

Firmware

Hardware

Operating System
Kernel

EFI Program

EFI Program

EFI Boot Loader

Loader Protocol

EFI Configuration TableEFI System Table

EFI Boot Services

Memory Timer Image

Protocol Registration/Lookup Services

Console In/Out Protocol

RAM Console NVRAM 3rd Party Device

Devices (disks,
mice, etc)

Device Protocols Bus Protocols

Protocol Virtual Mem Variables

EFI Runtime services

FIGURE 6-1: The EFI Architecture

c06.indd 186c06.indd 186 9/29/2012 5:23:25 PM9/29/2012 5:23:25 PM

EFI Demystifi ed x 187

From the developer’s perspective, an EFI program — be it application, boot loader, or driver — is a
binary, much like any other binary program. Unlike OS X’s Mach-O or Linux’s ELF, however, EFI
binaries are all PEs — Portable Executables, adhering to the Microsoft adopted executable format,
which is native to Windows.

Apple is slightly different in their EFI implementation. For one, Apple wraps their EFI binary with
a custom header, not unlike the fat header discussed in the previous chapters. This way, the same
binary can be used for 32-bit and 64-bit architectures.

Additionally, Most EFI implementations provide a shell — i.e. a command line interface. Apple’s
implementation, however, does not. It only responds to specifi c key presses, which the user
should input after the system startup sound (the chime heard when Macs of all kinds boot).
Apple, instead, provides their own custom EFI loader, called boot.efi, which is a closed-source
program.

An EFI binary has a main() — just like any old C program, but instead of the familiar command
line arguments, EFI binaries all implement the same prototype:

typedef EFI_STATUS (EFIAPI *EFI_IMAGE_ENTRY_POINT)
 (IN EFI_HANDLE ImageHandle,
 IN EFI_SYSTEM_TABLE SystemTable);

This is really just to say that EFI binaries accept two parameters from the EFI environment:

 ‰ The EFI Handle — To the image itself, by means of which it can query the runtime for vari-
ous details.

 ‰ The EFI System Table — which is a pointer to a master table, from which all EFI standard
handles and runtime API pointers can be obtained.

EFI binaries, like normal C programs, return a status code — an integer, cast as an EFI_STATUS.
The meaning of this status code, however, is different than in C. Returning EFI_SUCCESS clears
the program from memory upon exit, whereas returning a non success value leaves it resident in
memory.

The handle to the image itself is generally of little use to a program, but the important parameter
lies in the EFI_SYSTEM_TABLE pointer, which is a structure defi ned as shown in Listing 6-1:

LISTING 6-1: The EFI system table

typedef struct {

 EFI_TABLE_HEADER
 { UINT64 Signature; // Constant
 UINT32 Revision;
 UINT32 HeaderSize; // Sizeof the entire table;
 UINT32 CRC32; // CRC-32 of table
 UINT32 Reserved; // set to 0
 } Hdr;
 CHAR16 *FirmwareVendor; // For Apple EFI, "Apple"

continues

c06.indd 187c06.indd 187 9/29/2012 5:23:25 PM9/29/2012 5:23:25 PM

188 x CHAPTER 6 ALONE IN THE DARK: THE BOOT PROCESS: EFI AND IBOOT

 UINT32 FirmwareRevision; // Model dependent
 EFI_HANDLE ConsoleInHandle; // stdin handle for binary
 EFI_SIMPLE_TEXT_INPUT_PROTOCOL *ConIn; // output operations
 EFI_HANDLE ConsoleOutHandle; // stdout handle for binary
 EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL*ConOut; // output operations
 EFI_HANDLE StandardErrorHandle; // stderr handle for binary
 EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL *StdErr; // output operations (q.v ConOut)
 EFI_RUNTIME_SERVICES *RuntimeServices // Pointer to Runtime servers
 EFI_BOOT_SERVICES*BootServices // Pointer to boot time services
 UINTN NumberOfTableEntries; // entries in configuration table
 EFI_CONFIGURATION_TABLE*ConfigurationTable // system configuration table
} EFI_SYSTEM_TABLE;

The EFI_SYSTEM_TABLE allows a binary to obtain handles for what every C program takes for
granted — standard input, standard output, and standard error. Unlike C, however, there is no
<stdio.h>, or even <unistd.h>, with which to process input and output operations. For this, EFI
defi nes various protocols. A protocol is nothing more than a struct of function pointers, each
defi ning an operation. EFI uses such protocols for input and output on the console, as well as on
more complicated devices.

In addition to the handles and their respective protocols, the system table defi nes a confi guration
table, which points to vendor specifi c data, and two other important tables for the various services.
These are discussed next.

The EFI Services
As an interface, EFI provides just that — APIs for EFI binaries to use, in order to access basic
hardware primitives. These services are classifi ed into two groups — Boot Services, and Runtime
Services.

EFI Boot Services
Boot Services are available while the system is still within the environment of EFI, and up to the
point where a special function, aptly called ExitBootServices() is called. Boot Services provide
access to memory and various hardware, as well as launching EFI programs, when these resources
are considered to be “owned” by the fi rmware. Once ExitBootServices() is called, however, Boot
services cease to be accessible. Usually, this function is called right before control — and ownership
of these resources — is transferred to an operating system kernel.

The boot environment is surprisingly rich — well above and beyond what one would have expected
of BIOS. The environment is rich, supporting multi-tasking with preemption, event notifi cation,
memory management, and hardware access.

The Boot Services are stored in a BOOT_SERVICES_TABLE, a pointer of which is obtained from the
EFI_SYSTEM_TABLE. The services in this table can generally be classifi ed into several categories, as
shown in Table 6-1:

LISTING 6-1 (continued)

c06.indd 188c06.indd 188 9/29/2012 5:23:25 PM9/29/2012 5:23:25 PM

EFI Demystifi ed x 189

TABLE 6-1: Boot services provided by EFI

CATEGORY SERVICE CALLS USED FOR

Memory

management

AllocatePages

FreePages

GetMemoryMap

AllocatePool

FreePool

Allocate/free physical memory, either directly

as physical pages or as a more generic allo-

cation from a pool.

Timer/Event

functions

CreateEvent

SetTimer

WaitForEvent

CloseEvent

CheckEvent

SignalEvent

CreateEventEx

Event handling functions which allow to cre-

ate, wait-on or destroy an event. A “Timer,”

in this context, is an event which fi res auto-

matically after a certain timeout. Events can

also be set with specifi c priorities.

Task priorities RaiseTPL

RestoreTPL

Tasks execute at several levels, and using

Raise/Restore can modify task priorities

dynamically. Events will get masked or deliv-

ered, based on task priority.

Hardware access InstallProtocolInterface

ReinstallProtocolInterface

UninstallProtocolInterface

HandleProtocol

RegisterProtocolNotify

LocateHandle

OpenProtocol

CloseProtocol

Access devices by means of specifi c pro-

tocols. (Protocols are a key mechanism for

hardware access, and are covered in the

following section.)

Of particular importance in the Boot Services is access to hardware. Just like the simple input and
output from the EFI_SYSTEM_TABLE, EFI further defi nes the notion of a protocol, to encompass the
API associated with a particular device, or device class. Protocols are uniquely defi ned by 128-bit
GUIDs, and may be obtained during runtime. The following tables illustrate some of these proto-
cols. Here, too, there are several classes, including:

Console Protocols

These protocols deal with the console device i.e., the peripheral user input/output devices directly
connected to the machine: keyboard, mouse, serial port, and screen, but also more sophisticated

c06.indd 189c06.indd 189 9/29/2012 5:23:26 PM9/29/2012 5:23:26 PM

190 x CHAPTER 6 ALONE IN THE DARK: THE BOOT PROCESS: EFI AND IBOOT

devices such as touchscreens and graphics adapters. Table 6-2 lists protocols known to be used by
Apple in Lion’s EFI loader:

TABLE 6-2: Console protocols supported by Apple’s EFI loader

EFI_ PROTOCOL NOTES

SIMPLE_TEXT_INPUT_PROTOCOL Console-based input. Contains the methods Reset() —

to reset console, ReadKeyStroke(), and a

WaitForKey event to delay execution until user presses a key

SIMPLE_TEXT_OUTPUT_PROTOCOL Console-based output. Contains various methods to output

strings, EGA (4-bit) colors, rudimentary cursor control and

textual screen setting capabilities

SIMPLE_POINTER_PROTOCOL Basic interface to a mouse. Somewhat akin to TEXT_INPUT,

provides a Reset(), GetState() — for mouse x/y/z and

button state — and a WaitForInput event to delay execution

until the user moves the mouse

GRAPHICS_OUTPUT_PROTOCOL Basic graphics display, backward and forward compatible with

any display adapter, eff ectively replacing the VGA standard

UGA_DRAW_PROTOCOL An older version of the GRAPHICS_OUTPUT_PROTOCOL

Media Access

These protocols deal with fi les and fi le systems, as well as various devices upon which the fi le sys-
tems may be overlaid including tape devices(!). The ones used in Apple’s EFI are listed in Table 6-3:

TABLE 6-3: Media access protocols supported by Apple’s EFI loader

EFI_ PROTOCOL NOTES

LOAD_FILE_PROTOCOL Contain only one method (LoadFile), to load a fi le from a device

path into a buff er.

SIMPLE_FILE_SYSTEM_PROTOCOL Basic fi le system access for FAT-based fi le systems.

Apple extends fi le system support for HFS+, which is the fi les sys-

tem of choice for OS X.

This protocol contains only one method — OpenVolume() —

which returns a FILE_PROTOCOL to traverse the fi le system.

FILE_PROTOCOL Returned from EFI_SIMPLE_FILE_SYSTEM.OpenVolume(), this

allows the basic fi le operations — Open/Close/Delete/Read/Write,

and the like.

DISK_IO_PROTOCOL Provides ReadDisk/WriteDisk to access disks by logical

block I/O.

BLOCK_IO_PROTOCOL Raw block device abstraction.

c06.indd 190c06.indd 190 9/29/2012 5:23:26 PM9/29/2012 5:23:26 PM

EFI Demystifi ed x 191

Miscellaneous Protocols

Table 6-4 lists miscellaneous protocols used in Apple’s EFI.

TABLE 6-4: Miscellaneous Protocols supported by Apple’s EFI loader

PROTOCOL NOTES

DATA_HUB_PROTOCOL A protocol defi ned by Intel for data store and access. Used by EFI producers

to fi ll in data on devices, and is used by boot.efi in the construction of the

device tree.

UEFI, true to its universal nature, includes protocols for myriad devices and types, including SCSI,
iSCSI, USB, ACPI, debuggers. Apple uses only a very small subset of these in their fi rmware, includ-
ing some specifi c ones, which remain private (see Table 6-5):

TABLE 6-5: Protocol GUIDs for proprietary Apple protocols in UEFI

PROTOCOL GUID USED FOR

4FE1FC56C32332DFh-

0CD249B520DBA5893
Apple BeepGen protocol. This is used in CoreStorage, and has

one known method — AppleBeepGenBeep.

4A6D89C933BE0EF1h-

0B916D58DDC699FBBh
Apple Event protocol.

45EEC4E30DFCE9F6-

7A5983B61A86AA0h
Image conversion protocol. Used in rendering bitmap images

from the various PNGs used, for example, in the CoreStorage

GUI.

EFI Runtime Services
Runtime services, like Boot Services, are available while the system is in EFI mode, but — unlike
Boot Services — can persist afterwards. This means that they are still accessible after an operating
system has loaded. Indeed, XNU — the kernel — sometimes draws on the runtime services.

The runtime services are more limited in scope, as it is assumed that whatever functionality they do
not provide is either provided by the BootServices, or by whomever assumed direct control of the
devices.

As Table 6-6 shows, runtime services include accessing the system time, as well as the environment
variables stored in the NVRAM. One good example is the nvram(8) command, which communi-
cates with EFI services from the command line (albeit through a system call and, in turn, the I/O kit
NVRAM driver). NVRAM variables are used primarily during the system boot, as well as to store
persistent data across reboots (like Panic data).

c06.indd 191c06.indd 191 9/29/2012 5:23:26 PM9/29/2012 5:23:26 PM

192 x CHAPTER 6 ALONE IN THE DARK: THE BOOT PROCESS: EFI AND IBOOT

TABLE 6-6: EFI Runtime services

CATEGORY SERVICE CALLS USED FOR

Time management GetTime

SetTime

Get/Set the local time and date

Alarm clock GetWakeupTime

SetWakeupTime

Get/Set the system built-in wakeup timer

Firmware variables GetVariable

GetNextVariableName

SetVariable

Get/Set variables by name, or walk variables by

calling GetNext()

Miscellaneous ResetSystem Perform a soft reset of the system

NVRAM Variables
NVRAM are a powerful feature of the fi rmware interface, and certainly another advantage it holds
over the legacy BIOS. They are semantically the same as the environment variables you know from
the shell environment, but they exist in a system-wide scope, and are accessible by both the operat-
ing system, and the fi rmware itself.

Generally, NVRAM variables can be classifi ed into the following categories:

 ‰ Boot-related variables: are used to fi gure out which kernel and root fi lesystem to boot, as well
as pass any arguments to the kernel.

 ‰ Firmware internal variables: are used by the fi rmware, but generally ignored by the operating
system

 ‰ Transient variables: are set and cleared based on a need, but generally do not survive across
reboots.

Each variable has associated attributes. The fi rmware itself is agnostic as to the format or data of
the variables — they are nothing more than named containers. In order to mitigate the chance of
confl ict between variable names, variables can be associated with specifi c GUIDs. Apple’s boot.efi
uses several such GUIDS (see Table 6-7):

TABLE 6-7: EFI GUIDs present in Apple’s boot.efi

GUID PURPOSE

EFI_GLOBAL_VARIABLE_GUID

8BE4DF61-93CA-11D2-AA0D-

00E098032B8C

(defi ned in <pexpert/i386/efi.h>)

Generic EFI global variables, defi ned in section 3.2 of the UEFI

spec. The kernel hibernation logic (IOHibernateIO.cpp) sets

BootNext — the boot choice to be used in the next boot, and

Boot%04X (where %04X are four hex digits). Boot.efi queries

BootCurrent, Boot0081 and BootNext.

c06.indd 192c06.indd 192 9/29/2012 5:23:26 PM9/29/2012 5:23:26 PM

EFI Demystifi ed x 193

APPLE_VENDOR_NVRAM_GUID

4D1EDE05-38C7-4A6A-9CC6-

4BCCA8B38C1

Used for fi rmware internal variables, such as Firmware

FeaturesMask, gfx-saved-config-restore-status,

PickerEntryReason, and others.

APPLE_BOOT_GUID

7C436110-AB2A-4BBB-A880-

FE41995C9F8

Apple specifi c private GUID used for boot variables. This is also

the only GUID which is visible through the nvram(8) command.

4AADBD3C8D63D4FE-

0DFC14B97FD861D88
Used for Lion’s Core Storage (And therefore not available

before 10.7). Used internally with variables like "DirtyHalt-

FromRevertibleCSFDE", and "last-oslogin-ident"

which handle Core Storage disk encryption conversion

errors, and "corestorage-passphrase".

<pexpert/i386/efi.h> also defi ned APPLE_VENDOR_GUID - {0xAC39C713, 0x7E50, 0x423D,
{0x88, 0x9D, 0x27,0x8F, 0xCC, 0x34, 0x22, 0xB6} } — but there are no references to it in
the kernel, nor apparently in the boot.efi.

The list of all variables is far more extensive than these meager pages can contain. Table 6-8, how-
ever, lists some variables of specifi c interest.

TABLE 6-8: EFI variables in the APPLE_BOOT_GUID space

EFI VARIABLE

(APPLE_BOOT_GUID)

PURPOSE

SystemAudioVolume Last setting of volume on Mac. EFI needs this in order to sound the familiar

boot chime at just the right volume. Try changing the volume setting, and

use 'nvram –p'.

boot-args Arguments that will be passed to the kernel proper, upon invocation.

These are appended to any Kernel Flags in com.apple.Boot.plist.

efi-boot-file-data

efi-boot-kernel-

cache-data

efi-boot-mkext-data

efi-boot-device

efi-boot-device-data

The names of the kernel, kernel cache, and Multi Kext cache used in the

boot process. (Useful for booting alternate kernel images). These are all

set by bless(8), as discussed later.

aapl,panic-info Set by kernel on crash, to save panic information in a packed format to the

only safe place — the NVRAM. Unpacked upon next reboot by Core

Services' DumpPanic. This variable is ignored by boot.efi.

boot-image

boot-image-key

boot-signature

Used when setting hibernation parameters. Defi ned in iokit/IOKit/

IOHibernatePrivate.h and used in IOHibernateIO.cpp. The former

header fi le also defi nes other memory-related keys, but those are left unused.

fmm-hostname The machine host name, if set.

c06.indd 193c06.indd 193 9/29/2012 5:23:27 PM9/29/2012 5:23:27 PM

194 x CHAPTER 6 ALONE IN THE DARK: THE BOOT PROCESS: EFI AND IBOOT

Using the nvram(8) command will give you access to the fi rmware’s variables from user mode.
The only visible variables, however, are the ones in Apple’s Boot GUID. To get a better view as to
the specifi c NVRAM variables in your Mac, you can download the EFIVars.efi utility from the
book’s website. Bear in mind, however, that in order to run EFI binaries on your Mac, you will need
to fi rst drop into a custom EFI shell (using an alternate booter like rEFIT, described later in the sec-
tion titled “Count Your Blessings”).

An alternative way to see the NVRAM variables is via the I/O Registry Explorer, or the command
line utility ioreg. Again, this will only display those in the APPLE_BOOT_GUID.

If you peek at the XNU source code, in iokit/Kernel/IONVRAM.cpp you can fi nd an array,
gOFVariables, containing many of the legacy variables that were previously used in OpenFirm-
ware. This array is also present in iOS kernels.

OS X AND BOOT.EFI

Even though Apple’s EFI implementation is closed source, because it is still an EFI binary, it can be
inspected quite easily. In addition, it is fi lled with meaningful debugging information, from which
one can fi gure out its stages of operation.

Recall that Apple deviates from the verbatim EFI standard — and, indeed, one can see the very fi rst
deviation in the very format of Apple’s EFI executable. Whereas a normal EFI binary begins with a
PE header, an Apple EFI binary has a fat like header.

Consider the boot.efi from a Lion boot volume — /System/Library/CoreServices/boot
.efi — looks something like Output 6-1:

OUTPUT 6-1: A hex dump of Lion’s boot.efi

morpheus@minion (/)> od -A x -t x4 /System/Library/CoreServices/boot.efi
0000000 0ef1fab9 00000002 01000007 00000003
0000010 00000030 0006c840 00000000 00000007
0000020 00000003 0006c870 00064e40 00000000

0000030 00905a4d 00000003 00000004 0000ffff
...
0000070 0eba1f0e cd09b400 4c01b821 685421cd
0000080 70207369 72676f72 63206d61 6f6e6e61
0000090 65622074 6e757220 206e6920 20534f44
...
...
006c860 624de04e bd2b36a3 238d05f5 29d04881
--
006c870 00905a4d 00000003 00000004 0000ffff
006c880 000000b8 00000000 00000040 00000000
006c890 00000000 00000000 00000000 00000000

To decipher the header, we consult Table 6-9:

c06.indd 194c06.indd 194 9/29/2012 5:23:27 PM9/29/2012 5:23:27 PM

OS X and boot.efi x 195

TABLE 6-9: EFI binary header fi elds

OFFSET FIELDS (LITTLE ENDIAN!) VALUE

0x00 Signature EFI Magic value (constant 0xEF1FAB9)

0x04 NumArchs Number of architectures in this fat binary

Arch+0 Arch type Type of processor

(0x00000007 = CPU_TYPE_X86)

(0x01000007 = CPU_TYPE_x86_64)

Arch+4 Arch subtype Subtype of processor

(0x00000003 = CPU_SUBTYPE_I386_ALL)

Arch+8 Off set to executable Off set to executable’s PE header, from beginning of this fi le

Arch+C Length of executable Length of the executable’s binary

Arch+10 Alignment Alignment, if any

In the example from Output 6-2, the EFI binary contains two architectures, which are concatenated
one after the other (no alignment padding necessary). The 00905a4d you can see corresponds to the
PE signature — MZ (4d5a, but remember Intel endian-ness).

Flow of boot.efi
Apple meticulously stripped their boot.efi binary, so a disassembly only reveals one exported func-
tion — start. A disabled debug feature, however, has consistently (or, at least until the time of writ-
ing) been providing a fairly good idea of its fl ow. This is discussed next

Get EFI Services Pointers, Query CPUID
The fi rst step of boot.efi, like any EFI program, is to obtain and hold in global variables a pointer
to the EFI RuntimeServices. Then, using the cpuid assembly instruction, it checks for the presence of
the AESNI bit.

InitializeConsole
The next step, initializeConsole, uses the RunTimeServices pointer to query the Background
Clear NVRAM variable (from the APPLE_VENDOR_NVRAM_GUID). Then, after getting a call to Locate-
Protocol() CONSOLE_CONTROL_PROTOCOL, it calls its GetMode() to obtain the current console mode.

Lion Specifi c Initializations
Lion calls an Apple proprietary protocol with the Mac OS X 10.7 argument, and gets/sets the ROM
and MLB variables in the APPLE_VENDOR_NVRAM_GUID.

c06.indd 195c06.indd 195 9/29/2012 5:23:27 PM9/29/2012 5:23:27 PM

196 x CHAPTER 6 ALONE IN THE DARK: THE BOOT PROCESS: EFI AND IBOOT

InitDeviceTree
The next step in the boot process is the initialization of a hierarchical, tree-based representation of
the devices in the system. This representation, hence called the Device Tree, is later passed to the
kernel in one of the members of the argument structure. XNU itself doesn’t care much about this
tree, but the IOKit subsystem relies heavily on it.

The device tree is visible in IOKit through a special “plane” called the IODeviceTree plane. The
concept of device planes will be explained in depth in the chapter dealing with IOKit. But — for a
quick idea — you can show the device tree using the ioreg(8) command, telling it to focus on said
plane, as shown in Listing 6-2:

LISTING 6-2: A dump of the OS X device tree

Using ioreg to dump the device tree:
-p: focus on the IODeviceTree plane
-w 0: don't clip output.
–l: list properties
grep –v \"IO : discard occurrences of "IO in the output –
i.e. disregard I/O kit properties

morpheus@Ergo (/)$ ioreg –w 0 –l -p IODeviceTree | grep -v \"IO
+-o Root <class IORegistryEntry, id 0x100000100, retain 11>
 | {
 | … the Root entry is the IO Plane root, not the device tree root …
 | I/O Kit planes are discussed in depth in the chapter dealing with I/O Kit
 | }
 |
 +-o / <class IOPlatformExpertDevice, id 0x10000010f, registered, matched, active,
 busy 0 (155183 ms), retain 25>
 | {
 | "compatible" = <"MacBookAir3,2">
 | "version" = <"1.0">
 | "board-id" = <"Mac-942C5DF58193131B">
 | "serial-number" = <…..>
 | "clock-frequency" = <005a6b3f>
 | "manufacturer" = <"Apple Inc.">
 | "product-name" = <"MacBookAir3,2">
 | "system-type" = <02>
 | "model" = <"MacBookAir3,2">
 | "name" = <"/">
 | }
 |
 +-o chosen <class IOService, id 0x100000101, !registered, !matched, active, busy 0,
 retain 5>
 | | {
 | | "boot-file-path" = <04045000… >
 | | "boot-args" = <"arch=x86_64">
 | | "machine-signature" = <00100000>
 | | "boot-uuid" = <"55799E60-4F79-2410-0401-1734FF9D9E90">
 | | "boot-kernelcache-adler32" = <aa19789d>
 | | "boot-file" = <"mach_kernel">
 | | "name" = <"chosen">

c06.indd 196c06.indd 196 9/29/2012 5:23:27 PM9/29/2012 5:23:27 PM

OS X and boot.efi x 197

 | | "boot-device-path" = < .. >
 | | }
 | |
 | +-o memory-map <class IOService, id 0x100000102, !registered, !matched, active,
 busy 0, retain 6>
 | {
 | "name" = <"memory-map">
 | "BootCLUT" = <00a0100200030000>
 | "Pict-FailedBoot" = <00b0100220400000>
 | }
 |
 +-o efi <class IOService, id 0x100000103, !registered, !matched, active, busy 0,
retain 7>
 | | {
 | | "firmware-revision" = <0a000100>
 | | "device-properties" = <5d09..0000010000000 …06d00650000000500000057>
 | | "firmware-abi" = <"EFI64">
 | | "name" = <"efi">
 | | "firmware-vendor" = <4100700070006c0065000000>
 | | }
 | |
 | +-o runtime-services <class IOService, id 0x100000104, !registered, !matched,
active, busy 0, retain 4>
 | | {
 | | "name" = <"runtime-services">
 | | "table" = <18ae99bf00000000>
 | | }
 | |
 | +-o configuration-table <class IOService, id 0x100000105, !registered, !matched,
active, busy 0, retain 12>
 | | | {
 | | | "name" = <"configuration-table">
 | | | }
 | | |
 | | +-o EB9D2D31-2D88-11D3-9A16-0090273FC14D <class IOService, id 0x100000106,
!registered, !matched, active, busy 0, retain 4>
 | | | {
 | | | "name" = <"EB9D2D31-2D88-11D3-9A16-0090273FC14D">
 | | | "guid" = <312d9deb882dd3119a160090273fc14d>
 | | | "table" = <00a071bf00000000>
 | | | }
 | | |
 | | +-o 8868E871-E4F1-11D3-BC22-0080C73C8881 <class IOService, id 0x100000107,
!registered, !matched, active, busy 0, retain 4>
 | | | {
 | | | "alias" = <"ACPI_20">
 | | | "name" = <"8868E871-E4F1-11D3-BC22-0080C73C8881">
 | | | "table" = <14a096bf00000000>
 | | | "guid" = <71e86888f1e4d311bc220080c73c8881>
 | | | }
 | | |
 | | +-o EB9D2D30-2D88-11D3-9A16-0090273FC14D <class IOService, id 0x100000108,
!registered, !matched, active, busy 0, retain 4>
 | | | {

continues

c06.indd 197c06.indd 197 9/29/2012 5:23:28 PM9/29/2012 5:23:28 PM

198 x CHAPTER 6 ALONE IN THE DARK: THE BOOT PROCESS: EFI AND IBOOT

 | | | "alias" = <"ACPI">
 | | | "name" = <"EB9D2D30-2D88-11D3-9A16-0090273FC14D">
 | | | "table" = <00a096bf00000000>
 | | | "guid" = <302d9deb882dd3119a160090273fc14d>
 | | | }
...

Allocate Memory for Kernel Call Gate
The kernel needs to be loaded from the boot-device into memory, and in order to do that, memory
has to be allocated. The address of the kernel call gate resides in a global variable.

Several Additional Initializations
InitMemoryConfig, InitSupportedCPUTypes, and several other functions are called here.

Check for Hibernation Resume
CheckHibernate is a function which resumes the system from hibernation, if previously hibernated.
If this is the case, this overrides the rest of the fl ow.

Process Boot Keys
ProcessOptions is a key function in the boot loader, responsible for fi guring out all the various
boot options, and eventually consolidating them into the kernel command line.

ProcessOptions checks the keyboard for any input keys. Apple’s HT1533[3] lists the startup key
combinations supported, and shown in Table 6-10:

TABLE 6-10: Intel Mac Boot-Time Keystrokes

KEYSTROKE PURPOSE

C Boot from CD/DVD

D Run diagnostics — Apple Hardware Test

N Netboot

T Target disk mode

Option (ALT) Display “picker” (Startup manager boot device selections)

SHIFT Safe mode (equivalent to boot-args –x)

Command-R Recovery mode (Lion only)

Command-S Single user mode (equivalent to boot-args –s)

Command-V Verbose mode (equivalent to boot-args –v)

3+2/6+4 Boot in 32-bit/64-bit mode

LISTING 6-2 (continued)

c06.indd 198c06.indd 198 9/29/2012 5:23:28 PM9/29/2012 5:23:28 PM

OS X and boot.efi x 199

The main fi le used by ProcessOptions is com.apple.Boot.plist. This fi le, located in /Library/
Preferences/SystemConfiguration, is the main property list used by boot.efi, and its man page
(com.apple.Boot.plist(5)) provides the only documentation of note provided by apple for the
boot loader, at all.

Apple documents the following parameters in the man page, as shown in Table 6-11:

TABLE 6-11: Documented boot parameters for com.apple.Boot.plist

PARAMETER PURPOSE

Kernel The name of the kernel image (by default, mach_kernel)

Kernel Cache The path to a prelinked kernel — both kernel and kernel extensions in one

big fi le

Kernel Flags Arguments merged with "boot-args" from the NVRAM and passed to

kernel as command line

Kernel Architecture Either i386 or x86_64. Can also be set as a Kernel Flag (arch=)

MKext Cache The path to a MultiKExt cache, containing packaged kernel extensions

(mostly drivers) to be loaded with the kernel

Root UUID Unique identifi er of fi lesystem to mount as root

The documentation neglects to mention the following, more colorful parameters, as shown in
Table 6-12:

TABLE 6-12: Undocumented boot parameters for com.apple.Boot.plist

PARAMETER PURPOSE

Background

Color
Set background color for boot

Boot Logo Path to an image for boot. This can be any PNG — Apple’s EFI contains a special-

ized protocol for BMP conversion

Boot Logo

Scale
Scale factor for boot logo

RAM Disk Ram Disk Image. Like many UNIX kernels, XNU can be set to boot up with a fi le-

system image loaded into RAM, which functions as an initial root-fi le system. OS

X rarely uses this option, but iOS relies on it when booting in recovery or update

modes.

Path names in NVRAM variables are all specifi ed with backslashes (\) instead of slashes (/) — as
these arguments are processed by EFI, not the kernel.

c06.indd 199c06.indd 199 9/29/2012 5:23:28 PM9/29/2012 5:23:28 PM

200 x CHAPTER 6 ALONE IN THE DARK: THE BOOT PROCESS: EFI AND IBOOT

Lion: Check CPU Is Not 32-bit Only
In Lion and later, the boot loader calls a function whose sole work is ensuring the CPU is 64-bit
capable. By using the Intel cpuid assembly instruction, the function makes sure the CPU is not
32-bit mode only. If the CPU cannot handle 64-bit mode as well, EFI boot fails with a message stat-
ing, “this version of OS X is not supported on this platform.”

This is really an artifi cial restriction, and the real reason Apple says Lion will not run on 32-bit only
CPUs. The Lion binaries themselves are fat binaries, and even the kernel contains a 32-bit image.
Starting with Mountain Lion, however, it seems that the kernel will be 64-bit only.

Lion: Check Core Storage
Lion also introduces support for CoreStorage, Apple’s logical volume partitioning. If core storage
is detected, the boot loader gets the partition ID and EFI handle, and then calls LoadCoreStorage-
Configuration() to obtain the Core Storage parameters, and UnlockCoreStorageVolumeKey(), in
case the Core Storage volume is encrypted.

SetConsoleMode
This function initializes the console to graphics mode.

DrawBootGraphics
Draws the familiar boot logo, and the animated circle. A call to an internal function, Draw
Animation, handles the latter by creating an EFI timer event, set to fi re every 100 ms and installing
a draw function as a callback.

LoadKernelCache
This function is responsible for locating and loading the pre-linked kernel, if any. This function
internally calls LoadKernel, which can load a standard (i.e. non-pre-linked) kernel, as well. Internal
functions here deal with the Mach-O format of the kernel, and parse the various load commands.

InitBootStruct
The kernel only accepts one argument — a pointer to a boot structure, which is a fairly hefty
struct containing all the parameters the kernel needs to know — from its command line arguments
(from the boot-args and com.apple.Boot.plist), to the device tree and other EFI-borne argu-
ments. This structure is described in detail in the following section, “Booting the Kernel.” Init-
BootStruct allocates and initializes this structure, which occupies a single page (4 K) in memory.

LoadDrivers
This function loads the various device drivers — KEXTs — into the kernel from /System/Library/
Extensions.mkext, if found.

LoadRamDisk
If XNU was loaded with a RAMDisk, this function loads the RAMDisk into memory, so it is avail-
able to the kernel without the need for any drivers. It also sets the /chosen/memory-map RAMDisk

c06.indd 200c06.indd 200 9/29/2012 5:23:28 PM9/29/2012 5:23:28 PM

OS X and boot.efi x 201

attribute, which signals to XNU that a RAMDisk is ready for loading. If a RAMDisk is used, Init-
BootStruct, called previously, also sets the boot-ramdmg-size and boot-ramdmg-extents proper-
ties, which in turn are used by IOKit to detect the RAMDisk.

StopAnimation
Stops the EFI boot animation, by closing the Animation event set when the animation was started,
and clearing the progress animation (by drawing a rectangle over it).

FinalizeBootStruct
This function wraps up the boot struct argument to the kernel (by fi lling in fi nal details like the
video parameters). Just before returning, this function also exits the Boot Services.

Jump to Kernel Entry Point
Finally, Start attempts to jump to the kernel gate (the same one which was allocated in the begin-
ning). If it succeeds, this will never return. Otherwise, it exits with error 8xxxx15h, and sleeps for
10 seconds before exiting Boot Services.

Booting the Kernel
After loading the kernelcache or the kernel proper, boot.efi exits the BootServices, and trans-
fers control to the kernel. The kernel is passed a single argument — a page containing the Boot-
Struct, which was fi nalized in the last stage, from which the kernel can extract all the data required
for its operation. This massive structure in the kernel sources (pexpert/pexpert/i386/boot.h),
but also defi ned in the user-mode include fi le <pexpert/i386/boot.h>, shown in Listing 6-3:

LISTING 6-3: Boot_args (version 2.0) structure from Lion

typedef struct boot_args {
 uint16_t Revision;/* Revision of boot_args structure (Lion: 2, SL: 1) */
 uint16_t Version; /* Version of boot_args structure (Lion: 0, SL: 6) */

 uint8_t efiMode; /* 32 = 32-bit, 64 = 64-bit */
 uint8_t debugMode; /* Bit field with behavior changes */
 uint8_t __reserved1[2];

 char CommandLine[BOOT_LINE_LENGTH]; /* Passed in command line */

 uint32_t MemoryMap; /* Physical address of memory map */
 uint32_t MemoryMapSize;
 uint32_t MemoryMapDescriptorSize;
 uint32_t MemoryMapDescriptorVersion;

 Boot_Video Video; /* Video Information */

 uint32_t deviceTreeP; /* Physical address of flattened device tree */

continues

c06.indd 201c06.indd 201 9/29/2012 5:23:29 PM9/29/2012 5:23:29 PM

202 x CHAPTER 6 ALONE IN THE DARK: THE BOOT PROCESS: EFI AND IBOOT

 uint32_t deviceTreeLength; /* Length of flattened tree */

 uint32_t kaddr; /* Physical address of beginning of kernel text */
 uint32_t ksize; /* Size of combined kernel text+data+efi */

 uint32_t efiRuntimeServicesPageStart;
 /* physical address of defragmented runtime pages */
 uint32_t efiRuntimeServicesPageCount;
 uint64_t efiRuntimeServicesVirtualPageStart;
 /* virtual address of defragmented runtime pages */

 uint32_t efiSystemTable; /* phys. Addr. of system table in runtime area */
 uint32_t __reserved2; // defined in the user-mode header as efimode (32,64)

 uint32_t performanceDataStart; /* physical address of log */
 uint32_t performanceDataSize;

 uint32_t keyStoreDataStart; /* physical address of key store data */
 uint32_t keyStoreDataSize;
 uint64_t bootMemStart;
 uint64_t bootMemSize;
 uint64_t PhysicalMemorySize;
 uint64_t FSBFrequency;
 uint32_t __reserved4[734]; // padding to a page (2,936 bytes)

} boot_args;

The boot_args structure changes in between kernel versions, and its fi eld locations are often shuf-
fl ed around. A kernel version is therefore closely tied to a corresponding EFI loader version. Apple
thus distributes, from time to time, EFI updates, which in part address the compatibility with the
kernel. To ensure compatibility, the boot_args begin with Revision and Version fi elds. Versions
up to Snow Leopard used 1.x (Snow Leopard used 1.6), and Lion uses version 2.0

Using DTrace, it is possible to peek at this structure. The D script in Listing 6-4 relies on the boot_
args being accessible as a fi eld of a global kernel variable, PE_State, and prints them out:

LISTING 6-4: Using dtrace(1) to dump the boot_args structure

#! /usr/sbin/dtrace -C -s
#pragma D option quiet

BEGIN
{
 self->boot_args = ((struct boot_args*)(`PE_state).bootArgs);
 self->deviceTreeHead = ((struct boot_args*)(`PE_state).deviceTreeHead);
 self->video = ((PE_Video) (`PE_state).video);

LISTING 6-3 (continued)

c06.indd 202c06.indd 202 9/29/2012 5:23:29 PM9/29/2012 5:23:29 PM

OS X and boot.efi x 203

 printf("EFI: %d-bit\n", self->boot_args->efiMode);
 printf("Video: Base Addr: %p\n", self->video.v_baseAddr);
 printf("Video is in %s mode\n", (self->video.v_display == 1 ? "Graphics" : "Text"));
 printf("Video resolution: %dx%dx%d\n", self->video.v_width,
 self->video.v_height, self->video.v_depth);

 printf ("Kernel command line : %s\n", self->boot_args->CommandLine);

 printf ("Kernel begins at physical address 0x%x and spans %d bytes\n",
 self->boot_args->kaddr, self->boot_args->ksize);
 printf ("Device tree begins at physical address 0x%x and spans %d bytes\n",
 self->boot_args->deviceTreeP, self->boot_args->deviceTreeLength);

 printf ("Memory Map of %d bytes resides in physical address 0x%x",
 self->boot_args->MemoryMapSize,
 self->boot_args->MemoryMap);

#ifdef LION
 printf("Physical memory size: %d\n",self->boot_args->PhysicalMemorySize);
 printf("FSB Frequency: %d\n",self->boot_args->FSBFrequency);
#endif
}

As you can see, the script doesn’t install any probes. In fact, the only reason to use DTrace, to begin
with, is that it provides the simplest way to enter kernel memory, where the boot_args resides.
Note, that the addresses in the boot_args structure are mostly physical addresses.

Kernel Callbacks into EFI
Recall, that the purpose of EFI is to load the kernel. Yet the kernel still has to interface with EFI, in
particular with the runtime services.

The code in XNU handling EFI is in osfmk/i386/AT386/model_dep.c. In it, are defi ned three
functions:

 ‰ efi_init() — This obtains the EFI runtime services from the kernel’s boot arguments. This
function in turn calls the next function.

 ‰ efi_set_tables_[32|64] (EFI_SYSTEM_TABLE *) — This function, in either a 32- or
64-bit version, takes as an argument a pointer to the EFI system table, validates its signature
and CRC, and retrieves a pointer to the Runtime Services, which it places int gPEEFIRun-
TimeServices, a global variable.

 ‰ hibernate_newruntime_map (void *map, vm_size_t map_size, uint32_t sys-

tem_table_offset) — This reinitializes the runtime services table following a wakeup from
hibernation.

The Mach core, however barely uses EFI — and BSD is totally oblivious to it. It is I/O Kit, on the
other hand, which makes extensive use of EFI (and its device tree), as will be discussed later.

c06.indd 203c06.indd 203 9/29/2012 5:23:29 PM9/29/2012 5:23:29 PM

204 x CHAPTER 6 ALONE IN THE DARK: THE BOOT PROCESS: EFI AND IBOOT

Boot.efi Changes in Lion
EFI’s role has been signifi cantly enhanced in Lion, with the advent of CoreStorage, and other
changes. These include the following:

 ‰ Dropped Features: Despite Apple’s offi cial announcements, kernels in OS X up to and including
Snow Leopard kept on maintaining a PPC image along a (very) fat binary. As a consequence,
EFI in Snow Leopard still supports a “Kernel Interpreter.” This has been dropped in Lion.

 ‰ Core Storage Changes: Lion brings a major change to storage devices — and to EFI — with
its Core Storage services. A key feature of Core Storage is full disk encryption (FDE), which
encrypts the entire disk and makes its data inaccessible without a special pass phrase. Because
this full disk encryption affects everything — including the OS X kernel itself — Lion’s
boot.efi has been revised to add support for Core Storage password authentication. Lion’s
EFI boasts a full aqua-like interface to query users for their passwords, including support for
VoiceOver(!). To achieve this, it utilizes a private framework, from which it obtains the PNG
fi les it renders in the graphic controls. If the user authenticates with EFI (as he or she must, in
order to boot), the credentials are carried forward to enable auto-login.

Boot Camp
Another important feature, which is implemented by Apple’s EFI, is Boot Camp. This is the
name given to Apple’s dual boot solution, which allows running non-Apple operating systems
(primarily, Windows) on Mac hardware. Because Apple uses its proprietary hardware and relies on
EFI — whereas Windows is largely still bogged down in BIOS — Apple made in Boot Camp a com-
plete driver package, to support its specifi c hardware, and modifi ed its boot.efi to allow multi-OS
boot. Multi-OS boot can be enabled independently by using a third party EFI boot loader, such
rEFIt (shown in an experiment later in this chapter).

Count Your Blessings
OS X has traditionally allowed very little access to the fi rmware — be it the PPC’s OpenFirmware
or Intel’s EFI. Aside from the nvram(8) command, the only other tool provided which touches upon
the fi rmware is the bless(8) utility.

The bless(1) command is a utility meant to control and modify the boot characteristics of the sys-
tem — essentially, defi ne where and how the system would boot from. It has no less than six modes
of operation, shown in Table 6-13.

TABLE 6-13: bless(1) modes of operation

MODE USED FOR

Folder Designate a specifi c directory as the system boot directory

Mount Designate a fi le system (volume), rather than a directory. The fi le system argument is a

mounted fi le system, hence the name.

c06.indd 204c06.indd 204 9/29/2012 5:23:29 PM9/29/2012 5:23:29 PM

OS X and boot.efi x 205

Device Designate a volume by /dev notation, i.e. when the fi le system it contains is unmounted.

NetBoot Set server to boot from, using –server bsdp://[interface@]a.b.c.d, where

a.b.c.d specifi es the address of the server, and — optionally — interface specifi es the

local interface, in case of a multi-homed system.

BSDP — the Apple “BootStrap Discovery Protocol” is an extension of DHCPv4 not used or

implemented anywhere outside Apple.

Unbless Revoke the “blessing” from a particular folder, mount, device or network boot.

Info Merely display information.

Apple keeps bless open source, and it is recommended to get the source from Apple’s Open Source
site, if you want to get more insights as to how bless works in each of these modes. The following
example shows a quick usage of bless:

set bless to demonstrate net boot. Note this is just for a demonstration.
Real netboot would require a netboot server (and a real IP address)
bash-3.2# bless --netboot --server bsdp://1.2.3.4
bash-3.2# nvram -p
efi-boot-device <array><dict><key>IOMatch</key><dict><key>IOProviderClass</key><string>
IONetworkInterface</string><key>BSD Name</key><string>en0</string></dict><key>
BLMACAddress</key><data>WFXK9EhZ</data></dict><dict><key>IOEFIDevicePathType</key>
<string>MessagingIPv4</string><key>RemoteIpAddress</key><string>1.2.3.4</string></dict>
</array>
efi-boot-device-data
 %02%01%0c%00%d0A%03%0a%00%00%00%00%01%01%06%00%00%15%01%01%06%00%00%00%03%0b%%00XU
%ca%f4HY%00
%00%03%0c%13%00%00%00%00%00%01%02%03%04%00%00%00%00%00%00%00%7f%ff%04%00
Quickly set bless back to the safe default!
root@Ergo (/)# bless --setBoot –-folder /
root@Ergo (/)# nvram –p
efi-boot-device <array><dict><key>IOMatch</key><dict><key>IOProviderClass</key><string>
IOMedia</string><key>IOPropertyMatch</key><dict><key>UUID</key><string>DADF1195-482F-
423D-B635-CD19BAA4EE47</string></dict></dict><key>BLLastBSDName</key><string>disk0s2
</string></dict></array>
efi-boot-device-data
 %02%01%0c%00%d0A%03%0a%00%00%00%00%01%01%06%00%00%0a%03%12%0a%00%00%00%00%00%00%00
%04%01*%00%02%00%00%00(@%06%00%00%00%00%000#.%1d%00%00%00%00%95%11%df%da/H=B%b65%cd%19
%ba%a4%eeG%02%02%7f%ff%04%00

As the example shows, bless(8) sets the efi-boot-device and efi-boot-device-data variables.
You can see that these are binary encoded variables (the %xx being hexadecimal escape sequences).
If these variables are set, boot.efi will attempt to boot from them. Otherwise, it will seek the fi rst
HFS+ bootable partition it can fi nd. Using bless in its informational mode displays the finderInfo
fi eld of the HFS+ volume, which is an array of eight pointers defi ning fi lesystem bootable param-
eters, shown in Table 6-14,

c06.indd 205c06.indd 205 9/29/2012 5:23:29 PM9/29/2012 5:23:29 PM

bsdp://1.2.3.4

206 x CHAPTER 6 ALONE IN THE DARK: THE BOOT PROCESS: EFI AND IBOOT

TABLE 6-14: The FinderInfo fi eld in HFS+

FINDERINFO NOTES

0 Directory ID of bootable system folder. This is an HFS+ catalog node identifi er (and

inode #), and is usually "2", indicating the root folder (/)

1 Catalog Node ID of the bootable fi le. On OS X Intel-based systems, this will be the

Catalog Node ID (and inode #) of boot.efi

2 This is the Catalog Node ID of a folder that Finder will automatically open a window to

browse (similar to Windows autorun)

3 Reserved for compatibility with OS 8, or 9. On those systems, it is the same as

finderInfo[0]

4 Unused

5 On OS X, the same as finderInfo[0]

6-7 Both these fi elds are used together to form a unique, 64 bit volume identifi er

morpheus@Ergo (/) $ bless –info /
finderinfo[0]: 2 => Blessed System Folder is /
finderinfo[1]: 4600322 => Blessed System File is /System/Library/CoreServices/boot.efi
finderinfo[2]: 0 => Open-folder linked list empty
finderinfo[3]: 0 => No alternate OS blessed file/folder
finderinfo[4]: 0 => Unused field unset
finderinfo[5]: 2 => OS X blessed folder is /
64-bit VSDB volume id: 0x2410197504017D3E
root@Ergo (/)# ls -i /System/Library/CoreServices/boot.efi
4600322 /System/Library/CoreServices/boot.efi

Normally, bless(8) is one of those utilities that is best left untouched. After all, if it isn’t broken,
why fi x it? Indeed, improper use of bless(8) can rend the system unbootable. However, given
an EFI binary, even a non-Apple one, it is possible to use bless to bestow the holy power of boot-
ing upon it. This is especially useful if you want to inspect your Mac at the fi rmware level. This is
shown in the next experiment.

Experiment: Running EFI Programs on a Mac
Recall, that whereas most EFI vendors provide an EFI shell, Apple does not. Fortunately, it is a sim-
ple matter to install a third party shell. There are generally two shells you can consider:

 ‰ Intel’s EFI toolkit contains a shell, as well as many other EFI binaries which can be used to
explore devices, and the fi rmware itself

 ‰ The open source project rEFIt contains a shell — but also a simple installer for OS X, which
invokes bless(8) so that the fi rmware prefers the rEFIt EFI loader over the default
boot.efi. This program functions as an alternate boot loader, which either lets you proceed
normally to boot OS X (the default), or drop to the EFI shell.

c06.indd 206c06.indd 206 9/29/2012 5:23:30 PM9/29/2012 5:23:30 PM

OS X and boot.efi x 207

The sequence carries a small, but non-negligible risk of making your system
unbootable. Installing an alternate EFI boot handler can provide you with more
insights about EFI, along the lines presented in this chapter, and is generally a
simple and safe operation. That said, exercise some caution. You might want to
try this in a VM environment fi rst.

To use the following program, you will need an EFI compiler. This is generally the same as the
standard GCC, albeit with different headers, to refl ect the EFI dependencies (and not the standard
libc). GNU has an EFI toolkit you can use for this purpose. Because the programs are compiled to
EFI, you can choose any version of the toolkit (for example, Linux, which is easiest to use).

After downloading and installing the GNU EFI Toolkit, you will see that it has an apps/ directory.
This directory of sample applications also contains the Makefi le you need to create your own appli-
cations, such as the one shown in Listing 6-5:

LISTING 6-5: A sample program to print all the NVRAM variables on a Mac

#include <efi.h>
#include <efilib.h>

#define PROTOCOL_ID_ID \
 { 0x47c7b226, 0xc42a, 0x11d2, {0x8e, 0x57, 0x0, 0xa0, 0xc9, 0x69, 0x72, 0x3b} }

static EFI_GUID SProtId = PROTOCOL_ID_ID;

 // Simple EFI app to dump all variables, derived from one of the GNU EFI Samples

EFI_STATUS
efi_main (EFI_HANDLE image, EFI_SYSTEM_TABLE *systab)
{
 EFI_STATUS status;
 CHAR16 name[256], *val, fmt[20];
 EFI_GUID vendor;
 UINTN size;

 InitializeLib(image, systab);

 name[0] = 0;
 vendor = NullGuid;

 Print(L"GUID Variable Name Value\n");
 Print(L"=================================== ==================== ========\n");
 while (1) {
 StrCpy(fmt, L"%.-35g %.-20s %s\n");
 size = sizeof(name);
 status = uefi_call_wrapper(RT->GetNextVariableName, 3, &size, name,
 &vendor);
 if (status != EFI_SUCCESS)
 break;

continues

c06.indd 207c06.indd 207 9/29/2012 5:23:30 PM9/29/2012 5:23:30 PM

208 x CHAPTER 6 ALONE IN THE DARK: THE BOOT PROCESS: EFI AND IBOOT

 val = LibGetVariable(name, &vendor);
 if (CompareGuid(&vendor, &SProtId) ==0)
 {
 StrCpy(fmt, L"%.-35g %.-20s %.-35g\n");
 Print (fmt, &vendor, name , &val);
 }
 else
 Print(fmt, &vendor, name, val);
 FreePool(val);
 }
 return EFI_SUCCESS;
}

To compile this program, simply add it to the Makefi le in the apps/ directory (or overwrite one of
the existing samples). The resulting binary should distinctly be an EFI binary:

[root@Forge gnu-efi-3.0/apps]# make
/usr/bin/gcc -I. -I./../inc -I./../inc/x86_64 -I./../inc/protocol -O2 -fpic -Wall -
fshort-wchar -fno-strict-aliasing -fno-merge-constants -mno-red-zone -DCONFIG_x86_64 -
D__KERNEL__ -I/usr/src/sys/build/include -c printenv.c -o printenv.o
/usr/bin/ld -nostdlib -T ./../gnuefi/elf_x86_64_efi.lds -shared -Bsymbolic -L../lib -
L../gnuefi ../gnuefi/crt0-efi-x86_64.o printenv.o -o printenv.so -lefi -lgnuefi
/usr/lib/gcc/x86_64-redhat-linux/4.6.0/libgcc.a
/usr/bin/objcopy -j .text -j .sdata -j .data -j .dynamic -j .dynsym -j .rel \
 -j .rela -j .reloc --target=efi-app-x86_64 printenv.so printenv.efi
rm printenv.so printenv.o

[root@Forge gnu-efi-3.0/apps]# file printenv.efi
printenv.efi: PE32+ executable (EFI application) x86-64 (stripped to external PDB), for
MS Windows

Take this binary and drop it into your Mac’s EFI partition. The easiest way to do so is to mount the
partition while OS X is still running:

root@Ergo (/)# mount -t msdos /dev/disk0s1 /mnt # Mount as a DOS (Fat) filesystem

root@Ergo (/)# ls /mnt # Indeed, mount is succesful
.Trashes .fseventsd EFI

root@Ergo (/)# du /mnt/EFI # Show directories
30723 /mnt/EFI/APPLE/EXTENSIONS
8323 /mnt/EFI/APPLE/FIRMWARE # Apple "Firmware update" .scap files are here
39047 /mnt/EFI/APPLE
39048 /mnt/EFI

root@Ergo (/)# cp efitest.efi /mnt/ # Copy over file to root of partition

To run this program, you will need to fi rst install rEFIt[4], as otherwise Apple’s boot.efi will
just boot into OS X. The installation is a straightforward one, and should not in any way hamper
your ability to boot normally into OS X. It will, however, give you an option to drop into an EFI
shell.

LISTING 6-5 (continued)

c06.indd 208c06.indd 208 9/29/2012 5:23:31 PM9/29/2012 5:23:31 PM

OS X and boot.efi x 209

The EFI shell greatly resembles the old fashioned DOS prompt, wherein you can execute the pro-
gram amidst nostalgic PC EGA 4-bit colors. Rather than use drive letters, use fs0: and fs1: to
access the EFI and the system partitions, respectively (and remember a backslash instead of a slash
for directory separators). Running the program from Listing 6-4 will show you all the environment
variables your NVRAM contains, as shown in Output 6-2:

OUTPUT 6-2: A dump of the EFI Variables from a Mac Mini:

Shell> dir fs0: # either ls or dir work
Directory of: fs0:\

 04/01/12 09:30a 48,354 printenv.efi
 03/23/10 01:07a <DIR> r 352 EFI

Shell> fs0:\printenv.efi
GUID Variable Name Value
=================================== ==================== ========
E6C2F70A-B604-4877-85BA-DEEC89E117E PchInit <B0><FF><8E><D0>A^C

Efi MemoryConfig RLEX^K
4DFBBAAB-1392-4FDE-ABB8-C41CC5AD7D5 Setup
05299C28-3953-4A5F-B7D8-F6C6A7150B2 SetupDefaults
Efi Timeout ^E<FF><8E><D0>A^C

AF9FFD67-EC10-488A-9DFC-6CBF5EE22C2 AcpiGlobalVariable P<FE><8E>
Efi Lang eng<8E>
Efi BootFFFF ^A
Efi BootOrder <80>
Efi epid_provisioned ^A
Efi lock_mch_s3 ^A
7C436110-AB2A-4BBB-A880-FE41995C9F8 SystemAudioVolume h
36C28AB5-6566-4C50-9EBD-CBB920F8384 preferred-networks
36C28AB5-6566-4C50-9EBD-CBB920F8384 preferred-count ^A
36C28AB5-6566-4C50-9EBD-CBB920F8384 current-network
4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C1 AAPL,PathProperties0 R^A
7C436110-AB2A-4BBB-A880-FE41995C9F8 aht-results
<dict><key>_name</key><string>spdiags_aht_value</string><key>spdiags_last_run_key</key>
<date>4011-09-16T18:36:02Z</date><key>spdiags_result_key</key><string>
spdiags_passed_value</string><key>spdiags_version_key</key><string>3A224</string>
</dict>7C436110-AB2A-4BBB-A880-FE41995C9F8 fmm-computer-name Minion
Efi Boot0080 ^A
7C436110-AB2A-4BBB-A880-FE41995C9F8 efi-boot-device-data ^B^A^L<D0>A^C

7C436110-AB2A-4BBB-A880-FE41995C9F8 efi-boot-device
<array><dict><key>IOMatch</key><dict><key>IOProviderClass</key><string>IOMedia</string>
<key>IOPropertyMatch</key><dict><key>UUID</key><string>50DD0659-0F10-4307-860B-
6908BD051907</string></dict></dict><key>BLLastBSDName</key><string>disk0s2</string>
</dict></array>
ShellAlias copy cp
...

The nvram(8) command only displays the variables associated with the Apple GUID (7C436110-
AB2A-4BBB-A880-FE41995C9F8, as shown in Table 6-7).

c06.indd 209c06.indd 209 9/29/2012 5:23:31 PM9/29/2012 5:23:31 PM

210 x CHAPTER 6 ALONE IN THE DARK: THE BOOT PROCESS: EFI AND IBOOT

You can use the other examples in the GNU EFI toolkit to explore EFI further. Additionally, you
can use the EFI programs bundled with rEFIt (which should be accessible as fs1:\efi\tools), for
example dumpprot.efi, which will dump all EFI protocols by GUID, and dumpfv.efi, which will
dump the fi rmware image into the EFI system partition.

IOS AND IBOOT

Apple’s i-Devices do not support EFI, and have a totally different boot process than that described
above for OS X. The iOS boot process is custom built by Apple using components not found in any
other system, and specifi cally designed to be hack-proof, so as to discourage “evil” jailbreakers from
installing any operating system other than iOS.

The boot process is a multi-stage one, as is shown in Figure 6-2:

Boot ROM DFU?

LLB

OS Upgrade (iTunes)

Kernel

Recovery
Ramdisk

Recovery mode

iBoot

iBSS iBEC
Update
Ramdisk

FIGURE 6-2: The iOS Boot process (high-level)

With the exception of the Boot ROM, all these steps are encrypted and digitally signed. This forms
a chain of trust right up to the kernel, so that it is (theoretically) impossible to interfere with the
boot process and inject any other type of code.

It appears all boot components share a common code base. The NAND FTL (Flash Translation
Layer), IMG3 loading, cryptography support, USB support, and ARM low-level exception handling
code are all largely identical in them. Each is, in effect, fully self-contained, and rightfully so: They
precede the iOS kernel, and therefore cannot rely on its services.

Precursor: The Boot ROM
i-Devices boot using a custom ROM, which is responsible for initializing the device, and loading the
Low Level Bootloader, commonly referred to as the LLB. Key in the loading operation is the verifi -
cation of the digital signature by Apple which ensures the LLB has not been tampered with.

c06.indd 210c06.indd 210 9/29/2012 5:23:31 PM9/29/2012 5:23:31 PM

iOS and iBoot x 211

The ROM is part of the device itself and cannot be updated. This works both in Apple’s favor and
against it: It is extremely diffi cult to “dump” the ROM in order to reverse-engineer it, and it cannot
be tampered with in any way. On the other hand, if it does contain a vulnerability (i.e. a buffer over-
fl ow or other code injection vector), there is nothing Apple can do to update it.

In the older generation of Apple’s i-Devices — those pre-dating the A5 chip, the bootrom indeed
contains an (as yet) undisclosed vulnerability. The “limera1n” exploit, due to the famous hacker
geohot, has been successfully used to jailbreak all those devices, in what are known as “untethered”
jailbreaks: By exploiting the vulnerability, the check for Apple’s signature can be easily bypassed,
enabling the uploading of custom iOS images (.ipsw fi les), and even non-iOS images (giving rise to
the peculiar movement of iDroid, to install Android on i-Devices in place of iOS). Older bootrom
are therefore forward-jailbreakable, as irrespective of any iOS vulnerabilities, the OS image itself
can always be patched.

A5-based devices, by contrast, have a newer ROM, one in which the limera1n vulnerability, though
undisclosed, was patched. As a consequence, they remain (as of yet) impervious to jailbreaking
attempts.

From the boot ROM, two roads diverge: One is the path to normal boot (the default startup of the
device) and/or Recovery mode (“Connect to iTunes”). The other is the Device Firmware Update
(DFU), which is used to update the iOS image.

Normal Boot
Unless otherwise stated, with no user interaction the device will proceed to boot normally. This is a
two-staged process, consisting of the LLB, and iBoot, both of which are responsible for eventually
loading the iOS kernel.

Stage I: The Low Level Bootloader
The Low Level Bootloader is the fi rst updateable component of the boot process. It is part of the iOS
image, not the device itself, and if you peek at the image you will see it is a fi le called LLB.xxxx.
RELEASE.img3 in the Firmware/all_flash/all_flash.xxxap.production/ directory. “xxx” is
the model number of the i-Device, shown in Table 6-19, later in this chapter.

The LLB, like all fi les in the iOS image, is in the IMG3 format. As described under “iOS Software
Images,” in this chapter, this is an encrypted fi le format which is also digitally signed by Apple. Fol-
lowing the IMG3 header (64 bytes) is the actual raw code of the LLB. It is loaded by the bootrom
into a predefi ned address, usually 0x84000000.

LLB will locate its second stage, iBoot, and will attempt to load it. This is done by seeking the image
in memory with the tag “ibot.” If this fails, LLB contains code to drop to DFU mode, and load
iBEC.

Stage II: iBoot
The main boot loader is called iBoot. It is this loader which locates, prepares, and loads the
kernelcache. Older versions of iBoot also allowed passing command line arguments (from the
boot-args variable), but due to the obvious potential for abuse, this has been removed.

c06.indd 211c06.indd 211 9/29/2012 5:23:31 PM9/29/2012 5:23:31 PM

212 x CHAPTER 6 ALONE IN THE DARK: THE BOOT PROCESS: EFI AND IBOOT

Using various jailbreaking utilities, it is possible to choose a tethered boot on pre
A5 devices, and — by patching iBoot — pass command-line arguments using
custom boot-args.

iBoot gets loaded at address 0x5FF00000. It is a fairly sophisticated boot loader. In addition to
the common code shared by all components, it contains a built-in HFS+ driver, which enables it to
access the iOS fi lesystem. iBoot is also multi-threaded, and normally spawns at least two threads:

 ‰ A “main” thread, which displays the familiar Apple logo, and proceeds to boot the system, as
specifi ed by the auto-boot and boot-command environment variables. The latter can be set
to fsboot (normal fi le system boot, with or without ramdisk), diags (diagnostics) or upgrade.
The boot may be delayed by a bootdelay environment variable, in which the user may inter-
vene and abort the process.

 ‰ A “uart reader” thread, which Apple likely uses for debugging purposes. The serial ports on
i-Devices are present, though require quite a bit of work to enable.[5] This thread is therefore
normally idle.

During normal operation, iBoot calls its fsboot() function, which mounts the iOS system parti-
tion, locates the kernel, prepares its device tree, and boots it. If the boot fails (or is aborted), how-
ever, iBoot falls into recovery mode, wherein the main thread spawns several concurrent tasks:

 ‰ The idleoff task: Times-out after suffi cient user inactivity and power off the device

 ‰ The poweroff task: Forces the device to power off on critical battery

 ‰ The usb-req task: Handles USB requests from iTunes

 ‰ The usb-high-current and usb-no-current tasks: Responds to USB charge (these are respon-
sible for changing the battery glyph when the device is connected or disconnected).

 ‰ The command task: Enables a command-line, console interface over the serial port (that is,
assuming you have a serial port connection).

Recovery Mode
Recovery mode is essentially the same as normal boot, with one important difference: The system boots
using a ramdisk, rather than the fl ash based fi le system that contains the standard iOS image. The ram-
disk is a complete in-memory fi le system, which can be used as an alternate root fi le system. The fl ash
based fi le system can then be mounted as a secondary, and system fi les can be modifi ed or updated.

You can check out the ramdisk for yourself, if you have an iOS image (IPSW). As discussed in the sec-
tion “iOS Software Images” in this chapter, it is fairly straightforward to unzip and decrypt the ramdisk
image. The fi le is usually the third DMG fi le in the update. It is not, however, a classic DMG in the sense
of one that can be readily mounted by OSX. Rather, it is a raw fi lesystem image. If you have successfully
decrypted it, running the file(1) command on it should produce something like the following:

morpheus@Ergo (…./iOS)$ file 5.1.restore.ramdisk.dmg
5.1.restore.ramdisk.dmg: Macintosh HFS Extended version 4 data last mounted by: '10.0',
created: Wed Feb 15 05:26:23 2012, last modified: Wed Feb 15 09:10:50 2012, last
checked: Wed Feb 15 08:26:23 2012, block size: 4096, number of blocks: 4218, free
blocks: 0

c06.indd 212c06.indd 212 9/29/2012 5:23:32 PM9/29/2012 5:23:32 PM

iOS and iBoot x 213

You can also mount the ramdisk easily on OS X by using hdiutil(1) with the imagekey
diskimage-class=CRawDiskImage (this is discussed in Chapter 15, and shown in Output 15-2).

Using various jailbreaking utilities, you can boot iOS with an alternate ram-
disk (for example, using redsn0w –r). This is an extremely useful feature for
forensics, data recovery and hacking, and hours of fun and profi t. It effectively
exposes the entire i-Device’s fi lesystem. A good discussion on this can be found
in Jonathan Zdziarski’s book.[6]

Device Firmware Update (DFU) Mode
i-Devices have an additional, albeit lesser used boot mode: Device Firmware Update or DFU mode.
In this mode, the fi rmware itself, in NAND fl ash, is updated. This occurs when a new version of iOS
is installed on the device, or during jailbreaking.

iTunes can enable this mode over USB (when you select to upgrade your device), though you can do
so as well. To try this, connect your device over USB, and do the following:

 ‰ Turn off the i-Device

 ‰ Press the power button, and hold. The device should appear to boot, with the Apple logo

 ‰ After three seconds, press and hold the home button (while holding the power button). The
device screen should clear.

 ‰ After ten seconds, let go of the power button, but keep on holding the home button.

 ‰ Wait a few more seconds and let go.

If you did this properly, the device screen should remain blank. Otherwise, you might end up in
recovery mode (“Connect to iTunes”). If the screen is indeed blank and you connect it over USB,
you will see it identify itself as “Apple Mobile Device (DFU Mode).” Getting out of DFU mode is
easy — all you need to do is power-cycle the device.

DFU mode involves two images — iBSS and iBEC. The fi rst loads at 0x84000000 (on iOS 5), and
is responsible for low-level initialization, and the loading of iBEC. iBEC, like its big brother iBoot,
loads at 0x85000000, and is responsible for handling iTunes upgrade commands over USB.

Downgrade and Replay Attacks
A potential vulnerability in the iOS update process which Apple invests many resources into pre-
venting is in cases where a user might want to install an older version of iOS on the i-Device. As iOS
versions progress, Apple plugs and seals various jailbreak openings. From Apple’s perspective, all
users should consistently upgrade to the latest and greatest versions.

When updating an i-Device, it is not enough to possess a valid iOS image. During the system
upgrade (or downgrade) process, a request is made to Apple’s secure server, with a Secure Hash
value — often referred to as a SHSH. The request includes the device’s unique chip id (the ECID
value). Though the request is made over plain HTTP (to gs.apple.com), the reply is digitally signed.
The SHSH is used in the BBTicket (required for base band, or phone logic upgrade) or the APTicket
(required for upgrading the iOS fi rmware).

c06.indd 213c06.indd 213 9/29/2012 5:23:33 PM9/29/2012 5:23:33 PM

214 x CHAPTER 6 ALONE IN THE DARK: THE BOOT PROCESS: EFI AND IBOOT

Prior to iOS 5, it was possible to capture the session, and extract the SHSH blob to save it locally
(using TinyUmbrella), or by Cydia. Since then, however, Apple has improved the protocol, by adding
a random nonce generated by the device. A random nonce means that now every upgrade autho-
rization request is unique, and therefore saving the SHSH has no effect. This makes downgrading
impossible once Apple closes the window on a particular iOS version and confi gures their server to
deny signatures. For this reason, users try to get their hands on new releases of i-Devices sooner,
rather than later — as Apple keeps updating iOS on devices with new shipments to their stores.

INSTALLATION IMAGES

Apple pre-installs OS X and iOS on all its hardware. Because both systems are carefully installed
with all the required defaults, the average user doesn’t bother much with re-installing the system.
Hackers and other enthusiasts, however, often perform system wide changes, or careless mishaps as
root, which can render the system unbootable. In those cases, the installation media or image needs
to be dug up, and the system needs to be installed.

This section covers the installation image format of both OS X and iOS. It is of particular interest
to anyone who wants to pick apart the images, extracting specifi c fi les or even modifying them to
customize the installation image.

OS X Installation Process
The OS X installation begins when an installation DVD or thumb drive is inserted. The Finder auto-
matically shows the root folder, which contains the installation app. If the user chooses to activate
the application, things proceed as follows:

Step I: InstallXXX.app
The installation utility for OS X is itself an OS X application. As such, it contains a small executable
responsible for the UI, and for starting the installation process. The actual system fi les in the instal-
lation process are shown in Table 6-15:

TABLE 6-15: Files involved in the OS X installation process

FILE LOCATION CONTAINS

boot.efi Install media EFI bootloader for updated kernel

kernelcache Install media Updated kernel for installed OS

InstallESD.dmg Install media

(SharedSupport)

The OS X installation fi le system image

BaseSystem.dmg InstallESD.dmg The base system image to be copied over to the

target system

/var/log/install.log Target system Detailed installation log

c06.indd 214c06.indd 214 9/29/2012 5:23:33 PM9/29/2012 5:23:33 PM

Installation Images x 215

The executable brings up the familiar Wizard-like interface of the installation (In Mountain Lion,
it also dispatches an OpenCL program to the GPU, responsible for GUI effects). The GUI collects
the user input choices (e.g. which volume to install on) and also validates the installation with Apple
(osrecovery.apple.com). Assuming all went well, it proceeds to copy the kernelcache, boot.efi,
and InstallESD.dmg to a special directory, /Mac OS X Install Data. It then edits com.apple
.Boot.plist to inform the kernel it is booting with a DMG fi le, as can be seen in /var/log/
install.log (Listing 6-6):

LISTING 6-6: Excerpt from install.log detailing the Installation App’s work:

Sep 25 22:36:49 localhost Install Mac OS X Lion[343]: Extracting files from
/Volumes/Macintosh HD/Mac OS X Install Data/InstallESD.dmg
Sep 25 22:36:50 localhost Install Mac OS X Lion[343]: Extracting Boot Bits from Outer
DMG:
Sep 25 22:36:50 localhost Install Mac OS X Lion[343]: Copied kernelcache
Sep 25 22:36:50 localhost Install Mac OS X Lion[343]: Copied Boot.efi
Sep 25 22:36:50 localhost Install Mac OS X Lion[343]: Ejecting disk image
Sep 25 22:36:50 localhost Install Mac OS X Lion[343]: Generating the
 : com.apple.Boot.plist file
Sep 25 22:36:50 localhost Install Mac OS X Lion[343]: com.apple.Boot.plist: {
 "Kernel Cache" = "/Mac OS X Install Data/kernelcache"; "Kernel
Flags" = "container-dmg=file:///Mac%20OS%20X%20Install%20Data/InstallESD.dmg root-
dmg=file:///Base
System.dmg";
 }
Sep 25 22:36:50 localhost Install Mac OS X Lion[343]: Done generating the
com.apple.Boot.plist file
Sep 25 22:36:50 localhost Install Mac OS X Lion[343]: Blessing /Volumes/Macintosh HD --
/Volumes/Macintosh HD/Mac OS X Install Data
Sep 25 22:36:50 localhost Install Mac OS X Lion[343]: Blessing Mount
Point:/Volumes/Macintosh HD Folder:/Volumes/Macintosh HD/Mac OS X Install Data
plist:com.apple.Boot.plist
Sep 25 22:36:50 localhost Install Mac OS X Lion[343]: *****************************
Setting Startup Disk *****************************
Sep 25 22:36:50 localhost Install Mac OS X Lion[343]: ****** Path:
/Volumes/Macintosh HD
Sep 25 22:36:50 localhost Install Mac OS X Lion[343]: ****** Boot Plist:
/Volumes/Macintosh HD/Mac OS X Install Data/com.apple.Boot.plist
Sep 25 22:36:50 localhost Install Mac OS X Lion[343]: /usr/sbin/bless -setBoot -folder
/Volumes/Macintosh HD/Mac OS X Install Data -bootefi /Volumes/Macintosh HD/Mac OS X
Install Data/boot.efi -options config="\Mac OS X Install Data\com.apple.Boot" -label Mac
OS X Installer
Sep 25 22:36:51 localhost Install Mac OS X Lion[343]: Bless on /Volumes/Macintosh HD
succeeded

The kernel fl ags — by another name, command line arguments — specify to the kernel that it is to
mount InstallESD.dmg as a container image, which it needs to mount in order to fi nd the actual
image to use as a root fi le system — the BaseSystem.dmg. It then blesses the boot disk so as to
make the system boot from InstallESD.dmg. Once the bless operation completes successfully, the
system reboots automatically, and starts from the new image.

c06.indd 215c06.indd 215 9/29/2012 5:23:33 PM9/29/2012 5:23:33 PM

file:///Mac%20OS%20X%20Install%20Data/InstallESD.dmg
file:///Base

216 x CHAPTER 6 ALONE IN THE DARK: THE BOOT PROCESS: EFI AND IBOOT

Step II: OSInstaller
OSInstaller is the executable responsible for the unattended portion of installation which
occurs once the system reboots. The system by this point has booted into the new OS, and
runs its kernelcache. The image instructs launchd(8) to run OSInstaller, which proceeds
to load minstallconfig.xml from which it can obtain the installation data. It also brings up
diskmanagementd(8), which is used in case any disk “surgery” (i.e. repartitioning) is required.

Once any repartitioning is done, OSInstaller can proceed to install the system, which comes bun-
dled in the form of several packages, as shown in Table 6-16. All these fi les are in the /Packages
directory:

TABLE 6-16: OS X installation packages (all in installESD.dmg)

FILE CONTAINS

BaseSystemBinaries.pkg KEXTs, binaries, and some application binaries

BaseSystemResources.pkg Resources for apps in BaseSystem

OSInstall.mkpg Internationalization resources for Install

Essentials.pkg Most Applications, CoreServices

Bootcamp.pkg Boot-Camp (for dual boot with Windows)

BSD.pkg The BSD subsystem fi les

MediaFiles.pkg Pictures, Screensavers, etc.

JavaTools.pkg The OS X bundled Java implementation

RemoteDesktop.pkg Remote desktop tools

SIUResources.pkg System Image Utility resources

AdditionalEssentials.pkg More applications, help fi les, and Widgets

AdditionalSystemVoices.pkg For those users who just can’t do without “Princess” and

“Deranged”

AsianLanguagesSupport.pkg Specifi c support for Asian Languages

<app>.pkg Miscellaneous applications, such as Automator, Mail, iChat,

DVDPlayer, iTunes, Safari, etc.

<language>.pkg Miscellaneous language support fi les (anything but English)

X11User.pkg The X/11 Subsystem

OSInstall.pkg Pre and post install scripts (no fi les)

c06.indd 216c06.indd 216 9/29/2012 5:23:34 PM9/29/2012 5:23:34 PM

Installation Images x 217

Before installing, OSInstaller runs an fsck(1) on the target volume. As of Lion it also calls on dis-
kmanagementd to prepare a recovery volume, which is essentially the BaseSystem.dmg from which
OSInstaller can boot.

Once the recovery volume is set, OSInstaller uses the PackageKit and Install frameworks to open
the package fi les one by one.

Installing .pkg fi les
OS X packages, listed in Table 6-17, are descendants of NextSTEP packages. The packages
are archives in xar(1), which is an archive format similar to tar(1), but natively supporting
compression.

TABLE 6-17: OS X packages

FILE CONTAINS

Bom Package “Bill Of Materials.” Viewable with lsbom(1) and can be created with

mkbom(1)

PackageInfo A property list fi le specifying the package manifest

Payload The actual package contents, usually compressed with bzip(1)

Scripts Pre- and Post-install scripts, usually archived with cpio(1) and compressed with

gzip(1)

The following experiment illustrates working with packages.

Experiment: Unpackaging Packages
Using the OS X installation CD or USB medium, locate the InstallESD.dmg fi le. This fi le is in the
SharedSupport/ folder of the Installation app. Mount the DMG, using the commands shown in
Output 6-3:

OUTPUT 6-3: Locating and mounting the InstallESD.dmg

morpheus@Ergo (/Volumes/OS X Mountain Lion)$ cd "Install OS X Mountain Lion.app"
morpheus@Ergo (...OS X Mountain Lion.app)$ cd SharedSupport
morpheus@Ergo (.../SharedSupport)$ open InstallESD.dmg # could also use hdid(1)

Once the dmg is mounted, you can cd to its Packages/ directory, and locate all the packages shown
previously, in Table 6-16. Pick a package to continue this experiment with (in our example, we use
BSD.pkg — you are encouraged to pick another).

Query the package of choice with the xar(1) command. Its usage is very similar to tar(1). Create
a temporary directory, and extract the package contents to it, as shown in Output 6-4:

c06.indd 217c06.indd 217 9/29/2012 5:23:34 PM9/29/2012 5:23:34 PM

218 x CHAPTER 6 ALONE IN THE DARK: THE BOOT PROCESS: EFI AND IBOOT

OUTPUT 6-4: Extracting a package

morpheus@Ergo(/tmp/pkgDemo)$ xar –xvf /Volumes/Mac\ OS\ X\ Install\ ESD\Packages/BSD.pkg
Bom
PackageInfo
Payload
Scripts

The bill of materials (bom) can be viewed with lsbom(1):

morpheus@Ergo (/tmp/pkgDemo)$ lsbom Bom
. 40755 0/0
./Library 40755 0/0
./Library/Python 40755 0/0
./Library/Python/2.3 40755 0/0
./Library/Python/2.3/site-packages 40755 0/0
./Library/Python/2.3/site-packages/Extras.pth 100644 0/0 75 316297377
./Library/Python/2.3/site-packages/README 100644 0/0 119 3290955062
./Library/Python/2.5 40755 0/0
./Library/Python/2.5/site-packages 40755 0/0
./Library/Python/2.5/site-packages/README 100644 0/0 119 3290955062
./Library/Python/2.6 40755 0/0
./Library/Python/2.6/site-packages 40755 0/0
./Library/Python/2.6/site-packages/README 100644 0/0 119 3290955062
./Library/Python/2.7 40755 0/0
./Library/Python/2.7/site-packages 40755 0/0
./Library/Python/2.7/site-packages/README 100644 0/0 119 3290955062
./System 40755 0/0
...

The PackageInfo is an XML fi le, which is rather self explanatory, as shown in Output 6-5:

OUTPUT 6-5: The PackageInfo fi le of the BSD.pkg

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<pkg-info format-version="2" relocatable="true" deleteObsoleteLanguages="true"
overwrite-permissions="true" identifier="com.apple.pkg.BSD" useHFSPlusCompression="true"
auth="root" version="10.8.0.1.1.1306847324">
 <payload installKBytes="736770" numberOfFiles="33989"/>
 <scripts>
 <preinstall file="preinstall"/>
 <postinstall file="postinstall"/>
 </scripts>
 <groups>
 <group>com.apple.snowleopard-repair-permissions.pkg-group</group>
 <group>com.apple.FindSystemFiles.pkg-group</group>
 </groups>
 <bundle-version>
 <bundle CFBundleVersion="10.8" CFBundleShortVersionString="10.8"
SourceVersion="6001000000000" id="com.apple.xsanmgr-filebrowser"
path="./usr/libexec/xsanmgr/bundles/xsanmgr_filebrowser.bundle"/>
 <bundle CFBundleVersion="1" CFBundleShortVersionString="1.0"
SourceVersion="6001000000000" id="com.apple.xsanmgr-sharing"

Permissions

UID/GID

Filesize

CRC-32

c06.indd 218c06.indd 218 9/29/2012 5:23:34 PM9/29/2012 5:23:34 PM

Installation Images x 219

path="./usr/libexec/xsanmgr/bundles/xsanmgr_sharing.bundle"/>
 ...
 </bundle-version>
</pkg-info>

The installation scripts — in this case preinstall and postinstall — are packaged in the
Scripts fi le, and can be viewed using zcat(1) and cpio(1):

morpheus@Ergo (/tmp/pkgDemo)$ cat Scripts | zcat > A
morpheus@Ergo (/tmp/pkgDemo)$ file A
A: ASCII cpio archive (pre-SVR4 or odc)
morpheus@Ergo (/tmp/pkgDemo)$ cpio -ivd < A
.
./postinstall # Perl script to run after install
./postinstall_actions # Various shell scripts
./postinstall_actions/dumpemacs.sh
./postinstall_actions/fixnortinst.sh
./postinstall_actions/postfixChrooted
./preinstall # Perl script to prep install
./Tools

You can use the installer(8) command to install a package automatically. Other package manip-
ulation commands are pkgutil(1), which is somewhat like the Linux rpm command (e.g. pkgutil
--pkgs as the equivalent to Linux’s rpm –qa) , and pkgbuild(1), which builds packages.

iOS File System Images (.ipsw)
Apple distributes updates to its various iOS devices via iTunes — and, as of iOS 5, over the air as
well. If you have ever peeked at iTunes’ directory (~/Library/iTunes), you no likely got to see
directories called <device> Software Updates, where <device> is the iOS device — iPad, iPhone,
or iPod. These directories usually contain the iOS updates for the device, fi les with an .ipsw exten-
sion, and the following naming convention:

Model Generation_Major.Minor_Build_Restore.ipsw

The fi le itself, aside from the unusual extension, is nothing more than a simple .zip fi le. It can be
opened easily from the command line, or by renaming its extension from .ipsw to .zip. It contains
the fi les shown in Table 6-18:

TABLE 6-18: Files in an iOS software image

TYPE FILE NAME FILE PURPOSE

bat0

bat1

batterylow0*.img3

batterylow1*.img3

Battery low icons. The fi rmware alternates between these

two fi les to produce the low battery animation.

batF batteryfull*.img3 Battery full icon.

chg0 batterycharging0*.img3 Battery Charging, 1/3.

chg1 batterycharging1*.img3 Battery Charging, 2/3.

Dtree DeviceTree.<board>.img3 Device tree for this iDevice, used by iBoot and passed to

the kernel.

continues

c06.indd 219c06.indd 219 9/29/2012 5:23:34 PM9/29/2012 5:23:34 PM

220 x CHAPTER 6 ALONE IN THE DARK: THE BOOT PROCESS: EFI AND IBOOT

TYPE FILE NAME FILE PURPOSE

glyC glyphcharging*.img3 The glyph for the battery charging.

glyP glyphplugin*.img3 The glyph for the battery, plugged in.

Ibot iBoot.<device>ap.

RELEASE.img3
iBoot — the stage two bootloader.

Illb LLB.<device>ap.RELEASE.

img3
Low level boot loader (LLB).

Krnl kernelcache.

release.<device>
The packed kernel and kernel extensions (KEXTs).

Logo applelogo*.img3 The familiar apple logo.

Recm recoverymode*.img Recovery Mode image.

-- xxx-<<lowest

numbered>>-yyy.dmg
Root fi lesystem. (Not an img3, but decrypted using

vfdecrypt)

Rdsk xxx-<<middle

numbered>>-yyy.dmg
Update fi le Ramdisk.

Rdsk xxx-<<highest

numbered>>-yyy.dmg
Recovery mode Ramdisk.

As you can see in the table, each fi le contains a type. This is an embedded four letter (32-bit)
magic value used to identify and load the fi le. In addition, device specifi c fi les of iOS (such as the
kernelcache and fi rmware fi les) often contain a variable identifi er for the device. The identifi ers are
shown in the Table 6-19:

TABLE 6-19: Device identifi ers

MODEL DEVICE IDENTIFIER

iPod 2,1 n72

iPod 3,1 n18

iPod 4,1 n81

iPhone 2,1 n88

iPad 1,1 k48

iPhone 4,1 n90

iPad 2,1 k93

iPad 3,1 j1

TABLE 6-18 (continued)

c06.indd 220c06.indd 220 9/29/2012 5:23:35 PM9/29/2012 5:23:35 PM

Installation Images x 221

Apple, however, has tried hard to discourage eager developers from getting their hands on those
fi les, and therefore these fi les are all encrypted. This encryption — and how to defeat it — is
described next.

The Img3 File Format
Apple really doesn’t want anyone messing with iOS, and is making a genuinely noble effort to keep
the fi les from prying eyes. While the ipsw is a simple zip archive, all its individual fi les are in a
custom encrypted format, known as IMG3 — each with its own keys, with varying keys between
devices! And “all” means — all fi les: Even the boot logos and the other various graphic images and
glyphs are encrypted. Further, the keys to the kingdom are on the device itself — i-Devices contain
on-board AES encryption modules, which are meant to discourage key recovery attempts.

The best laid schemes of mice and (Apple)-men, however, gang aft agley. As such, a certain publicly-
available iPhone Wiki site contains a page with all the encryption keys readily available, at least for
the pre-A5 devices (as they were obtained using the bootrom exploit). Likewise, many open source
tools, most notably xpwntool[7] can be downloaded to decrypt the fi les, and vfdecrypt[8] for the fi le
system images. A simple Internet search would quickly yield both the utilities and the keys. Once
decrypted, the DMGs can be mounted easily on an OS X system (or converted to ISOs and mounted
on Windows). The binaries can then be statically analyzed by the Mach-O tools (which we explored
in Chapter 4), with certain caveats — most notably, attention to little-endian (Intel) vs. big-endian
(ARM) format. As an alternative to jailbreaking iOS, downloading an .ipsw and decrypting its fi les
is a close second for reverse engineering and investigating this operating environment.

The IMG3 format itself is pretty simple. It is comprised of a small header, followed by tagged fi elds.
The tags are any of the following, shownin Table 6-20:

TABLE 6-20: Known IMG3 tags

TAG DENOTES

TYPE The type of the fi le

DATA The actual payload of the fi le

KBAG “Keybag”: The key and IV for the fi le, to be used with the device’s built-in (GID) key.

Encrypted with AES256, usually

CHIP The CPU identifi er this fi le is for

ECID Exclusive Chip ID (CPU unique identifi er)

MODS Security Domain

PROD Production Mode

VERS Version of the data fi le format

SEPO Security Epoch

SHSH The secure hash — The SHA-1 encrypted with Apple’s RSA private key

CERT Certifi cate — Apple’s certifi cate, trusted by the device’s hard coded certifi cate

c06.indd 221c06.indd 221 9/29/2012 5:23:35 PM9/29/2012 5:23:35 PM

222 x CHAPTER 6 ALONE IN THE DARK: THE BOOT PROCESS: EFI AND IBOOT

The example shown here is the iOS 5 kernel cache of an iPod. The fi elds are, naturally, ARM-
endian. Fields in bold are constant.

morpheus@Ergo (...)$ od -t x1 kernelcache.release.n81 |more

0000000 33 67 6d 49 c4 e3 5d 00 b0 e3 5d 00 78 db 5d 00
3 G M I (File Size) (Size,no header) (size of data)

0000020 6c 6e 72 6b 45 50 59 54 20 00 00 00 04 00 00 00
 l n r k E P Y T length tag data len

0000040 6c 6e 72 6b 00 00 00 00 00 00 00 00 00 00 00 00
 l n r k (padding to length)

0000048 00 00 00 00 41 54 41 44 70 da 5d 00 64 da 5d 00
A T A D (data+data hdr) (actual data)

The header size is usually 64-bytes, though its exact size can always be determined by following the
fi elds. The actual fi le data is tagged by DATA.

The book’s companion website contains a tool, imagine, which can be used to dump the contents of
an IMG3 fi le. It contains built-in parsers for the fi le format, and can also parse custom data formats
like the device tree. Executing it will produce results similar to Output 6-6:

OUTPUT 6-6: Running the imagine tool on iBoot

morpheus@ergo (iOS/Tools)$./imagine iBoot.k48ap.RELEASE.img3
Ident: ibot
Tag: TYPE (54595045) Length 0x20
 Type: ibot (iBoot)
Tag: DATA (44415441) Length 0x2d00c
 Data length is 184320 bytes
Tag: VERS (56455253) Length 0x2c
 Version: iBoot-1219.62.8
Tag: SEPO (5345504f) Length 0x1c
 Security Epoch: 02 00 00 00
Tag: BORD (424f5244) Length 0x1c
 Board: 02 00 00 00
Tag: SEPO (5345504f) Length 0x1c
 Security Epoch: 02 00 00 00
Tag: CHIP (43484950) Length 0x1c
 Chip: 30 89 00 00
Tag: BORD (424f5244) Length 0x1c
 Board: 02 00 00 00
Tag: KBAG (4b424147) Length 0x4c
 Keybag: AES 256
Tag: KBAG (4b424147) Length 0x88
 Keybag: AES 256
Tag: SHSH (53485348) Length 0x8c
Tag: CERT (43455254) Length 0x7ac

The following experiment will walk you through the stages of unpacking and decrypting an
IMG3 fi le.

c06.indd 222c06.indd 222 9/29/2012 5:23:35 PM9/29/2012 5:23:35 PM

Installation Images x 223

Experiment: Decrypting the iOS 5 Kernel Cache
This exercise demonstrates decrypting an IMG3 fi le using two publicly available tools — xpwn, and
lzssdec. The fi le in question is the iOS 5 kernel cache, but this can be tried on any fi le. The point of
departure is the iOS 5 ipsw for iPod touch, but you can try this on any .ipsw, provided you can get
your hands on the (also publicly available) decryption keys.

When decrypted, the IMG3 fi les stay in the same format, albeit with a decrypted payload. The
kernelcache is particularly important, and is in a compressed payload, with a very simple Lempel-
Ziv (UNIX compress(1)-like) format. The lzssdec (or similar utility) can be used to decompress
the fi le. So, assuming you found the key in some iPhone Wiki site or elsewhere, the steps shown in
Listing 6-6a would end up with the actual kernel cache:

LISTING 6-6A: Decompressing the iOS 5 kernelcache with xpwntool. Given the right IV and
KEY, you can use this for any iOS image and any fi le therein.

morpheus@Ergo (...)$ export IV=... # Set the IV, if we hypothetically knew it
morpheus@Ergo (...)$ export KEY=... # Set key, if hypothetically we knew, too..

Run xpwntool, specifying the in file
(in this case, kernelcache.release.n81) to be decrypted
morpheus@Ergo (...)$ xpwntool kernelcache.release.n81 kernelcache.decrypted –iv
$IV -k $KEY -decrypt

The resulting file is still an Img3 — but, if you squint hard, makes sense
morpheus@Ergo (...)$ more kernelcache.decrypted
3gmI...lnrkEPYT...lnrk.....complzss...
...<CE><FA><ED><FE>..
..._TEXT...cstring...

Because the kernelcache is compressed — and even uncompressed, would still be binary — it takes some
sifting to pick out the meaningful Mach-o header and some section/segment names. Using od(1) makes
life somewhat easier, and certainly spares you the effort of parsing the IMG3 header (Listing 6-6b):

LISTING 6-6B (CONTINUED): Using od(1) to fi nd the beginning of the actual data

morpheus@Ergo (...)$ od -A d –t x1 kernelcache.decrypted |more
0000000 33 67 6d 49 f8 e2 5d 00 e4 e2 5d 00 ac da 5d 00
0000016 6c 6e 72 6b 45 50 59 54 20 00 00 00 04 00 00 00
0000032 6c 6e 72 6b 00 00 00 00 00 00 00 00 00 00 00 00
0000048 00 00 00 00 41 54 41 44 70 da 5d 00 64 da 5d 00

 ---------- End of IMG3 Header ----------
 ---------- Beginning of complzss Header ----------
0000064 63 6f 6d 70 6c 7a 73 73 b9 05 fc 53 00 a7 00 00
0000080 00 5d d8 e4 00 00 00 00 00 00 00 00 00 00 00 00
0000096 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
*

 ---------- CompLZSS data begins ----------
0000448 ff ce fa ed fe 0c 00 00 00 d5 09 f3 f0 02 f3 f0
0000464 0b f3 f0 1c 08 a7 00 00 01 f3 f0 06 01 14 fa f0
0000480 5f 9f 5f 54 45 58 54 f3 f0 18 05 10 9f 00 80 00

c06.indd 223c06.indd 223 9/29/2012 5:23:35 PM9/29/2012 5:23:35 PM

224 x CHAPTER 6 ALONE IN THE DARK: THE BOOT PROCESS: EFI AND IBOOT

The IMG3 payload starts at offset 64, and is a compressed fi le (as indicated by the “complzss” sig-
nature). The Adler-32 compression actually leaves the fi rst couple of bytes uncompressed, and you
can see the Mach-O 32-bit header (0xFEEDFACE), at offset 448. One last step remains: to decompress
the fi le. If this works, you end up with a perfectly plaintext ARM Mach-O fi le — the iOS kernel
cache (Listing 6-6c):

LISTING 6-6C (ENDED): Arriving at the goal — the kernel Cache has been decompressed and
decrypted.

morpheus@Ergo (...)$ lzssdec -o 448 < kernelcache.decrypted > mach_kernelcache.arm
If we have this right, the resulting file should start with 0xFEEDFACE
morpheus@Ergo (...)$ file mach_kernelcache.arm
mach_kernelcache.arm: Mach-O executable arm # Success!

You are encouraged to try this on other fi les, as well. Files such as the DeviceTree, iBEC, iBSS, and
iBoot are not compressed, and their data starts right at offset 0x40.

The iOS Device Tree
Similar to EFI and OS X on Intel, iBoot and iOS on ARM use a device tree. The device tree is part
of the fi rmware fi les, and you can get it by decrypting the DeviceTree.<model>.img3 fi le from the
ipsw.

The format is obviously undocumented, but — given that the kernel needs to parse it — it isn’t far
off from the device tree format prepared by EFI. The ioreg command on a jailbroken device will
display the tree, as will the imagine tool, if applied to a decrypted tree. This is shown in Listing 6-7:

LISTING 6-7: The device tree from the author’s iPod, as shown by the imagine tool

morpheus@Ergo (/tmp)$ imagine –d iOS/DeviceTree.n81ap.img3
Device Tree has 15 properties and 13 children
Properties:
device-tree
| +--compatible Length 23
| +--secure-root-prefix Length 3
| +--AAPL,phandle Length 4
| +--config-number Length 32
| +--model-number Length 32
| +--platform-name Length 32
| +--serial-number Length 32
| +--device_type Length 8
| +--#size-cells Length 4
| +--clock-frequency Length 4
| +--mlb-serial-number Length 32
| +--#address-cells Length 4
| +--region-info Length 32
| +--model Length 8
| +--name Length 12
 +--chosen
| | +--firmware-version Length 256

c06.indd 224c06.indd 224 9/29/2012 5:23:36 PM9/29/2012 5:23:36 PM

References and Further Reading x 225

| | +--display-scale Length 4
| | +--system-trusted Length 4
| | +--AAPL,phandle Length 4
| | +--production-cert Length 4
... (output truncated for brevity)

SUMMARY

This chapter presented, in depth, the EFI stage of booting OS X — the precursor to booting the ker-
nel. EFI is the successor to the PowerPC’s OpenFirmware architecture, and follows similar concepts,
albeit a different implementation.

Similar to EFI, but much less documented, is Apple’s iOS boot-loader, iBoot, on the various
i-Devices. The chapter discussed, as much as is possible, the stages of iOS boot: from the Bootrom,
through the Low Level Bootloader (LLB), the main bootloader (iBoot), and the DFU mode loaders
(iBEC and iBSS).

Additionally, OS X and iOS installation images were described in great detail. OS X uses packages,
and iOS uses an .ipsw archive, containing all the components of the operating system.

The chapter deliberately left out what happens next — booting the kernel. The kernel boot process
is complicated and lengthy — and well deserves a dedicated chapter. Likewise, what follows the
kernel — user mode startup — is long enough for a chapter of its own. You are encouraged to
choose your own adventure:

 ‰ Fall through to the next chapter (default) — describing the user mode startup.

 ‰ Skip to Chapter 8, describing the kernel’s life, and often premature demise (i.e. panics).

REFERENCES AND FURTHER READING

1. Intel’s EFI 1.10 specifi cation — www.intel.com/content/www/us/en/architecture-and-
technology/unified-extensible-firmware-interface/efi-homepage-general-tech-

nology.html

2. The UEFI standard — www.uefi.org/specs/

3. Apple Support — Startup key combinations for Intel-based Macs (HT1533):
http://support.apple.com/kb/ht1533

4. rEFIt — http://refit.sourceforge.net

5. Esser, Stephen (i0nic). “Targeting the iOS Kernel” — a presentation for Syscan 2011,
Singapore: www.syscan.org

6. Zdziarski, Jonathan. Hacking and Securing iOS Applications: Stealing Data, Hijacking
Software, and How to Prevent It (New York: O’Reilly, 2012)

7. The xpwn tool — downloadable from http://theiphonewiki.com/

8. VFDecrypt — downloadable from http://theiphonewiki.com/

c06.indd 225c06.indd 225 9/29/2012 5:23:36 PM9/29/2012 5:23:36 PM

http://www.intel.com/content/www/us/en/architecture-and-technology/unified-extensible-firmware-interface/efi-homepage-general-tech-nology.html
http://www.intel.com/content/www/us/en/architecture-and-technology/unified-extensible-firmware-interface/efi-homepage-general-tech-nology.html
http://www.intel.com/content/www/us/en/architecture-and-technology/unified-extensible-firmware-interface/efi-homepage-general-tech-nology.html
http://www.intel.com/content/www/us/en/architecture-and-technology/unified-extensible-firmware-interface/efi-homepage-general-tech-nology.html
http://www.intel.com/content/www/us/en/architecture-and-technology/unified-extensible-firmware-interface/efi-homepage-general-tech-nology.html
http://www.uefi.org/specs
http://support.apple.com/kb/ht1533
http://refit.sourceforge.net
http://www.syscan.org
http://theiphonewiki.com
http://theiphonewiki.com

c06.indd 226c06.indd 226 9/29/2012 5:23:36 PM9/29/2012 5:23:36 PM

7
The Alpha and the Omega —
launchd

When you power on your Mac or i-Device, the boot loader (OS X: EFI, iOS: iBoot), described
in the previous chapter is responsible for fi nding the kernel and starting it up. The kernel boot
is described in detail in Chapter 7. The kernel, however, is merely a service provider, not an
actual application. The user mode applications are those which perform the actual work in a
system, by building on kernel primitives to provide the familiar user environment rich with
fi les, multimedia, and user interaction. It all has to start somewhere, and in OS X and iOS —
it starts with launchd.

LAUNCHD

launchd is OS X’s and iOS’s idea of what other UN*X systems call init. The name may be dif-
ferent, but the general idea is the same: It is the fi rst process started in user mode, which is
responsible for starting — directly or indirectly — every other process in the system. In addi-
tion, it has OS X and iOS idiosyncratic features. Even though it proprietary, it still falls under
the classifi cation of Darwin, and so it is fully open source[1].

Starting launchd
launchd is started directly by the kernel. The main kernel thread, which is responsible for
loading the BSD subsystem, spins off a thread to execute the bsdinit_task. The thread
assumes PID 1, with the temporary name of “init,” a legacy of its BSD origins. It then
invokes load_init_program(), which calls the execve() system call (albeit from kernel
space) to execute the daemon. The name — /sbin/launchd — is hard coded as the variable
init_program_name.

The daemon is designed to be started in this way, and this way only; It cannot be started by
the user. If you try to do so, it will complain, as shown in Listing 7-1.

c07.indd 227c07.indd 227 10/5/2012 4:16:41 PM10/5/2012 4:16:41 PM

228 x CHAPTER 7 THE ALPHA AND THE OMEGA — LAUNCHD

LISTING 7-1: Attempting to start launchd will result in failure

root@Minion (/)# /sbin/launchd
launchd: This program is not meant to be run directly.

Although launchd cannot be started, it can be tightly controlled. The launchctl(1) command may
be used to interface with launchd, and direct it to start or stop various daemons. The command is
interactive, and has its own help.

launchd is usually started with no arguments, but does optionally accept a single command line
argument: -s. This argument is propagated to it by the kernel, if the latter was started with -s,
either through its boot-args, or by pressing Option-S during startup.

launchd can be started with several logging and debugging features, by creating special dot fi les in
[/private]/var/db. The fi les include .launchd_log_debug, .launchd_log_shutdown (output
to /var/tmp/launchd-shutdown.log), and .launchd_use_gmalloc (enabling libGMalloc, as
discussed in Chapter 3). launchd also checks for the presence of the /AppleInternal fi le (on the
system root) for some Apple internal logging.

launchd’s loading of libGMalloc on iOS (if /var/db/.launchd_use has been
used by the jailbreaker comex in what is now known as the interposition exploit.
launchd executes with root privileges, and by crafting a Trojan library, code can
be injected into userland root — one step closer to subverting the kernel.

System-Wide Versus Per-User launchd
If you use ps(1) or a similar command on OS X, you will see more than one instance of launchd:
The fi rst is PID 1, which was started by the kernel in the manner described previously. If anyone is
logged on, there will be another launchd, forked from the fi rst, and owned by the logged in user,
shown in Listing 7-2. You may also see other instances, belonging to system users (e.g. spotlight -
uid 89).

LISTING 7-2: Two instances of launchd

morpheus@ergo (/)$ ps -ef | grep sbin/launchd
 0 1 0 0 6:32.43 ?? 6:37.98 /sbin/launchd
 501 95 1 0 0:06.44 ?? 0:11.07 /sbin/launchd

The per-user launchd is executed whenever a user logs in, even remotely over SSH (though once per
logged in user). On iOS there is only one instance of launchd, the system-wide instance.

It is impossible to stop the system-wide launchd (PID 1). In fact, launchd is the only immortal pro-
cess in the system. It cannot be killed, and that makes sense. There is absolutely no reason to termi-
nate it. In most UN*X, if the init process dies unexpectedly the result is a kernel panic. launchd is
also the last process to exit, when the system is shut down.

c07.indd 228c07.indd 228 10/5/2012 4:16:46 PM10/5/2012 4:16:46 PM

launchd x 229

Daemons and Agents
The core responsibility of launchd is, as its name implies, launching other processes, or jobs, on a
scheduled or on-demand basis. launchd makes a distinction between two types of background jobs:

 ‰ Daemons are, like the traditional UNIX concept, background services that normally have no
interaction with the user. They are started automatically by the system, whether or not any
users are logged on.

 ‰ Agents are special cases of daemons that are started only when a user logs on. Unlike
daemons, they may interface with the user, and may in fact have a GUI.

 ‰ iOS does not support the notion of a user login, which is why it only has LaunchDaemons
(though an empty /Library/LaunchAgents does exist).

 ‰ Both daemons and agents are declared in their individual property list (.plist) fi les. As
described in Chapter 2, these are commonly XML (in OS X) or binary (in iOS). A detailed
discussion of the valid plist entries in the verbose man page — launchd.plist(5), though
it should be noted the man page does leave out a few undocumented keys. The rest of this
chapter demonstrates the plist format through various examples. The complete list of job
keys (including useful keys for sandboxing jobs) can be found in launchd’s launch_priv.h
file.

The list of daemons and agents can be found in the locations noted in Table 7-1.

TABLE 7-1: Launch Daemon locations

DIRECTORY USED FOR

/System/Library/LaunchDaemons Daemon plist fi les, primarily those belonging to the sys-

tem itself.

/Library/LaunchDaemons Daemon plist fi les, primarily third party.

/System/Library/LaunchAgents Agent plist fi les, primarily those belonging to the system

itself.

/Library/LaunchAgents Other agent plist fi les, primarily third party. Usually

empty.

~/Library/LaunchAgents User-specifi c launch agents, executed for this user only.

launchd uses the /private/var/db directory for its runtime confi guration, creating com.apple
.launchd[.peruser.%d] fi les for runtime override and disablement of daemons.

The Many Faces of launchd
launchd is the fi rst process to emerge to user mode. When the system is at its nascent stage, it is
(briefl y) the only process. This means that virtually every aspect of system startup and function is
either directly or indirectly dependent on it. In OS X and iOS, launchd serves multiple roles, which
in other UN*X are traditionally delegated to several daemons.

c07.indd 229c07.indd 229 10/5/2012 4:16:47 PM10/5/2012 4:16:47 PM

230 x CHAPTER 7 THE ALPHA AND THE OMEGA — LAUNCHD

init
The fi rst, and chief role played by launchd is that of the daemon init. The job description of the lat-
ter involves setting up the system by spawning its myriad daemons, then fading to the background,
and ensuring these daemons are alive. If one dies, launchd can simply respawn it.

Unlike traditional init, however, the launchd implementation is somewhat different, and consider-
ably improved, as shown in Table 7-2:

TABLE 7-2: init vs. launchd

RESPONSIBILITY TRADITIONAL INIT LAUNCHD

Function as PID 1,

great ancestor of all

processes

init is the fi rst process to emerge

into user mode, and forks other pro-

cesses (which in turn may fork others).

Resource limits it sets for itself are

inherited by all of its descendants.

Same. launchd also sets Mach

exception ports, which are used

by the kernel internally to handle

exception conditions and gener-

ate signals (see Chapter 8).

Support “run levels” Traditional init supports run levels:

0 – poweroff

1 – single user

2 – multi-user

3 – multi-user + NFS

5 – halt

6 – reboot

launchd does not recognize run

levels and allows only for indi-

vidual per-daemon or per-agent

fi les. There is, however, a distinc-

tion for single-user mode.

Start system services init runs services in order, per fi les

listed in /etc/rc?.d (corresponding to

run level), in lexicographic order.

launchd runs both system ser-

vices (daemons), and per-user

services (agents).

System service

specifi cation

init runs services as shell scripts,

unaware and oblivious to their contents.

launchd processes property list

fi les, with specifi c keywords.

Restart services on exit init recognizes the respawn keyword in

/etc/inittab for restart.

launchd allows a KeepAlive key

in the daemon or agent’s prop-

erty list.

Default user Root. Root, but launchd allows a user-

name key in the property list.

Per-User Initialization
Traditional UN*X has no mechanism to run applications on user login. Users must resort to shell
and profi le scripts, but those quickly get confusing since each shell uses different fi les, and not all
shells are necessarily login shells. Additionally, in a GUI environment it is not a given that a shell

c07.indd 230c07.indd 230 10/5/2012 4:16:47 PM10/5/2012 4:16:47 PM

launchd x 231

would be started, at all (as is indeed the case with most OS X users, who remain unaware of the
Terminal.app).

By using LaunchAgents, launchd enables per-user launching of specifi c applications. Agents can
request to be loaded by default in all sessions, or only in GUI sessions, by specifying the LimitLoad-
ToSessionType key with values such as LoginWindow or Aqua, or Background.

atd/crond
UN*X traditionally defi nes two daemons — atd and crond — to run scheduled jobs, as in
executing a specifi ed command at a given time. The fi rst daemon, atd, serves as the engine
allowing the at(1) command for one-time jobs, whereas the second, crond, provides recurring
job support.

Apple is gradually phasing out atd and crond. The atd is no longer a stand-alone daemon, but is
now started by launchd. This service, defi ned in com.apple.atrun.plist, (shown in Listing 7-3) is
usually disabled:

LISTING 7-3: The com.apple.atrun.plist

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>Label</key>
 <string>com.apple.atrun</string>
 <key>ProgramArguments</key>
 <array>
 <string>/usr/libexec/atrun</string>
 </array>

 <key>StartInterval</key>
 <integer>30</integer>

 <key>Disabled</key>
 <true/>
</dict>
</plist>

The atrun plist must be enabled to allow the at(1) family of commands to work. Otherwise, it will
schedule jobs, but they will never happen (as the author learned the hard way, once relying on it to
set a wake-up alarm).

The crond service is still supported (in com.vix.crond.plist), although launchd has its own set of
StartCalendarInterval keys to replace it. Apple supplies periodic(8) as a replacement. Listing
7-4 shows com.apple.periodic-daily, one of the several cron-substitutes (along with –weekly
and –monthly):

launchd starts atrun(8) every 30
seconds, if enabled

Disabled by default. Setting Disabled:false
(or removing key) enables

c07.indd 231c07.indd 231 10/5/2012 4:16:47 PM10/5/2012 4:16:47 PM

http://www.apple.com/DTDs/PropertyList-1.0.dtd

232 x CHAPTER 7 THE ALPHA AND THE OMEGA — LAUNCHD

LISTING 7-4: com.apple.periodic-daily.plist

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"
 "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>Label</key>
 <string>com.apple.periodic-daily</string>
 <key>ProgramArguments</key>
 <array>
 <string>/usr/sbin/periodic</string>
 <string>daily</string>
 </array>
 <key>LowPriorityIO</key>
 <true/>
 <key>Nice</key>
 <integer>1</integer>
 <key>StartCalendarInterval</key>
 <dict>
 <key>Hour</key>
 <integer>3</integer>
 <key>Minute</key>
 <integer>15</integer>
 </dict>
 <key>AbandonProcessGroup</key>
 <true/>
</dict>
</plist>

In iOS, an alternate method of specifying periodic execution is with the StartInterval key. The
/usr/sbin/daily service, for example, specifi es a value of 86,400 seconds (24 hours). Other ser-
vices, such as itunesstored and softwareupdateservicesd also use this method.

inetd/xinetd:
In UN*X, inetd (and its successor, xinetd) is used to start network servers. The daemon is respon-
sible for binding the port (UDP or TCP), and — when a connection request arrives — it starts the
server on demand, and connects its input/output descriptors (stdin, stderr, and stdout) to the
socket.

This approach is highly benefi cial to both the network server, and the system. The system does not
need to keep the server running if there are no active requests to be serviced, thereby reducing sys-
tem load. The server, on its part, remains totally agnostic of the socket handling logic, and can be
coded to use only the standard descriptors. In this way, an administrator can whimsically reassign
port numbers to services, and essentially run any CLI command, even a shell, over a network port.

launchd integrates the inetd functionality into itself*, by allowing daemons and agents to request a
particular socket. All the daemon has to do is ask, using a Sockets key in its plist. Listing 7-5 shows
an example of requesting TCP/IP socket 22, from ssh.plist:

* Technically, the inetd functionality is handled by launchproxy(8), also part of the launchd project. The
 manual page has been promising the two would be merged eventually, but it has yet to happen.

c07.indd 232c07.indd 232 10/5/2012 4:16:47 PM10/5/2012 4:16:47 PM

http://www.apple.com/DTDs/PropertyList-1.0.dtd

launchd x 233

LISTING 7-5: ssh.plist, demonstrating IP socket registration

<plist version="1.0">
<dict>
 <key>Disabled</key>
 <true/>

 <key>Label</key>
 <string>com.openssh.sshd</string>

 <key>Program</key>
 <string>/usr/libexec/sshd-keygen-wrapper</string>
 <key>ProgramArguments</key>
 <array>
 <string>/usr/sbin/sshd</string>
 <string>-i</string>
 </array>

 <key>Sockets</key>
 <dict>
 <key>Listeners</key>
 <dict>
 <key>SockServiceName</key>
 <string>ssh</string>

 <key>Bonjour</key>
 <array>
 <string>ssh</string>
 <string>sftp-ssh</string>
 </array>
 </dict>
 </dict>
 <key>inetdCompatibility</key>
 <dict>
 <key>Wait</key>
 <false/>
 </dict>

 <key>StandardErrorPath</key>
 <string>/dev/null</string>

 <key>SHAuthorizationRight</key>
 <string>system.preferences</string>
</dict>
</plist>

Unlike inetd, the socket the daemon is requesting may also be a UNIX domain socket. Listing 7-6,
an excerpt from com.apple.syslogd.plist, demonstrates this:

Disabled by default. Setting
Disabled:false (or removing key) enables

"Label" defines the service
internally (for launchctl(8))

"Program" specifies path to execute.
Command line arguments are specified in
an array

SockServiceName refers to /etc/services:
ssh 22/tcp # SSH Remote Login Protocol

Bonjour advertises the
service(s) over multicast

inetdCompatibility allows porting from
the legacy inetd.conf (here, "nowait",
allowing multiple instances)

StandardErrorPath redirects
stderr to /dev/null.

c07.indd 233c07.indd 233 10/5/2012 4:16:48 PM10/5/2012 4:16:48 PM

234 x CHAPTER 7 THE ALPHA AND THE OMEGA — LAUNCHD

LISTING 7-6: com.apple.syslogd.plist, demonstrating UNIX socket registration

...
<key>ProgramArguments</key>
 <array>
 <string>/usr/sbin/syslogd</string>
 </array>
 <key>Sockets</key>
 <dict>
 <key>AppleSystemLogger</key>
 <dict>
 <key>SockPathMode</key>
 <integer>438</integer>
 <key>SockPathName</key>
 <string>/var/run/asl_input</string>
 </dict>
 <key>BSDSystemLogger</key>
 <dict>
 <key>SockPathMode</key>
 <integer>438</integer>
 <key>SockPathName</key>
 <string>/var/run/syslog</string>
 <key>SockType</key>
 <string>dgram</string>
 </dict>
 </dict>

The two socket families — UNIX and INET — are not mutually exclusive, and may be specifi ed in
the same clause. The previous syslogd plist, for example, can easily be modifi ed to allow syslog to
accept messages from UDP 514 by adding a SockServiceName:syslog key (and optionally append-
ing –udp_in and 1 to the ProgramArguments array). The iOS daemon lockdownd listens in this way
on TCP port 62078 and the UNIX socket /var/run/lockdown.sock.

mach_init
True to its NEXTStep origins and before the advent of launchd in OS X 10.4, the system startup
process was called mach_init. This daemon was actually responsible for later spawning the BSD
style init, which was a separate process. The two were fused into launchd, and it has assumed mach_
init’s little documented, but chief role of the bootstrap service manager.

Mach’s IPC services rely on the notion of “ports” (vaguely akin to TCP and UDPs), which serve as
communication endpoints. This is described (in great detail) in Chapter 10. For the moment, how-
ever, it is suffi cient to consider a port as an opaque number that can also be referenced by a fully
qualifi ed name. Servers and clients alike can allocate ports, but servers either require some type of
locator service to allow clients to fi nd them, or otherwise need to be “well-known.”

Enter: the bootstrap server. This server is accessible to all processes on the system, which may
communicate with it over a given port — the bootstrap_port. The clients can then request, over
this port, that the server lookup a given service by its name and match them with its port. (UNIX

c07.indd 234c07.indd 234 10/5/2012 4:16:48 PM10/5/2012 4:16:48 PM

launchd x 235

has a similar function in its RPC portmapper, also known as sunrpc. The mapper listens on a well-
known port (TCP/UDP 111) and plays matchmaker for other RPC services)1.

Prior to launchd, mach_init assumed the role of bootstrap_server. launchd has since taken over
this role and claims the port (aptly named bootstrap_port) during its startup. Since all processes
in the system are its progeny, they automatically inherit access to the port. bootstrap_port is
declared as an extern mach_port_t in <servers/bootstrap.h>.

Servers wishing to register their ports with the bootstrap server can use the port to do so, using
functions defi ned in <servers/bootstrap.h>. These functions (bootstrap_create_server and
bootstrap_create_service) are still supported, but long deprecated. Instead, the service can
be registered with launchd in the server’s plist, and a simpler function — bootstrap_check_in()
— remains to allow the server to request launchd to hand over the port when it is ready to service
requests:

kern_return_t bootstrap_check_in(mach_port_t bp, // bootstrap_port
 const name_t service_name, // name of service
 mach_port_t *sp); // out: server port

launchd pre-registers the port when processing the server’s plist. The server port is usually ephem-
eral, but can also be well known if the key HostSpecialPort is added. (This is discussed in more
detail in Chapter 10, under “Host Special Ports”). launchd can be instructed to wait for the server’s
request, as is shown in Listing 7-7. com.apple.windowserver.active will be advertised to clients
only after WindowServer checks in with launchd using functions from <launch.h>.

LISTING 7-7: com.apple.WindowServer.plist

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
 "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>Label</key>
 <string>com.apple.WindowServer</string>
 <key>ProgramArguments</key>
 <array>

 <string>/System/Library/Frameworks/ApplicationServices.framework/Frameworks/
 CoreGraphics.framework/Resources/WindowServer</string>
 <string>-daemon</string>
 </array>
 <key>MachServices</key>
 <dict>
 <key>com.apple.windowserver</key>
 <true/>
 <key>com.apple.windowserver.active</key>
 <dict>

1Readers familiar with Android will note the similarity to its Binder mechanism, which (among other IPC
related tasks) also allows system services to be published, albeit using a character device, /dev/binder, rather
than a port.

continues

c07.indd 235c07.indd 235 10/5/2012 4:16:48 PM10/5/2012 4:16:48 PM

http://www.apple.com/DTDs/PropertyList-1.0.dtd

236 x CHAPTER 7 THE ALPHA AND THE OMEGA — LAUNCHD

 <key>HideUntilCheckIn</key>
 <true/>
 </dict>
 </dict>
</dict>
</plist>

Any clients wishing to connect to a given service, can then look up the server port using a similar
function:

kern_return_t bootstrap_look_up(
 mach_port_t bp, // always bootstrap_port
 const name_t service_name, // name of service
 mach_port_t *sp); // out: server port

If the server’s port is available and the server has checked in, it will be returned to the client, which
may then send and receive messages (using mach_msg(), also discussed in Chapter 10). The Mach
messages for the bootstrap protocol are defi ned in the launchd source in .defs fi les, which are pre-
processed by the Mach Interface Generator (MIG) (also discussed in Chapter 10). You can view a
list of the active daemons using the bslist subcommand of launchctl(1). The list prints out a
fl attened view of the hierarchical namespace of bootstrap servers visible in the current context. The
bstree subcommand displays the full hierarchical namespace (but requires root privileges). In Lion
and later, bstree also shows XPC namespaces (discussed later in this chapter).

The bootstrap mechanism is now implemented over launchd’s vproc, a new library introduced in
Snow Leopard, which also provides for the next feature, transactions.

Transaction Support
launchd is smarter than the average init. Unlike init, which can just start or stop its daemons,
launchd supports transactions, a useful feature exported by launchd’s vproc, which daemons can
access through the public <vproc.h>. Daemons using this API can mark pending transactions by
encapsulating them between vproc_transaction_begin, which generates a transaction handle, and
vproc_transaction_end on that handle, when the transaction completes. A transaction-enabled
daemon can also indicate the EnableTransactions key in its plist, which enables launchd to check
for any pending transactions when the system shuts down, the user logs out, or after a specifi ed
timeout. If there are no outstanding transactions (the process is clean), the daemon will be shot
down (with a kill -9) instead of gracefully terminated (kill -15), speeding up the shutdown or
logout process, or freeing system resources after suffi cient inactivity.

Resource Limits and Throttling
launchd can enforce self-imposed resource limits on its jobs. A job (daemon or agent) can specify
HardResourceLimits or SoftResourceLimits dictionaries, which will cause launchd to call
setrlimit(2). The Nice key can be used to set the job’s nice value, as per nice(1). Additionally,
a job can be marked with the LowPriorityIO key which causes launchd to call iopolicysys (sys-
tem call #322, discussed in Chapter 14) and lower the job’s I/O priority. Lastly, launchd is integrated
with iOS’s Jetsam mechanism (also known as memorystatus, and discussed in Chapter 14), which

LISTING 7-7 (continued)

c07.indd 236c07.indd 236 10/5/2012 4:16:48 PM10/5/2012 4:16:48 PM

launchd x 237

can enforce virtual memory utilization limitations, a feature that is especially important in iOS,
which has no swap space.

Autorun Emulation and File System Watch
One of Windows’ most known (and often annoying) features is autorun, which can automati-
cally start a program when removable media (such as a CD, USB storage, or hard disk) is attached.
launchd offers the StartOnMount key, which can trigger a daemon to start up any time a fi le system
is mounted. This can not only emulate the Windows functionality, but is actually safer, as the auto-
run feature in Windows has become a vector for malware propagation. launchd’s daemon are run
from the permanent fi le system, rather than the removable one.

launchd can also be made to watch a particular path, not necessarily a mount point, for changes,
using the WatchPaths or the QueueDirectories keys. This is very useful, as it can react in real time
to fi le system changes. This functionality is achieved by listening on kernel events (kqueues), as dis-
cussed in Chapter 3. Daemons may be further extended to support FSEvents as well (described in
Chapter 4), by specifying a LaunchEvents dictionary with a com.apple.fsevents.matching dict
of matching cases.

I/O Kit Integration
A new feature in Lion is the integration of launchd with I/O Kit. I/O Kit is the runtime environment
of device drivers. Launch daemons or agents can request to be invoked on device arrival by specify-
ing a LaunchEvents dictionary containing a com.apple.iokit.matching dictionary. For the spe-
cifi cs of I/O Kit and its matching dictionaries, turn to Chapter 19. A high-level example, however,
can be seen in Listing 7-8, which shows an excerpt from the com.apple.blued.plist launch dae-
mon, which is triggered by the to handle Bluetooth SDP transactions.

LISTING 7-8: com.apple.blued.plist, demonstrating I/O Kit triggers

<plist version="1.0">
<dict>
 <key>EnableTransactions</key>
 <true/>
 <key>KeepAlive</key>
 <dict>
 <key>SuccessfulExit</key>
 <false/>
 </dict>
 <key>Label</key>
 <string>com.apple.blued</string>
 <key>MachServices</key>
 <dict>
 <key>com.apple.blued</key>
 <true/>
 <key>com.apple.BluetoothDOServer</key>
 <dict>
 <key>ResetAtClose</key>
 <true/>
 </dict>

continues

c07.indd 237c07.indd 237 10/5/2012 4:16:49 PM10/5/2012 4:16:49 PM

238 x CHAPTER 7 THE ALPHA AND THE OMEGA — LAUNCHD

 </dict>
 <key>Program</key>
 <string>/usr/sbin/blued</string>
 <key>LaunchEvents</key>
 <dict>
 <key>com.apple.iokit.matching</key>
 <dict>
 <key>com.apple.bluetooth.hostController</key>
 <dict>
 <key>IOProviderClass</key>
 <string>IOBluetoothHCIController</string>
 <key>IOMatchLaunchStream</key>
 <true/>
 </dict>
 </dict>
 </dict>
</dict>
</plist>

Experiment: Setting up a Custom Service
One of the niftiest features of UNIX inetd was its ability to run virtually any UNIX utility on any
port. The combination of the inetd’s handling of socket logic on the one hand, and the ability to
treat a socket as any other fi le descriptor on the other, provides this powerful functionality.

This is also possible, if a little more complicated with launchd. First, we need to create a launchd
plist for our program. Fortunately, this is a simple matter of copy, paste, and modify, as Listing 7-5
can do just fi ne if you change the Label, Program, ProgramArguments, and Sockets keys to what-
ever you wish.

But here, we encounter a problem: launchd does allow the running of any arbitrary program in
response to a network connection, but supports only the redirection of stdin, stdout, and stderr
to fi les. We want the application’s stdin, stdout, and stderr to be connected to the socket that
launchd will set up for us. This means the program we launch has to be launchd-aware and request
the socket handoff.

To solve this, we need to create a generic wrapper, as is shown in Listing 7-9.

LISTING 7-9: A generic launchd wrapper

#include <stdio.h>
#include <sys/socket.h>
#include <launch.h> // LaunchD related stuff
#include <stdlib.h> // for exit, and the like
#include <unistd.h>
#include <netinet/in.h>
#include <sys/socket.h>
#include <netdb.h> // for getaddrinfo
#include <fcntl.h>

LISTING 7-8 (continued)

c07.indd 238c07.indd 238 10/5/2012 4:16:49 PM10/5/2012 4:16:49 PM

launchd x 239

#define JOBKEY_LISTENERS "Listeners"
#define MAXSIZE 1024
#define CMD_MAX 80

int main (int argc, char **argv)
{
 launch_data_t checkinReq, checkinResp;
 launch_data_t mySocketsDict;
 launch_data_t myListeners;

 int fdNum;
 int fd;
 struct sockaddr sa;
 unsigned int len = sizeof(struct sockaddr);
 int fdSession ;

 /* First, we must check-in with launchD. */
 checkinReq = launch_data_new_string(LAUNCH_KEY_CHECKIN);
 checkinResp = launch_msg(checkinReq);

 if (!checkinResp) {
// Failed to checkin with launchd - this can only be because we are run outside
// its context. Print a message and exit

 fprintf (stderr,"This command can only be run under launchd\n");
 exit(2);
 }

 mySocketsDict = launch_data_dict_lookup(checkinResp, LAUNCH_JOBKEY_SOCKETS);

 if (!mySocketsDict)
 { fprintf (stderr, "Can't find <Sockets> Key in plist\n"); exit(1); }

 myListeners = launch_data_dict_lookup(mySocketsDict, JOBKEY_LISTENERS);

 if (!myListeners)
 {fprintf (stderr, "Can't find <Listeners> Key inside <Sockets> in plist\n");
 exit(1);

 fdNum = launch_data_array_get_count(myListeners);
 if (fdNum != 1) {
 fprintf (stderr,"Number of File Descriptors is %d - should be 1\n", fdNum);
 exit(1);
 }

 // Get file descriptor (socket) from launchd
 fd = launch_data_get_fd(launch_data_array_get_index(myListeners,0));

 fdSession = accept(fd, &sa, &len);

 launch_data_free(checkinResp); // be nice..

continues

c07.indd 239c07.indd 239 10/5/2012 4:16:49 PM10/5/2012 4:16:49 PM

240 x CHAPTER 7 THE ALPHA AND THE OMEGA — LAUNCHD

// Print to stderr (/var/log/system.log) before redirecting..

 fprintf (stderr, "Execing %s\n", argv[1]);

 dup2(fdSession,0); // redirect stdin
 dup2(fdSession,1); // redirect stdout
 dup2(fdSession,2); // redirect stderr
 dup2(fdSession,255); // Shells also like FD 255.

// Quick and dirty example – assumes at least two arguments for the wrapper,
// the first being the path to the program to execute, and the second (and later)
// being the argument to the launchd program

 execl(argv[1], argv[1], argv[2], NULL);

// If we're here, the execl failed.
 close(fdSession);

 return (42);
}

As the listing shows, the wrapper uses launchd_ APIs (all clearly prefi xed with launch_ and defi ned
in <launch.h>) to communicate with launchd and request the socket. This is done in several stages:

 ‰ Checking in with launchd — This is done by sending it a special message, using the launch_
msg() function. Since checking in is a standard procedure, it’s a simple matter to craft the
message using launch_data_new_string(LAUNCH_KEY_CHECKIN) and then pass that mes-
sage to launchd.

 ‰ Get our plist parameters — Once launchd has replied to the check-in request, we can use its
APIs to get the various settings in the plist. Note that there are two ways to pass parameters
to the launched daemons, either as command-line arguments (the ProgramArguments array),
or via environment variables, which are passed in an EnvironmentVariables dictionary,
and read by the daemon using the standard getenv(3) call.

 ‰ Get the socket descriptor — Getting any type of fi le descriptor is a little tricky, since it’s not
as straightforward to pass between processes as strings and other primitive data types are.
Still, any complexity is well hidden by launch_data_get_fd.

Once we have the fi le descriptor (which is the socket that launchd opened for us), we call accept() on
it, as any network server would. This will yield a connected socket with our client on the other end.
All that’s left to do is to use the dup2() system call to replace our stdin, stdout, and stderr with
the accepted socket, and exec() the real program. Because exec() preserves fi le descriptors, the new
program receives these descriptors in their already connected state, and its read(2) and write(2)
will be redirected over the socket, just as if it would have called recv(2) and send(2), respectively.

To test the wrapper, you will need to drop its plist in /System/Library/LaunchDaemons (or another
LaunchDaemons directory) and use launchctl(1) to start it, as shown in Output 7-1. The wrapper
in this example was labeled com.technologeeks.wrapper, and was placed in an eponymous plist.
Note in the output, that launchctl(1) isn’t the chatty type and no comment implies the commands
were successful.

LISTING 7-9 (continued)

c07.indd 240c07.indd 240 10/5/2012 4:16:49 PM10/5/2012 4:16:49 PM

Lists of LaunchDaemons x 241

OUTPUT 7-1: Using launchctl(1) to start a LaunchDaemon

root@Minion (~)# launchctl
launchd% load /System/Library/LaunchDaemons/com.technologeeks.wrapper.plist
launchd% start com.technologeeks.wrapper
launchd% exit

Because the wrapper is intentionally generic, you can specify any program you want, assuming
this program uses stdin, stdout, and stderr (which all command line utilities do, anyway). This
enables nice backdoor functionality, as you can easily set up a root shell on any port you want. Set-
ting the command line arguments to your wrapper to /bin/zsh -i will result in output similar to
Output 7-2:

OUTPUT 7-2: Demonstrating a launchd-wrapped root shell

root@Minion (~)# telnet localhost 1024 # or whereever you set your SockServiceName
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
zsh# id;
uid=0(root) gid=0(wheel) groups=0(wheel),401(com.apple.access_screensharing),
402(com.apple.sharepoint.group.1),1(daemon),
2(kmem),3(sys),4(tty),5(operator),8(procview),9(procmod),12(everyone),
20(staff),29(certusers),
33(_appstore),61(localaccounts)80(admin),98(_lpadmin),100(_lpoperator),
204(_developer)
zsh: command not found: ^M
zsh# whoami;
root
zsh: command not found: ^M

Note that a semicolon must be appended to shell commands. This is because you are working
directly over the shell’s stdin, and not a terminal, so the enter key is sent out as a literal Ctrl-M.
The semicolon added terminates the command so the shell can parse it, making the Ctrl-M into a
separate, invalid command. A minor annoyance in exchange for remote root capabilities.

LISTS OF LAUNCHDAEMONS

There are an inordinate amount of LaunchDaemons in OS X and iOS. Indeed, many sites devote
countless HTML pages and SMTP messages to debating the purpose and usefulness of the daemons
and agents, especially in iOS, where unnecessary CPU cycles not only impact performance, but also
dramatically shorten battery life. The following section aims to elucidate the purpose of these dae-
mons and agents.

iOS and OS X share some common LaunchDaemons. All plists (and their Mach service entries)
have the com.apple prefi x, and usually run their binaries from /usr/libexec. They are shown in
Table 7-3:

c07.indd 241c07.indd 241 10/5/2012 4:16:50 PM10/5/2012 4:16:50 PM

242 x CHAPTER 7 THE ALPHA AND THE OMEGA — LAUNCHD

TABLE 7-3: Daemons common to iOS and OS X

LAUNCHDAEMON

(/USR/LIBEXEC)

MACH SERVICES

(COM.APPLE.*)

NOTES

DumpPanic

(CoreServices)

DumpPanic When kernel boots, collects

any leftover panic data from

a previous panic. Runs with

RunAtLoad=true.

appleprofilepolicyd appleprofilepolicyd System profi ling. Communicates

with profi ling kernel extensions.

Registers HostSpecialPort 16.

aslmanager --- Apple system Llog. Runs /usr/

bin/aslmanager, and sets a

WatchPath on /var/log/asl/

SweepStore.

Backupd

(MobileBackup framework)

Backupd RunAtLoad = true.

chud.chum Runs /Developer/usr/

libexec/chum, the CHUD

helper daemon allowing access

to privileged kernel interfaces

from user mode.

configd SCNetworkReachability

Configd

KeepAlive = true.

AppleIDAuthAgent

(CoreServices)

coreservices.appleid

.authentication

coreservices.appleid

.passwordcheck

Handles AppleID-related

requests. Whereas iOS has both

services, OS X version only has

the second service, which runs

with a –checkpassword switch.

cvmsServer cvmsServ Internal to OpenGL(ES)

framework.

fseventsd FSEvents In OS X, fseventsd is run from

the CarbonCore framework,

which is internal to CoreServices.

locationd locationd.registration

locationd.simulation (i)

locationd.spi (i)

locationd.synchronous (i)

locationd.agent (SL)

locationd.services(SL)

Location services.

c07.indd 242c07.indd 242 10/5/2012 4:16:50 PM10/5/2012 4:16:50 PM

Lists of LaunchDaemons x 243

LAUNCHDAEMON

(/USR/LIBEXEC)

MACH SERVICES

(COM.APPLE.*)

NOTES

mDNSResponder mDNSResponder Multicast DNS listener. Core part

of Apple’s “Bonjour.”

mDNSResponderHelper mDNSResponderHelper Provides privilege separation for

mDNSResponder.

notifyd

(/usr/sbin)

system.

notification_center
System notifi cation center:

handles kernel and other

notifi cations.

racoon

(/usr/sbin)

Racoon Open source VPNd. Thanks to

this daemon iOS5 proved jail-

breakable (twice).

ReportCrash

(/System/Library/

CoreServices)

ReportCrash.*

(OS X has ReportCrash., iOS

has JetSam, SafetyNet, Simu-

lateCrash, and StackShot.)

The default crash handler, which

intercepts all application crashes.

Runs automatically on crash by

setting job’s Mach exception

ports (discussed in Chapter 11).

sandboxd Sandboxd Also uses HostSpecialPort 14.

securityd Securityd

SecurityServer (SL)
Handles key access and authori-

zation. Written by Perry the Cynic,

apparently.

OnDemand.

syslogd system.logger Passes messages to ASL via the

asl_input socket (discussed in

Chapter 4).

A list of OS X specifi c LaunchDaemons (and a host of LaunchAgents), is too large and tedious to fi t
in these pages, but is maintained on the book’s companion website.

iOS launchdaemons
Table 7-4 details some of the daemons specifi c to iOS, in alphabetical order:

c07.indd 243c07.indd 243 10/5/2012 4:16:50 PM10/5/2012 4:16:50 PM

244 x CHAPTER 7 THE ALPHA AND THE OMEGA — LAUNCHD

TABLE 7-4: Some of the iOS daemons in /System/Library/LaunchDaemons

LAUNCHDAEMON

(/USR/LIBEXEC)

MACH SERVICES

(COM.APPLE.*)

NOTES

accessory_device_

arbitrator

mobile.accessory_device_

arbitrator
Handles accessories plugged

into i-Device, such as docks. Set

to respond to events from I/O Kit

on the IOUSBInterface, so it

can be started whenever such an

accessory is connected. Formerly

accessoryd.

Accountsd

(Accounts.framework)

accountsd.accountmanager

accountsd.oauthsigner
Single sign-on. Runs as mobile.

Amfid MobileFileIntegrity Discouraging any attempt to run

unsigned, un-entitled code in iOS.

Arch-nemesis of all jailbreakers.

Uses HostSpecialPort 18.

Apsd

(ApplePushService

.framework)

Apsd Apple Push Service Daemon (the

APS private framework). Runs as

mobile.

Assetsd

(AssetsLibrary.framwork)

PersistentURLTranslator

.Gatekeeper

assetsd.*

Runs as mobile.

Atc Atc Air traffi c controller.

Calaccessd

(EventKit.framework/

Support)

Calaccessd The EventKit’s calendar access

daemon. Runs as mobile.

crash_mover crash_mover Moves crashes to /var/Mobile/

Library/Logs.

fairplayd.XXX Fairplayd

Unfreed
User mode helper for Apple’s

“FairPlay” DRM. This daemon

is hardware specifi c (the plist

contains a LimitedToHardware

key), with XXX specifying the

board type (e.g., N81 for iPod 4,1).

Itunesstored

(iTunesStore.framework/

Support)

iTunesStore.daemon.*

itunesstored.*
The iTunes Store server. Mostly

known for the app store badge

notifi cations.

Runs as mobile.

Lockbot --- Listens on /var/run/lockbot.

Assists in jailing the device.

c07.indd 244c07.indd 244 10/5/2012 4:16:51 PM10/5/2012 4:16:51 PM

Lists of LaunchDaemons x 245

LAUNCHDAEMON

(/USR/LIBEXEC)

MACH SERVICES

(COM.APPLE.*)

NOTES

Lockdownd lockdown.host_watcher See next section of this chapter.

Mobileassetd Mobileassetd Runs with -t 15.

mobile.installd mobile.installd Runs with -t 30 as mobile.

mobile.installd

.mount_helper

mobile.installd

.mount_helper
Mounts the developer image

when device is selected for

development.

mobile_obliterator mobile.obliteration Remotely obliterate (that is, wipe)

the device.

Pasteboard

(UIKit.framework/

Support/)

UIKit.pasteboardd Cut/paste support. Runs as

mobile. Close relative of OS

X’s as pboard(8), which is a

LaunchAgent (q.v., pbcopy(1),
pbpaste(1)).

SpringBoard

(/System/Library/

CoreServices)

CARenderServer

SBUserNotification

UIKit.statusbarserver

bulletinboard.*

chatkit

.clientcomposeserver.xpc

iohideventsystem

smsserver

springboard.*

The chief UI of i-Devices.

Described in its own section in

this chapter.

Twitterd

(Twitter.Framework)

twitter.authenticate

twitterd.server
Twitter support introduced in

iOS 5.

Vsassetsd

(VoiceServices

.framework/Support)

Vsassetd Responsible for voice assets.

Runs as mobile.

Glancing over the table, you may have noticed two special Daemons in iOS: SpringBoard and
lockdownd. SpringBoard is the GUI Shell and is described later in this Chapter. lockdownd
deserves more detail, and is described next.

lockdownd
lockdownd is the arch-nemesis of jailbreakers everywhere, being the user mode cop charged with
guarding the jail. It is started by launchd and handles activation, backup, crash reporting, device
syncing, and other services. It registers the com.apple.lockdown.host_watcher Mach service, and
listens on TCP port 62078, as well as the /var/run/lockdown.sock UNIX domain socket. It is
also assisted by a rookie, /usr/libexec/lockbot.

c07.indd 245c07.indd 245 10/5/2012 4:16:51 PM10/5/2012 4:16:51 PM

246 x CHAPTER 7 THE ALPHA AND THE OMEGA — LAUNCHD

Lockdownd is, in effect, a mini-launchd. It maintains its own list of services to start in /System/
Library/Lockdown/Services.plist, as shown in Listing 7-10.

LISTING 7-10: An excerpt from lockdownd’s services.plist

<plist version="1.0">
<dict>
 <key>com.apple.afc</key>
 <dict>
 <key>AllowUnactivatedService</key>
 <true/>
 <key>Label</key>
 <string>com.apple.afc</string>
 <key>ProgramArguments</key>
 <array>
 <string>/usr/libexec/afcd</string>
 <string>--lockdown</string>
 <string>-d</string>
 <string>/var/mobile/Media</string>
 <string>-u</string>
 <string>mobile</string>
 </array>
 </dict>
 <key>com.apple.afc2</key>
 <dict>
 <key>AllowUnactivatedService</key>
 <true/>
 <key>Label</key>
 <string>com.apple.afc2</string>
 <key>ProgramArguments</key>
 <array>
 <string>/usr/libexec/afcd</string>
 <string>--lockdown</string>
 <string>-d</string>
 <string>/</string>
 </array>
</dict>

The listing shows an important service — afc — which is responsible for transferring fi les between
the iTunes host and the i-Device. This is required in many cases, for synchronization as well as
moving crash and diagnostic data. The second instance of the same service (afc2) is automatically
inserted in the jailbreak process, and differs only in its lack of the -u mobile command line argu-
ment to the afc, which makes it retain its root privileges instead of dropping to the non-privileged
user mobile. lockdownd (just like launchd) runs as root and can drop privileges before running
another process if the UserName key is specifi ed.

GUI SHELLS

When the user logs in on the console (either automatically or by specifying credentials), the system
starts a graphical shell environment. OS X uses the Finder, whereas iOS uses SpringBoard, but the
two are often more similar than they let on. From launchd’s perspective, both Finder and
SpringBoard are just one or two more agents in the collection of over 100 daemons and agents they

c07.indd 246c07.indd 246 10/5/2012 4:16:52 PM10/5/2012 4:16:52 PM

GUI Shells x 247

need to start and juggle. But for the user, these programs constitute the fi rst (and often fi nal) frontier
for interaction with the operating system.

Finder (OS X)
Finder is OS X’s equivalent of Windows’ Explorer: It provides the graphical shell for the user. It is
started as a launch agent upon successful login, from the com.apple.Finder.plist property list (in
/System/Library/LaunchAgents)

Finder has dependencies on no less than 30 libraries and frameworks, some of them private, which
you can easily display by using otool(1) -l. Doing so also reveals a peculiarity: Finder is a rare
case of an encrypted binary. OS X supports code encryption, as described in Chapter 4 and detailed
further in Chapter 13, but there are fairly few encrypted binaries. Output 4-3 demonstrated using
otool –l to view the encrypted portion of Finder. Using strings(1) or trying to disassemble Finder
is, therefore, a vain effort (unless the encryption is defeated, for example by a tool like corerupt, pre-
sented in Chapter 12). You can also use GDB to attach to Finder once it is running (yet again, defeat-
ing the whole purpose of the binary protection), and trace its threads (usually only three of them).

Finder is so tightly integrated with the system that the very design of the native fi le system, HFS+,
has been built around it. The fi le and folder data, and indeed the volume data itself, contains special
fi nder information fi elds. These fi elds enable many features, such as reopening folder windows in the
exact dimensions and location the user placed them last. Finder additionally makes use of extended
attributes to store information, such as color labels and aliases. These features are all discussed in
Chapter 16 (which is entirely devoted to HFS+).

With a Little Help from My Friends
All the work of supporting the rich GUI can prove overwhelming for any one process, which is why
the GUI handling is actually split between several processes, which are all in /System/Library/
CoreServices.

The Dock.app is responsible for the familiar tray of icons usually found at the bottom of the desk-
top, as its name implies, but also sets the wallpaper (what X would call the “root window”), as can
be witnessed when the process is killed. It is assisted by com.apple.dock.extra, which connects
the UI actions to the Dock action outlets.

The SystemUIServer.app is responsible for the menu extras (right hand) side of the status bar,
which it loads from /System/Library/CoreServices/Menu Extras. Note that there, menu extras
may also be created programmatically (using [NSStatusBar systemStatusBar] and its setImage/
setMenu methods), in which case these extras are the responsibility of the app which created them.

Due to their important role (and Apple’s desire to keep their UI theirs for as long as possible before
others “adopt” it), Finder’s assistants (as well as other CoreServices apps) are also protected
binaries.

Experiment: Figuring Out Who Owns What in the GUI
Using a shell (preferably over SSH) and the UNIX kill(1) command, you can quickly determine
which process owns what part of the GUI. Your options are to either kill the process violently (using
kill -9) or just pause the process (using kill –STOP and kill -CONT). Doing so on the various

c07.indd 247c07.indd 247 10/5/2012 4:16:52 PM10/5/2012 4:16:52 PM

248 x CHAPTER 7 THE ALPHA AND THE OMEGA — LAUNCHD

processes — Finder, Dock and SystemUIServer — will either briefl y make their UI assets disappear
(if killed, until the processes are automatically restarted by launchd) or hang with the spinning
beachball of death (as long as the processes are stopped) or a “fast forward” effect (when the pro-
cesses are resumed, and all the queued UI messages are delivered). Menu extras created by apps will
be unaffected by SystemUIServer’s suspension or premature demise.

You might want to use killall(1) instead of kill, as it will send a signal by name, rather than by
PID. If you use it this way to kill the same process repeatedly, launchd throttles the processes, which
after a few seconds are respawned.

SpringBoard (iOS)
What Finder is to OS X, SpringBoard is for iOS. In iOS the system need not logon, so SpringBoard
is started automatically, to provide the familiar icon based UI of the system. This UI has served as
the inspiration to Lion’s LaunchPad, which uses the same GUI concepts and is essentially a back
port of SpringBoard into OS X — a fact that is evident as some SpringBoard-named fi les can be
found in LaunchPad binary (which is technically part of the dock). Much like its OS X GUI counter-
part (Finder), SpringBoard is loaded from /System/Library/CoreServices/.

All by Myself (Sort of)
Unlike Finder, SpringBoard handles almost everything by itself, and there are only a few loadable
bundles in the CoreServices directory. Finder’s 30 dependencies are dwarfed by SpringBoard, which
has about 80, as you can see with otool –l, which will also reveal that SpringBoard is (surpris-
ingly) an unprotected binary.

SpringBoard nonetheless does turn to additional bundles for certain tasks. /System/Library/
SpringBoardPlugins contains three types of loadable bundles (as of iOS 5):

 ‰ lockbundle — Lock bundles provide lock screen functionality. The
NowPlayingArtLockScreen.lockbundle is responsible for providing the lock screen when
the music player (Music~iphone or MobileMusicPlayer) is active and the screen is locked.
The PictureFramePlugin shows pictures from the user’s photo library. The iPhone also has
a bundle for VoiceMemosLockScreen (to show voice messages and missed call indicators)

 ‰ servicebundle — Helps SpringBoard with various tasks, such as ChatKit.servicebundle,
IncomingCall.servicebundle, and WiFiPicker.servicebundle.

 ‰ bundle — The original extension before iOS 5. Still exists for NikeLockScreen.bundle and
ZoomTouch.bundle.

Creating the GUI
SpringBoard creates its GUI by enumerating the apps in /Applications /var/mobile/

Applications and displaying icons for them on the i-Device. Icon enumeration is performed auto-
matically when SpringBoard starts. Each app’s Info.plist is read, and the app is displayed on one
of the home screens with the icon specifi ed in its CFBundleIcons property, unless it contains the
SBAppTags key with a hidden array entry). Examples of hidden apps are Apple’s own DemoApp
.app, iOS Diagnostics.app, Field Test.app, Setup.app, and TrustMe.app.

c07.indd 248c07.indd 248 10/5/2012 4:16:52 PM10/5/2012 4:16:52 PM

GUI Shells x 249

iOS devices start Setup.app when fi rst launched to confi gure the device,
register, and activate it. This has been rumored to annoy certain types of people.
A nice way to get past it is to jailbreak the device and boot it (tethered or unte-
thered doesn’t matter), then ssh into it and simply rename (mv) /Applications/
Setup.app (the new name doesn’t matter). Then, restart SpringBoard (killall
SpringBoard), and that setup screen is gone. iTunes will still complain about
device registration when syncing, but there are ways to bypass that, as well.

Icon grouping and the button bar settings are saved to /var/mobile/Library/SpringBoard/
IconState.plist, with general home screen settings (as well as ringtones and other audio effects)
in /var/mobile/Library/Preferences/com.apple.springboard. A third fi le,
applicationstate.plist, controls application settings like badges. Figure 7-1 shows the mapping
between the fi les and the home screen.

~/Library/Springboard/IconState.plist:

<plist version="1.0">
<dict>
 <key>buttonBar</key>
 <array>
 <string>com.apple.mobilephone</string>
 <string>com.apple.mobilemail</string>
 <string>com.apple.mobilesafari</string>
 <string>com.apple.mobileipod</string>
 </array>
<key>iconLists</key>
 <array>
 <array>
 <string>com.apple.MobileSMS</string>
 ...
 <string>com.apple.mobiletimer</string>
 <dict>
 <key>defaultDisplayName</key>
 <array>
 <string>com.apple.MobileAddressBook</string>
 <string>com.apple.calculator</string>
 <string>com.apple.compass</string>
 <string>com.apple.VoiceMemos</string>
 </array>
 <key>listType</key>
 <string>folder</string>
 </dict>
 <string>com.etrade.mobileproiphone</string>
 <string>com.nbcuni.cnbc.cnbcrt</string>
 <string>com.apple.Preferences</string>
 </array>
 <array>
 // Next home screen(s) follow ...
 ...
 </array>
</dict>
</plist>

~/Library/Preferences/com.apple.springboard:

~/Library/Springboard/applicationstate.plist:

<key>com.apple.Preferences</key>
<dict>
 <key>SBApplicationBadgeKey</key>
 <integer>1</integer>
 ……

<key>SBShowBatteryPercentage</key>
<true/>

FIGURE 7-1: SpringBoard’s fi les and how they lay out the iOS home screen.

c07.indd 249c07.indd 249 10/5/2012 4:16:53 PM10/5/2012 4:16:53 PM

250 x CHAPTER 7 THE ALPHA AND THE OMEGA — LAUNCHD

Experiment: Unhiding (or Hiding) an iOS App
It’s a simple matter to hide or unhide apps on a jailbroken device. All it takes is editing the App’s
Info.plist and toggling the SBAppTags key. This is demonstrated in this simple experiment. You
can use the method here to unhide or hide any app you wish.

For the app you choose, take the Info.plist and copy it to /tmp. Then, convert it to the more read-
able XML format (or, if you prefer, JSON) using plutil(1). Edit the fi le to either add or remove
the SBAppTags key with an array, containing a single string value of ‘hidden’. Finally, restart
SpringBoard.

Performing the sequence of operations described here on DemoApp, we would have the sequence
shown in Output 7-3:

OUTPUT 7-3: Toggling the visibility of an iOS app

root@padishah (/)# cp /Applications/DemoApp.app/Info.plist /tmp
root@padishah (/)# plutil -convert xml1 /tmp/Info.plist
Converted 1 files to XML format
root@padishah (/)# cat /tmp/Info.plist
…
 <key>SBAppTags</key>
 <array>
 <string>hidden</string>
 </array>
…

root@padishah (/)# plutil –convert binary1 /tmp/Info.plist
Converted 1 files to binary format

root@padishah (/)# cp /tmp/Info.plist /Applications/DemoApp.app/
root@padishah (/)# killall SpringBoard

Handling the UI
Finder and SpringBoard are both in charge of presenting the UI, but Springboard’s responsibilities
extend above and beyond. SpringBoard is apparently responsible for every type of action in iOS.
Even if it is not the foreground application, if it is stopped (by signal) no UI events get to the active
app, and when it is continued all the events queued are delivered to the app.

Springboard is a multithreaded application. It has far more threads than Finder. Apple's developers
were kind enough to name some of them (using the pthread_setname_np). The names reveal two
Web related threads (WebCore and WebThreads), at least two belonging to
coremedia.player, one for the WiFiManager callbacks (responsible for the WiFi indicator on the
status bar), and three or more threads used for CoreAnimation. Debugging the process requires get-
ting past a system watchdog, which reboots the system if SpringBoard is not responsive for more
than a few minutes.

More information can be gleaned from Springboard’s launchd registration, i.e., the com.apple
.SpringBoard.plist entry in /System/Library/LaunchDaemons, shown in Listing 7-11. Since all

Add or remove this value

c07.indd 250c07.indd 250 10/5/2012 4:16:54 PM10/5/2012 4:16:54 PM

GUI Shells x 251

Mach port registrations go through launchd, this lists the (many) ports which SpringBoard requests
launchd to register.

LISTING 7-11: SpringBoard’s registered Mach ports

<plist version="1.0">
<dict>
 <key>EmbeddedPrivilegeDispensation</key>
 <true/>
 <key>HighPriorityIO</key>
 <true/>
 <key>KeepAlive</key>
 <true/>
 <key>Label</key>
 <string>com.apple.SpringBoard</string>
 <key>MachServices</key>
 <dict>
 <key>PurpleSystemEventPort</key>
 <dict>
 <key>ResetAtClose</key>
 <true/>
 </dict>
 <key>com.apple.CARenderServer</key>
 <dict>
 <key>ResetAtClose</key>
 <true/>
 </dict>
 <key>com.apple.SBUserNotification</key>
 <true/>
 <key>com.apple.UIKit.statusbarserver</key>
 <true/>
 <key>com.apple.bulletinboard.observerconnection</key>
 <true/>
 <key>com.apple.bulletinboard.publisherconnection</key>
 <true/>
 <key>com.apple.bulletinboard.settingsconnection</key>
 <true/>
 <key>com.apple.chatkit.clientcomposeserver.xpc</key>
 <true/>
 <key>com.apple.iohideventsystem</key>
 <dict>
 <key>ResetAtClose</key>
 <true/>
 </dict>
 <key>com.apple.smsserver</key>
 <dict>
 <key>ResetAtClose</key>
 <true/>
 </dict>
 <key>com.apple.springboard</key>
 <dict>
 <key>ResetAtClose</key>
 <true/>

continues

c07.indd 251c07.indd 251 10/5/2012 4:16:54 PM10/5/2012 4:16:54 PM

252 x CHAPTER 7 THE ALPHA AND THE OMEGA — LAUNCHD

 </dict>
 <key>com.apple.springboard.UIKit.migserver</key>
 <dict>
 <key>ResetAtClose</key>
 <true/>
 </dict>
 <key>com.apple.springboard.alerts</key>
 <dict>
 <key>ResetAtClose</key>
 <true/>
 </dict>
 <key>com.apple.springboard.appstatechanged</key>
 <dict>
 <key>HideUntilCheckIn</key>
 <true/>
 </dict>
 <key>com.apple.springboard.backgroundappservices</key>
 <dict>
 <key>HideUntilCheckIn</key>
 <true/>
 <key>ResetAtClose</key>
 <true/>
 </dict>
 <key>com.apple.springboard.blockableservices</key>
 <dict>
 <key>ResetAtClose</key>
 <true/>
 </dict>
 <key>com.apple.springboard.processassertionservices</key>
 <dict>
 <key>HideUntilCheckIn</key>
 <true/>
 <key>ResetAtClose</key>
 <true/>
 </dict>
 <key>com.apple.springboard.processinvalidation</key>
 <dict>
 <key>HideUntilCheckIn</key>
 <true/>
 </dict>
 <key>com.apple.springboard.remotenotifications</key>
 <dict>
 <key>ResetAtClose</key>
 <true/>
 </dict>
 <key>com.apple.springboard.services</key>
 <dict>
 <key>HideUntilCheckIn</key>
 true/>
 <key>ResetAtClose</key>
 <true/>
 <key>com.apple.springboard.watchdogserver</key>

LISTING 7-11 (continued)

c07.indd 252c07.indd 252 10/5/2012 4:16:54 PM10/5/2012 4:16:54 PM

XPC (Lion and iOS) x 253

 <true/>
 </dict>
 <key>ProgramArguments</key>
 <array>
 <string>/System/Library/CoreServices/SpringBoard.app/SpringBoard</string>
 </array>
 <key>ThrottleInterval</key>
 <integer>5</integer>
 <key>UserName</key>
 <string>mobile</string>
</dict>
</plist>

Chief among all these ports is the PurpleSystemEventPort, which handles the UI events as
GSEvent messages. This is understandably undocumented by Apple, but has been reverseengi-
neered[2]. The main thread in Springboard calls processes GSEventRun(), which is the CF RunLoop
that handles the UI messages. The other threads are in similar run loops over the other Mach ports
in Springboard, but due to the opaque nature of these ports, it’s diffi cult to tell which thread is on
which port without the right symbols.

XPC (LION AND IOS)

XPC is a set of lightweight interprocess communication primitives fi rst introduced in Lion and iOS
5. XPC is fairly well documented in Apple Developer[3]. It is also tightly integrated with the Grand
Central Dispatcher (GCD). XPC enables a developer to break down applications into separate
components. This improves both application stability and security, as vulnerable (or unstable) func-
tionality can be contained in an XPC service, which is managed externally — another responsibility
happily assumed by launchd.

Just as with its own LaunchDaemons, launchd takes on the tasks of starting XPC services on
demand, watching over them (restarting on crash), and terminating them (the hard way, with a
kill -9) when they are done or idle. The launchd uses xpcd(8), xpchelper(8), and xpcproxy(8)
to assist with the XPC services. It maintains XPC services alongside standard Mach services,
in separate XPC domains — per-user, private, and singleton. This can be seen in the output of
launchctl’s bstree subcommand, as shown in Output 7-4:

OUTPUT 7-4: XPC Service Domains

root@Simulacrum (/)# launchctl bstree | grep Domain
com.apple.xpc.domain.com.apple.dock.[231] (XPC Private Domain)/
 com.apple.xpc.domain.Dock[175] (XPC Private Domain)/
 com.apple.xpc.domain.peruser.501 (XPC Singleton Domain)/
 com.apple.xpc.domain.imagent[214] (XPC Private Domain)/
 com.apple.xpc.domain.com.apple.audio[203] (XPC Private Domain)/
 com.apple.xpc.domain.peruser.202 (XPC Singleton Domain)/
 com.apple.xpc.domain.coreaudiod[108] (XPC Private Domain)/
 com.apple.xpc.system (XPC Singleton Domain)/
 ...

c07.indd 253c07.indd 253 10/5/2012 4:16:55 PM10/5/2012 4:16:55 PM

254 x CHAPTER 7 THE ALPHA AND THE OMEGA — LAUNCHD

XPC services and client applications link (either directly or through Cocoa) with libxpc.dylib,
which provides the various C-level XPC primitives (such as Mountain Lion’s NSXPCConnection).
The library remains closed source at the time of this writing, but Apple does provide the <xpc/*>
includes which expose the APIs, whose internals are discussed in this section. XPC also relies on the
private frameworks of XPCService and XPCObjects. The former handles runtime aspects of ser-
vices, and the latter provides encoding and decoding services for XPC objects. iOS contains a third
private framework, XPCKit.

XPC Object Types
XPC wraps and serializes various datatypes in a manner akin to the CoreFoundation framework.
<xpc/xpc.h> defi nes the object and data types supported by XPC, shown in Table 7-5. The type
names are #defined as XPC_TYPE_typename macros wrappings pointers to the corresponding types
in the table, and can be instantiated with xpc_typename_create functions. Objects can be retrieved
from messages in most cases using xpc_typename_get_value. Two special object types are dic-
tionaries and arrays, which serve as containers for other object types (which may be created in or
accessed from from them using xpc_[array|dictionary]_[get|set]_typename.

TABLE 7-5: XPC Object and data types

TYPE REPRESENTS

connection An XPC connection, over which messages can be sent and received. A con-

nection can be created using xpc_connection_create(), specifying an

anonymous or named connection, or from a given endpoint, through a call to

xpc_connection_create_from_endpoint().

endpoint Serializable form of a connection. Eff ectively a connection factory.

null A null object reference (constant) for comparisons.

bool A Boolean.

true/false Boolean true/false values (constants) for comparisons.

int64/uint64 Signed/Unsigned 64-bit integers.

double Double precision fl oats.

date Date intervals (UNIX time). Can be instantiated from the present time by a call

to xpc_date_create_from_current.

data Array of bytes. The recipient can obtain a pointer to the data by calling

xpc_data_get_bytes_ptr.

string Null terminated C-String (wraps char *). Strings may be created

with a format string, and even with variable arguments (similar to

vsprintf(3)). The recipient can obtain a pointer to the string by calling

xpc_string_get_string_ptr.

c07.indd 254c07.indd 254 10/5/2012 4:16:55 PM10/5/2012 4:16:55 PM

XPC (Lion and iOS) x 255

TYPE REPRESENTS

uuid Universally Unique Identifi er. The recipient can obtain the UUID by a call to

xpc_uuid_get_bytes.

fd File descriptor. The descriptor can be used by the client by calling

xpc_fd_dup.

shmem Shared memory. The shared memory can be mapped into the receipient’s

address space by calling xpc_shmem_map.

array Indexed array of XPC objects. An array may contain any number of

other object types, which may be added to it or retrieved from it using

xpc_array_[get|set]_typename.

dictionary Associative array of XPC objects. A dictionary may contain any number

of other object types, which may be added to it or retrieved from it using

xpc_dictionary_[get|set]_typename.

error Error objects. Used for returning errors. Cannot be instantiated by clients.

Any of the XPC objects can be handled as an opaque xpc_object_t, and manipulated by functions
described in xpc_object(3). These include xpc_retain/release, xpc_get_type (which returns
one of the XPC_TYPEs corresponding to Table 7-5), xpc_hash (used to provide a hash value of an
object for array indexing), xpc_equal (for comparing objects) and xpc_copy.

XPC Messages
Objects may be sent or received in messages. Messages are sent using one of several functions from
<xpc/connection.h>, as shown in Table 7-6:

TABLE 7-6: XPC Messaging functions in <xpc/connection.h>

FUNCTION USAGE

xpc_connection_send_message

 (xpc_connection_t connection,

 xpc_object_t message);

Send message asynchronously on

connection.

xpc_connection_send_barrier

 (xpc_connection_t connection,

 dispatch_block_t barrier);

Execute barrier block after last message

is sent on connection.

xpc_connection_send_message_with_reply

 (xpc_connection_t connection,

 xpc_object_t message,

 dispatch_queue_t replyq,

 xpc_handler_t handler);

Send message, but also asynchronously

execute handler in dispatch queue

replyq when a reply is received.

continues

c07.indd 255c07.indd 255 10/5/2012 4:16:55 PM10/5/2012 4:16:55 PM

256 x CHAPTER 7 THE ALPHA AND THE OMEGA — LAUNCHD

xpc_object_t

xpc_connection_send_message_with_reply_sync

 (xpc_connection_t connection,

 xpc_object_t message);

Send message, blocking until a reply is

received, and return reply as the xpc_

object_t return value

By default, messages are sent asynchronously, and are handled by dispatch queues (i.e., GCD), as
shown in Figure 7-2. By using barriers, the programmer may provide a block to be executed when
all the messages on a particular connection have been sent. Messages may expect replies, which
are again asynchronous, though the _reply_sync function may be used to block until a message is
received.

Validate argument

Create a serializer to handle serialization of message

Call xpc_get_type to ensure argument is a connection,
and jump to xpc_api_misuse if it isn’t.

Invoke serializer to pack message

Release message reference

Enqueue message for asynchronous sending.
xpc_send_serializer calls mach_msg to send the message

_xpc_serializer_create

_xpc_serializer_pack

_xpc_connection_enqueue_async

xpc_release

FIGURE 7-2: Flow of xpc_connection_send_message

XPC messages are implemented over Mach messages and make use of the Mach Interface Genera-
tor (MIG) facility, which provides the xpc_domain subsystem. This subsystem contains messages
to check in, load, or add services, and get the name of a service, similar to the bootstrap protocol
described earlier in this chapter (XPC can be considered a subset of bootstrap, and makes use of it
internally). Mach messages and in particular MIG are detailed in Chapter 10.

XPC services
XPC services can be created in Objective-C, or in C/C++. In either case, the services are started
by a call to libxpc.dylib’s xpc_main. C/C++ services’ main is just a simple wrapper, which
invokes xpc_main (declared in <xpc/xpc.h>) with the event handler function (xpc_connection_
handler_t). Objective-C services also call on xpc_main(), albeit indirectly through
NSXPCConnection’s resume method.

The event handler function takes a single argument, an xpc_connection_t. (Objective-C wraps
this object with Foundation.framework’s NSXPCConnection.) The XPC connection is treated as

TABLE 7-6 (continued)

c07.indd 256c07.indd 256 10/5/2012 4:16:56 PM10/5/2012 4:16:56 PM

Summary x 257

an opaque object, with miscellaneous xpc_connection_* functions. In <xpc/connection.h> used
as getters for its properties, and setters for its event handler and target queue. A connection’s name,
effective UID and GID, PID and Audit Session ID can all be queried.

The normal architecture of an XPC service involves calling dispatch_queue_create to create a
queue for the incoming messages from the client and using xpc_connection_set_target_queue to
assign the queue to the connection. The service also sets an event handler on the connection, call-
ing xpc_connection_set_event_handler with a handler block (which may wrap a function). The
handler is called whenever the service receives a message. A service may create a reply (by calling
xpc_dictionary_create_reply) and send it.

A well-documented example of XPC is SandBoxedFetch, which is available from Apple Developer[4],
alleviating the need for an example in this book.

XPC Property Lists
XPC services are defi ned in their own bundles, contained in an XPCServices subfolder of its parent
application or framework. As with all bundles, they have an Info.plist, which they use to declare
various service properties and requirements:

 ‰ The CFBundlePackageType property is defi ned as “XPC!”

 ‰ The CFBundleIdentifier property defi nes the name of the XPCService. This is set to be the
same as the bundle’s name.

 ‰ The XPCService property defi nes a dictionary, which can specify the ServiceType prop-
erty (Application. User or System), and RunLoopType (dispatch_main or NSRunLoop),
which dictates which run loop style xpc_main() adopts. The dictionary may also contain the
JoinExistingSession Boolean property, to redirect auditing to the application’s existing
audit session.

 ‰ The XPCService dictionary may be used to specify additional properties, prefi xed by an
underscore. These include _SandboxProfile (which allows the optional specifi cation of
a sandbox profi le to enforce on the XPC service, as discussed in Chapter 4) and
_AllowedClients, which can specify the identifi ers of applications which are allowed to
connect to the service.

SUMMARY

This chapter discussed launchd, the OS X and iOS replacement to the traditional UNIX init.
launchd fi lls many functions in both operating systems: both those of UNIX daemons, and those of
Mach. The Mach roles will be discussed further when the concept of Mach messages is elaborated
on in Chapter 10.

The chapter ended with a review of the GUI of both OS X (Finder) and iOS (SpringBoard), in as
much detail as possible on these intentionally undocumented binaries.

c07.indd 257c07.indd 257 10/5/2012 4:16:56 PM10/5/2012 4:16:56 PM

258 x CHAPTER 7 THE ALPHA AND THE OMEGA — LAUNCHD

REFERENCES AND FURTHER READING

1. launchd Sources, http://opensource.apple.com/tarballs/launchd/launchd-392.38
.tar.gz or later.

2. GSEvent iPhone Development Wiki, http://iphonedevwiki.net/index.php/GSEvent

3. Apple Developer, “Daemons and Services Programming Guide” http://developer.apple
.com/library/mac/#documentation/MacOSX/Conceptual/BPSystemStartup/Chapters/

CreatingXPCServices.html

4. Apple Developer, “Sandboxed Fetch” http://developer.apple.com/library/
mac/#samplecode/SandboxedFetch/

c07.indd 258c07.indd 258 10/5/2012 4:16:56 PM10/5/2012 4:16:56 PM

http://opensource.apple.com/tarballs/launchd/launchd-392.38.tar.gz or later
http://iphonedevwiki.net/index.php/GSEvent
http://developer.apple.com/library/mac/#documentation/MacOSX/Conceptual/BPSystemStartup/Chapters/CreatingXPCServices.html
http://developer.apple.com/library/mac/#samplecode/SandboxedFetch/
http://opensource.apple.com/tarballs/launchd/launchd-392.38.tar.gz or later
http://developer.apple.com/library/mac/#documentation/MacOSX/Conceptual/BPSystemStartup/Chapters/CreatingXPCServices.html
http://developer.apple.com/library/mac/#documentation/MacOSX/Conceptual/BPSystemStartup/Chapters/CreatingXPCServices.html
http://developer.apple.com/library/mac/#samplecode/SandboxedFetch/

PART II
The Kernel

 � CHAPTER 8: Some Assembly Required: Kernel Architectures

 � CHAPTER 9: From the Cradle to the Grave — Kernel Boot and Panics

 � CHAPTER 10: The Medium Is the Message: Mach Primitives

 � CHAPTER 11: Tempus Fugit — Mach Scheduling

 � CHAPTER 12: Commit to Memory: Mach Virtual Memory

 � CHAPTER 13: BS”D — The BSD Layer

 � CHAPTER 14: Something Old, Something New:

Advanced BSD Aspects

 � CHAPTER 15: Fee, FI-FO, File: File Systems and the VFS

 � CHAPTER 16: To B (-Tree) or Not to Be — The HFS+ File Systems

 � CHAPTER 17: Adhere to Protocol: The Networking Stack

 � CHAPTER 18: Modu(lu)s Operandi — Kernel Extensions

 � CHAPTER 19: Driving Force — I/O Kit

c08.indd 259c08.indd 259 9/29/2012 5:31:00 PM9/29/2012 5:31:00 PM

c08.indd 260c08.indd 260 9/29/2012 5:31:04 PM9/29/2012 5:31:04 PM

8
Some Assembly Required:
Kernel Architectures

Before we delve into the OS X kernel internals, we present the basic ideas and architectures
associated with and shared by all operating systems on all platforms: user mode, kernel mode,
hardware separation, and a focus on the kernel’s tight programming constraints and real-
mode environment.

The kernel is the most critical part of any operating system. As such, it has to be highly opti-
mized to take advantage of all the features and capabilities of the underlying CPU. Kernels are,
for the most part, written in C in order to be as close as possible to the machine, while keeping
the code maintainable. In some cases, however, there is no choice but to get closer still, and
use-architecture-specifi c assembly.

Likewise, there is little choice left for those wishing to understand the kernel, but to wade into
the quagmire that is assembly. The outputs and listings in this chapter contain a fair share of
assembly — both Intel (for OS X) and ARM (for iOS). Unfortunately, the two variants are
distinct languages, as foreign to each other as English is to Mandarin. A complete explana-
tion of either is well beyond the scope of the book. The intrepid reader, however, is more than
encouraged to check out the Intel[1] and ARM[2] manuals for the complete syntax, or consult
the appendix in this book for a quick overview and comparison of both architectures.

KERNEL BASICS

All modern operating systems incorporate in their design a component called the kernel. This,
like the kernel (or seed) of a fruit, is the innermost part of the system — its core. The kernel is
the operating system. From a high-level view, the applications you run — from word proces-
sors to games — are all effectively clients of the kernel, which provides various services, or
system calls.

c08.indd 261c08.indd 261 9/29/2012 5:31:05 PM9/29/2012 5:31:05 PM

262 x CHAPTER 8 SOME ASSEMBLY REQUIRED: KERNEL ARCHITECTURES

The reasoning for a kernel becomes readily apparent when the developer’s point of view is consid-
ered — if a developer had to write applications that would work on all types of hardware, and all
classes of environments, she would fi nd herself bogged down in a quagmire of decision-making.
How does one interface with the hard drive? The network? The graphics adapter? The average
developer could not care less about the idiosyncrasies of hardware devices. What’s more, if the
developer had to build, from scratch, the code required for device and fi le access every time, it
would infl ate both the size of the programs, as well as the time required to code them. There needs
to be, therefore, some level of abstraction, which enables a developer to write code that is portable
across the same operating system, but over different types of hardware. The kernel thus provides a
level of virtualization. This is accomplished by an API that deals with abstract objects — in particu-
lar, virtual memory, network interfaces, and generic devices.

The kernel also serves as a scheduler. All modern operating systems are preemptive multitasking
systems — with “multitasking” meaning they allow several programs, or tasks, to run concur-
rently. In actuality, though, the number of programs is far greater than the number of processors
(or cores). The kernel therefore has to decide which program (process, or thread) can run on which
processor/core.

The kernel is an arbiter — when programs seek to access shared devices, like the hard drive, dis-
play, or network adapters, there needs to be some form of scheduling, to avoid access confl icts or
bottlenecks.

Another set of services offered by the kernel are security services — most often noticeable by the
user as permissions and rights, these are mechanisms to ensure the integrity, privacy, and fair use of
the system’s various resources. As an added layer to arbitration, any potentially sensitive operation
(and practically all access to system resources) must fi rst pass through a security check. The kernel
is responsible for performing that check, and enforcing the various permissions, though the system
administrator can toggle and tweak the actual permissions themselves.

Kernel Architectures
All operating system designs include kernels, but the kernels are designed differently. There are three
classes of kernels, and they are discussed next.

Monolithic Kernels
The Monolithic architecture is the “classic” kernel architecture, and is still predominant in the
UNIX and Linux realms. The term “monolithic” comes from Greek — meaning “single rock” or
“single chunk.” A monolithic kernel follows the approach of putting all the kernel functionality —
whether fundamental or advanced — in one address space. In this way, thread scheduling, and
memory management are squeezed alongside fi le systems, security management, and even device
drivers.

To better understand the monolithic architecture, consider the layout of the Linux kernel, which is
very close in its implementation to the standard UN*X kernel. This is shown in Figure 8-1.

c08.indd 262c08.indd 262 9/29/2012 5:31:08 PM9/29/2012 5:31:08 PM

Kernel Basics x 263

User Process

User Space

Kernel Space

Hardware

Fopen(). fread(), .. open(). read()

User Process

Standard C Libraries (unistd.h, stdio.h...)

System_call()

Network
Stack

Net
Devices

Block I/O Layer

Block Devices

Devices

Virtual Filesystem Switch

V
F
A
T

N
F
S

C
D
F
S

...

E
X
T

2/3/4

Char Devices

Process

Scheduler VMM

IPC Memory

User Process

FIGURE 8-1: The Linux kernel architecture

All the kernel functionality is implemented in the same address space. To further optimize, mono-
lithic kernels not only group all functionality into the same address space, but further map that
address space into every processes’ memory. This is shown in Figure 8-2. In Linux, for example, of
the 4 GB of addressable memory in a 32-bit application, 1 GB is sacrifi ced in the name of the kernel
(On Windows 32-bit: 2 GB). Trying to set a pointer to an address above 0xC0000000 (Windows:
0x80000000) will cause a memory violation (segmentation fault), as the memory is inaccessible from
user mode.

FIGURE 8-2: The monolithic kernel architecture

0xFFFFFFFF

0xC0000000

0x00000000

Kernel

Process
1

Process
2

...
Process

n

Sacrifi cing so much memory — which, in 32-bit mode, makes for one quarter of the entire available
amount — only makes sense if there is a signifi cant advantage, and indeed there is: switching from
user mode to kernel mode in a monolithic architecture is highly effi cient, essentially as costly as a

c08.indd 263c08.indd 263 9/29/2012 5:31:08 PM9/29/2012 5:31:08 PM

264 x CHAPTER 8 SOME ASSEMBLY REQUIRED: KERNEL ARCHITECTURES

thread switch. This is due to the kernel’s memory pages being resident in all processes, so that —
aside from the kernel/user hardware enforced separation — there is really no difference between the
two. All processes, regardless of owner or function, contain a copy of the kernel memory, just as
they would contain copies of shared libraries. Further, these copies (again, like shared libraries) are
all mapped to the same set of physical pages, which are resident. This not only saves precious RAM,
but means that no signifi cant costs (such as page faults) are associated with performing a system
call. This is especially important, given the ubiquity of system calls in user code.

In 64-bit architectures the reservation is larger by several orders of magnitude: the top 40–48 bits,
depen ding on OS confi guration, accounting for a whopping 1–256 TB of virtual memory. Unlike the
32-bit case, however, this really isn’t restrictive, since user mode has a like amount of addressable
memory, which processes don’t even begin to scratch the surface of, and RAM alone could not back
anyway.

Microkernels
While less common, The microkernel architecture is of special interest to us, as Mach, the inner-
most component of XNU, is built this way.

A microkernel consists of only the core kernel functionality, in a minimal code-base. Only the criti-
cal aspects — usually task scheduling and memory management — are carried out by the kernel
proper, with the rest of the functionality exported to external (usually user mode) servers. There
exists complete isolation between the individual servers, and all communication between them is
carried out by message passing: a mechanism allowing the delivery of (usually opaque) message
structures and their subsequent queuing in each server’s queue, from which said component can
later de-queue and process each, in turn. Figure 8-3 shows this architecture:

FIGURE 8-3: The microkernel architecture

User mode
Servers..

User Space

Kernel Space

Hardware

Filesystems

Device
Drivers

Network
Stack

Scheduler Paging

VMM
Clock/

Micro-scheduler
Hardware

Access

Devices

c08.indd 264c08.indd 264 9/29/2012 5:31:09 PM9/29/2012 5:31:09 PM

Kernel Basics x 265

Microkernels offer several distinct advantages, which their monolithic brethren cannot. The fi rst is
correctness: being a small code base allows for the verifi cation, by traversal of all code paths, of cor-
rect functionality. What follows is stability and robustness, as a microkernel has very few points of
possible failure, if any. Since all the additional functionality is provided by external and independent
servers, any failure is contained, and can be easily overcome by restarting the affected server com-
ponent. This is really not that different than a failure in a user process (think, when your browser
or other application crashes), wherein that process can be restarted. By contrast, monolithic kernel
failures more often than not trigger a complete kernel panic.

Another advantage of microkernels is their fl exibility, and adaptability to different platforms and archi-
tectures. Because their functionality is so well defi ned, it is relatively straightforward to port it to other
architectures. This can, in theory, be further extended to remote components (that is, a true network-
based operating system), as there is no real constraint that message passing be confi ned to a single node.

Advantages on the one hand, there is one specifi c disadvantage on the other which outweighs most
of them — and that is performance. Microkernel message passing translates to memory-copy opera-
tions, and several context-switch operations, neither of which are cheap in terms of computational
speed. This disadvantage is so signifi cant, that “pure” microkernels are still largely academic, and
not used commercially, much less so in contemporary operating systems. This calls for a third, syn-
thetic approach — hybridization.

Hybrid Kernels
Hybrid kernels attempt to synthesize the best of both worlds. The innermost core of the kernel,
supporting the lowest level services of scheduling, inter-process communication (IPC) and virtual
memory, is self-contained, as would be a microkernel. All other services are implemented outside
this core, though also in kernel mode and in the same memory space as the core’s.

Another way to look at this is as if the kernel contains within it a smaller autonomous core. Unlike
a true microkernel design, however, this does not mandate message passing. The “kernel-within”
is often just a self-contained modular executable, meaning other components may call on it for ser-
vices, but it does not call out. Note, however, that a hybrid kernel does not enjoy the robustness of a
microkernel, having sacrifi ced it in return for the effi ciency of the monolithic kind.

IS XNU A MICRO, MONOLITHIC, OR HYBRID KERNEL?

Technically, XNU is a hybrid kernel. The Windows kernel is also classifi ed as a
hybrid, yet the differences between them are so signifi cant that using “hybrid” to
describe both is a very loose and possibly misleading term.

Windows does contain a microkernel like core, but the executive, NTOSKRNL (or
NTKRNLPA), itself is closer to a monolithic kernel. The kernel APIs make a dis-
tinction between the Ke prefi xed functions (the kernel core) and all the rest, but all
are in the same address space: kernel space is reserved by default in the upper 2 GB
of every process (44 or 48 bits in 64-bit mode), exactly as it would be in a mono-
lithic architecture. A crash in kernel mode, such as a bug in a driver, leads to the
infamous “blue screen of death,” just like a kernel panic in UNIX.

continues

c08.indd 265c08.indd 265 9/29/2012 5:31:09 PM9/29/2012 5:31:09 PM

266 x CHAPTER 8 SOME ASSEMBLY REQUIRED: KERNEL ARCHITECTURES

(continued)

OS X’s XNU is also a hybrid, but is somewhat closer to a microkernel than Win-
dows is. Mach, its core, was originally a true microkernel, and its primitives are
still built around a message passing foundation. The messages, however, are often
passed as pointers, with no expensive copy operations. This is because most of its
servers now execute in the same address space (thereby classifying as monolithic).
Likewise, the BSD layer on top of Mach, which was always a monolith, is in that
same address space.

Still, unlike Windows or Linux, OS X applications in 32-bit (Intel) used to enjoy
a largely unfettered address space with virtually no kernel reservation — that is,
the kernel had its own address space. Apple has conformed, however, and in 64-bit
mode OS X behaves more like its monolithic peers: the kernel/user address spaces
are shared, unless otherwise stated (by setting the -no-shared-cr3 boot argu-
ment on Intel architectures). The same holds true in iOS, wherein XNU currently
reserves the top 2 GB of the 4 GB address space (prior to iOS version 4 the separa-
tion was 3 GB user/1 GB kernel).

USER MODE VERSUS KERNEL MODE

The kernel is a trusted system component. As we have seen, it controls the most critical functions.
There needs to be a strict separation between the kernel functionality, and that of applications. Oth-
erwise, application instability might bring down the system. In the Microsoft realm, this was quite
common in the days of DOS and Windows, before the advent of Windows NT based systems (such
as NT, 2000, XP, and later). Further, this strict separation needs to be enforced by the hardware, as
software-based enforcement is both costly (in terms of performance), and unreliable.

Intel Architecture — Rings
Intel-based systems provide the required hardware based separation. Beginning with the 286 pro-
cessor (with major enhancements in the 386 processors), Intel introduced the notion of “protected
mode.” Intel x86 systems still boot in “real mode” (for compatibility), but all kernels switch the CPU
to protected mode upon startup. This is accomplished by setting one of the four special-purpose
Control Registers — CR0 — and toggling on its least-signifi cant bit. This operation is always per-
formed by assembly instructions — C and other languages have no access to the Control Registers.
The code to do so in XNU is in start.s, for both i386 and x86_64 branches, shown in Listing 8-1:

LISTING 8-1: osfmk/x86_64/start.s

Entry(real_mode_bootstrap_base)
 cli
 LGDT(EXT(protected_mode_gdtr))
 /* set the PE bit of CR0 */
 mov %cr0, %eax ; can't operate on CRs directly
 inc %eax ; add 1 toggles on the least significant bit
 mov %eax, %cr0 ; update CR0

c08.indd 266c08.indd 266 9/29/2012 5:31:10 PM9/29/2012 5:31:10 PM

User Mode versus Kernel Mode x 267

Protected mode enforces 4 “rings.” These “rings” are privilege levels, numbered 0 through 3. They
are modeled in a concentric fashion, with the innermost ring being ring 0, and the outermost ring 3.
Ring 0 is the most sensitive, and is often referred to as Supervisor mode. Code on the processor run-
ning in ring 0 is the most trusted, and virtually omnipotent. As the ring levels increase, so do secu-
rity restrictions and privileges — so that code in ring 3 is least trusted, and most restricted.

Ring 0 naturally maps to kernel mode, and ring 3 — to user mode. Rings 1 and 2 are reserved for
operating system services, but — in practice — are unused. The rings are implemented by two bits in
the CS register, and two corresponding bits in the EFLAGS register, to set the “user privilege level”
and “current privilege level” as part of the thread state. It is therefore not uncommon to see code
in the kernel check the bits in CS, and bitwise-AND them with 0x3, as a way to check user/kernel
mode on kernel entry.

Certain assembly instructions are disallowed anywhere but ring 0. These include direct access
to hardware, manipulating the control registers, accessing protected memory regions, and many
others. If a program attempts to execute such operations, the CPU generates a general protection
fault (Interrupt #13), and further execution of that code is forbidden. (If protected mode were not
enforced at the hardware level, any program that could access the control registers could switch
between rings).

Code in a lower ring can easily switch to a higher ring, but moving from a higher ring to a lower
ring is impossible, unless a call gate mechanism has been previously established by the lower ring.
We will cover these in “Kernel/User Transition Mechanisms,” later.

Virtualization note: newer processors, which support hardware based virtual-
ization, (such as Intel Vt-X and AMD-V) also offer an inner ring, “ring -1,” or
“hypervisor mode.” This ring allows virtualization-enabled operating systems,
such as VMWare ESX, to load prior to the guest operating systems, and offer
their kernels full ring 0 functionality.

ARM Architecture: CPSR
ARM processors use a special register, the current program status register (CPSR) to defi ne what
mode they are in. The processors have no less than seven distinct modes of operation, but as Table 8-1
shows, there is still a clear dichotomy:

TABLE 8-1: ARM processor modes

MODE MODE BITS PURPOSE

USR 10000 User — Non-privileged operations

SVC 10011 Supervisor mode (default kernel mode)

SYS 11111 System — As user, but the CPSR is writable

continues

c08.indd 267c08.indd 267 9/29/2012 5:31:10 PM9/29/2012 5:31:10 PM

268 x CHAPTER 8 SOME ASSEMBLY REQUIRED: KERNEL ARCHITECTURES

MODE MODE BITS PURPOSE

FIQ 10001 Fast Interrupt Request

IRQ 10010 Normal Interrupt request

ABT 10111 Abort — Failed memory access

UND 11011 Undefi ned — Illegal/unsupported instruction

USR is the only non-privileged mode. All other modes are privileged, though the kernel usually
operates in SVC. In any of the privileged mode, the CPSR can be accessed directly, so switch-
ing modes is as trivial as setting the mode bits. From user mode, one of the user/kernel transition
mechanisms (discussed next) must be used. The other modes of IRQ and FIQ are used for interrupt
processing (ARM distinguishes between normal interrupts and fast ones. In IRQ mode, normal
interrupts are masked, but fast ones may still interrupt the processor. In FIQ mode, both interrupts
are masked). ABT is used only on memory faults, and UND is used for operations which are either
illegal or unsupported, allowing predefi ned handlers to take over and emulate any instructions,
which the hardware does not natively support.

KERNEL/USER TRANSITION MECHANISMS

As the previous section showed, the separation between kernel mode and user mode is critical, and
thus provided by the hardware. But applications frequently need kernel services, and therefore the
transition between the two modes needs to be implemented in a manner that is highly effective, but
at the same time highly secure.

There are two types of transfer mechanisms between user mode and kernel mode:

 ‰ Voluntary — When an application requires a kernel service, it can issue a call to kernel
mode. By using a predefi ned hardware instruction, a switch to kernel mode may be initiated.
These services are called system calls (recall our discussion in 2.8)

 ‰ Involuntary — When some execution exception, interrupt or processor trap occurs, code exe-
cution is suspended, frozen at the exact state when the fault occurred. Control is transferred
to a predefi ned fault handler or interrupt service routine (ISR) in kernel mode.

Another dichotomy of control transfers often used is of asynchronous versus synchronous. The
synchronous control transfer occurs “in sync” with the program fl ow — and is the result of some
instruction, which resulted in a runtime anomalous condition. The asynchronous control transfer,
by contrast, occurs when the program is interrupted by an external source (the interrupt controller).
This is “out of sync” with the program, which would have continued normally if not for the inter-
ruption, which must be handled.

Whichever classifi cation you choose to view them by, all types of control transfer are secure, in
that they must be predefi ned by kernel mode code, and user mode code has no way whatsoever of

TABLE 8-1 (continued)

c08.indd 268c08.indd 268 9/29/2012 5:31:11 PM9/29/2012 5:31:11 PM

Kernel/User Transition Mechanisms x 269

changing them. User mode, in fact, is completely oblivious to the kernel “taking over,” especially in
involuntary control transfers.

The kernel sets the predefi ned entry points in an interrupt dispatch table (IDT) (per the Intel
nomenclature), or the exception vector (per that of ARM. The two terms refer to the same idea: a
one-dimensional array wherein the predefi ned function pointers are stored. Much like a user-mode
setlongjmp() or signal handler, the CPU will jump to the function pointer and execute the func-
tion — with the additional effect of moving to supervisor mode.

Trap Handlers on Intel
The Intel architecture defi nes an interrupt vector of 255 entries, or cells. This vector is populated by
the kernel when the system boots.

Exceptions — Traps/Faults/Aborts
On Intel, the fi rst 20 cells of the Intel interrupt vector are defi ned for exceptions; these are all kinds
of special abnormal conditions that can be encountered by the processor while executing code. They
are shown in Table 8-2, along with their corresponding XNU handler names:

TABLE 8-2: Intel exceptions — traps and faults

EXCEPTION OCCURS WHEN XNU HANDLER NAME

0 Divide error fault DIV and IDIV fail (e.g. zero

divide)

idt64_zero_div

3 Break point trap Debugger breakpoint idt64_int3

4 Overfl ow trap INT 0 opcode idt64_into

5 Bound range

exceeded fault

BOUND opcode idt64_bounds

6 Invalid opcode fault Illegal instructions idt64_invop

7 Math CoProcessor

fault

 FPU errors idt64_nofpu

8 Double fault (abort) Generated the second time

a fault occurs on the same

instruction

idt64_double_fault or

idt64_db_task_dbl_fault

9 FPU Overfl ow FPU overfl ow condition idt64_fpu_over

10 Invalid TSS fault Bad Task State Segment idt64_inv_tss

11 Segment not present

fault

Accessing protected segments idt64_segnp

continues

c08.indd 269c08.indd 269 9/29/2012 5:31:11 PM9/29/2012 5:31:11 PM

270 x CHAPTER 8 SOME ASSEMBLY REQUIRED: KERNEL ARCHITECTURES

EXCEPTION OCCURS WHEN.. XNU HANDLER NAME

12 Stack segment fault Stack segment errors idt64_stack_fault or

idt64_db_task_stk_fault

13 General Protection

fault

Memory fault, or other access

check

idt64_gen_prot

14 Page fault Page not accessible, page

swapped out

idt64_page_fault

16 Math fault FPU generated Idt64_tfpu_err

17 Alignment check fault Data is unaligned on a DWORD or

other boundary

idt64_trap11

18 Machine check abort Hardware reported errors idt64_mc

19 SIMD Floating point

fault

SSEx instructions idt64_sse_err

As you can see from the table, there are three types of exceptions:

 ‰ Faults — Occur when an instruction encounters an exception that can be corrected and the
instruction can be restarted by the processor. A common example is a page fault, which
occurs when a virtual memory address is not present in physical RAM. The fault handler is
executed, and returns to the very same instruction that generated the fault.

 ‰ Traps — Are similar to faults, but the fault address returns to the instruction after the trap.

 ‰ Aborts — Cannot be restarted. In the table above, a “double fault” (#8) is an abort, as if a
fault is triggered twice in the same instruction, it does not make sense to retry.

Interrupts
The second kind of involuntary user/kernel transition occurs on an interrupt. An interrupt is
generated by a special sub-component of the CPU, called a Programmable Interrupt Controller
(PIC), or — in the more modern version — Advanced PIC (APIC). The PIC receives messages from
the devices on the system bus, and multiplexes them to one of several Interrupt Request (IRQ) lines.
When an interrupt is generated, the PIC marks the corresponding interrupt line as active. The line
remains active until the interrupt is handled or serviced by a function (appropriately called the
Interrupt Handler, or Interrupt Service Routine). It is up to that function to reset the line.

Legacy PICs, (called XT-PICs), only had 16 lines, ranging from 0 to 15. Modern APICs, however,
allow for up to 255 such lines. IRQ lines can be shared by more than one device, if the need arises.

TABLE 8-2 (continued)

c08.indd 270c08.indd 270 9/29/2012 5:31:11 PM9/29/2012 5:31:11 PM

Kernel/User Transition Mechanisms x 271

The IRQ lines were once reserved for certain devices, as shown in Table 8-3, which in some cases
still use their “well known” lines. The PCI bus, however, dynamically allocates most IRQs.

TABLE 8-3: Traditional IRQ reservations (for non PCI or legacy devices)

IRQ TRADITIONALLY USED FOR

0 Timer — the kernel can set this interrupt to occur at a fi xed frequency, forming the basis for task

scheduling

1 Keyboard — dating back to the old days where the user could actually generate keystrokes

faster than the processor could handle them

3 Serial ports (Com 2 and Com 4)

4 Serial ports (Com 1 and Com 3)

14 Primary IDE

15 Secondary IDE

The general rule of thumb is, that interrupts can be dispatched as long as:

 ‰ The corresponding interrupt request line is not currently busy (indicating a previous interrupt
has not yet been serviced) or masked (indicating the processor or core is ignoring this inter-
rupt line)

 ‰ No lower numbered interrupt lines are busy

 ‰ The local CPU/core has not disabled all interrupts (by low-level CLI/STI assembly).

For example, a core will not receive an interrupt on IRQ3 until IRQ0, 1 and 2 are all clear. While it is
servicing IRQ3, interrupts 4 and higher (i.e. of lower priority) will not be delivered to the CPU. The
timer interrupt (IRQ0 or, on APICs, the dedicated local timer IRQ line) is always the one with the
highest priority, as it is used to drive thread scheduling.

On a multi-core/SMP system, interrupts are dispatched per core (or processor), and the kernel may
set “interrupt affi nity” by temporarily or permanently masking specifi c interrupt lines of a core. The
APIC is “smart” enough to dispatch interrupts to CPUs or cores which are not busy. If an interrupt
cannot be dispatched, the APIC can usually queue it. But queuing capabilities are very limited. Inter-
rupts that are “lost” or “dropped” may result in loss of data, or even system hangs, as a device may
be reporting some critical event via an interrupt. Interrupts are therefore handled with the utmost
priority of any other processing in the system — preempting everything else — and their handlers
run for the minimum time necessary.

In Intel architectures, the IRQ lines are mapped to the processor’s Interrupt Vectors, at a location
higher than the fi rst 32 entries (20 of which are from the Table 8-2 above, with the other 12 reserved).

c08.indd 271c08.indd 271 9/29/2012 5:31:12 PM9/29/2012 5:31:12 PM

272 x CHAPTER 8 SOME ASSEMBLY REQUIRED: KERNEL ARCHITECTURES

Handling Traps and interrupts in XNU on Intel
XNU registers its trap handlers in /osfmk/i386/idt.s or /osfmk/x86_64/idt_table.h, as shown
in Listing 8-2:

LISTING 8-2: XNU IDT Table, from osfmk/x86_64/idt_table.h

TRAP(0x00,idt64_zero_div)
TRAP_SPC(0x01,idt64_debug)
INTERRUPT(0x02) /* NMI */
USER_TRAP(0x03,idt64_int3)
USER_TRAP(0x04,idt64_into)
USER_TRAP(0x05,idt64_bounds)
TRAP(0x06,idt64_invop)
TRAP(0x07,idt64_nofpu)
 ..
 // handler registrations corresponding to table faultXXX

Rather than install separate handlers individually for every trap, most kernels usually install one
handler for all the traps, and have that handler switch(), or jump according to a predefi ned table.
XNU does exactly that by defi ning the TRAP and USER_TRAP macros (in osfmk/x86_64/idt64.s).
These macros build on other macros (IDT_ENTRY_WRAPPER and PUSH_FUNCTION), to set up the stack
as illustrated in Figure 8-4:

FIGURE 8-4: The TRAP macro expansion

Macro:

TRAP(n,f):

Entry(f)

IDT_ENTRY_WRAPPER:

PUSH_FUNCTION

(HNDL_ALLTRAPS)

push 0 push 0

; push 8-byte function ptr on stack
sub $8, %rsp; ; allocate space
push %rax; ; save RAX
; load address of function into RAX
leaq HNDL_ALLTRAPS(%rip), %rax;
movq %rax, 8(%rsp); push on stack
pop %rax ; restore RAX

pushq

jmp L_dispatch jmp L_dispatch

$(n) pushq $(n)

Emitted Assembly:

f:

0

HNDL_ALLTRAPS

n

Resulting stack setup:

In plain words, the TRAP macro simply defi nes the handler function as an entry point, pushes zero
(or an error code, if any) on the stack, and pushes the address of the common trap handler — HNDL_
ALLTRAPS, using the IDT_ENTRY_WRAPPER macro. Because the trap handler is a common one, the
macro also pushes the trap number (n). It then jumps to L_dispatch, which serves as a common
dispatcher, and fl ows according to Figure 8-5:

c08.indd 272c08.indd 272 9/29/2012 5:31:12 PM9/29/2012 5:31:12 PM

Kernel/User Transition Mechanisms x 273

FIGURE 8-5: The common dispatcher

cmpl $(KERNEL64_CS), ISF64_CS(%rsp) Interrupted kernel space?

No

no

Yes

yes

Swap segments

Handle EF132 traps

32-bit user mode?

L_64bit_dispatch:

Save 32 bit registers

%ebx := trapno
%rdx := trapfn
%esi := cs

Switch CR3 if user mode
and also no_shared_cr3.
Otherwise just mark active

Test for CPU Debug Reg

Increment Trap/Int counter

Jump to func (hndl_xxx)

%ebx := trapno
%rdx := trapfn
%esi := cs

Save 64 bit registers

cmpl $(TASK_MAP_32BIT), %gs:CPU_TASK_MAP

incl %gs:hwlntCnt(,%ebx,4)

jmp *%rdx

je L_64bit_dispatch

je L_32bit_dispatch

L_32bit_dispatch:

L_common_dispatch:

/*....*/

....

.....

swapgs

...

The last step in this fl ow is jumping to the handler function, which was defi ned on the stack (and
loaded into RDX). In the case of a trap, this is hndl_alltraps, shown in Listing 8-3:

LISTING 8-3: hndl_alltraps, the common trap handler

Entry(hndl_alltraps)
 mov %esi, %eax
 testb $3, %al
 jz trap_from_kernel

 TIME_TRAP_UENTRY

 movq %gs:CPU_ACTIVE_THREAD,%rdi
 movq %rsp, ACT_PCB_ISS(%rdi) /* stash the PCB stack */
 movq %rsp, %rdi /* also pass it as arg0 */
 movq %gs:CPU_KERNEL_STACK,%rsp /* switch to kernel stack */

continues

c08.indd 273c08.indd 273 9/29/2012 5:31:12 PM9/29/2012 5:31:12 PM

274 x CHAPTER 8 SOME ASSEMBLY REQUIRED: KERNEL ARCHITECTURES

 sti

 CCALL(user_trap) /* call user trap routine */

 // user_trap is very likely to generate a Mach exception, and NOT return
 // (it suspends the currently active thread). In some cases, however, it
 // does return, and execution falls through

 /* user_trap() unmasks interrupts */
 cli /* hold off intrs - critical section */
 xorl %ecx, %ecx /* don’t check if we’re in the PFZ */

 // Fall through to return_from_trap.

The user_trap function, implemented in i386/trap.c, handles the actual traps. This is a C func-
tion, and the CCALL family of macros, defi ned in idt64.s, bridge from assembly to C by setting up
the arguments on the stack. The user_trap function handles traps with specifi c handlers, or gener-
ates a generic exception — by calling i386_exception — which, in turn, usually converts it to a
Mach exception, by calling exception_triage. Mach exceptions are covered in detail in Chapter
11, “Mach Scheduling.” At this point, however, the important point is that exception_triage
does not return, effectively ending the code path.

Interrupts are handled in a similar way to traps, only with hndl_allintrs, instead:

#define INTERRUPT(n) \
 Entry(_intr_ ## n) ;\
 pushq $0 ;\
 IDT_ENTRY_WRAPPER(n, HNDL_ALLINTRS)

The resulting stack is very similar to the TRAP macro’s stack, as shown in Figure 8-4. The only
difference is that the handler is now HNDL_ALLINTRS, instead of HNDL_ALLTRAPS, where HNDL_
ALLINTRS is defi ned as shown in Listing 8-4:

LISTING 8-4: hndl_allintrs, the common interrupt handler

#define HNDL_ALLINTRS EXT(hndl_allintrs)
Entry(hndl_allintrs)
 /*
 * test whether already on interrupt stack
 */
 movq %gs:CPU_INT_STACK_TOP,%rcx
 cmpq %rsp,%rcx
 jb 1f
 leaq -INTSTACK_SIZE(%rcx),%rdx
 cmpq %rsp,%rdx
 jb int_from_intstack
1:
 xchgq %rcx,%rsp /* switch to interrupt stack */

LISTING 8-3 (continued)

c08.indd 274c08.indd 274 9/29/2012 5:31:13 PM9/29/2012 5:31:13 PM

Kernel/User Transition Mechanisms x 275

 mov %cr0,%rax /* get cr0 */
 orl $(CR0_TS),%eax /* or in TS bit */
 mov %rax,%cr0 /* set cr0 */
 subq $8, %rsp /* for 16-byte stack alignment */
 pushq %rcx /* save pointer to old stack */
 movq %rcx,%gs:CPU_INT_STATE /* save intr state */

 TIME_INT_ENTRY /* do timing */

incl %gs:CPU_PREEMPTION_LEVEL
 incl %gs:CPU_INTERRUPT_LEVEL

 movq %gs:CPU_INT_STATE, %rdi

 CCALL(interrupt) /* call generic interrupt routine */

 cli /* just in case we returned with intrs
enabled */
 xor %rax,%rax
 movq %rax,%gs:CPU_INT_STATE /* clear intr state pointer */

 // Falls through to return_to_iret, which returns to user mode via an iret
instruction

In the above code, Interrupt (in osfmk/i386/trap.c) is the generic kernel interrupt handler. This
goes on to direct interrupt handling to either lapic_interrupt (in osfmk/i386/lapic.c) or PE_
incoming_interrupt (in pexpert/i386/pe_interrupt.c, part of the Platform Expert), which passes
it to the any registered I/O Kit interrupt handler. I/O Kit is described in more detail in its own chapter.

Putting this all together, and picking up where Figure 8-5 left off, we have the rest of the fl ow
depicted in Figure 8-6.

As you can see, the trap handling in the kernel is pretty complicated, even when somewhat simplifi ed
and broken down into separate fi gures. If that’s not fl abbergasting enough, consider this logic occurs on
every trap and interrupt, which can sometimes amount to more than thousands of times per second!

Looking at the fi gure, you will note references to the Preemption Free Zone (PFZ), and Asynchro-
nous Software Traps (ASTs). ASTs are a mechanism in XNU somewhat akin to Linux’s software
IRQs. These are emulated traps, used primarily by the task scheduler, but not while the code is in
the PFZ, which is a special region of text wherein preemptions are disabled. Both are covered in
more detail in Chapter 11, “Mach Scheduling.”

Trap Handlers on ARM
The ARM architecture is much simpler than that of Intel. From the ARM perspective, any non-user
mode is entered through an exception, or interrupt. System calls are thus invoked via a simulated
interrupt, with the SVC instruction. SVC is an acronym for “SuperVisor Call,” though its previous
name — SWI, or SoftWare Interrupt, was more accurate: when this instruction is called, the CPU
automatically transfers control to the machine’s trap vector, wherein a pre-defi ned kernel instruc-
tion, usually a branch to some specifi c handler, awaits.

c08.indd 275c08.indd 275 9/29/2012 5:31:13 PM9/29/2012 5:31:13 PM

276 x CHAPTER 8 SOME ASSEMBLY REQUIRED: KERNEL ARCHITECTURES

FIGURE 8-6: The common dispatcher, continued.

L_common_dispatch:

hndl_alltraps:

trap_from_kernel:

ast_from_interrupt_user:

Yes No

hndl_allintrs:

Jump to func (hndl_xxx)

Back to L_64bit_dispatch

(previous figure)

Update timers

(TIME_INT_ENTRY)

Update timers

(TIME_INT_EXIT)

Test user/kernel

user kernel

CCALL(interrupt)

(handled by PE/IOKit)

Test user/kernel

Update timers

(TIME_TRAP_UENTRY)

user_trap

i386_exception

exception_triage

return_from_trap:

return_from_trap_withast:

return_to_user:

ret_to_kernel/L_64bit_return:

ret_to_user:

kernel_trap

AST pending?

AST pending?

In PFZ?

i386_astintr

(take AST)

Pend AST

Update timers

(TIME_TRAP_UEXIT)

Restore thread debug registers

No

No

Yes

Yes

Update timers

(TIME_TRAP_UENTRY)

Call i386_astintr

to handle AST_URGENT

Restore all registers from (%RSP)

Syscall or interrupt?

iret sysret

swapgs (if returning to user)

It is the kernel’s responsibility to set up the trap handlers in ARM for all the modes the CPU can sup-
port. The iOS kernel does just that, by setting up an ExceptionVectorsBase as shown in Table 8-4:

TABLE 8-4: Registered trap handlers in iOS

OFFSET EXCEPTION HANDLED BY

0x00 Reset _fleh_reset

0x04 Undefi ned Instruction _fleh_undef

0x08 Software Interrupt _fleh_swi

c08.indd 276c08.indd 276 9/29/2012 5:31:13 PM9/29/2012 5:31:13 PM

Kernel/User Transition Mechanisms x 277

OFFSET EXCEPTION HANDLED BY

0x0C Prefetch abort _fleh_prefabt

0x10 Data abort _feh_dataabt

0x14 Address exception _fleh_addrexc

0x18 Interrupt Request _fleh_irq

0x1c Fast Interrupt Request _fleh_fiq

These symbols were still visible (and even exported!) in the iOS 3.x kernels, but have since been
understandably removed in 4.x and later. It remains, however, fairly easy to fi nd them, as the fol-
lowing experiment shows.

Experiment: Finding the ARM trap handles in an iOS kernel
The ExceptionVectorsBase symbol is no longer exported, but — thanks to their unique structure
of ARM handlers — it is trivial to fi nd. The addresses of the trap handlers are loaded directly into
the ARM Program Counter using an LDR PC, [PC, #24] command, which repeats seven times, for
all handlers but FIQ, followed by a MOV PC, R9 (where _fleh_fiq would be), the addresses them-
selves, and several NOPs (0xE1A00000). These commands are unique, so using grep(1) on their
binary representation (or the string itself) quickly reveals them, as shown in Listing 8-5:

LISTING 8-5: Using otool(1) and grep(1) to fi nd the ExceptionVectorsBase

morpheus@ergo (~)$ otool –tV ~/iOS/4.2.1.kernel.iPad1 | grep e59ff018
80064000 e59ff018 ldr pc, [pc, #24] @ 0x80064020 ; points to fleh_reset
80064004 e59ff018 ldr pc, [pc, #24] @ 0x80064024 ; points to fleh_undef
80064008 e59ff018 ldr pc, [pc, #24] @ 0x80064028 ; points to fleh_swi
8006400c e59ff018 ldr pc, [pc, #24] @ 0x8006402c ; points to fleh_prefabt
80064010 e59ff018 ldr pc, [pc, #24] @ 0x80064030 ; points to fleh_dataabt
80064014 e59ff018 ldr pc, [pc, #24] @ 0x80064034 ; points to fleh_addrexc
80064018 e59ff018 ldr pc, [pc, #24] @ 0x80064038 ; points to fleh_irq
morpheus@ergo (~)$ otool –tV ~/iOS/5.1.kernel.iPod4G | grep e59ff018
80078000 e59ff018 ldr pc, [pc, #24] @ 0x80078020 ; points to fleh_reset
80078004 e59ff018 ldr pc, [pc, #24] @ 0x80078024 ; points to fleh_undef
80078008 e59ff018 ldr pc, [pc, #24] @ 0x80078028 ; points to fleh_swi
8007800c e59ff018 ldr pc, [pc, #24] @ 0x8007802c ; points to fleh_prefabt
80078010 e59ff018 ldr pc, [pc, #24] @ 0x80078030 ; points to fleh_dataabt
80078014 e59ff018 ldr pc, [pc, #24] @ 0x80078034 ; points to fleh_addrexc
80078018 e59ff018 ldr pc, [pc, #24] @ 0x80078038 ; points to fleh_irq

The effect of directly loading an address into the program counter is tantamount to jumping to that
address. These addresses are, in order, the address of the exception handlers shown previously in Table 8-4.

Using otool(1) once more, this time seeking to the address revealed by the grep(1) command,
(continuing Listing 8-5) you reveal the actual addresses. The disassembly will be nonsensical — but
you can clearly see the kernel-space addresses. Continuing the previous listing, Listing 8-6 examines
the iOS 5.1 kernel:

c08.indd 277c08.indd 277 9/29/2012 5:31:13 PM9/29/2012 5:31:13 PM

278 x CHAPTER 8 SOME ASSEMBLY REQUIRED: KERNEL ARCHITECTURES

LISTING 8-6: The Exception Vector addresses

8007801c e1a0f009 mov pc, r9
80078020 80078ff4 strdhi r8, [r7], -r4 ; fleh_reset
80078024 80078ff8 strdhi r8, [r7], -r8 ; fleh_undef
80078028 80079120 andhi r9, r7, r0, lsr #2 ; fleh_swi
8007802c 80079370 andhi r9, r7, r0, ror r3 ; fleh_prefabt
80078030 800794a4 andhi r9, r7, r4, lsr #9 ; fleh_dataabt
80078034 80079678 andhi r9, r7, r8, ror r6 ; fleh_addrexec
80078038 8007967c andhi r9, r7, ip, ror r6 ; fleh_irq
8007803c 8007983c andhi r9, r7, ip, lsr r8 ; ...
80078040 e1a00000 nop (mov r0,r0)

The joker tool, on the book’s companion website, can be used for various edu-
cational tasks on the iOS kernel. It can automatically fi nd the addresses of the
ExceptionVectors in a decrypted kernel.

You might want to also try the disassembly of iBoot, iBSS, and iBEC, as dis-
cussed in Chapter 6 “The OS X Boot Process”. All the low-level components
initialize the exception vectors in this way.

The exception handlers can be disassembled in ARM mode. If you try to disassemble fleh_reset,
for example, you’ll reveal that it is effectively a halt instruction, jumping to itself in an endless loop.
The most important of all the handlers is fleh_swi, which is the handler in charge of system calls—
as those are triggered through the software interrupt mechanism. The code in it somewhat resembles
the hndl_syscall code from the Intel XNU, discussed earlier, and is detailed later in the ARM sub-
section which follows.

Voluntary kernel transition
When user mode requires a kernel service, it issues a system call, which transfers control to the kernel.
There are two ways of actually implementing a system call request. The fi rst, by means of simulating
an interrupt, is a legacy of the traditional Intel architecture, and is still used on ARM (by the SVC/SWI
instruction). The second, using a dedicated instruction (Intel’s SYSENTER/SYSCALL) is unique to Intel.

Simulated Interrupts
Any of the exceptions listed in Table 8-2 can be triggered by specifying their number as an argument
to the INTerrupt command. This is also sometimes refers to as a synchronous interrupt, to distin-
guish it from a normal, unpredictable, and asynchronous interrupt.

For example, the debugger breakpoint operation is implemented on Intel architectures by the INT 3
instruction. This instruction, which conveniently takes only one byte (opcode 0xCC, with no oper-
ands), can be placed in memory by a debugger when the user specifi es a breakpoint at some address.
In this way, user mode can request a kernel service voluntarily — an exception is triggered, the CPU
switches to privileged/supervisor mode, and the corresponding exception handler is automatically
executed. The exception handler, set by the kernel, recognizes that this is a request, and can process
specifi c arguments from the registers (The system call number is in EAX/RAX on Intel, R12 on ARM).

c08.indd 278c08.indd 278 9/29/2012 5:31:13 PM9/29/2012 5:31:13 PM

Kernel/User Transition Mechanisms x 279

Operating systems reserve a particular interrupt number for their own mechanism of entering kernel
mode: DOS used 0x21, NT through XP used 0x2E, and most Intel UN*X-based systems used 0x80.
On Intel, this was also the mechanism used by OS X for system calls, and — although it has been
largely deprecated in favor of SYSCALL (see the following section), there are still some traces of it.

SYSENTER/SYSCALL
Since user/kernel transition occurs so frequently, the Intel architecture introduced a more effi cient
instruction for it, called SYSENTER, beginning with the Pentium II architecture. In 64-bit architec-
ture a slightly different instruction, SYSCALL, is used. Using these, rather than interrupt gates, is
faster, as it employs a set of model specifi c registers, or MSRs. Rather than saving the key registers
prior to entering kernel mode, and restoring them on exit, the MSRs allow the CPU to switch to
the separate set on kernel mode, and back to the normal ones on user mode. SYSENTER or SYSCALL
function similarly to a CALL instruction — though the instructions need not save the return address
on the stack, since the User Mode Instruction Pointer will remain untouched. A corresponding call
to SYSEXIT restores the user mode registers.

As the name implies, there are many model specifi c registers (and different processors have different
sets). They are all defi ned in proc_reg.h, and the relevant ones for SYSENTER are shown in Table 8-5:

TABLE 8-5: Model-Specifi c Registers of the Intel Architecture

REGISTER # #DEFINE PURPOSE

0x174 MSR_IA32_SYSENTER_CS Code Segment

0x175 MSR_IA32_SYSENTER_ESP Stack Pointer — set by kernel to kernel stack

0x176 MSR_IA32_SYSENTER_EIP Instruction Pointer — set to kernel entry point

0xC0000081 MSR_IA32_STAR Contains base selector for SYSCALL/SYSRET,

CS/SS, and EIP

0xC0000082 MSR_IA32_LSTAR Contains SYSCALL entry point

During the boot process the kernel initializes the MSRs. The initialization is performed by cpu_
mode_init()(called from vstart(), as discussed in the next chapter). The cpu_mode_init() func-
tion calls wrmsr64 — which is a C wrapper to an identical assembly routine. The function loads the
three model specifi c registers with the values, which will be used for the kernel stack and code. This
is shown in Listing 8-7:

LISTING 8-7: Setting MSRs for SYSENTER and SYSCALL (osfmk/i386/mp_desc.c)

/*
 * Set MSRs for sysenter/sysexit and syscall/sysret for 64-bit.
 */
static void
fast_syscall_init64(__unused cpu_data_t *cdp)
{
 // Registers used for SYSENTER (32-bit mode on 64-bit architecture)

continues

c08.indd 279c08.indd 279 9/29/2012 5:31:14 PM9/29/2012 5:31:14 PM

280 x CHAPTER 8 SOME ASSEMBLY REQUIRED: KERNEL ARCHITECTURES

LISTING 8-7 (continued)

 wrmsr64(MSR_IA32_SYSENTER_CS, SYSENTER_CS);
 wrmsr64(MSR_IA32_SYSENTER_EIP, UBER64((uintptr_t) hi64_sysenter));
 wrmsr64(MSR_IA32_SYSENTER_ESP, UBER64(current_sstk()));

 /* Enable syscall/sysret */
 wrmsr64(MSR_IA32_EFER, rdmsr64(MSR_IA32_EFER) | MSR_IA32_EFER_SCE);

 /*
 * MSRs for 64-bit syscall/sysret
 * Note USER_CS because sysret uses this + 16 when returning to
 * 64-bit code.
 */
 wrmsr64(MSR_IA32_LSTAR, UBER64((uintptr_t) hi64_syscall));
 wrmsr64(MSR_IA32_STAR, (((uint64_t)USER_CS) << 48) |
 (((uint64_t)KERNEL64_CS) << 32));

º
}

The entry point hi64_sysenter defi ned in idt64.s, is used for 32-bit sysenter compatibility.
It switches to kernel mode, and invokes, through the common handler shown in Figure 8-5, the
generic hndl_sysenter, to invoke the system call (the fl ow merges with the common handler in
L_32bit_dispatch). This handler, in turn, tests the system-call type, treating it as a 32-bit value,
with Mach calls as negative. A similar implementation is in hi64_syscall, which is invoked for
64-bit syscall instructions, and calls on HNDL_SYSCALL, as shown in Listing 8-8:

LISTING 8-8: The idt64/hi64_syscall entry point

Entry(hi64_syscall)
Entry(idt64_syscall)
 swapgs /* Kapow! get per-cpu data area */
L_syscall_continue:
 mov %rsp, %gs:CPU_UBER_TMP /* save user stack */
 mov %gs:CPU_UBER_ISF, %rsp /* switch stack to pcb */
 ..
leaq HNDL_SYSCALL(%rip), %r11;
 movq %r11, ISF64_TRAPFN(%rsp)
 jmp L_64bit_dispatch /* this can only be a 64-bit task */

Voluntary kernel transition on ARM
The ARM architecture has no dedicated system-call instructor, and still uses the system-call gate tech-
nique. The kernel, when loaded, overwrites all the trap handlers (as shown in Table 8-4), of which the
Software Interrupt (SWI) handler is one. When the ARM assembly instruction of SVC is executed in user
mode, control is transferred immediately to the handler, fleh_swi, and the CPU enters kernel mode.

The fleh_swi handler (whose address was found in the previous experiment) is highly optimized,
but still displays the basic structure shared by the Intel version of XNU. This is shown in Listing
8-9. If your ARM assembly isn’t what it used to be — you can just read through the comments:

c08.indd 280c08.indd 280 9/29/2012 5:31:15 PM9/29/2012 5:31:15 PM

Kernel/User Transition Mechanisms x 281

LISTING 8-9: The SWI handler from iOS 5.0 and 5.1, iPod4,1 kernel

0x80079120 _fleh_swi
 text:80079120 CMN R12, #3
__text:80079124 BEQ loc_80079344 ; Branches off to ml_get_timebase if R12==3
;
; Largely irrelevant ARM Assembly omitted for brevity
; jumps to another section of the function which handles Machine Dependent calls
;
; What is relevant: R11 holds the system call number
;
__text:80079184 BLX get_BSD_proc_and_thread_and_do_kauth
 ;
; Set R9 to the privileged only Thread and Process ID Register

 ; We need this for UNIX system calls, later
 ;
__text:80079188 MRC p15, 0, R9,c13,c0, 4
 ;
 ; Remember that Mach calls are negative. The following separates Mach from UNIX
 ;
__text:8007918C RSBS R5, R11, #0 ; Reverse substract with carry
__text:80079190 BLE _is_unix
 ;
; Fall through on Mach. This is what in Intel would be a call to mach_munger

 ; but on ARM just directly gets the Mach trap
 ;
 ; KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_EXCP_SC,
 ; (call_number)) | DBG_FUNC_START);
 ;
__text:80079194 LDR R4, =_kdebug_enable ; recall kdebug was discussed in Ch. 5
__text:80079198 LDR R4, [R4]
__text:8007919C MOVS R4, R4 ; test kdebug_enable
__text:800791A0 MOVNE R0, R8
__text:800791A4 MOVNE R1, R5
__text:800791A8 BLNE ____kernel_debug_mach_func_entry
__text:800791AC ADR LR, _return_from_swi ; Set our return on error
 ;

; Increment Mach trap count (at offset 0x1B4 of thread structure)
 ;
__text:800791B0 LDR R2, [R10,#0x1B4] ; get Mach trap count
__text:800791B4 CMP R5, #128 ; Compare Mach trap to MACH_TRAP_TABLE_COUNT
__text:800791B8 ADD R2, R2, #1 ; increment Mach trap count
__text:800791BC STR R2, [R10,#0x1B4] ; and store
__text:800791C0 BGE do_arm_exception ; if syscall number > MACH_TRAP_TABLE_COUNT...
 ;

; If we are here, R5 holds the Mach trap number – dereference from mach_trap_table:
 ; R1 = mach_trap_table[call_number].mach_trap_function

;
__text:800791C4 LDR R1, =_mach_trap_table
__text:800791C8 ADD R1, R1, R5,LSL#3 ; R1 = R1 + call_num * sizeof(mach_trap_t)
__text:800791CC LDR R1, [R1,#4] ; +4, skip over arg_count
 ;
 ; if (mach_call == (mach_call_t)kern_invalid)

;
__text:800791D0 LDR R2, =(_kern_invalid+1)

continues

c08.indd 281c08.indd 281 9/29/2012 5:31:15 PM9/29/2012 5:31:15 PM

282 x CHAPTER 8 SOME ASSEMBLY REQUIRED: KERNEL ARCHITECTURES

__text:800791D4 MOV R0, R8
__text:800791D8 TEQ R1, R2
__text:800791DC BEQ do_arm_exception

;
; else just call trap from R1
;

__text:800791E0 BX R1 ; Do Mach trap (jump to table pointer)
 ; returning from trap
__text:800791E4 STR R1, [R8,#4]
return_from_swi
__text:800791E8 STR R0, [R8]
__text:800791EC MOVS R4, R4
__text:800791F0 MOVNE R1, R5
 ;
 ; KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_EXCP_SC, (call_number)) | DBG_FUNC_END);
 ;
__text:800791F4 BLNE ____kernel_debug_mach_func_exit
 ;
 ; iOS's load_and_go_user is like OS X's thread_exception_return();
 ;
__text:800791F8 BL __load_and_go_user
__text:800791FC B loc_800791FC ; HANG ENDLESSLY – Not Reached
 ;
 ; arm_exception(EXC_SYSCALL,call_number, 1);
 ;
do_arm_exception: ; Generates a Mach exception (discussed in Chapter 10)
__text:80079200 MOV R0, #EXC_SYSCALL
__text:80079204 SUB R1, SP, #4
__text:80079208 MOV R2, #1
__text:8007920C BLX _exception_triage ; as i386_exception, direct fall through
__text:80079210 B loc_80079210 ; HANG ENDLESSLY – Not reached
 ;
; For UNIX System calls:
 ;
_is_unix
 ;
 ; Increment UNIX system call count for this thread
 ; (at offset 0x1B8 of thread structure)
 ;
__text:80079220 LDR R1, [R10,#0x1B8]
__text:80079224 MOV R0, R8 ; out of order: 1st argument of unix_syscall
__text:80079228 ADD R1, R1, #1
__text:8007922C STR R1, [R10,#0x1B8]
 ;
 ;
 ;
__text:80079230 MOV R1, R9 ; 2nd argument of unix_syscall
__text:80079234 LDR R2, [R9,#0x5BC] ; 3rd argument of unix_syscall
__text:80079238 LDR R3, [R10,#0x1EC] ; 4th argument of unix_syscall
 ;
; Call _unix_syscall
 ;
__text:8007923C BL _unix_syscall
__text:80079240 B loc_80079240 ; HANG ENDLESSLY – Not reached

LISTING 8-9 (continued)

c08.indd 282c08.indd 282 9/29/2012 5:31:15 PM9/29/2012 5:31:15 PM

System Call Processing x 283

SYSTEM CALL PROCESSING

Most people are familiar with POSIX system calls. In XNU, however, the POSIX system calls make
up only one of four possible system call classes, as shown in Table 8-6:

TABLE 8-6: XNU system call classes

SYSCALL_CLASS HANDLED BY ENCOMPASSES

UNIX (1) unix_syscall[64]

(bsd/dev/i386/systemcalls.c)

POSIX/BSD system calls: the “classic” system

calls, interfacing with XNU’s BSD APIs.

MACH (2) mach_call_munger[64]

(osfmk/i386/bsd_i386.c)

Mach traps: calls that interface directly with

the Mach core of XNU.

MDEP (3) machdep_syscall[64]

(osfmk/i386/bsd_i386.c)

Machine dependent calls: used for processor

specifi c features.

DIAG (4) diagCall[64]

(osfmk/i386/Diagnostics.c)

Diagnostic calls: used for low-level kernel

diagnostics. Enabled by the diag boot

argument.

In 32-bit architectures, the UNIX system calls are positive, whereas the Mach traps are negative. In
64-bit, all call types are positive, but the most signifi cant byte contains the value of SYSCALL_CLASS
from the preceding table. The value is checked by shifting the system call number SYSCALL_CLASS_
SHIFT (=24) bits, as you can see in Listing 8-10:

LISTING 8-10: The XNU 64-bit common system call handler

Entry(hndl_syscall)
 TIME_TRAP_UENTRY

 movq %gs:CPU_KERNEL_STACK,%rdi
 xchgq %rdi,%rsp /* switch to kernel stack */
 movq %gs:CPU_ACTIVE_THREAD,%rcx /* get current thread */
 movq %rdi, ACT_PCB_ISS(%rcx)
 movq ACT_TASK(%rcx),%rbx /* point to current task */

/* Check for active vtimers in the current task */
 TASK_VTIMER_CHECK(%rbx,%rcx)

/*
 * We can be here either for a mach, unix machdep or diag syscall,
 * as indicated by the syscall class:
 */
 movl R64_RAX(%rdi), %eax /* syscall number/class */
 movl %eax, %edx
 andl $(SYSCALL_CLASS_MASK), %edx /* syscall class */
 cmpl $(SYSCALL_CLASS_MACH<<SYSCALL_CLASS_SHIFT), %edx
 je EXT(hndl_mach_scall64)

continues

c08.indd 283c08.indd 283 9/29/2012 5:31:15 PM9/29/2012 5:31:15 PM

284 x CHAPTER 8 SOME ASSEMBLY REQUIRED: KERNEL ARCHITECTURES

 cmpl $(SYSCALL_CLASS_UNIX<<SYSCALL_CLASS_SHIFT), %edx
 je EXT(hndl_unix_scall64)
 cmpl $(SYSCALL_CLASS_MDEP<<SYSCALL_CLASS_SHIFT), %edx
 je EXT(hndl_mdep_scall64)
 cmpl $(SYSCALL_CLASS_DIAG<<SYSCALL_CLASS_SHIFT), %edx
 je EXT(hndl_diag_scall64)

 /* Syscall class unknown */
 CCALL3(i386_exception, $(EXC_SYSCALL), %rax, $1)

All handlers are prototyped in the same way — as C functions which take one argument, which is
a pointer to an architecture specifi c saved state, which is really nothing more than a structure con-
taining a dump of all the processor registers. In OS X, this is an x86_saved_state_t (defi ned in
osfmk/mach/i386/thread_status.h), which holds (as a union) either a 32-bit or a 64-bit state.
The kernel sources leak an arm_saved_state_t as well.

The handlers are expected to never return. Indeed, on OS X all of the handlers end by calling
thread_exception_return()(defi ned in osfmk/x86_64/locore.s, which falls through to return_
from_trap(), as discussed earlier in this chapter. In iOS, load_and_go_user() is used instead, and
returns to user mode by restoring the CPSR to user.

POSIX/BSD System calls
The main personality exposed by XNU is that of POSIX/BSD. These are internally referred to as
“UNIX system calls” or “BSD calls,” even though they contain quite a few Apple-specifi c calls.

unix_syscall
The BSD system call handler has a straightforward implementation. Both 32- and 64-bit handlers
(in bsd/dev/i386/systemcalls.c) get the saved state as an argument and operate in the same
manner, namely:

1. Make sure the saved state matches the architecture.

2. Get the BSD process structure from the current_task. Make sure that the BSD process
actually exists.

3. If a syscall number is 0, it is an indirect system call. Fix arguments accordingly.

4. Arguments are expected to be passed as 64-bit values. For 64-bit handler, this only requires
work if they cannot all be passed in registers (i.e. cases where there are more than six argu-
ments). The remaining arguments then need to be copied onto the stack. In the 32-bit
handler, arguments need to be “munged.” Munging refers to the process of copying the argu-
ments from user mode, while addressing 32/64-bit compatibility.

5. Execute system calls from the sysent table. All system calls are executed in the same way.

To notify the auditing subsystem of the call:

AUDIT_SYSCALL_ENTER(code, p, uthread);

LISTING 8-10 (continued)

c08.indd 284c08.indd 284 9/29/2012 5:31:15 PM9/29/2012 5:31:15 PM

System Call Processing x 285

To actually execute the call:

error = (*(callp->sy_call))((void *) p, uargp, &(uthread->uu_rval[0]));

To notify the auditing system of the call exit:

AUDIT_SYSCALL_EXIT(code, p, uthread, error);

In other words, syscalls are subject to auditing and are all called with the fi rst argument
being the current_proc().

6. In rare cases, the system call might indicate it needs to be restarted, which is handled by
pal_syscall_restart().

7. The “error” (the system call return code) is handled to fi t in the return register (for Intel this
is EAX/RAX, and for ARM it’s R0).

8. The system call returns through thread_exception_return() (for iOS, load_and_go_
user), which is the same handling as return_from_trap(), taking any ASTs along the way.

sysent
BSD system calls are maintained in the sysent table. This table is an array of similarly-named
structures and is defi ned in bsd/sys/sysent.h as shown in Listing 8-11:

LISTING 8-11: The sysent table

struct sysent { /* system call table */
 int16_t sy_narg; /* number of args */
 int8_t sy_resv; /* reserved */
 int8_t sy_flags; /* flags */
 sy_call_t *sy_call; /* implementing function */
 sy_munge_t *sy_arg_munge32; /* system call arguments munger for 32-bit

process */
 sy_munge_t *sy_arg_munge64; /* system call arguments munger for 64-bit

process */
 int32_t sy_return_type; /* system call return types */
 uint16_t sy_arg_bytes; /* Total size of arguments in bytes for

 * 32-bit system calls
*/

};

#ifndef __INIT_SYSENT_C__
extern struct sysent sysent[];
#endif /* __INIT_SYSENT_C__ */

extern int nsysent;
#define NUM_SYSENT 439 // # of syscalls (+1) in Lion. (SL: 434, ML: 440, iOS5: 439)

The sysent table is populated during compile time by a shell script, bsd/kern/makesyscalls.
sh, which is invoked during the building of the kernel. This script parses the system call template
fi le, bsd/kern/syscalls.master, wherein all the system calls are defi ned, as shown in
Listing 8-12.

c08.indd 285c08.indd 285 9/29/2012 5:31:15 PM9/29/2012 5:31:15 PM

286 x CHAPTER 8 SOME ASSEMBLY REQUIRED: KERNEL ARCHITECTURES

LISTING 8-12: The bsd/kern/syscalls.master fi le

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/types.h>
#include <sys/sysent.h>
#include <sys/sysproto.h>

0 AUE_NULL ALL { int nosys(void); } { indirect syscall }
1 AUE_EXIT ALL { void exit(int rval) NO_SYSCALL_STUB; }
2 AUE_FORK ALL { int fork(void) NO_SYSCALL_STUB; }
3 AUE_NULL ALL { user_ssize_t read(int fd, user_addr_t cbuf, user_size
_t nbyte); }
4 AUE_NULL ALL { user_ssize_t write(int fd, user_addr_t cbuf, user_size
_t nbyte); }
5 AUE_OPEN_RWTC ALL { int open(user_addr_t path, int flags, int mode) NO
_SYSCALL_STUB; }
...
... // many more system calls omitted here
... //
433 AUE_NULL ALL { int pid_suspend(int pid); }
434 AUE_NULL ALL { int pid_resume(int pid); }
#if CONFIG_EMBEDDED
435 AUE_NULL ALL { int pid_hibernate(int pid); }
436 AUE_NULL ALL { int pid_shutdown_sockets(int pid, int level); }
#else
435 AUE_NULL ALL { int nosys(void); }
436 AUE_NULL ALL { int nosys(void); }
#endif
437 AUE_NULL ALL { int nosys(void); } { old shared_region_slide_np }
438 AUE_NULL ALL { int shared_region_map_and_slide_np(int fd, uint32_t
count, const struct shared_file_mapping_np *mappings, uint32_t slide, uint64_t*
slide_start, uint32_t slide_size) NO_SYSCALL_STUB; }

// Mountain Lion also contains 439 – kas_info

The system call table whets the appetite of many a hacker (and security researcher alike), because
intercepting system calls means complete control of user mode. As a result, the symbol is no longer
exported, not on OS X and certainly not on iOS. A common technique suggested by Stefan Esser[3]

relies on the table being in close proximity to the kdebug public symbol. A more reliable technique,
however, can quickly reveal the sysent structure’s unique signature even in a binary dump with no
symbols. The joker tool, available on the book’s companion website, was written especially for this
purpose, and zeroes in on the signature shown in Listing 8-13. The signature is actually the same for
OS X and iOS, with only minor modifi cations for sizeof(void *) between 32- and 64-bit (and, of
course, the system call addresses themselves).

LISTING 8-13: A disassembly of an iOS 5.1 kernel, showing the system call table

802CCBAC_sysent DCD 0 ; Called from unix_syscall+C4
...
802CCBC4 DCW 1 ; int16_t sy_narg; (exit has one argument)

c08.indd 286c08.indd 286 9/29/2012 5:31:16 PM9/29/2012 5:31:16 PM

System Call Processing x 287

802CCBC6 DCB 0 ; int8_t sy_resv;
802CCBC7 DCB 0 ; int8_t sy_flags;
802CCBC8 DCD_exit+1 ; sy_call_t *sy_call = exit(int);
802CCBCC DCD 0 ; sy_munge_t *sy_arg_munge32;
802CCBD0 DCD 0 ; sy_munge_t *sy_arg_munge64;
802CCBD4 DCD SYSCALL_RET_NONE ; int32_t sy_return_type; (0 = void)
802CCBD8 DCW 4 ; uint16_t sy_arg_bytes; (1 arg = 4 bytes)
802CCBDA DCW 0 ; Padding to 32-bit boundary
 ; --
802CCBDC DCW 0 ; int16_t sy_narg; (fork has no arguments)
802CCBDE DCB 0 ; int8_t sy_resv;
802CCBDD DCW 0 ; int8_t sy_flags;
802CCBE0 DCD fork+1 ; sy_call_t *sy_call = pid_t fork();
802CCBE4 DCD 0 ; sy_munge_t *sy_arg_munge32;
802CCBE8 DCD 0 ; sy_munge_t *sy_arg_munge64;
802CCBEC DCD SYSCALL_RET_INT_T ; int32_t sy_return_type; (pid_t is an int)
802CCBF0 DCW 0 ; uint16_t sy_arg_bytes; (fork has none)
802CCBF2 DCW 0 ; Padding to 32-bit boundary
 ;--
802CCBF4 DCB 3 ; int8_t sy_narg; (read(2) has three args)
802CCBF5 DCB 0 ; int8_t sy_flags;
802CCBF6 DCW 0 ; padding to 32-bit boundary
802CCBF8 DCD _read+1 ; sy_call_t *sy_call = read(int,void *, size_t);
802CCBFC DCD 0 ; sy_munge_t *sy_arg_munge32;
802CCC00 DCD 0 ; sy_munge_t *sy_arg_munge64;
802CCC04 DCD SYSCALL_RET_SSIZE_T; int32_t sy_return_type;
802CCC08 DCW 0xC ; uint16_t sy_arg_bytes; (3 args = 12 bytes)
.. //
.. // and on, and on , and on…
.. //
802CF4D4_nsysent DCD 0x1B7 ; NUM_SYSENT

The system calls are also generated with their names hard-coded into the binary. In OS X
that doesn’t make too much of a difference, but in iOS this feature is quite useful. iOS’s system
calls are largely the same as those of OS X, with a few notable exceptions (for example, the
“ledger” system call, #373, unavailable on OS X prior to Mountain Lion, and the
pid_shutdown_sockets system call). A more detailed discussion of the specifi c system calls
can be found in the online appendix.

Mach Traps
If the system call number is negative (on 32-bit OS X or iOS) or contains the Mach class (64-bit), the
kernel fl ow is diverted to handling Mach traps, rather than BSD system calls. The handler for Mach
traps is called mach_call munger[64].

mach_call_munger
Mach traps are processed by mach_call_munger[64], which is implemented (on OS X) in osfmk/
i386/bsd_i386.c. The term “munging” dates back to the days when function arguments needed
to be undergo internal type-casting and alignment from the stack, to a structure of 64-bit integers.
Both UNIX and Mach call arguments needed munging, and the 32-bit unix_syscall still contains
munging code.

c08.indd 287c08.indd 287 9/29/2012 5:31:16 PM9/29/2012 5:31:16 PM

288 x CHAPTER 8 SOME ASSEMBLY REQUIRED: KERNEL ARCHITECTURES

Munging is no longer necessary in x86_64, because the AMD-64 ABI uses six registers directly. The
only case where munging would required is if a function has more than six arguments (which is sel-
dom, if ever). In the 32-bit version of the handler, a helper function mach_call_munger32 is called
which copies the arguments and aligns them in a mach_call_args structure. Listing 8-14 shows the
64-bit version, annotated and noting where 32-bit would differ:

LISTING 8-14: mach_call_munger64, from osfmk/i386/bsd_i386.c

void
mach_call_munger64(x86_saved_state_t *state)
{
 int call_number;
 int argc;
 mach_call_t mach_call;
 x86_saved_state64_t *regs;

 assert(is_saved_state64(state));
 regs = saved_state64(state);

 // In mach_call_munger (the 32-bit version), the call_number is obtained
 // by: call_number = -(regs->eax);
 call_number = (int)(regs->rax & SYSCALL_NUMBER_MASK);

DEBUG_KPRINT_SYSCALL_MACH(
 "mach_call_munger64: code=%d(%s)\n",
 call_number, mach_syscall_name_table[call_number]);

 // Kdebug trace of function entry (see chapter 5)
 KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_EXCP_SC,
 (call_number)) | DBG_FUNC_START,
 regs->rdi, regs->rsi,
 regs->rdx, regs->r10, 0);

 // if this is an obviously invalid call, raise syscall exception
 if (call_number < 0 || call_number >= mach_trap_count) {
 i386_exception(EXC_SYSCALL, regs->rax, 1);
 /* NOTREACHED */
 }
 // Get entry from mach_trap_table. We need the entry to validate the call
 // is a valid one, as well as get the number of arguments
 mach_call = (mach_call_t)mach_trap_table[call_number].mach_trap_function;

 // Quite a few entries in the table are marked as invalid, for deprecated calls.
 // If we stumbled upon one of those, generate an exception

 if (mach_call == (mach_call_t)kern_invalid) {
 i386_exception(EXC_SYSCALL, regs->rax, 1);
 /* NOTREACHED */
 }

 argc = mach_trap_table[call_number].mach_trap_arg_count;

c08.indd 288c08.indd 288 9/29/2012 5:31:16 PM9/29/2012 5:31:16 PM

System Call Processing x 289

 // In 32-bit, we would need to prepare the arguments, copying them from
 // the stack to a mach_call_args struct. This is where we would need to
 // call a helper, mach_call_arg_munger32:
 // if (argc)
 // retval = mach_call_arg_munger32(regs->uesp, argc, call_number, &args);
 //
 // In 64-bit, up to six arguments may be directly passed in registers,
 // so the following code is only necessary for cases of more than 6
 if (argc > 6) {

 int copyin_count;
 copyin_count = (argc - 6) * (int)sizeof(uint64_t);

 if (copyin((user_addr_t)(regs->isf.rsp + sizeof(user_addr_t)), (char
*)®s->v_arg6, copyin_count)) {
 regs->rax = KERN_INVALID_ARGUMENT;

 thread_exception_return();
 /* NOTREACHED */
 }
 }

 if (retval != KERN_SUCCESS) {
 regs->eax = retval;

 DEBUG_KPRINT_SYSCALL_MACH(
 "mach_call_munger: retval=0x%x\n", retval);

 thread_exception_return();
 /* NOTREACHED */
 }
 }

 // Execute the call, collect return value straight into RAX
 regs->rax = (uint64_t)mach_call((void *)(®s->rdi));

 DEBUG_KPRINT_SYSCALL_MACH("mach_call_munger64: retval=0x%llx\n", regs->rax);

 // Kdebug trace of function exit (see chapter 5)

 KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_EXCP_SC,
 (call_number)) | DBG_FUNC_END,
 regs->rax, 0, 0, 0, 0);

 throttle_lowpri_io(TRUE);

 // return to user mode
 thread_exception_return();
 /* NOTREACHED */
}

Note how similar this code is to the disassembly of fleh_swi shown earlier in Listing 8-9: even
though iOS doesn’t use a munger, the sanity checks and Mach trap kdebug traces are the same.

c08.indd 289c08.indd 289 9/29/2012 5:31:16 PM9/29/2012 5:31:16 PM

290 x CHAPTER 8 SOME ASSEMBLY REQUIRED: KERNEL ARCHITECTURES

mach_trap_table
The mach_trap_table, an array of mach_trap_t structures, can be found in osfmk/kern/syscall_
sw.c, where it is followed by the corresponding names, in mach_syscall_name_table, as shown in
Listing 8-15:

LISTING 8-15: The Mach trap table and syscall_name_table (osfmk/kern/syscall_sw.c)

mach_trap_t mach_trap_table[MACH_TRAP_TABLE_COUNT] = {
/* 0 */ MACH_TRAP(kern_invalid, 0, NULL, NULL),
// many invalid traps…
/* 26 */ MACH_TRAP(mach_reply_port, 0, NULL, NULL),
/* 27 */ MACH_TRAP(thread_self_trap, 0, NULL, NULL),
/* 28 */ MACH_TRAP(task_self_trap, 0, NULL, NULL),
/* 29 */ MACH_TRAP(host_self_trap, 0, NULL, NULL),
// many more traps, most invalid..
/* 127 */ MACH_TRAP(kern_invalid, 0, NULL, NULL),
};

const char * mach_syscall_name_table[MACH_TRAP_TABLE_COUNT] = {
/* 0 */ "kern_invalid",
..
/* 26 */ "mach_reply_port",
/* 27 */ "thread_self_trap",
/* 28 */ "task_self_trap",
/* 29 */ "host_self_trap",
..
/* 127 */ "kern_invalid",
};

int mach_trap_count = (sizeof(mach_trap_table) / sizeof(mach_trap_table[0]));

kern_return_t kern_invalid(
 __unused struct kern_invalid_args *args)
{
 if (kern_invalid_debug) Debugger("kern_invalid mach trap");
 return(KERN_INVALID_ARGUMENT);
}

Most Mach traps are unused, funneled to kern_invalid(), which returns KERN_INVALID_
ARGUMENT to the caller. Those Mach traps that are of some use are discussed in the online appendix.
Finding the unexported table in the iOS binary can be accomplished reliably (and just as easily as
fi nding sysent) by looking for its distinct signature (a sequence of kern_invalid and NULLs), or
by following the reference from fleh_swi. The joker tool, from the book’s companion website, does
just that.

Mach traps are not likely to be deprecated any time soon. In fact, Apple seems to be adding more
traps on occasion. One recent such addition in iOS 5.x was the family of kernelrpc_* calls
(10–23), which will likely make their way into OS X in Mountain Lion. Output 8-1 shows the
address of the defi ned Mach traps on an iOS 5.1 kernel (those not listed are all kern_invalid), as
displayed by the joker tool:

c08.indd 290c08.indd 290 9/29/2012 5:31:16 PM9/29/2012 5:31:16 PM

System Call Processing x 291

OUTPUT 8-1: Mach traps (and their names) on iOS 5.1

 10 _kernelrpc_mach_vm_allocate_trap 800132ac
 11 _kernelrpc_vm_allocate_trap 80013318
 12 _kernelrpc_mach_vm_deallocate_trap 800133b4
 13 _kernelrpc_vm_deallocate_trap 80013374
 14 _kernelrpc_mach_vm_protect_trap 8001343c
 15 _kernelrpc_vm_protect_trap 800133f8
 16 _kernelrpc_mach_port_allocate_trap 80013494
 17 _kernelrpc_mach_port_destroy_trap 800134e4
 18 _kernelrpc_mach_port_deallocate_trap 80013520
 19 _kernelrpc_mach_port_mod_refs_trap 8001355c
 20 _kernelrpc_mach_port_move_member_trap 8001359c
 21 _kernelrpc_mach_port_insert_right_trap 800135e0
 22 _kernelrpc_mach_port_insert_member_trap 8001363c
 23 _kernelrpc_mach_port_extract_member_trap 80013680
 26 mach_reply_port 800198ac
 27 thread_self_trap 80019890
 28 task_self_trap 80019870
 29 host_self_trap 80017db8
 31 mach_msg_trap 80013c1c
 32 mach_msg_overwrite_trap 80013ae4
 33 semaphore_signal_trap 800252d4
 34 semaphore_signal_all_trap 80025354
 35 semaphore_signal_thread_trap 80025260
 36 semaphore_wait_trap 800255e8
 37 semaphore_wait_signal_trap 8002578c
 38 semaphore_timedwait_trap 800256c8
 39 semaphore_timedwait_signal_trap 8002586c
 43 map_fd 80025f50
 44 task_name_for_pid 801e0734
 45 task_for_pid 801e0598
 46 pid_for_task 801e054c
 48 macx_swapon 801e127c
 49 macx_swapoff 801e14cc
 50 kern_invalid 80025f50
 51 macx_triggers 801e1260
 52 macx_backing_store_suspend 801e11f0
 53 macx_backing_store_recovery 801e1198
 58 pfz_exit 80025944
 59 swtch_pri 800259f4
 60 swtch 80025948
 61 thread_switch 80025bb8
 62 clock_sleep_trap 800160f0
 89 mach_timebase_info_trap 80015318
 90 mach_wait_until_trap 80015934
 91 mk_timer_create_trap 8001d238
 92 mk_timer_destroy_trap 8001d428
 93 mk_timer_arm_trap 8001d46c
 94 mk_timer_cancel_trap 8001d4f0
100 iokit_user_client_trap (probably) 80234aa0

A more detailed discussion of the specifi c traps can be found in the online appendix.

c08.indd 291c08.indd 291 9/29/2012 5:31:16 PM9/29/2012 5:31:16 PM

292 x CHAPTER 8 SOME ASSEMBLY REQUIRED: KERNEL ARCHITECTURES

Machine Dependent Calls
Besides Mach traps and UNIX system calls, XNU contains machine dependent calls. As the name
implies, these vary by platform. These calls in OS X are open source, but remain undocumented in
iOS. Binary inspection confi rms that, indeed, these calls exist. True to their machine-specifi c nature,
they mostly offer functionality pertaining to the CPU caches (e.g. invalidating the MMU instruction
and data caches).

machdep_call _table
The machine dependent calls have their own dispatch table — machdep_call_table, defi ned in
osfmk/i386/machdep_call.c in a similar manner to the Mach trap table, and shown in Listing 8-16:

LISTING 8-16: Machine dependent calls, from osfmk/i386/machdep_call.c

machdep_call_t machdep_call_table[] = {
 MACHDEP_CALL_ROUTINE(kern_invalid,0),
 MACHDEP_CALL_ROUTINE(kern_invalid,0),
 MACHDEP_CALL_ROUTINE(kern_invalid,0),
 MACHDEP_CALL_ROUTINE(thread_fast_set_cthread_self,1),
 MACHDEP_CALL_ROUTINE(thread_set_user_ldt,3),
 MACHDEP_BSD_CALL_ROUTINE(i386_set_ldt,3),
 MACHDEP_BSD_CALL_ROUTINE(i386_get_ldt,3),
};
machdep_call_t machdep_call_table64[] = {
 MACHDEP_CALL_ROUTINE(kern_invalid,0),
 MACHDEP_CALL_ROUTINE(kern_invalid,0),
 MACHDEP_CALL_ROUTINE(kern_invalid,0),
 MACHDEP_CALL_ROUTINE64(thread_fast_set_cthread_self64,1),
 MACHDEP_CALL_ROUTINE(kern_invalid,0),
 MACHDEP_CALL_ROUTINE(kern_invalid,0),
 MACHDEP_CALL_ROUTINE(kern_invalid,0),
};

As you can see in the listing, most machine dependent calls are unused in the Intel architecture. In the
32-bit architecture, calls existed to set the LDT and GDT. In 64-bit, only one call — thread_fast_
set_cthread_self64 — remains, used to set the CPU’s MSR_IA32_KERNEL_GS_BASE to the thread ID.
The set_cthread_self function also exists on iOS, wherein it sets the processor’s control registers
c13,c0. You can see its source in libc’s arm/pthreads/pthread_set_self.s, which demonstrates call-
ing machine specifi c calls on ARM by setting R12 to 0x80000000 and passing the call number in R3.

Diagnostic calls
As if XNU’s vast debug facilities are not enough, it contains a fourth class of system calls reserved
exclusively for diagnostics. Unlike Mach traps, UNIX system calls, and machine-dependent calls,
there is only one diagnostic call defi ned, appropriately called diagCall (or diagCall64), and it
selects the type of diagnostics required according to its fi rst argument. Also unlike the other types,
this call is only active if the kernel’s global diagnostic variable, dgWork.dgFlags has set the
enaDiagSCS bit (#defined in osmfk/i386/Diagnostics.h as 0x00000008).

c08.indd 292c08.indd 292 9/29/2012 5:31:17 PM9/29/2012 5:31:17 PM

System Call Processing x 293

During the PPC era, the diagCall was extremely powerful, and could be used for myriad diag-
nostics, such as controlling and reading physical memory pages. In its Intel incarnation, however,
XNU’s diagCall has been reduced to support only one code: dgRuptStat (#25), used to query
or reset per-CPU interrupt statistics. You can verify this for yourself by checking osfmk/i386/
Diagnostics.c, where this call (in both 32-bit and 64-bit versions) is implemented.

The following experiment shows the usage of diagCall to create a simple interrupt statistics viewer,
similar to Linux’s /proc/interrupts.

Experiment: Demonstrating OS X’s diagCall()
Listing 8-17, if compiled, will demonstrate the power of diagCall() by displaying interrupts in
your system:

LISTING 8-17: Demonstrating invoking diagCall() by inline assembly

int diagCall (int diag, uint32_t *buf)
{
 __asm__ ("movq %rcx,%r10; movl $0x04000001, %eax ; syscall ; ");

};

void main(int argc, char **argv)
{
 uint32_t c[1+ 2*8 + 256*8]; // We'll break at 8 processors or cores. Meh.
 uint32_t i = 0;
 int ncpus = 0;
 int d;
 mach_timebase_info_data_t sTimebaseInfo;
 memset (c, '\0', 1000 * sizeof(uint32_t));

 if (argc ==2 && strcmp(argv[1], "clear")==0)
 { printf("Clearing counters\n");
 printf("diagCall returned %d\n", diagCall(25,0));
 exit(0);

 }

 printf (" diagCall returned %x\n", diagCall(25,c));

 // Can check for failure by diagCall's return code, or by ncpus:
 // The first entry in the buffer should be set to the number of
 // CPUs, and will therefore be non-zero.

 ncpus= c[0];
 if (!ncpus) { fprintf(stderr,"DiagCall() failed\n"); exit(1);}

 printf("#CPUs: %d\n", c[0]);

 printf ("Sample: \t");
 for (i = 0 ; i < ncpus; i++) {
 uint64_t *sample = (uint64_t *) &c[1+256*i];

continues

c08.indd 293c08.indd 293 9/29/2012 5:31:17 PM9/29/2012 5:31:17 PM

294 x CHAPTER 8 SOME ASSEMBLY REQUIRED: KERNEL ARCHITECTURES

 if (sTimebaseInfo.denom == 0) {
 (void) mach_timebase_info(&sTimebaseInfo);
 }

 printf ("%15ld\t",
 ((*sample /sTimebaseInfo.denom) * sTimebaseInfo.numer) / 1000000000);
 }
 printf ("\n");

 for (i = 0; i<256; i++) {
 int slot = 1+2 + i; // 1 - num cpus. 2 - timestamp (8 bytes)

 if (c[slot] || c[slot+256+2])
 printf ("%10d\t%10d\t%10d\n", i,c[slot], c[256+slot+2]);
 }

}

You’ll note the program has inline assembly for the implementation of diagCall(), required because
Apple has no public wrapper for diagnostic calls. Also, note the assembly is somewhat similar to the
Mach traps and system calls discussed in Chapter 2. The difference, however, lies in the system call
class being 0x40000000, rather than the 0x10000000 for UNIX or 0x20000000 for Mach calls.

Assembly aside, the program is a simple one: with no arguments, it will display the interrupt statis-
tics per CPU. Optionally, it can accept a “clear” argument which will reset the statistics counter. But
if you try to execute either functionality, you will likely get an error.

To use diagCall(), you must fi rst enable the diag boot-argument, and set its value to 0x00000008,
or any other combination which contains that bit (a safe bet is 0xFFFFFFFF). You can do that by
editing the kernel’s boot confi guration fi le, /Library/Preferences/SystemConfiguration/
com.apple.Boot.plist. This fi le and other boot arguments are discussed in the next chapter, but
the modifi cation you need is a simple one: adding the diag argument to the “Kernel Flags” alongside
any already defi ned, as shown in Listing 8-18:

LISTING 8-18: Adding the diag boot argument to enable diagCall

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>Background Color</key>
 <integer>50349</integer>
 <key>Boot Logo</key>
 <string>\System\Library\CoreServices\BootLogo.png</string>
 <key>Kernel Architecture</key>
 <string></string>
 <key>Kernel Flags</key>
 <string>diag=0x00000008</string> <!--There may be other boot args defined !-->
</dict>
</plist>

LISTING 8-17 (continued)

c08.indd 294c08.indd 294 9/29/2012 5:31:17 PM9/29/2012 5:31:17 PM

http://www.apple.com/DTDs/PropertyList-1.0.dtd

XNU and hardware abstraction x 295

Once the system has been rebooted, the program should work just fi ne, and provide you with inter-
rupt statistics. You can verify that “clear” indeed resets the counters.

XNU AND HARDWARE ABSTRACTION

Reading through the chapter, you have no doubt noticed that the two architectures — Intel
and ARM — abide by the same general concepts of traps, interrupts and “supervisor mode,”
yet take a totally different approach in implementing them (with the approach sometimes
changing in between processor models!). Likewise, before migrating to Intel the default archi-
tecture of OS X was the PowerPC — another processor with its own approach to implement-
ing these ideas.* How, then, can XNU maintain the same code base for such totally different
architectures?

One aspect of hardware agnosticism was already discussed in the chapter dealing with the system
boot — it is the Platform Expert module, by means of which the kernel can obtain important hard-
ware confi guration data. This, however, only addresses some of the issues raised by different hard-
ware implementations. The kernel itself needs to be modifi ed and adapted to address the various
CPU related idiosyncrasies.

XNU does not have a full hardware abstraction layer, per se (as did, at one time, Windows). Rather,
the approach it adopted follows the Mach tradition, which is very similar to the one in Linux,
as well. Throughout the kernel, there are various macros and functions, which hide architecture
specifi c implementations. Linux does so by means of the arch/ subdirectory of its kernel sources,
wherein the hardware-dependent implementations of kernel functionality are implemented in cor-
responding assembly. These either add to, or supersede the existing macros in various other subdi-
rectories of the source. Mach has no one convention for architecture specifi c functions, though most
of them are prefi xed with ml (machine layer, or machine level), and implemented in osfmk/i386/
machine_routines.c (and, as a little digging shows, osfmk/arm/machine_routines.c for iOS,
though the arm branch is of course closed source).

For example, consider the rather simple operation, of enabling/disabling interrupts. Intel processors
use a bit in the EFLAGS register to mark interrupt masking. The ml_get_interrupts_enabled is
shown in Listing 8-19:

LISTING 8-19: Interrupt checking on Intel architectures

_ml_get_interrupts_enabled:
ffffff800022b884 pushq %rbp ; standard
ffffff800022b885 movq %rsp,%rbp ; function prolog…
ffffff800022b888 pushf ; push EFLAGS on stack
ffffff800022b889 popq %rax ; and copy to RAX
ffffff800022b88a shrq $0x09,%rax ; Shift right 9 bits
ffffff800022b88e andl $0x01,%eax ; isolate (return) last bit
ffffff800022b891 leave ; undo prolog
ffffff800022b892 ret ; return (rax) to caller

*Note, that the PowerPC architecture is completely ignored in this book. This is because Apple, with Lion,
has removed PPC support from XNU. For an excellent reference on the PPC implementation (up to and
including Tiger), refer to Amit Singh’s book.

c08.indd 295c08.indd 295 9/29/2012 5:31:17 PM9/29/2012 5:31:17 PM

296 x CHAPTER 8 SOME ASSEMBLY REQUIRED: KERNEL ARCHITECTURES

On ARM, there is no EFLAGS register. Rather, the interrupt state is maintained in the CPSR (Specifi -
cally, the 8th bit). The code for the same function thus becomes what is show in Listing 8-20:

LISTING 8-20 Interrupt checking on ARM architectures

_ml_get_interrupts_enabled:
8007c26c mrs r2, CPSR ; R2 gets value of CPSR
8007c270 mov r0, #1 @ 0x1 ; R0 is set to 0x1
8007c274 bic r0, r0, r2, lsr #7 ; BIt-Clear (AND-NOT) i.e: R0 = R0 &^(R2 <<7)
8007c278 bx lr ; return (R0) to caller

On the deprecated PPC (therefore, on kernels up to and including Snow Leopard only), the EE bit
(External Interrupt Enable) is bit #15. So the same function becomes what is shown in Listing 8-21:

LISTING 8-21: Interrupt checking on the (now deprecated) PPC architectures

_ml_get_interrupts_enabled:
000c3464 mfmsr r3 ; Move from Machine-Specific-Register to R3
000c3468 rlwinm r3,r3,17,31,31 ; Rotate Left Word Immediate then aNd with Mask
000c346c blr ; Return

Table 8-7 lists some of the ml_ functions in XNU.

TABLE 8-7: ml_ functions in XNU

ML_ FUNCTION USED FOR

ml_cpu_up/ml_cpu_down Activate/Deactivate a processor. Null function on Intel.

ml_is64bit

ml_thread_is64bit

ml_state_is64bit

64 bit mode of CPU, current thread, and saved state.

Implemented as CPU Data macros. Currently not appli-

cable on iOS.

ml_io_map Map I/O space. Intel implementation wraps io_map()

from osfmk/i386/io_map.c

ml_phys_[read/write]_[xxx][_64] Functions to read and write physical memory elements

(xxx can be byte/half/word/double)

ml_static_ptovirt Physical to Virtual translation. In ARM, this is done using

special registers (p15's c7,c8). In Intel, this follows the

PTE/PDE mechanism.

ml_[get/set]_interrupts_enabled

ml_at_interrupt_context

ml_install_interrupt_handler

ml_cause_interrupt

Get/set interrupts (discussed above), determine if in

interrupt.

ml_install_interrupt_handler() is used by IOKit

drivers, and actually wraps the platform expert.

ml_cause_interrupt is not supported on Intel (and

would cause a kernel panic)

c08.indd 296c08.indd 296 9/29/2012 5:31:17 PM9/29/2012 5:31:17 PM

References x 297

It should be noted that while the ml_ functions are fairly abundant, they do not cover all hardware-
specifi c aspects. As you will see later, many more implementations (e.g. atomic operations, per-CPU
data, the “pmap” physical memory abstraction, and more) can be handled in other ways. This is
what is meant by the “specifi c hacks” in the OS X architectural diagram presented throughout this
book. Fortunately, porting is not really the developers’ problem so much as it is Apple’s.

SUMMARY

This chapter discussed the fundamental concepts of operating system architecture. User mode, ker-
nel mode, and the transition mechanisms between them are all supported by the underlying hard-
ware, be it OS X’s Intel or iOS’s ARM.

The two architectures were compared and contrasted, showing both the theory of each, and then
the implementation — in OS X and iOS both — by viewing the low-level assembly. The chapter dis-
cussed the implementation of the various system call classes, predominantly UNIX system calls and
Mach Traps, and concluded with a discussion of XNU’s ml_* hardware abstraction primitives.

The next chapter will take you deeper into XNU, introducing you to its source tree, and its boot
process. This will enable you to get more comfortable, as the second part of this book ensues, and
we delve deeper still into the internals of the kernel common to both OS X and iOS.

REFERENCES

1. The Intel X86_64 Architecture manuals, Volumes 1, 2, 3A, and 3B

2. The ARM Architecture Manuals — online at http://infocenter.arm.com

3. Esser, Stefan. “Targeting the iOS Kernel,” Syscan 2011, www.syscan.org

c08.indd 297c08.indd 297 9/29/2012 5:31:17 PM9/29/2012 5:31:17 PM

http://infocenter.arm.com
http://www.syscan.org

c08.indd 298c08.indd 298 9/29/2012 5:31:18 PM9/29/2012 5:31:18 PM

9
From the Cradle to the Grave —
Kernel Boot and Panics

In previous chapters, you have seen how, depending on architecture, the kernel image is found
and arguments are passed to it. This chapter picks up where the others have left off and pres-
ents a detailed description of how XNU boots — in both OS X and iOS. By going over the
kernel sources line by line, you will be able to follow the steps the kernel takes in initializing
the system.

This chapter also discusses the premature demise of the kernel, which occurs in cases where an
unhandled CPU trap, or other unexpected kernel code path, causes a “panic.”

THE XNU SOURCES

To better understand this chapter and this entire part of the book, it is highly recommended
that you follow along with the XNU sources. Much like the Linux kernel, XNU sources are
freely downloadable. This section details the steps required to obtain and compile XNU.

Getting the Sources
Ever since Apple annexed CMU’s Open Source Mach project, it has selectively kept XNU
open source. The key word here is “selectively,” because Apple only publishes the OS X com-
piled version. For iOS (i.e. the ARM port of XNU), Apple keeps the XNU source closed. The
two used roughly the same kernel version until iOS 4.2, when iOS “took off” and advanced in
its kernel version beyond that of OS X. At the time of writing, for example, iOS 5 is at XNU
1878, whereas Lion is lagging still at 1699. This is likely going to change as Mountain Lion
takes the lead (with version 2050), unless iOS 6 continues the trend and leaps ahead.

The source code excerpts provided here are from XNU 1699.26.8, which you can download as
a tarball from http://opensource.apple.com/tarballs/xnu/xnu-1699.26.8.tar.gz and
unpack (using tar zxvf). This is the version of the kernel Apple provides with Lion 10.7.4,

c09.indd 299c09.indd 299 9/29/2012 5:32:09 PM9/29/2012 5:32:09 PM

http://opensource.apple.com/tarballs/xnu/xnu-1699.26.8.tar.gz

300 x CHAPTER 9 FROM THE CRADLE TO THE GRAVE — KERNEL BOOT AND PANICS

the latest available as this book is frozen in print. It’s more than likely that by the time you read
these lines, however, a newer kernel version will be available. This version will likely be Mountain
Lion’s (or later?), and may possibly introduce some changes from the listings in this book. If that
is the case, you can either stick to the XNU version cited in this book, or obtain the latest one. In
any case, in order to follow along the examples, even outdated open source certainly beats binary
disassembly.

Take advantage of Apple’s XNU source repository at http://opensource
.apple.com/tarballs/xnu/. Examining the same function in different versions
of the kernel will enable you to get a fi rsthand impression of the modifi cations
Apple introduced over time to XNU, following the evolution step by step. You
don’t even need to download the sources locally: The source tree is available
unpacked in http://opensource.apple.com/source/xnu/xnu-XXXX.yy.zz/,
so you can simply append the path of the fi le you are interested in, and replace
the version number of XNU with the kernel you are interested in.

Alternatively, check out the book’s companion website, which offers an HTML-
enabled cross reference, similar to the Linux LXR.

Making XNU
If you have Apple’s developer’s tools installed, you are steps away from compiling XNU. This is a
fairly straightforward, albeit lengthy, process — but well worth it. Compiling enables you to see
fi rst-hand each and every stage of the boot process. You can easily insert debugging and logging
messages, as well as selectively comment or #ifdef out portions. XNU already has a plethora of
debugging information embedded in its code, which you can reveal with a simple #define DBG (or
–DDBG) when making it.

Using the developer tools, you can compile XNU for either Intel 32-bit or 64-bit architecture. The
GCC compiler in the developer tools can compile XNU easily, provided that the prerequisites listed
in the next section are satisfi ed.

Prerequisites
To build XNU, you need several development tools:

 ‰ Cxxfilt: Current version: 9. The real name of this package is C++filt, but + is an illegal
character in DOS fi lenames.

 ‰ Dtrace: Current version: 7.8. Required for CTFMerge.

 ‰ Kext-tools: Current version: 180.2.1.

 ‰ bootstrap_cmds: Current version: 72. Required for relpath and other commands.

Fortunately, all these tools are freely available for download from Apple’s open-source site. Getting
the tarballs is straightforward, although their versions are often updated.

c09.indd 300c09.indd 300 9/29/2012 5:32:15 PM9/29/2012 5:32:15 PM

http://opensource.apple.com/tarballs/xnu/
http://opensource.apple.com/source/xnu/xnu-XXXX.yy.zz
http://opensource.apple.com/tarballs/xnu/

The XNU Sources x 301

To build Cxxfilt and bootstrap commands, a simple make usually suffi ces. Defi ne RC_OS to macos
and RC_ARCHS to i386, x86_64, or both.

DTrace and Kext-tools build using XCode’s command line xcodebuild.

To summarize, your command line will resemble the following, as shown as Listing 9-1:

LISTING 9-1: Obtaining and making the prerequisites for building XNU

 #
 # Getting C++ filter
 #
$ curl http://opensource.apple.com/tarballs/cxxfilt/cxxfilt-9.tar.gz >
 cxx.tar.gz
$ tar xvf cxx.tar.gz
$ cd cxxfilt-9
$ mkdir -p build obj sym
$ make install RC_ARCHS="i386 x86_64" RC_CFLAGS="-arch i386 -arch x86_64 -pipe" \
 RC_OS=macos RC_RELEASE=Lion SRCROOT=$PWD OBJROOT=$PWD/obj \
 SYMROOT=$PWD/sym DSTROOT=$PWD/build
 #
 # Getting DTrace – This is required for ctfconvert, a kernel build tool
 #
$ curl http://opensource.apple.com/tarballs/dtrace/dtrace-90.tar.gz > dt.tar.gz
$ tar zxvf dt.tar.gz
$ cd dtrace-90
$ mkdir -p obj sym dst
$ xcodebuild install -target ctfconvert -target ctfdump -target ctfmerge \
ARCHS="i386 x86_64" SRCROOT=$PWD OBJROOT=$PWD/obj SYMROOT=$PWD/sym \
DSTROOT=$PWD/dst
 #
 # Getting Kext Tools
 #
$ curl http://opensource.apple.com/tarballs/Kext_tools/Kext_tools-180.2.1.tar.gz \
 > kt.tar.gz
$ tar xvf kt.tar.gz
$ cd Kext_tools-180.2.1
$ mkdir -p obj sym dst
$ xcodebuild install -target Kextsymboltool -target setsegname \
ARCHS="i386 x86_64" SRCROOT=$PWD OBJROOT=$PWD/obj SYMROOT=$PWD/sym \
 DSTROOT=$PWD/dst
 #
 # Getting Bootstrap commands – newer versions are available, but would
 # force xcodebuild
 #
$ curl http://opensource.apple.com/tarballs/bootstrap_cmds/bootstrap_cmds-72.tar.gz \
 > bc.tar.gz
$ tar zxvf bc.tar.gz
$ cd bootstrap_cmds-84
$ mkdir -p obj sym dst
$ make install RC_ARCHS="i386" RC_CFLAGS="-arch i386 -pipe" RC_OS=macos \
 RC_RELEASE=Lion SRCROOT=$PWD OBJROOT=$PWD/obj SYMROOT=$PWD/sym DSTROOT=$PWD/dst

c09.indd 301c09.indd 301 9/29/2012 5:32:15 PM9/29/2012 5:32:15 PM

http://opensource.apple.com/tarballs/cxxfilt/cxxfilt-9.tar.gz
http://opensource.apple.com/tarballs/dtrace/dtrace-90.tar.gz
http://opensource.apple.com/tarballs/Kext_tools/Kext_tools-180.2.1.tar.gz
http://opensource.apple.com/tarballs/bootstrap_cmds/bootstrap_cmds-72.tar.gz

302 x CHAPTER 9 FROM THE CRADLE TO THE GRAVE — KERNEL BOOT AND PANICS

Making the Kernel
Once all the prerequisites mentioned in the previous section are satisfi ed, making the kernel is
straightforward, as shown in Listing 9-2:

LISTING 9-2: Making the kernel

$ wget http://opensource.apple.com/tarballs/xnu/xnu-1699.26.8.tar.gz # or curl
$ tar xvf xnu-1699.26.8.tar.gz
$ cd xnu-1699.26.8
$ make ARCH_CONFIGS="I386 X86_64" KERNEL_CONFIGS="RELEASE"
MIG clock.h
MIG clock_priv.h
MIG host_priv.h
Generating libkern/version.h from…/1699.26.8/libkern/libkern/version.h.template
MIG host_security.h
...
... (many more lines omitted for brevity)

The build will take some time, progressing through each directory. For each fi le, the build requires
one or more of the following actions, shown in Table 9-1:

TABLE 9-1: Build Actions

ACTION PURPOSE

AS Assemble: Used on .s fi les

C++ Compile C++: Used on .cpp fi les (IOKit)

CC Compile: Used on .c fi les

CTFCONVERT Prepare/Process Compact Text Format debugging information

LDFILELIST Link: Used on directories, once all the fi les in them have been compiled

MIG Mach Interface Generator: Used on .defs fi les, to creates client/server Mach mes-

sage passing code from stub defi nitions. The generated fi les are then compiled (CC)

If the process is successful, the built kernel will be found in BUILD/obj/RELEASE_I386, BUILD/obj/
RELEASE_X86_64, or both. Using the lipo(1) tool, you can construct one fat binary to contain both
architectures, although that is not strictly necessary.

One Kernel, Multiple Architectures
Apple has adapted XNU to run on no less than four architectures: PowerPC, i386, x86_64, and, in
iOS, ARM. In doing so, it drew on its core — Mach — which, by design, was made fl exible for any
architecture.

c09.indd 302c09.indd 302 9/29/2012 5:32:15 PM9/29/2012 5:32:15 PM

http://opensource.apple.com/tarballs/xnu/xnu-1699.26.8.tar.gz

The XNU Sources x 303

Similar to the Linux kernel, which may be compiled for specifi c architectures, so can Mach. Both
kernels follow a similar design. Most of the kernel is architecture-agnostic, and architecture-idio-
syncratic parts are implemented in corresponding directories.

In Linux, this is achieved by defi ning functions as macros and overriding the basic implementations
with architecture optimized ones, found in the arch/ subdirectory of the source tree. In this way,
the kernel entry points, low-level thread, and memory management are coded in highly specialized
assembly (.s fi les), while the rest is in C++.

The principle in Mach is almost the same: The osfmk/ directory, in which the Mach sources reside,
has architecture-specifi c subdirectories. In the open-source XNU, these are i386/ and x86_64/.
Older versions of XNU also contain a ppc/ subdirectory. Strings inside the iOS kernel reveal that a
fourth directory, arm/, which Apple keeps closed source.

Additionally, XNU relies on a specialized directory, pexpert — the so called Platform Expert. This
directory is a small, yet highly important one. It contains specialized functions for each architecture.
In the open-source version, the only supported architecture is i386/x64 (both under i386), but iOS
has a similar ARM platform expert, which — again — Apple keeps private (though its symbols, too,
occasionally leak in iOS versions).

The i386 Platform Expert is tightly integrated with EFI (from which it obtains confi guration
parameters) from one end and with IOKit (for which it provides services) from the other. The ARM
Platform Expert is similarly integrated with iBoot. Table 9-2 shows the pexpert subdirectory on OS
X only. iOS is likely different.

TABLE 9-2: pexpert subdirectory ()

SUBDIRECTORY CONTAINS

conf Machine-specifi c makefi les

gen Contains the code to handle the boot arguments (bootargs.c), device tree

(devicetree.c) and the output/boot logo (pe_gen.c) fi les

i386 Low-level handlers for interrupts, serial, and machine identifi cation

Pexpert Contains the header fi les for all the Platform Expert components the other kernel

components use

IOKit, the XNU driver framework, makes extensive use of the Platform Expert. But even the kernel
core frequently relies on PE calls. The most commonly called on feature of the Platform Expert is
the _PE_state, which is a platform dependent singleton structure representing the initial state of the
machine, as set up by the boot loader. On an Intel platform, it looks like this:

typedef struct PE_state {
 boolean_t initialized;
 PE_Video video;
 void *deviceTreeHead;
 void *bootArgs;

c09.indd 303c09.indd 303 9/29/2012 5:32:16 PM9/29/2012 5:32:16 PM

304 x CHAPTER 9 FROM THE CRADLE TO THE GRAVE — KERNEL BOOT AND PANICS

} PE_state_t;

PE_state_t PE_state;

With PE_Video being the graphics console information, as in the following:

struct PE_Video {
 unsigned long v_baseAddr; /* Base address of video memory */
 unsigned long v_rowBytes; /* Number of bytes per pixel row */
 unsigned long v_width; /* Width */
 unsigned long v_height; /* Height */
 unsigned long v_depth; /* Pixel Depth */
 unsigned long v_display; /* Text or Graphics */
 char v_pixelFormat[64];
 unsigned long v_offset; /* offset into video memory to start at */
 unsigned long v_length; /* length of video memory (0 for h * w) */
 unsigned char v_rotate; /* Rotation: 0:0 1: 90, 2: 180, 3: 270 */
 unsigned char v_scale; /* Scale Factor for both X & Y */
 char reserved1[2];
#ifdef __LP64__
 long reserved2;
#else
 long v_baseAddrHigh;
#endif
};

A call to PE_init_platform (in pexpert/i386/pe_init.c) sets up the PE_state, most impor-
tantly the bootArgs pointer. Various kernel components can then access the arguments using
PE_parse_boot_argn():

boolean_t PE_parse_boot_argn(
 const char *arg_string,
 void *arg_ptr,
 int max_arg);

This function allows a caller to specify an arg_string, and an arg_ptr, a buffer of up to max_arg
bytes, which will be populated by the function (returning true) if the argument was supplied on the
kernel command line.

Another commonly used functionality of the Platform Expert is the device tree. This is a render-
ing of all the devices in the system in a hierarchical tree structure, much like Solaris’ /devices or
Linux’s /sys/devices. The device tree is initialized by the boot loader (OS X: EFI, iOS: iBoot),
and allows the kernel to query which devices are connected. The device tree is detailed in Chapter
6.

The Platform Expert is also used in the low-level handling of CPU, virtual memory, and other hard-
ware. This is why the IOKit makes such frequent use of it. From the user mode perspective, the fl ow
of a system call, (or Mach trap), starts as an architecture agnostic BSD/Mach call, and as it traverses
the layers of the kernel, it gets more and more specifi c. The IOKit also creates a specialized class,

c09.indd 304c09.indd 304 9/29/2012 5:32:16 PM9/29/2012 5:32:16 PM

The XNU Sources x 305

IOPlatformExpert, which is used to instantiate a singleton — gIOPlatform — which is then con-
sulted for machine-related information. IOPlatformExpert is defi ned in an architecture-specifi c
manner, although it does have similar methods across architectures. This will be elaborated on in
Chapter 19, which deals exclusively with IOKit.

Confi guration Options
XNU has quite a few confi guration options, which you can toggle before compiling the kernel.
These are #defines, which either set various buffer values, or enable parts of the code and hide
others at the preprocessor level, so that the resulting objects are as slim as possible. Most are pre-
fi xed with CONFIG, though not always. There are far too many options to list in this book, but the
interesting ones include those shown in Table 9-3:

TABLE 9-3: Some of the Confi guration Options for Building XNU

OPTION AFFECTS

CONFIG_AUDIT Enables the audit subsystem.

CONFIG_DTRACE Enables DTrace hooks in kernel.

CONFIG_EMBEDDED Sets embedded device features. Apple sets this for iOS.

CONFIG_MACF MAC security policy.

CONFIG_NO_PRINTF_STRINGS

CONFIG_NO_KPRINTF_STRINGS

Saves 50 K of kernel memory, and makes life a little bit harder

for iOS reverse engineers, where it is used.

CONFIG_SCHED_* Select specifi c task scheduling algorithm. XNU off ers TRADI-

TIONAL, PROTO, GRRR, and FIXED_PRIORITY. Scheduling is

discussed in Chapter 12.

SECURE_KERNEL Kernel security extensions.

Every subdirectory of the kernel source tree (which corresponds to a subsystem) contains a
conf/ subdirectory, which controls the options of its subsystem. The options are documented in
MASTER fi les.

The XNU Source Tree
XNU’s source tree is considerable — around 50 MB when fully extracted. While it is not as large as
the Linux source tree (which is double this fi gure, even with most drivers excluded), it is still easy to
get lost in the source.

A slightly easier way to navigate the source is with the FXR tool, at http://fxr.watson.org/.
This tool, (derived from LXR, the Linux Cross Reference tool), explores FreeBSD’s source tree,

c09.indd 305c09.indd 305 9/29/2012 5:32:16 PM9/29/2012 5:32:16 PM

http://fxr.watson.org

306 x CHAPTER 9 FROM THE CRADLE TO THE GRAVE — KERNEL BOOT AND PANICS

and other code bases, including XNU. The latest version indexed at the time of writing is 1699.24.8
(OS X 10.7.2).

FINDING A SYMBOL OR STRING IN THE SOURCE FILES

If you’re looking for a particular function name, variable, or other symbol in the
source fi les, grep(1) is your friend. You can use grep to enter any regular expres-
sion and fi nd it in the .h or .c fi les, and — by using xargs(1) — extend the com-
mand so that the search covers all fi les in the directory.

For example, if you are looking for vstart, you would cd to the xnu source root
directory, and type the following:

morpheus@Ergo(../xnu-1699.26.8)$ find . -name "*.c" –print | xargs
grep vstart
./bsd/dev/i386/fbt_x86.c: "vstart"
./osfmk/i386/i386_init.c: * vstart() is called in the natural mode
(64bit for
./osfmk/i386/i386_init.c:vstart(vm_offset_t boot_args_start)
./osfmk/i386/i386_init.c: DBG("vstart() NX/XD enabled\n");
./osfmk/ppc/pmap.c: * kern_return_t pmap_nest(grand, subord,
vstart, size)
... (Other results omitted for brevity) ..

The approach is a brute force one, at best, as all instances of your search string will
be returned. If the string is a common substring, brace yourself for many results.
Still, with a little C, you should be able to sift through the results and fi nd the one
or few which are relevant to your search — useful when you don’t have access to
the HTML cross references.

To make your life easier, nearly all the functions in XNU are implemented so that their name begins
the line in which they are implemented. That is, their return value is deliberately stated in the pre-
ceding line. This makes it easy to fi nd the implementation of a function you are looking for by using
grep with the caret (̂) sign, which is reserved for the beginning of a line. In the preceding example,
using the caret would have given us exactly the result we want:

morpheus@Ergo (../xnu-1699.26.8)$ find . -name "*.c" | xargs grep ^vstart
./osfmk/i386/i386_init.c:vstart(vm_offset_t boot_args_start)

The regular expression syntax can be further tweaked to fi lter results, for example by looking for \
at the end of the symbol (denoting where function arguments begin).

XNU’s source tree is large, but fairly well organized into several subtrees. These subtrees contain
the implementation of the various kernel subsystems, as shown in Table 9-4:

c09.indd 306c09.indd 306 9/29/2012 5:32:16 PM9/29/2012 5:32:16 PM

mailto:morpheus@Ergo(../xnu-1699.26.8

The XNU Sources x 307

TABLE 9-4: The XNU Subtrees

DIRECTORY CONTAINS

bsd BSD components of kernel

config Exported symbols for various architectures

iokit The I/O Kit driver runtime subsystem

libkern The kernel main runtime library APIs

osfmk Mach components of kernel

pexpert Platform-specifi c stuff (PPC, i386)

security The BSD MAC Framework

The BSD layer is further broken down into subcomponents, as you can see in Table 9-5:

TABLE 9-5: BSD Subdirectory

SUBDIRECTORY CONTAINS

bsm/security Basic Security Module (auditing subsystem)

conf Machine-specifi c Makefiles

crypto Implementations of symmetric algorithms and hashes

dev BSD Devices (/dev directory entries)

hfs File system driver (HFS/HFS+) is OS X default

i386/machine/ppc Private kernel headers for Intel/PPC architectures

kern Main kernel code

libkern Kernel runtime exports (CRC, string functions)

man Some actually useful man pages

net*/netinet* Networking subsystem (sockets) and IP stack

nfs NFSv3 stack, for remote fi le systems

sys Kernel headers

vfs Virtual Filesystem Switch

vm BSD’s virtual memory handlers

c09.indd 307c09.indd 307 9/29/2012 5:32:17 PM9/29/2012 5:32:17 PM

308 x CHAPTER 9 FROM THE CRADLE TO THE GRAVE — KERNEL BOOT AND PANICS

Likewise, Mach, in the /osfmk (Open Software Foundation Mach Kernel) subdirectory has the sub-
directories shown in Table 9-6.

TABLE 9-6: OSFMK Subdirectory

SUBDIRECTORY CONTAINS

chud The Computer Hardware Understanding Development tools. These

extremely powerful APIs formed the kernel support for OS X diagnostic

tools (known as the CHUD tools), which included the legendary Shark utility,

Reggie SE and others. Ever since Leopard (10.5) they have been gradually

phased out of OS X, losing ground to DTrace. The code support for them,

however, still exists. See the discussion in Chapter 5.

conf Machine-specifi c Makefiles

console Console initialization, serial, boot video and panic UI

ddb Kernel debugger (obsolete)

default_pager VM Pager

device Mach support for I/O Kit and devices

i386/ppc/x86_64 CPU-specifi c implementations (the good stuff)

ipc IPC, ports, and messages

kdp KDP (Debugger) support

mach, machine The Mach generic and machine dependent kernel headers

man The only man pages you’ll ever get on Mach calls

pmc/profiling PMC performance monitoring

UserNotification Kernel-User Notifi cation (KUNC)

vm Virtual memory implementation and headers

BOOTING XNU

XNU is a Mach-O object. The boot loader (EFI or iBoot) contain Mach-O parsing code, and can
deduce the entry point from the LC_UNIXTHREAD command. Using otool, you can do so as well.

It is a worthwhile experiment to compile XNU with the various debug settings (DEBUG, CONFIG_
DEBUG, and their ilk) and follow the full debug output, as it will show the fl ow much like in the
following pages. To capture serial output, it is a good idea to run OS X in a Virtual Machine, and
defi ne a serial port, redirected to a text fi le. Even though OS X is technically not supposed to be
virtualized, there are many articles and tutorials on how to trick it into running inside a virtual
machine, after all.

c09.indd 308c09.indd 308 9/29/2012 5:32:18 PM9/29/2012 5:32:18 PM

Booting XNU x 309

The boot process is a long and arduous fl ow, spanning multiple fi les. Reading
this following section in depth will no doubt be tedious. It is recommended that,
as a fi rst read, you go over this section in more of a cursory read, not stalling to
mull on the aspects which may seem unclear or obscure. Then, after reading the
next chapters — wherein the Mach and BSD layers are described in depth —
revisit this section, and things will “fall into place.”

The Bird’s Eye View
The high level view of XNU’s boot process is given in Figure 9-1. This is a greatly simplifi ed and
somewhat inaccurate view, but it serves as a point of departure for this chapter, as we zoom in with
ever-increasing resolution

Set up segmentation

_pstart(OS X)

i386_init(OS X)/arm_init*(iOS)

_slave_pstart(OS X)

i386_init_slave (do_init_slave)

kernel_bootstrap

_vstart

Master processor:
From EFI/iBoot

slave_main()
Loads context of next thread

(or idle thread). Never returns

kernel_bootstrap_thread

bsd_init

Pass bootargs

PID 1 (/sbin/launchd)vm_pageout()

Various house keeping threads

BSD system threads

machine_startup

Slave processor(s):
following smp_init

start(iOS)

FIGURE 9-1: The high level view of XNU’s boot

c09.indd 309c09.indd 309 9/29/2012 5:32:18 PM9/29/2012 5:32:18 PM

310 x CHAPTER 9 FROM THE CRADLE TO THE GRAVE — KERNEL BOOT AND PANICS

Apple originally left iOS’s XNU fully intact with symbols, when the closest
thing to a “jailbreak” was an American prime time TV drama with a similar
name. Since then, however, iOS has been aggressively and repeatedly stripped,
with fewer and fewer symbols remaining with every new release. XNU hasn’t
changed that dramatically, so a bit of common sense (and other oversight by
Apple) allows the reconstruction of symbols. In some cases, however – particu-
larly new code such as SMP (i.e. ARM dual-core support), which was introduced
in iOS 4.3 with the iPad 2, the symbols are unknown, and the logic is deduced
from educational binary inspection. The iOS picture therefore remains, in some
cases, incomplete, and may be subject to change.

OS X: vstart
vstart (osfmk/i386/i386_init.c) is the i386/x64 “offi cial” kernel initialization function, and
marks the transition from assembly code to C. It is also a special function, in that it executes on
the primary (boot) CPU, as well as any slave CPUs (or cores) present in the machine. The slaves can
tell themselves apart because the argument to vstart, the boot_args_start pointer, is NULL for
slaves.

The following list depicts the fl ow of vstart on OS X:

 ‰ On Boot (master) CPU: vstart optionally (#if DBG) initializes the serial line by calling
pal_serial_init().

 ‰ Enable NX/XD: On x64 platforms, the NX (No Execute) bit is a processor feature meant
to combat code injection. Pages marked as data (commonly the stack and heap) will trigger
a page fault if accessed by the Instruction Pointer. This is a hardware enforced mechanism,
which defeats a signifi cant part of the code injection techniques, although not all of them;
return-oriented programming — the diverting execution to pre-existing library code — will
still work.

The NX/XD bit is set per-processor — master and slaves alike, if cpuid_extfeatures
(from osfmk/i386/cpuid.c) reports this feature is present (CPUID_EXTFEATURE_XD).

 ‰ cpu_desc_init[64] (osfmk/i386/mp_desc.c): This initializes the GDT and LDT on the
master cpu. This is followed by a call to cpu_desc_load(64), which loads the kernel LDT
for use on both master and slaves.

 ‰ cpu_mode_init() (in osfmk/i386/mp_desc.c): This nitializes the CPU’s MSRs (used for
SYSENTER/SYSCALL), and its physical page map (pmap)

 ‰ i386_init/i386_init_slave: This is called from either the master or slave CPUs.

iOS: start
In iOS most of the boot-related functions have been stripped, yet the start() function remains
one of the few proudly exported symbols. It will likely remain so, as it is declared in XNU’s

c09.indd 310c09.indd 310 9/29/2012 5:32:19 PM9/29/2012 5:32:19 PM

Booting XNU x 311

LC_UNIXTHREAD command as well. The entry point is in the vicinity of 0x8007c058. In the iPhone
4S, where a XNU decrypted binary is, as yet, unavailable, it resides in 0x8007A0B4.

The entry point has an unusual structure, which helps in its disassembly: Its fi rst three instructions,
shown in Listing 9-3, are uncommon enough to allow its detection, and also that of the next step,
arm_init. The start() function loads the address of the latter into the link register (R14), so that
it effectively returns to it on exit, and then disables interrupts. The entry point for iOS 6 will likely
be in the 0x8007xxx to 0x8008xxx range, though (if Mountain Lion is any indication) kernel ASLR
will randomly “slide it” on every boot.

LISTING 9-3: The iOS entry point start code (obtained with the corerupt tool)

start:
0x8007A0B4 MOV R1, #0
0x8007A0B8 LDR LR, =_arm_init ; Load next stage as return address
0x8007A0BC CPSID IF ; Shhh! Disable Interrupts (IRQ/FIQ)
...
0x8007A0D8 MCR p15, 0, R5,c2,c0, 0 ; Translation table base 0
0x8007A0DC MCR p15, 0, R5,c2,c0, 1 ; Translation table base 1
0x8007A0E0 MOV R5, #2 ; Boundary size 4K (as page
size)
0x8007A0E4 MCR p15, 0, R5,c2,c0, 2 ; Translation Table base control
... ;
0x8007A318 MOV R5, #0
0x8007A31C MCR p15, 0, R5,c8,c7, 0 ; Invalidate I and D TLBs
0x8007A320 DSB SY
0x8007A324 ISB SY
0x8007A328 MOV R7, #0
0x8007A2EC BX LR ; "returns" to arm_init

In the sequence that follows, this function mostly handles low level processor settings, through the
ARM control registers, installs the kernel’s trap handlers from the ExceptionVectorsBase (dis-
cussed in Chapter 8), manipulates more settings, and then jumps to arm_init.

[i386|arm]_init
The platform initialization function — in OS X’s case i386_init() — initializes the master CPU
for use, and readies the kernel boot. A similar functions, in OS X’s case — i386_init_slave() —
does the same for the slave CPUs. This function is expected to never return. Unlike the next stages,
which are largely similar on both platforms, this step is highly specifi c. This is why the function
name contains the architecture name.

In iOS, this function is replaced by arm_init(), which provides very similar functionality,
albeit suited for the ARM platform. Its fl ow is largely the same, give or take a function, such as
a call to arm_vm_init() for virtual memory, and a call to ml_io_map(), which the Intel version
doesn’t have.

The init function is long, but well structured. Like the rest of the functions involved in the boot pro-
cess, it calls on subroutines to perform the work of initializing each subsystem or component. You
can follow the fl ow in Figure 9-2:

c09.indd 311c09.indd 311 9/29/2012 5:32:20 PM9/29/2012 5:32:20 PM

312 x CHAPTER 9 FROM THE CRADLE TO THE GRAVE — KERNEL BOOT AND PANICS

cpu_init
(osfmk/i386/cpu.c)

pal_i386_init
(osfmk/i386/pal_routines.c)

Calls on the Platform Abstraction Layer initialization — in effect simply a call to

initialize a lock on the EFI.

Initializes the PE_state global, which contains a copy of the boot arguments, video

arguments, and more. This function calls pe_identify_platform (from

pexpert/i386/pe_identify_machine.c), to set gPEClockFrequency.

This calls lck_mod_init (osfmk/kern/locks.c) and timer_call_initialize

(osfmk/kern/timer_call.c) which is used in timer calls.

Sets the current CPU clock timer’s deadline to the ominous “EndOfAllTime”. Literally,

this is no joke. The 64-bit maximum value, is some 677 billion years in our future, long

after you, the author, and all humanity perishes, and our universe ceases to exist.

After the clock is set to run indefinitely, cpu_init() calls
i386_activate_cpu()(osfmk/i386/mp.c).

i386_init

kernel_early_bootrap
(osfmk/kern/startup.c)

PE_Init_Platform
(pexpert/i386/pe_init.c)

panic_init
(libsyscall/mach/panic.c)

printf_init
(osfmk/kern/printf.c)

Called in case a debugger will be attached. Then, kernel printf() messages will

be directed to the debugger.

Called to redirect any kernel panics so they can be intercepted by an attached

kernel debugger.

Check for serial console

PE_init_kprintf
(pexpert/i386/pe_kprintf.c)

Called to enable kprintf() output to get to the console.

64-bit processor detection

PE_Init_printf
(pexpert/gen/pe_gen.c)

Called to enable printf() output to get to the console.

If CPU features support the CPUID_EXTFEATURE_EM64T flag, it will be enabled–

unless "-legacy" was specified as a command line argument to the kernel.

PE_init_platform
(pexpert/i386/pe_init.c)

i386_vm_init
(osfmk/i386/i386_init.c)

Takes over virtual memory management from EFI. Also calls

pmap_bootstrap (osfmk/i386/pmap.c) to initialize kernel physical memory map.

PE_init_platform is called again, this time with its first argument set toTRUE,

indicating virtual memory has been initialized. It obtains the video information and

the device tree from EFI.

tsc_init
(osfmk/i386/tsc.c)

PE_create_console
(pexpert/i386/pe_init.c)

Starts either the graphics mode console, or the text mode console.

Obtains FSB frequency and other parameters from EFI, and the CPU’s Time Stamp

Counter (TSC register) frequency from the CPU. It then calculates the conversion

factor between the two.

power_management_init
(osfmk/i386/pmCPU.c)

Sets up the pm_init_lock, which is later used by the kernel extension which

manages power.

Check the “serial” boot arg, and switch_to_serial_console() if set.

c09.indd 312c09.indd 312 9/29/2012 5:32:20 PM9/29/2012 5:32:20 PM

Booting XNU x 313

processor_bootstrap
(osfmk/kern/processor.c)

initializes the processor subsystem of Mach. This initializes three queues – task,

terminated_tasks and threads, creates the master_processor object, and calls

processor_init(), which sets its fields and assigns it to the default processor set, pset0.

(processors and processor sets are described in the next chapter).

thread_bootstrap
(osfmk/kern/thread.c)

sets up the template for the Mach thread objects (discussed in the next chapter).

The Mach thread primitive has numerous fields, and this function fills them with their

default values. It then sets the first system thread, init_thread, to inherit all the values

from the template, and calls machine_set_current_thread (osfmk/i386/pcb.c)
to mark this thread as active on this CPU.

machine_startup
(osfmk/i386/AT386/model_dep.c)

The next stage of initialization. Never returns, and described in the next section.

FIGURE 9-2: i386_init fl ow

A considerable amount of work in the <platform>_init function goes to checking for the existence
of a console device, initializing it and redirecting the kernel’s printf()s and kprintf()s to it. The
console of an OS X device is usually its keyboard and screen, and using the -v (verbose) boot argu-
ment you can see a verbose boot (alternatively, by pressing Alt+V while rebooting). You can also do
so in iOS, if you pass the –v argument through redsn0w or other utilities, though the screen often
fl ashes too quickly for any meaningful output to be discerned.

If the serial boot argument is specifi ed, the kernel can redirect the console to a serial port, instead.
This method comes in handy in iOS to enable kernel debugging. As noted by security researcher
Stefan Esser and discussed previously in this book, the iOS serial port may be enabled (though it
requires some equipment and minor soldering).

i386_init_slave()
Slave processors’ real-mode entry point is set (by smp_init, later on), to be slave_pstart. This
function, in turn, merges with the start_common, but leaves the kernel bootargs structure pointer
as NULL. The common code calls vstart, as shown earlier, but slave processors can then tell them-
selves apart from the master due to the NULL argument.

vstart() behaves slightly differently for the master processor than it does for the slaves, performing
the one-time kernel initialization if it detects it is running on the master. Then, the roads diverge;
whereas the master processor executes i386_init(), the slaves turn to i386_init_slave()
instead. This function is a call through to do_init_slave(FALSE).

do_init_slave()
The do_init_slave function is called when a slave processor wakes up, either for the very fi rst
time, or when it awakes from hibernation/sleep. First, the function checks its argument — fast_
restart: — which may indicate this is a call from pmCPUHalt (osfmk/i386/pmCPU.c). A fast
restart merely wakes up the CPU, whereas a slow, or full start, initializes and then starts the CPU.
This, in turn, involves:

 ‰ Setting caching and write-through by ensuring the NW and CD fl ags of CR0 are off

c09.indd 313c09.indd 313 9/29/2012 5:32:20 PM9/29/2012 5:32:20 PM

314 x CHAPTER 9 FROM THE CRADLE TO THE GRAVE — KERNEL BOOT AND PANICS

 ‰ Confi guring the local interrupt controller — lapic_configure() — from osfmk/i386/
lapic_native.c)

 ‰ Initializing the FPU (init_fpu(), osfmk/i386/fpu.c) in the same manner as machine_
init(), described later

In either a fast or slow startup, the next step is a call to initialize the CPU (cpu_init(), osmfk/

kern/cpu.c), as performed by i386_init for the main. The function then calls slave_main (from
osfmk/kern/startup.c). This function takes the next available thread for execution from the cur-
rent_processor()’s next_thread fi eld. If no runnable threads exist, the idle thread (created by
kernel_bootstrap_thread) is taken instead. As the thread context is loaded into the processor,
this function had better not return (or the kernel will panic).

machine_startup
machine_startup(osfmk/i386/AT386/model_dep.c) function, called at the last step of
<platform>_init, is misleading: although its name and location both seem to imply hardware and
model dependency, it is actually less dependent on the underlying hardware than its predecessor, and
has the same implementation in OS X and in iOS.

The function mostly parses several command line arguments (using the Platform Expert’s
PE_parse_boot_argn), mostly fl ags of the debug boot-arg, to control boot-time debugging. If
MACH_KDB is defi ned, a call to ddb_init(osfmk/ddb/db_sym.c) initializes Mach’s low-level kernel
debugger and halts the kernel boot at this stage, so a debugger may be attached. Otherwise, a few
more command line arguments (dealing with scheduling quanta and preemption) are parsed, and
then a call to machine_conf() sets the machine_info structure’s memory_size fi eld. The full list of
arguments can be found later in this chapter.

A call to ml_thrm_init() hints at some future plans to initialize CPU thermal reporting on Intel
processors, as PPC’s XNU had, but NOTYET: this is #ifdef'ed out on both OS X and iOS. The last
step is, therefore, a fall through to kernel_bootstrap(), which also never returns, and performs
the bulk of the low level Mach initialization.

kernel_bootstrap
The kernel_bootstrap(osfmk/kern/startup.c) function continues to setup and initialize the
core subsystems of the Mach kernel, erecting the necessary foundations upon which the BSD is over-
laid. From this stage onward, initialization is largely the same in OS X and iOS, with a few minor
differences that relate to low-level initialization of machine-dependent aspects (such as the physical
map abstraction), or to specifi c features, most of which are new to iOS.

Aside from virtual memory (without which there is nothing), kernel_bootstrap also initializes the
key abstractions of Mach:

 ‰ IPC: Mach is based around message passing, and this requires signifi cant resources, such as
memory, synchronization objects, and the Mach Interface Generator (MIG).

 ‰ Clock: The clock abstractions enable alarms (the system clock) and time-telling (the
“calendar”).

c09.indd 314c09.indd 314 9/29/2012 5:32:20 PM9/29/2012 5:32:20 PM

Booting XNU x 315

 ‰ Ledgers: Ledgers are part of Mach’s system enabling accounting. This has recently been
revamped in iOS 5 and Mountain Lion.

 ‰ Tasks: Tasks are Mach’s containers, akin to BSD’s processes (in fact, a 1:1 mapping exists
between the two).

 ‰ Threads: Threads are the actual units of execution. A task is merely a resource container, but
it is the thread which gets scheduled and executed.

The kernel_bootstrap function doesn’t return. Instead, it assumes the context of the kernel_
bootstrap_thread, which is the system’s fi rst active thread. As this thread, it carries on with ini-
tialization, dealing with subsystems of increasing complexity.

The fl ow of kernel_bootstrap is annotated in Figure 9-3.

ipc_bootstrap
(osfmk/ipc/ipc_init.c)

mac_policy_init
(security/mac_base.c)

vm_mem_bootrap
(osfmk/vm/vm_init.c)

vm_mem_init
(osfmk/vm/vm_init.c)

sched_init
(osfmk/kern/sched_prim.c)

wait_queue_bootstrap
(osfmk/kern/wait_queue.c)

ipc_init
(osfmk/ipc/ipc_init.c)

scale_setup
(osfmk/kern/startup.c)

Print version
A small, but memorable printf(): "Darwin Kernel Version 11.0.0:…"
(suppressed on iOS as printf()is replaced by consume_printf_args).

Parse (some) boot arguments
"-l" "trace" and "serverperfmode" arguments are checked and their

respective kernel variables are initialized.

Sets task and thread maxima, based on serverperfmode argument. Calls

bsd_scale_setup (bsd/dev/unix_startup.c) for max procs, vnodes,

etc., which calls bsd_exec_setup (bsd/kern/bsd_init.c) for max number

of execs().

Massive initialization function which sets up the virtual memory subsystem:

vm_pages, zones, vm_objects, vm_maps, kmem, pmap, kalloc, vm_fault,

memory managers, and the device_pager.

Wrapper over vm_object_init (osfmk/vm/vm_object.c), which is a null sub

(vm_mem_bootstrap()did everything anyway).

Initialize the scheduler subsystem. First, command line arguments are parsed to check

the value of sched, or kern.sched (from device tree). This value will override the

choice of default scheduling algorithm. Then, the appropriate scheduler will be called.

For more on scheduling, see the next chapter.

Initializes the memory zones used to maintain the kernel’s wait queues.

Sets up the memory required by the IPC subsystem: IPC memory zones, and IPC

spaces. Also initializes MIG, IPC hash tables, synchronization objects, and the host

notify system.

Allocates a submap used by the kernel for ipc. Calls ipc_host_init
(osfmk/kern/ipc_host.c) which creates the host special ports, the

processor set port, and the default processor port.

Initializes memory resources required by the Mandatory Access Control

(MAC) framework, as well as the zone used to store MAC labels.

Kernel_bootstrap:

FIGURE 9-3: The fl ow of kernel_bootstrap (from osmfk /kern/startup.c) continues

c09.indd 315c09.indd 315 9/29/2012 5:32:21 PM9/29/2012 5:32:21 PM

316 x CHAPTER 9 FROM THE CRADLE TO THE GRAVE — KERNEL BOOT AND PANICS

thread_init
(osfmk/kern/thread.c)

kernel_bootstrap_thread
(osfmk/kern/startup.c)

Initializes memory zone for threads, and calls

stack_init(osfmk/kern/stack.c)to set up kernel stack. Also calls

machine_thread_init(osfmk/i386/pcb.c)for any machine specific

initialization, such as setting up zones for saved thread states (OS X: x86[_64])

saved state and debug state zones. iOS: arm debug state zone.

Threads are initialized, so formally create first thread,

kernel_bootstrap_thread, and become it by loading its context (never

returns).

task_init
(osfmk/kern/task.c)

Initializes memory zone for tasks, and officially creates the kernel_task.
iOS: Also creates per-task ledgers.

clock_init
(osfmk/kern/clock.c)

mapping_free_prime
(osfmk/i386/pmap_common.c)

machine_init
(osfmk/i386/AT386/model_dep.c)

Frees pv hashes. Null sub on iOS.

OS X: Displays CPU ID and features. Initializes EFI and SMP (see below).

Initializes FPU and configures clock. Initializes MTRR and PAT. Frees low

memory pages. iOS: just configures clock.

Falls through to clock_oldinit (osfmk/kern/clock_oldops.c),

which initializes the structures of all defined clocks in the system.

ledger_init
(osfmk/kern/ledger.c)

OS X: Initializes root wired and paged ledgers. (This will change in Mountain Lion)

iOS: uses per-task ledgers, so this function is not called.

PMAP_ACTIVATE_KERNEL
(osfmk/vm/pmap.h)

This macro either #defines to nothing on OS X, or calls another, PMAP_ACTIVATE
(if it is defined) to activate the kernel pmap on the given processor. This seems null

on both iOS and OS X.

FIGURE 9-3: The fl ow of kernel_bootstrap (from osmfk /kern/startup.c) (continued)

machine_init
Just before the Mach primitives are initialized, kernel_bootstrap calls machine_init(osfmk/
i386/AT386/model_dep.c), for machine specifi c aspects. On ARM, this call doesn’t do much,
aside from confi gure the clock. In OS X, however, this call is of paramount importance, especially
in SMP (which Mac hardware is by default). Its fl ow is shown in Figure 9-4:

The function responsible for the SMP initialization is smp_init. This function is responsible for two
main tasks:

 ‰ Initialize the LAPIC: In SMP architectures, each processor (or core) has a Local Advanced
Programmable Interrupt Controller. This is responsible, at the hardware level, for interrupt
delivery to the core.

 ‰ Set the slave CPU’s entry point: This is done using a physical memory copy through
install_real_mode_bootstrap(), because Intel CPUs and cores wake up with paging
disabled. The entry point is set to slave_pstart(), as discussed previously.

c09.indd 316c09.indd 316 9/29/2012 5:32:21 PM9/29/2012 5:32:21 PM

Booting XNU x 317

debug_log_init
(osfmk/kern/debug.c)

Display CPU features
(all in osfmk/i386/cpuid.c)

smp_init
(osfmk/i386/mp.c)

efi_init
(osfmk/i386/AT386/model_dep.c)

Initialize various locks and call the following:

Init_fpu
(osfmk/i386/fpu.c)

Set CR0 to enable CPU, Set CR4 to enable SIMD and XSAVE, if possible.

MTRR settings

clock_config
(osfmk/kern/clock.c)

pmap_lowmem_finalize
(osfmk/i386/pmap.c)

Memory Type Range Register support, #if CONFIG_MTRR.

Free pages in low memory. Optionally write-protect kernel (if wpkernel
argument is specified).

Sets calendar (real time clock) adjustment and wake calls. Falls through to

clock_oldconfig (clock_oldops.c), which sets alarms and calls each clock’s

configuration function.

Initializes EFI Runtime services and maps memory.

Initializes the panic log. Not really used (log

is initialized anyway statically).

i386_smp_init
(osfmk/i386/mp_native.c)

install_real_mode_bootstrap
(osfmk/i386/acpi.c)

Copies CPU boot (slave_pstart) to physical

memory in real-mode vector area.

Initializes and configures local APIC, and installs

Non Maskable (NMI) and Inter-Processor (IPI)

interrupt handlers.

console_init
(osfmk/console/i386/serial_console.c)

Allocates console ring buffer and read/write locks.

cpu_thread_init
(osfmk/i386/mp_native.c)

ml_cpus_*
(osfmk/i386/mp.c)

Identify Intel processor idiosyncrasies.

Local APIC initializations
(osfmk/i386/lapic_native.c)

Probe for local APIC?

No Local APIC (=UniProcessor)

FIGURE 9-4: The fl ow of machine_init() on OS X

c09.indd 317c09.indd 317 9/29/2012 5:32:21 PM9/29/2012 5:32:21 PM

318 x CHAPTER 9 FROM THE CRADLE TO THE GRAVE — KERNEL BOOT AND PANICS

kernel_bootstrap_thread
In its new persona as the kernel_bootstrap_thread the main thread keeps on with its task of ini-
tializing the various subsystems, whose foundations were established in the last stage.

Now that thread support has been enabled, the kern_bootstrap_thread can call on kernel_
create_thread() to spawn helper threads. Indeed, it does just that, with the very fi rst thread cre-
ated being the idle thread. This thread is necessary so that the system cores or CPUs will always
have something to execute when all other threads are blocking.

Following the idle thread, the next thread started is the scheduler itself. The scheduler is described
in depth later in Chapter 11. The scheduler is the task which will, at specifi ed intervals and after
interrupts, get to decide which thread gets to execute next.

After spawning a few system threads to handle thread maintenance, OS X’s XNU starts a mapping_
replenish() thread. Similar functionality is achieved on iOS by spawning a zone_refill_thread,
though only a little bit later.

If the kernel is confi gured with SERIAL_KDP (as both OS X and iOS are), a call to init_kdp() next
initializes the debugger. It’s rather odd that Apple left KDP support in iOS: Though i-Devices come
with no offi cial serial port, their (single) connection can be made into a serial port[1], and KDP sup-
port is instrumental in letting hackers obtain a view of memory.

The next important step carried out is initializing IOKit, which is XNU’s device driver framework.
This is key, because without IOKit, XNU can’t directly access devices: It simply has no code of its
own to access even the most basic devices of the disk, display, and network.

Once IOKit is initialized, interrupts may be enabled. This is done by a call to spllo(), which
#defines to ml_enable_interrupts(). As shown in the previous chapter, this function adapts to
the underlying interrupt mechanism (Intel’s IF EFLAG or ARM’s Interrupt bit in CPSR).

The next module to initialize is the shared region module, which is used by clients such as dyld(1)
when loading shared libraries, and the kernel itself in what is known as the commpage. The com-
mpage is a single page that is mapped from the kernel directly to all processes, and contains various
exported data, as well as functions. This page always resides in the same address and is accessible to
all processes, as described in Chapter 4.

If the kernel is compiled with Mandatory Access Control (CONFIG_MACF), as both OS X and iOS are,
a call to mac_policy_initmach() follows, which enables the policy modules to start their work as
early as possible. This is crucial for maintaining system security, as otherwise various race condi-
tions could allow attackers to attempt operations before policies come into full effect.

Once MAC is enabled, the BSD subsystem can be initialized. This is a massive function, bsd_
init(), worthy of its own section and is detailed later. This function eventually spawns the init
task, which executes /sbin/launchd, the progenitor of all user mode processes.

Following BSD’s initialization, if the kernel was confi gured with the serial boot argument, a
serial console is enabled by spawning a dedicated console listener thread. By this time, user mode
processes (spawned after the BSD subsystem completes its initialization) may access the console by
opening its tty. Again, somewhat surprisingly, this is enabled in iOS.

c09.indd 318c09.indd 318 9/29/2012 5:32:22 PM9/29/2012 5:32:22 PM

Booting XNU x 319

On an SMP system, the penultimate step is to enable the local page queue for each CPU. On a uni-
processor, this is skipped. Finally, with nothing else left to do, the main thread assumes a new per-
sonality for the last time — that of vm_pageout(), which will manage swapping for the system and
is covered in Chapter 12, dealing with the Mach VM subsystem. (See Figure 9-5.)

Starts the thread termination daemon (to clean

up after threads) and the thread stack daemon

(to allocate memory for new threads).

Starts the kernel thread callout daemon.

This is a background thread which lives to

take on miscellaneous chores, such as background

memory allocation, by thread_call_setup().

Enable interrupts

OS X: cpu_userwindow_init

clock_service_create
(osfmk/kern/clock_oldops.c)

device_service_create
(osfmk/device/device_init.c)

kdp_init
(sfmk/kern/startup.c)

Bind to current CPU

OS X: mapping_adjust
(osfmk/i386/pmap_common.c) OS X: mapping_replenish()

(osfmk/i386/pmap_common.c)

iOS: nkdbufs, kern tracing

Kernel_bootstrap_thread

Creates idle thread.

thread_terminate_daemon()
(osfmk/kern/thread.c)

thread_stack_daemon()
(osfmk/kern/thread.c)

thread_daemon_init
(osfmk/kern/thread.c)

thread_call_initialize
(osfmk/kern/thread_call.c)

idle_thread_create(processor)
(osfmk/kern/startup.c)

sched_init_thread()
(osfmk/kern/sched_prim.c)

sched_startup
(osfmk/kern/sched_prim.c)

thread_call_daemon()
(osfmk/kern/thread_call.c)

Starts the system scheduler:

If the kernel is configured with SERIAL_KDP, this will set up a kernel debugger connection

on the serial port. By using KDP, a debugger can be connected from a remote machine as

early as this stage.

This is a platform expert call to perform several initializations. Before actually starting IOKit,

it initializes two Color LookUp Tables: the BootCLUT (the familiar grey screen on OS X),

the FailedBootCLUT the Panic UI (the familiar error screen, which is discussed later),

and the spinning progress indicator as the system boots. Finally, it starts IOKit by

a call to StartIOKit (iokit/Kernel/IOStartIOKit.cpp).

Creates the HOST_IO_MASTER_PORT, a special host port used to access devices.

Creates the system clock abstraction, which allows the setting

of alarms and timers in the kernel and in user mode.

OS X: Adust kernel pmaps and start map

recycle/replenish thread. (iOS: not called).

PE_init_iokit
(pexpert/i386/pe_init.c)

zone_refill_thread() is likely similar to mapping_replenish().

OS X: nkdbufs, kern tracing

OS X: cpu_physwindow_init

OS X: pmc_bootstrap iOS: zone_prio_refill_configure iOS: zone_refill_thread()

FIGURE 9-5: Flow of kernel_bootstrap_thread

continues

c09.indd 319c09.indd 319 9/29/2012 5:32:22 PM9/29/2012 5:32:22 PM

320 x CHAPTER 9 FROM THE CRADLE TO THE GRAVE — KERNEL BOOT AND PANICS

mac_policy_initmach
(security/mac_base.c)

Finish MAC module initialization.

serial_keyboard_init
(osfmk/console/serial_general.c)

bsd_init
(bsd/kern/bsd_init.c)

vm_pageout()
(osfmk/vm/vm_pageout.c)

vm_page_init_local_q
(osfmk/vm/vm_resident.c)

Initialize the BSD subsystem (see below) and spawn the

bsdinit_task (exec’ing launchd).
bsdinit_task()

(bsd/kern/bsd_init.c)

Jettison kernel linker
(becomes launchd)

If the kernel was booted with “serial,” a separate kernel

thread is started for tty consoles
serial_keyboard_start()

(osfmk/console/serial_general.c)

Unbind from current CPU

(becomes pageout daemon)

SMP: Initialize CPU’s local

page queue. Null on

uniprocessor

Continuously invokes serial_keyboard_poll(),

which gets characters from the serial port

(using serial_getc), converts them to console

input (using cons_cinput). The BSD subsystem

previously registered the receiving end of the console.

vm_shared_region_init()
(osfmk/vm/vm_shared_region.c)

vm_commpage_init()
(osfmk/vm/vm_shared_region.c)

Initialize the shared region module and the commpage (see below).

FIGURE 9-5: Flow of kernel_bootstrap_thread (continued)

bsd_init
The entire setup of the BSD layer of XNU is performed by a single function called (unsurprisingly)
bsd_init(), in the similarly named bsd/kern/bsd_init.c. This function call is enclosed in an
#ifdef MACH_BSD, which demonstrates just how decoupled the Mach part of XNU can be made
from its BSD. In XNU, however, the two are intricately intertwined following this call.

There is a signifi cant amount of work which follows. Most of it is performed by self-contained *_
init() functions, to initialize the various subsystems, each in turn. Most of the functions take no
arguments. This (and a panic or two) makes it relatively easy to pick out of iOS’s long disassembly.
Because this function is the fulcrum of all of the BSD subsystem, the rest of the disassembly falls like
a string of dominoes, as shown in Listing 9-4, which has been partially annotated:

LISTING 9-4: Partial disassembly of bsd_init() of an iPhone 4S memory image

 ...
0x802B710E LDR R0, "bsd_init: Failed to create execve"...
0x802B7110 BL _panic
0x802B7114 B 802B711A ; Normal boot obviously skips over the panic
0x802B7116 BL _bsd_bufferinit
0x802B711A BL sub_802040AC ; IOKitInitializeTime
0x802B711E MOVS R6, #0
0x802B7120 BL sub_802B7D7C ; ubc_init
0x802B7124 BL sub_801E2070 ; devsw_init
0x802B7128 BL sub_802B5DE4 ; vfsinit
0x802B712C BL sub_801AF7F4 ; mcache_init
0x802B7130 BL sub_801BE110 ; mbinit

c09.indd 320c09.indd 320 9/29/2012 5:32:22 PM9/29/2012 5:32:22 PM

Booting XNU x 321

0x802B7134 BL sub_800D858C ; net_str_id_init
0x802B7138 BL sub_802B7740 ; knote_init
0x802B713C BL sub_802B74E8 ; aio_init
0x802B7140 BL sub_801B5320 ; pipeinit
0x802B7144 BL sub_801D24D4 ; pshm_lock_init
0x802B7148 BL sub_801D1AB0 ; psem_lock_init
0x802B714C BL sub_801DBC0C ; pthread_init
0x802B7150 BL sub_802B8174 ; pshm_cache_init
0x802B7154 BL sub_802B814C ; psem_cache_init
0x802B7158 BL sub_802B7D28 ; time_zone_slock_init
0x802B715C BL sub_801B2410 ; select_wait_queue_init
0x802B7160 BL sub_802B74B8 ; stackshot_lock_init
0x802B7164 BL sub_801ABEAC ; sysctl_register_fixed
0x802B7168 BL sub_802B7B84 ; sysctl_mib_init
0x802B716C BL sub_800C8A04 ; dlil_init
0x802B7170 BL sub_802B63A8 ; protocol_kpi_init
0x802B7174 BL sub_802B7FFC ; socketinit
0x802B7178 BL sub_802B7EB8 ; domaininit
0x802B717C BL sub_800FC040 ; iptap_init

You can follow the fl ow along in Figure 9-6. Note that, unlike the previous fi gure, this does not
point out the threads spawned by the functions, even though quite a few do so.

throttle_init
(unknown at time of writing)

bsd_init()

ML/iOS: initializes a lock and a thread call to an I/O throttling thread.

funnel_alloc(KERNEL_FUNNEL)
(osfmk/kern/thread.c)

Allocates the kernel funnel (global high-level lock).

Print copyright
(osfmk/kern/thread.c)

OS X: Prints the BSD license copyright (“Copyright (c) 1982, 1986, 1989..”)

iOS: silently consumed by printf.

kmeminit
(bsd/kern/kern_malloc.c)

Initializes BSD’s memory zones, which are built over Mach’s. These are used

extensively for BSD’s subsystems, and are discussed in Chapter 13.

parse_bsd_args
(bsd/kern/bsd_init.c)

Parses “-b” “-s” and “-x” boot and some other arguments. Inline in iOS.

kauth_init
(bsd/kern/kern_authorization.c)

Initializes the kauth subsystem, used for modules, and brings up all of its components: cred,

identity, groups, scope, and resolver.

procinit
(bsd/kern/kern_proc.c)

tty_init
(bsd/kern/tty.c)

Christen the kernel task

Create process lock groups

Initializes the process lists (all, and zombie). Also initializes hash tables for pids, process

groups, sessions, and ui. #if CONFIG LCTX (true on OS X/iOS) also initializes

login contexts.

The tty line discipline subsystem, by allocating the tty lock group.

Ties the kernproc structure (a.k.a proc0) to the Mach kernel_task object by setting that

task’s bsdinfo pointer. Also Officially names the BSD process “kernel task” (by setting its

p->p comm).

Creates the global process lock group (“proc”) and #if CONFIG_FINE_LOCK_GROUPS
(which is false) also defines finer-grainer locks.

FIGURE 9-6: The fl ow of bsd_init() continues

c09.indd 321c09.indd 321 9/29/2012 5:32:23 PM9/29/2012 5:32:23 PM

322 x CHAPTER 9 FROM THE CRADLE TO THE GRAVE — KERNEL BOOT AND PANICS

Associate file descriptor table

Associate rlimit table

Associate sigacts and stats

chgproccnt(0, 1)
(bsd/kern/kern_proc.c)

Allocate execve submap

bsd_bufferinit
(bsd/dev/unix_startup.c)

IOKitInitializeTime
(iokit/Kernel/IOStartIOKit.cpp)

ubc_init
(bsd/kern/ubc_subr.c)

devsw_init
(bsd/kern/bsd_stubs.c)

vfsinit
(bsd/vfs/vfs_init.c)

Initializes the Virtual Filesystem Switch, which is the BSD layer’s unified interface

for file systems (Chapter 14).

Initializes the Unified Buffer Cache, which is the BSD layer’s block buffering

mechanism, and is used to speed up file and block device I/O.

Initializes the BSD device switch lock group.

“Charges” root’s process quota for two processes (0, the kernproc, and 1, the

bsdinit_task to launch, once called mach_init, and nowadays called

launchd).

Allocates buffers for most BSD subsystems, such as vnodes, network protocols. Called

bsd_startupearly(bsd/dev/unix_startup.c)and ends with bufinit
(bsd/vfs/vfs_bio.c), which also initializes lists and hashes

Waits until IOKit’s IORTC (real time clock) arrives (and, on OS X, also IONVRAM, for NVRAM

support), and initializes the system time (or calendar, in Mach parlance) to support

gettimeofday()functions.

Allocates a kernel page able submap which can be used during execve(). This

is required because an execve() will be needed soon to spawn PID 1.

mac_cred_label_associate_kernel()and mac_task_label_update_cred()
to update the kauth credentials previously created and tie them to the Mandatory Access

Control framework.

Ties fileproc0, the master file descriptor table, to kernproc’s p_fd, and initialize some of

its fields.

Ties pstats0 and sigacts0 to p_stats and p_sigacts fields of kernproc.

Set execarg limits

…

mac_policy_initbsd
(security/mac_base.c)

Create Process 0

Enables the BSD portion of the MAC framework policies and auto-exempt the kernel process

from it. On Intel, a call to check policy init()validates the policy was initialized correctly.

Turns the kernel process into a full BSD process, with PID 0. Initializes various fields of

kernproc to reflect the code signing validity and other settings of the process.

Kauth credentials

file_lock_init
(bsd/kern/kern_descrip.c)

Sets limits on exec()args, and the maximum size of the execargs cache as a function of

how many simultaneous exec()calls are allowed.

Allocates credentials for the kernel using kauth_cred_create(), and then calls

kauth_cred_ref()to increment the reference count. Both functions are from

bsd/kern/kern_credential.c.

Initialize the “file” lock group, which contains the uipc lock and file_flist_lock.

MAC label assignment
Creates the process resource limits table (used by ulimit(1)and

get/setrlimit(2)). This is inherited later by all subprocesses.

FIGURE 9-6: The fl ow of bsd_init() (continued)

c09.indd 322c09.indd 322 9/29/2012 5:32:23 PM9/29/2012 5:32:23 PM

Booting XNU x 323

Sys V Sem/Shm/Msg lock Init

POSIX Sem/Shm lock Init

pthread_init
(bsd/kern/pthread_synch.c)

POSIXSem/Shm cache Init
(bsd/kern/posix_[sem|shm].c)

time_zone_slock_init
(bsd/kern/kern_time.c)

select_wait_queue_init
(bsd/kern/sys_generic.c)

stackshot_lock_init
(bsd/kern/kdebug.c)

Sysctl registration
(…c)

Obtaining a stackshot (discussed in Chapter 5) requires a lock over the processes, so they

don’t get modified during the process of the stackshot.

dlil_init
(bsd/net/dlil.c)

proto_kpi_init
(bsd/net/kpi_protocol.c)

Depending on SYSV_SHM, SYSV_MEM, and SYSV_MSG, the locks for the System V APIs are

initialized here. This holds in OS X, but not in iOS.

Initialize hash tables for POSIX semaphores and shared memory.

POSIX Semaphores and Shared memory locks, by contrast supported on both OS X and iOS,

are initialized here, as a prerequisites for POSIX threads.

Allocates a lock group for PThreads. If PSYNCH is defined, also a workgroup cleanup thread

callout, and a zone for psynch (discussed in Chapter 13).

Falls through to wait_queue_init
(&select_conflict_queue, SYNC_POLICY_FIFO);.

Allocates the time zone spin lock.

Initializes the Data Link Interface Layer (DLIL), which is the support for layer II protocols, such as

Ethernet. Parses several network related boot args, initializes various zones, spawns the dlil

input_thread for the loopback interface, and potentially initializes PF, if defined.

Allocates the locks used by the kernel programming interface which enables access to

registered network protocols from within the kernel.

A call to sysctl_register_fixed (bsd/kern/kern_newsysctl.c)
registers the top level sysctl(8)namespaces, followed by a call to

sysctl_mib_init(bsd/kern/kern_mib.c)to populate the hw.* MIBs.

mcache_init
(bsd/kern/mcache.c)

mbinit
(bsd/kern/uipc_mbuf.c)

net_str_id_init
(bsd/net/net_str_id.c)

OS X: audit_init
(bsd/security/audit/audit.c)

#if CONFIG_AUDIT (which is true in OS X, but not iOS), this brings up the audit subsystem.

Auditing is discussed in Chapter 3.

Allocates a lock for net_str, which is used in MBuf tag allocation and looking up strings

associated with network kernel extensions (NKEs).

Initializes MBufs, which are the data buffers used by the network stack.

Initializes the BSD mcache mechanism, which is an efficient allocator with individual CPU cache

optimizations (discussed in chapter 13).

knote_init
(bsd/kern/kern_event.c)

aio_init
(bsd/kern/kern_aio.c)

pipeinit
(bsd/kern/sys_pipe.c)

Initializes the asynchronous I/O locks: aio_proc, aio_entry, and aio_queue.
Also initializes AIO_NUM_WORK_QUEUES (currently, 1) work queue, and

CONFIG_AIO_THREAD_COUNT worker threads.

Allocates the memory zone (“knote zone”) to be used by up to 8192 kernel events, and the

required lock groups for them. Sets up the kqueue lock, and timer filter lock.

Allocates a lock group for PThreads. If PSYNCH is defined, also a workgroup cleanup thread

callout, and a zone for psynch (discussed in Chapter 13).

continues

c09.indd 323c09.indd 323 9/29/2012 5:32:23 PM9/29/2012 5:32:23 PM

324 x CHAPTER 9 FROM THE CRADLE TO THE GRAVE — KERNEL BOOT AND PANICS

bsd_autoconf
(bsd/kern/bsd_init.c)

loopattach()
(bsd/net/if_loop.c)

Calls kminit (bsd/dev/i386/km.c) which is used for the serial

console, and falls through to IOKitBSDInit (iokit/bsddev/
IOKitBSDInit.cpp), which publishes all the IOBSD resources.

Inline in iOS.

ether_family_init
(bsd/net/ether_if_module.c)

With an uncommon #include right before it, a call to loopattach
brings up the lo0 interface.

pfloginit
(bsd/net/if_pflog.c)

net_init_run
(bsd/net/init.c)

utun_register_control
(bsd/net/if_utun.c)

netsrc_init
(bsd/net/netsrc.c)

domainfin
(bsd/kern/uipc_domain.c)

vnode_pager_bootstrap
(osfmk/vm/bsd_vm.c)

#if NETWORKING

(True in OS X/iOS)

Set sup BSD’s vnode pager, which is used to swap to memory mapped

files

If PF is enabled, this initializes it. PF is a packet filtering mechanism

which is used in Lion

Registers AF_INET, AF_INET6, AppleTalk (#ifNETAT) protocol plumbers,

and initializes vlan (#if VLAN) and bond (#if BOND) families. Also

enables bridging, #if IF_BRIDGE.

UTUN (User TUNnel) is a mechanism to enable user mode processes

to register network interfaces (tun# devices) to which sockets can be

bound. All traffic then gets redirected to the registering process, which

enables VPN and tunneling software.

Registers the NETSRC PF_SYSTEM control. (Discussed in Chapter 16).

Runs all the functions registered in a private list by net_init_add()
in reverse order.

Runs any specific address family finalization routines. Currently used

for ip6_fin().

inittodr
(bsd/kern/kern_time.c)

Verifies the real time clock value, or set to the “epoch” (1/1/70).

socketinit
(bsd/kern/uipc_socket.c)

domaininit
(bsd/kern/uipc_domain.c)

Allocates the locks used by the kernel programming interface which

enables access to registered network protocols from within the kernel.

Creates the hardcoded domains (socket address families) used in XNU.

Additional domains may be created dynamically.

#if SOCKETS

(true in OS X/iOS)

iOS/ML: iptap_init
(probably bsd/net/iptap.c)

iOS: kern_hibernation_init
(bsd/kern/kern_memorystatus.c)

iOS: kern_memorystatus_init
(bsd/kern/kern_memorystatus.c)

Kernel and process hibernation is enabled #if CONFIG_FREEZE is

set. Although the code for this has been present for a long time, it is

only enabled in iOS (for details see Chapters 11 and 13).

Another feature, the kernel memory status thread, is enabled only

#if CONFIG_EMBEDDED (i.e. on iOS). This monitors the system’s

RAM consumption, and reacts to low memory events.

#if
CONFIG_FREEZE
(iOS only)

#if
CONFIG_EMBEDDED
(iOS only)

Iptap is another feature that first appeared in iOS and has been ported

into Mountain Lion.

kmstartup
(osfmk/profiling/profile-mk.c)

If kernel profiling is enabled (which it normally is not), this starts the

kernel profiling support.

thread_wakeup(&lbolt)
(bsd/kern/bsd_init.c)

Lightning bolt is a thread which wakes up once every second to

handle timeout events. This wakes it up for the first time, effectively

kickstarting the mechanism.

FIGURE 9-6: The fl ow of bsd_init() (continued)

c09.indd 324c09.indd 324 9/29/2012 5:32:23 PM9/29/2012 5:32:23 PM

Booting XNU x 325

bsd_utaskbootstrap
(bsd/kern/bsd_init.c)

pal_kernel_announce
(osfmk/i386/pal_native.h)

OS X: Set PPC arch handler
(bsd/kern/kern_sysctl.c)

mountroot_post_hook

bsd_init_kprintf(“done\n”);

Another debug print that doesn’t see the light of day

(as bsd_init_kprintf is a null #define). Still, after *so* much hard

work, bsd_init is entitled to a sense of achievement! (As are you,

if you’ve followed along so far!)

Clones PID 1 from PID 0. Signals the special case AST_BSD, which will

effectively start PID 1 (discussed next) and lead to user mode initialization.

Inline in iOS.

Platforms any platform specific tasks related with the kernel’s new

live state. A null sub.

Installs the PowerPC architecture handler. This used to provide the hook

by means of which Rosetta (/usr/libexec/oah/RosettaNonGrata)

could be called on execution of Mach-O binaries.

If any component has registered a function to be called post successful

root filesystem mounting, bsd_init will call it here.

#if
CONFIG_EMBEDDED

#if
NFS_CLIENT

#if
CONFIG_IMAGEBOOT

#if
DEVFS

Mount root file system

iOS: IOSecureBSDRoot
(iokit/bsddev/IOKitBSDInit.cpp)

NFS Networkboot
(…c)

imageboot_needed()?

Set kernel start time

devfs_kernel_mount
(bsd/miscfs/devfs/devfs_vfsops.c)

Optional (#if DEVFS), but on by default, this mounts the /dev
file system.

Attempts to mount the root file system, using vfs_mountroot(),

and retry until successful. If successful, obtain root vnode and tie to

current directory pointer of kernproc.

Calls on the Platform Expert to secure the BSD root device.

If NFS Client functionality is enabled, optionally boot from a network

root by calling nfsboot_setup()from bsd/kern/netboot.c.

If Image boot is enabled, call imageboot_needed (bsd/kern/
kern_imageboot), to check on rp0 and rp1 boot args, and

potentially calls imageboot_setup() to mount the image and boot

from it.

Sets kernproc->p_start to exact time.

siginit()
(bsd/kern/kern_sig.c)

Initializes default signal masks for process 0 (which will be inherited

by all subsequent BSD processes) with flags from sigprop template

(in bsd/sys/signalvar.h).

FIGURE 9-6: The fl ow of bsd_init()

bsdinit_task
Towards the end of its execution, bsd_init() makes a call to bsd_utaskbootstrap(). This func-
tion is responsible indirectly for starting PID 1, which is the fi rst task to emerge into user mode. To
do so, it fi rst makes a call to cloneproc(), which creates a new Mach task. But from here to user
mode the road is long.

To actually spin off the new task, utaskbootstrap() generates an asynchronous system trap (AST)
by calling act_set_astbsd() on the newly created thread. ASTs are covered in Chapter 11, deal-
ing with Mach scheduling, but in the interim suffi ce it to say that they are scheduling events, which
in this case will result in the init task executing: The call followed by a call to thread_resume()

c09.indd 325c09.indd 325 9/29/2012 5:32:24 PM9/29/2012 5:32:24 PM

326 x CHAPTER 9 FROM THE CRADLE TO THE GRAVE — KERNEL BOOT AND PANICS

on it, and then utaskbootstrap() returns to bsd_init(). When the AST is processed, the Mach
AST handler will specifi cally handle this special case, by calling bsd_ast() (from bsd/kern/kern_
sig.c), which in turn calls bsdinit_task(). This function is shown in Listing 9-5:

LISTING 9-5: bsdinit_task() (from bsd/kern/bsd_init.c)

bsdinit_task(void)
{
 proc_t p = current_proc();
 struct uthread *ut;
 thread_t thread;

 process_name("init", p);

 ux_handler_init();

 thread = current_thread();
 (void) host_set_exception_ports(host_priv_self(),
 EXC_MASK_ALL & ~(EXC_MASK_RPC_ALERT),//pilotfish (shark) ..
 (mach_port_t) ux_exception_port,
 EXCEPTION_DEFAULT| MACH_EXCEPTION_CODES,
 0);

 ut = (uthread_t)get_bsdthread_info(thread);

 bsd_init_task = get_threadtask(thread);
 init_task_failure_data[0] = 0;

#if CONFIG_MACF
 mac_cred_label_associate_user(p->p_ucred);
 mac_task_label_update_cred (p->p_ucred, (struct task *) p->task);
#endif
 load_init_program(p);
 lock_trace = 1;
}

The bsdinit_task() sets the initial process name to init, true to its UNIX origins. This is
nothing more than a simple memcpy to the proc_t’s comm fi eld. Next, a call to ux_handler_
init(). This creates a separate kernel thread, ux_handler, which is responsible for handling
UNIX exceptions — i.e. receiving messages on a global ux_exception_port. What follows is a
registration of the init thread’s exception port, to register this global port as its own. This, as is
discussed in Chapter 12 (under “Exceptions”), ensures that all UNIX exceptions of init — and
therefore all UNIX processes (its descendants) — are handled by this thread. Finally, it calls
load_init_program().

load_init_program() (shown in Listing 9-6) is responsible for turning PID 1 into the well-known
launchd. To do so, it fi rst manually sets up argv[], in user memory. The argv[0] is set to init_
program_name, a 128-byte array hardcoded to /sbin/launchd. Optionally, if the kernel was booted
with -s (which results in the boothowto global variable fl agging RB_SINGLE), the same -s is propa-
gated to launchd.

c09.indd 326c09.indd 326 9/29/2012 5:32:24 PM9/29/2012 5:32:24 PM

Booting XNU x 327

Once argv[] is set up, launchd is started by a standard call to execve(). Since this call is expected
to never return, if it does, the exec has failed. The code that follows it, therefore, is a kernel panic.
With this, the path this thread takes is all in user mode, and is discussed in Chapter 5.

LISTING 9-6: load_init_program (from bsd/kern/kern_exec.c)

// Note that launchd's path is hard-coded right into the kernel.
// This was "/mach_init" up to OS X 10.3

static char init_program_name[128] = "/sbin/launchd";
struct execve_args init_exec_args;

/*
 * load_init_program
 *
 * Description: Load the "init" program; in most cases, this will be "launchd"
 *
 * Parameters: p Process to call execve() to create
 * the "init" program
 *
 * Returns: (void)
 *
 * Notes: The process that is passed in is the first manufactured
 * process on the system, and gets here via bsd_ast() firing
 * for the first time. This is done to ensure that bsd_init()
 * has run to completion.
 */

void load_init_program(proc_t p)
{
 vm_offset_t init_addr;
 int argc = 0;
 uint32_t argv[3];
 int error;
 int retval[2];

 /*
 * Copy out program name.
 */

 init_addr = VM_MIN_ADDRESS;
 (void)vm_allocate(current_map(),&init_addr,PAGE_SIZE,VM_FLAGS_ANYWHERE);
 if (init_addr == 0)
 init_addr++;

 (void) copyout((caddr_t) init_program_name, CAST_USER_ADDR_T(init_addr),
 (unsigned) sizeof(init_program_name)+1);

 argv[argc++] = (uint32_t)init_addr;
 init_addr += sizeof(init_program_name);
 init_addr = (vm_offset_t)ROUND_PTR(char, init_addr);

 /*
continues

c09.indd 327c09.indd 327 9/29/2012 5:32:24 PM9/29/2012 5:32:24 PM

328 x CHAPTER 9 FROM THE CRADLE TO THE GRAVE — KERNEL BOOT AND PANICS

 * Put out first (and only) argument, similarly.
 * Assumes everything fits in a page as allocated
 * above.
 */
 if (boothowto & RB_SINGLE) {
 const char *init_args = "-s";

 copyout(init_args, CAST_USER_ADDR_T(init_addr),
 strlen(init_args));

 argv[argc++] = (uint32_t)init_addr;
 init_addr += strlen(init_args);
 init_addr = (vm_offset_t)ROUND_PTR(char, init_addr);

 }
 /*
 * Null-end the argument list
 */
 argv[argc] = 0;
 /*
 * Copy out the argument list.
 */

 (void) copyout((caddr_t) argv, CAST_USER_ADDR_T(init_addr),
 (unsigned) sizeof(argv));

 /*
 * Set up argument block for fake call to execve.
 */

 init_exec_args.fname = CAST_USER_ADDR_T(argv[0]);
 init_exec_args.argp = CAST_USER_ADDR_T((char **)init_addr);
 init_exec_args.envp = CAST_USER_ADDR_T(0);

 /*
 * So that mach_init task is set with uid,gid 0 token
 */
 set_security_token(p);

 error = execve(p,&init_exec_args,retval);
 if (error)
 panic("Process 1 exec of %s failed, errno %d",
 init_program_name, error);
}

Sleeping and Waking Up
Any laptop owner no doubt appreciates OS X’s ability to sleep. This ability is even more important
for i-Devices, wherein power consumption must be minimized, while at the same time maintaining
the “always-on” experience.

LISTING 9-6 (continued)

c09.indd 328c09.indd 328 9/29/2012 5:32:25 PM9/29/2012 5:32:25 PM

Boot Arguments x 329

The iOS sleeping and hibernation mechanisms are, at the time of writing, not entirely
fi gured out: Most of the work there, as in OS X, is done by an external kernel extension
(OS X’s AppleACPI).

In OS X, XNU’s portion of the sleep and hibernation code is open source, but the Kext’s part
isn’t. The kernel can be put to sleep by a call from the Kext by acpi_sleep_kernel(). The
AppleACPIPlatform.Kext uses this call. It proceeds as follows:

 ‰ All CPUs but the current one are halted. This is done by calling
pmCPUExitHaltToOff(), which is a wrapper over a corresponding function from a dispatch
table. The kernel does not have an implementation for this, and relies on a specialized Kext
(AppleIntelCPUPowerManagement.Kext) to call pmKextRegister with the dispatch table
(defi ned as a pmDispatch_t in osfmk/i386/pmCPU.h).

 ‰ The local APIC is shut down, in preparation for sleep.

 ‰ A kdebug message is output.

 ‰ CR3 is saved on x86_64.

 ‰ A call to acpi_sleep_cpu (in osfmk/x86_64/start.s) puts the CPU to sleep. This saves
all the registers, and calls a caller supplied callback function (from the calling Kext) to put
CPU to sleep. In case of hibernation, acpi_hibernate is called instead, which fi rst writes the
memory image to disk.

 ‰ Control is passed back to the fi rmware.

AppleACPIPlatform.Kext can also request the installation of a wake handler. This is done by a
call to acpi_install_wake_handler (also in osfmk/i386/acpi.c), which uses install_real_
mode_handler (encountered previously in the discussion of slave processors). The wake handler is
acpi_wake_prot, an assembly function from osfmk/x86_64/start.s. acpi_wake_prot, which
performs the following actions:

 ‰ Switches back to 64-bit mode

 ‰ Restores kernel GDT, CR0 , LDT and IDT, and task register

 ‰ Restores all saved registers (by acpi_sleep_cpu())

When the function returns, it does so into sleep_kernel(),right after the call acpi_sleep_cpu().
Think of it as one really long function call, but it eventually does return. The rest of sleep_
kernel() basically undoes all of the sleep steps, in reverse order. Finally, it calls install_real_
mode_bootstrap(), to once again set slave_pstart()as the slave CPUs’ activation function.

BOOT ARGUMENTS

XNU has quite a few boot arguments, but Apple really doesn’t bother documenting them. Nor is
there any particular naming convention - some use a hyphen (-), whereas others do not.

There are generally two ways to pass arguments to the kernel:

 ‰ Via the NVRAM using the boot-args variable (which can be set using the nvram command.

c09.indd 329c09.indd 329 9/29/2012 5:32:25 PM9/29/2012 5:32:25 PM

330 x CHAPTER 9 FROM THE CRADLE TO THE GRAVE — KERNEL BOOT AND PANICS

 ‰ Via /Library/Preferences/SystemConfiguration/com.apple.Boot.plist. This is a
standard Property List fi le, in which you can specify arguments in a kernel_flags element.

In iOS, iBoot has long been modifi ed so as to not pass boot arguments to XNU.
Jailbreaking utilities (such as redsn0w) enable passing argument strings to the
kernel, but only in a tethered boot.

Table 9-7 lists some useful kernel boot arguments of Mac OS X, sorted by a rough alphabetical
order:

TABLE 9-7: XNU Boot Arguments

ARGUMENT HANDLED BY USED FOR

-l kernel_bootstrap Leaking logging

-s parse_bsd_args

bsd/kern/bsd_init.c

Single user mode

(boothowto |= RB_SINGLE)

-b parse_bsd_args

bsd/kern/bsd_init.c

Bypassing the boot RC

(boothowto |= RB_NOBOOTRC)

-x parse_bsd_args

bsd/kern/bsd_init.c

Safe booting

(boothowto |= RB_SAFEBOOT)

-disable_aslr parse_bsd_args

bsd/kern/bsd_init.c

Randomizing address space layout. May only be

disabled if DEVELOPMENT or DEBUG are #defined

-no_shared_

cr3

pmap_bootstrap

(osfmk/x86_64/

pmap.c)

Forcing a kernel to reside in its own address

space and not piggybacked on processes. Useful

only for some minor debugging

-no64exec parse_bsd_args

bsd/kern/bsd_init.c

Forcing 32-bit mode

Bootarg_no64_exec = 1

-kernel_text_

ps_4K

pmap_lowmem_finalize Kernel to be allocated with 4 KB, rather than 2 MB

pages

-zc

-zp

-zinfop

zlog

zrecs

zone_init

osfmk/kern/zalloc.c

Mach zone debugging. Described in more detail

in Chapter 12

cpus i386_init

osfmk/i386/

i386_init.c

Artifi cially limiting how many CPUs to use

c09.indd 330c09.indd 330 9/29/2012 5:32:25 PM9/29/2012 5:32:25 PM

Boot Arguments x 331

ARGUMENT HANDLED BY USED FOR

debug machine_startup

(osfmk/i386/AT386/

model_dep.c)

Debug mode. See “Kernel Debugging” later in

this chapter

diag osfmk/i386/

i386_init.c
dgWork.dgFlags global variable for enabling

diagnostic system calls

himemory_mode osfmk/i386/

i386_init.c
Toggling High memory mode — debugging on

systems with more than 4 GB of physical memory

io

iotrace

StartIOKit

(iokit/Kernel/

IOStartIOKit.cpp)

Setting the gIOKitDebug and gIOKitTrace

fl ags, respectively (and gIOKitTrace actually

imports fl ags from gIOKitDebug)

kextlog OSKext::initialize

(libkern/c++/OSKext.

cpp)

Setting the sKernelLogFilter mask, which is

used for kext logging. Discussed in Chapter 18

kmem parse_bsd_args Enabling /dev/kmem. Not available if SECURE_

KERNEL is #defined. Naturally, not available on

iOS

maxmem i386_init

(osfmk/i386/

i386_init.c)

Artifi cially limiting how much physical memory to

use, in MB

msgbuf parse_bsd_args Adjusting the size of kernel ring buff er (shown by

dmesg(1) command)

novfscache parse_bsd_args Disabling the VFS cache

policy_check parse_bsd_args Setting policy check fl ags if CONFIG_MACF is

defi ned.

serial i386_init

osfmk/i386/

i386_init.c

Setting serial mode — serial keyboard/console.

Depending on this argument, serialbaud (in

pexpert/i386/pe_serial.c) can set the serial

baud rate

serverperf-

mode

kernel_bootstrap Setting server performance mode

wpkernel pmap_lowmem_finalize Writing protect kernel region

Additional arguments can be defi ned by kext subsystems, such as the Kernel Debugger Protocol
(KDP), and the virtual memory zone allocator (osfmk/kern/zalloc.c) discussed in Chapter 12.
Kexts can likewise parse the argument string (by calling PE_parse_boot_argn) to obtain private
arguments. A good example for this is iOS’s AppleMobileFileIntegrity — a key component
trusted with code signing entitlements, whose arguments are discussed in Chapter 14.

c09.indd 331c09.indd 331 9/29/2012 5:32:26 PM9/29/2012 5:32:26 PM

332 x CHAPTER 9 FROM THE CRADLE TO THE GRAVE — KERNEL BOOT AND PANICS

KERNEL DEBUGGING

The kernel allows remote debugging using the KDP protocol. This is a simple protocol, carried over
UDP, which is used by XNU for debugging and/or core dump generation. The client is the debugged
system, and the server is some other (hopefully more stable) system. Table 9-8 shows the boot argu-
ments used by KDP:

TABLE 9-8: Arguments Parsed by kdp_register_send_receive() in osfmk/kdp/kdp_udp.c

ARGUMENT TOGGLES/ENABLES

debug Bit-fl ags specifying debugging options. See Table 9-9.

_panicd_ip IP address of remote PanicD.

_router_ip IP address of router.

_panicd_port UDP port number of remote PanicD.

_panicd_corename Core fi le on remote PanicD.

The arguments in the preceding table are used in conjunction with kdp_match_name (which can be
set to serial, en0, en1, and so on) to set up the kernel debug protocol.

In order to trace kernel extensions (kexts) and their debug/log messages, the Kextlog boot-arg can
be used. This is a bitmask argument, which controls the kernel’s built-in fi ltering mechanisms, much
like Windows’ DebugPrintFilter does for its DbgPrint. The argument can also be changed at run-
time, via sysctl(8) as debug.Kextlog. This is discussed in great detail under “Kext Logging,” in
Chapter 18, which is devoted exclusively to kexts.

To enable full kernel debugging, the system must be booted with debug. The kernel debug fl ags are
specifi ed in TN2118[2] (“Kernel Core Dumps”) and in the Kernel Programming Guide[3], as shown in
Table 9-9.

TABLE 9-9: Flag Values of the debug Boot Aargument and Their Meanings

FLAG VALUE MEANING

DB_HALT 0x01 Halt boot, waiting for debugger to attach.

DB_PRT 0x02 Redirect printf()s in kernel to console.

DB_NMI 0x04 Allow dropping immediately into the kernel debug-

ger on the command-power key sequence, or by

holding together Command+Option+Ctrl+Shift+Esc.

DB_KPRT 0x08 Redirect kprintf()s in kernel to serial port, if

defi ned.

DB_KDB 0x10 Sets KDB as the current debugger.

c09.indd 332c09.indd 332 9/29/2012 5:32:26 PM9/29/2012 5:32:26 PM

Kernel Debugging x 333

FLAG VALUE MEANING

DB_SLOG 0x20 Outputs diagnostics to system log.

DB_ARP 0x40 Allows ARP in KDP.

DB_LOG_PI_SCRN 0x0100 Disables Panic dialog. This is useful when core

dumps are generated, as it will show instead the

progress of sending the core.

DB_KERN_DUMP_ON_PANIC 0x0400 Core dumps on panic — handled by kdp_panic_

dump() in kdp.c.

DB_KERN_DUMP_ON_NMI 0x0800 Core dumps on an NMI, but not crash. If DB_DBG_

POST_CORE (0x1000) is additionally set, kernel will

wait for debugger attachment.

DB_PANICLOG_DUMP 0x2000 Only shows panic log on dump, not full core.

Heisenberg’s Uncertainty Principle makes live kernel debugging on the same machine
impossible. The debugger is, therefore, a different machine than the debuggee and normally
requires a serial port, Ethernet, or FireWire connection. In OS X, the fwkpfv(1) command may
be used to direct kprintf()s over FireWire. Another tool, fwkdp(1), may be used to enable
KDP over FireWire.

VMWare makes debugging immeasurably easier, by enabling the debuggee to be in a virtual
machine (OS X is not VM-friendly, but can be cajoled — or coerced, on non-Apple architectures
— into it). The host debugger can attach using the kdp-reattach macro from the Kernel Debug Kit’s
kgmacros. This requires setting up a static ARP entry for the debuggee’s IP, but is a fairly straight-
forward process. If the VM is booted with DB_HALT (nvram boot-args="debug=0x01"), it will
halt until the debugger attaches. VMWare has its own built-in support, and the process of using it,
or KDP, is well documented[4].

“Don’t Panic”
As Mac users know, every now and then the operating system itself may unexpectedly halt, due to
an instability in the kernel mode. Linux simply dumps everything in black and white on the con-
sole, Windows favors EGA blue, while Mac OS X prefers grey alpha-blending. This “Gray Screen of
Death” is the all-too-familiar result of the kernel calling the internal panic() routine. This routine,
which displays the unexpected shutdown message and halts the CPU, does so very rarely, and only
in cases where a system halt is the least worst option, preferable to possible serious data corruption.
This generally happens in two cases:

 ‰ The kernel code path reaches some unexpected location, like the default: clause of a
switch() statement that otherwise handled all known conditions. For example, the HFS+
code (in bsd/hfs) contains calls to panic() on every possible fi le system data structure
inconsistency.

c09.indd 333c09.indd 333 9/29/2012 5:32:27 PM9/29/2012 5:32:27 PM

334 x CHAPTER 9 FROM THE CRADLE TO THE GRAVE — KERNEL BOOT AND PANICS

 ‰ An unhandled exception or trap occurs in kernel mode, causing the kernel trap handler
(kernel_trap in osfmk/i386/trap.c) to be invoked for a kernel mode thread and
reach an unhandled code path. The kernel trap handler then, for lack of any other option,
calls panic_trap(). This function kprintf()s a message, and calls panic() from kern/
debug.c. It, in turn, calls Debugger() (from i386/AT386/model_dep.c), which draws the
familiar dialog using a call to draw_panic_dialog().

Panics shouldn’t happen, period. The kernel, as the underlying foundation of the entire operating
system, must be solid and reliable. When panics do occur, usually they can be traced to a faulty
driver (i.e. a kext). Very rarely, however, they arise from a bug in the kernel itself. These bugs are,
one hopes, fi xed as future versions of the kernel are released.

Manually Triggering a Panic
Whether for testing purposes or for debugging, OS X has several options for manually triggering a
panic:

 ‰ Triggering a panic with DTrace: dtrace -w -n "BEGIN{ panic();}". The “-w” (destruc-
tive probes) switch of DTrace is required, as a panic is certainly considered destructive.

 ‰ A kernel extension to automatically trigger a panic, downloadable as part of TN2118
(“Kernel Core Dumps”).

 ‰ A “fake” panic, by calling sysctl.

The safest option for simulating panics is the third — merely testing the panic UI, by means of a
sysctl. This is shown in the experiment — Viewing the Panic UI — later in this chapter.

Implementation of Panic
The kernel code to generate a panic is in the Mach core, in osfmk/console. Table 9-10 lists the fi les
dealing with panics.

TABLE 9-10: Files in osfmk/ Related to Panics

FILE CONTAINS

panic_dialog.c Main fi le for panic dialog generation

panic_image.c The pixel map containing the familiar image displayed on panic

panic_ui/genimage.c A C image generator — converts from raw bitmap to C struct

panicimage

panic_ui/qtif2raw.c Converts image from QuickTime 256-color to raw bitmap

panic_ui/setupdialog.c Alternate binary to perform both genimage and qtif2raw

c09.indd 334c09.indd 334 9/29/2012 5:32:27 PM9/29/2012 5:32:27 PM

Kernel Debugging x 335

The functions in these fi les are not exported to user mode for obvious reasons, but there is also a
way to simulate a panic, as the following experiment shows.

Experiment: Viewing the Panic UI
The code in bsd/kern/kern_panicinfo.c defi nes the following:

#define KERN_PANICINFO_TEST (KERN_PANICINFO_IMAGE+2)
 /* Allow the panic UI to be tested by root without causing a panic */

static int sysctl_dopanicinfo SYSCTL_HANDLER_ARGS
{
 ..
case KERN_PANICINFO_TEST:

 panic_dialog_test();
 break;

}

The panic_dialog_test is implemented in osfmk/console/panic_dialog.c:, as shown in
Listing 9-7:

LISTING 9-7: panic_dialog_test, from osfmk/console/panic_dialog.c

void panic_dialog_test(void)
{
 boolean_t o_panicDialogDrawn = panicDialogDrawn;
 boolean_t o_panicDialogDesired = panicDialogDesired;
 unsigned int o_logPanicDataToScreen = logPanicDataToScreen;
 unsigned long o_panic_caller = panic_caller;
 unsigned int o_panicDebugging = panicDebugging;

 panicDebugging = TRUE;
 panic_caller = (unsigned long)(char *)__builtin_return_address(0);
 logPanicDataToScreen = FALSE;
 panicDialogDesired = TRUE;
 panicDialogDrawn = FALSE;

 draw_panic_dialog();

 panicDebugging = o_panicDebugging;
 panic_caller = o_panic_caller;
 logPanicDataToScreen = o_logPanicDataToScreen;
 panicDialogDesired = o_panicDialogDesired;
 panicDialogDrawn = o_panicDialogDrawn;
}

c09.indd 335c09.indd 335 9/29/2012 5:32:27 PM9/29/2012 5:32:27 PM

336 x CHAPTER 9 FROM THE CRADLE TO THE GRAVE — KERNEL BOOT AND PANICS

To show the panic dialog test, the simple code snippet shown in Listing 9-8, run as root,
would do:

LISTING 9-8: Testing a panic image (OS X only)

size_t len = 0;
int name[3] = { CTL_KERN, KERN_PANICINFO, KERN_PANICINFO_IMAGE + 2 };
sysctl(name, 3, NULL, (void *)&len, NULL, 0);

The is required because the actual constant you would be using, KERN_PANICINFO_TEST, is not
exported from the kernel headers . If you are feeling especially adventurous, you can use the KERN_
PANICINFO sysctl with the following:

int name[3] = { CTL_KERN, KERN_PANICINFO, KERN_PANICINFO_IMAGE };

…which will enable you to set a panic kernel image by using the following code snippet:

int len;
char *buf = /* image in kraw format */
int bufsize = /* size of the above image */
int name[3] = { CTL_KERN, KERN_PANICINFO, KERN_PANICINFO_IMAGE };
sysctl(name, 3, NULL, (void *)&len, buf, bufsize);

Panic Reports
When a panic occurs, there is nothing more to do but force a halt and save the data so the cause
might be determined post mortem. Since the halt will likely force a power cycle (read: cold reboot),
however, the data will be lost if just saved to RAM. The fi lesystem logic might be in a non-consis-
tent state (and might also be the cause of the panic). This leaves the machine’s NVRAM as a last
resort.

The Platform Expert (specifi cally, PESavePanicInfo()) calls on the NVRAM handler to write
the data to an NVRam variable — aapl,panic-info (defi ned as kIODTNVRAMPanicInfoKey in
iokit/IOKit/IOKitKeys.h). The log is saved in packed form (using packA(), a simple algorithm
in osfmk/kern/debug.c), which writes the 7-bit ASCII characters in the log consecutively into 8-bit
bytes. This, however, requires full 8-bit values to be escaped as %XX, similar to URI escaping, which
somewhat defeats the purpose of packing.

When the system boots next, a specialized launchDaemon, /System/Library/CoreServices/
DumpPanic, is invoked by launchd (from /System/Library/LaunchDaemons/com.apple
.DumpPanic.plist). This daemon checks the panic data in the NVRAM variable, unpacks the
data, and moves it to /Library/Logs/DiagnosticReports. These logs are then saved using the
following naming convention:

Kernel_YYYY-MM-DD-HHDDSS_computer_name.panic

The actual report is generated using a private (and, thus, undocumented) framework
called CrashReporterSupport. In Lion, the daemon also depends on a library,
libDiagnosticMessagesClient.dylib.

c09.indd 336c09.indd 336 9/29/2012 5:32:27 PM9/29/2012 5:32:27 PM

Kernel Debugging x 337

Apple’s TN2063[5] details how to decipher panic logs, using gdb and the Kernel Debug Kit.
Alternatively, you can follow the examples shown here, which rely on otool(1) instead. The
method shown here has the advantage of being applicable on any system, without additional
downloads, but would not work for panics generated by kernel extensions (kexts) without their
symbols.

Apple’s Kernel Debug Kit (available through the Mac OS X Developer Program
or elsewhere on the Internet) isn’t really a “kit” so much as the collection of
GDB macros and a debug build of the kernel. Nonetheless, it is very useful,
especially for live kernel debugging (over serial port or VM). While it greatly
simplifi es the process shown in the following example, it’s important to under-
stand the manual process of tracing through a panic, for times wherein the debug
kit may not be available. The process described is also advantageous in that it
doesn’t require GDB.

Example: 32-Bit Crash Log of an Unhandled Trap
Crashes are like snowfl akes. No two are exactly the same. This is because, at the time of the crash,
the internal state of the kernel is dependent on many factors. Depending on which kernel exten-
sions have been loaded and unloaded, and which threads are active, the resulting crash dump can
vary greatly. In this example, we consider an actual crash log, one of too many which occurred as
this book was written. (See Output 9-1.) The next time you encounter a crash (or, if you still have
a panic log in your DiagnosticReports/ directory), you can follow along the steps described next.
The output will be different, naturally, but the process is generally the same.

OUTPUT 9-1: A crash dump log

Sun Jul 04 08:50:33 2011
panic(cpu 1 caller 0x2aab59): Kernel trap at 0x00f9a983, type 14=page fault, registers:
CR0: 0x8001003b, CR2: 0x00000000, CR3: 0x00100000, CR4: 0x00000660
EAX: 0x00000001, EBX: 0x0c267b00, ECX: 0x01000000, EDX: 0x00000001
CR2: 0x00000000, EBP: 0x6d513bd8, ESI: 0x00000001, EDI: 0x00000000
EFL: 0x00010202, EIP: 0x00f9a983, CS: 0x00000008, DS: 0x0c260010
Error code: 0x00000000

Backtrace (CPU 1), Frame : Return Address (4 potential args on stack)
0x6d5139d8 : 0x21b510 (0x5d9514 0x6d513a0c 0x223978 0x0)
0x6d513a28 : 0x2aab59 (0x59aeec 0xf9a983 0xe 0x59b0b6)
0x6d513b08 : 0x2a09b8 (0x6d513b20 0xd4fb480 0x6d513bd8 0xf9a983)
0x6d513b18 : 0xf9a983 (0xe 0x48 0xd4f0010 0x10)
0x6d513bd8 : 0xf9e909 (0xc267b00 0x0 0x0 0x0)
0x6d513c78 : 0xf9ea1c (0xc267b00 0xe0000100 0x0 0x0)
0x6d513c98 : 0x53e815 (0xc267b00 0xa75df80 0x0 0xf9d146)
0x6d513cd8 : 0xfa60fa (0xc267b00 0xa75df80 0x0 0x3)
0x6d513d88 : 0x30aaba (0xe000004 0x20006415 0x6d513ed0 0x1)
0x6d513dc8 : 0x2fdf34 (0x6d513de8 0x3 0x6d513e18 0x5874e3)
0x6d513e18 : 0x2f29ac (0xa0bea04 0x20006415 0x6d513ed0 0x1)

continues

c09.indd 337c09.indd 337 9/29/2012 5:32:28 PM9/29/2012 5:32:28 PM

338 x CHAPTER 9 FROM THE CRADLE TO THE GRAVE — KERNEL BOOT AND PANICS

0x6d513e78 : 0x470ed0 (0x82b36a0 0x20006415 0x6d513ed0 0x6d513f50)
0x6d513e98 : 0x49cc02 (0x82b36a0 0x20006415 0x6d513ed0 0x6d513f50)
0x6d513f78 : 0x4f6075 (0x86a5d20 0x7f6dfc8 0x812acd4 0x0)
0x6d513fc8 : 0x2a144d (0x7f6dfc4 0x0 0x0 0x8d6da64)

 Kernel Extensions in backtrace (with dependencies):
 com.apple.iokit.IOStorageFamily(1.6.2)@0xf97000->0xfaefff

BSD process name corresponding to current thread: diskarbitrationd

Mac OS version:
10J869

Kernel version:
Darwin Kernel Version 10.7.0: Sat Jan 29 15:17:16 PST 2011;
 root:xnu-1504.9.37~1/RELEASE_I386
System model name: MacBookAir3,2 (Mac-2410XXXXXXxxxxx)

System uptime in nanoseconds: 218120590760858
unloaded Kexts:
com.apple.iokit.SCSITaskUserClient 2.6.5
 (addr 0x586e7000, size 0x28672) - last unloaded 212106050855061
loaded Kexts:
...
com.apple.driver.AppleMikeyHIDDriver 1.2.0
com.apple.driver.AppleHDA 1.9.9f12
com.apple.driver.AGPM 100.12.19
...
com.apple.driver.AppleMikeyDriver 1.9.9f12

How does one approach a panic log? In this case, because the panic is generated from an unhandled
trap, the fi rst line contains the trap number.

panic(cpu 1 caller 0x2aab59): Kernel trap at 0x00f9a983, type 14=page fault,...

The code at 0x00f9a983 generated a page fault. The panic code displays the culprit: The com
.apple.iokit.IOStorageFamily kext, version 1.6.2, which was loaded from address 0xf97000
through 0xfaefff. This automatically singles the problematic portion:

..
0x6d513b18 : 0xf9a983 (0xe 0x48 0xd4f0010 0x10)
0x6d513bd8 : 0xf9e909 (0xc267b00 0x0 0x0 0x0)
0x6d513c78 : 0xf9ea1c (0xc267b00 0xe0000100 0x0 0x0)
0x6d513c98 : 0x53e815 (0xc267b00 0xa75df80 0x0 0xf9d146)
0x6d513cd8 : 0xfa60fa (0xc267b00 0xa75df80 0x0 0x3)
..

Note the 0x53e815 in the preceding output. This address is in the kernel proper, not in the kext.
The address is a 32-bit one, and the kernel version line identifi es it as an i386 kernel. Using otool –
tV, you can disassemble the kernel and fi nd the line that led to the calls following it. Because this is
a return address, the instruction before it should be a call instruction. Using grep –B 1 (to show the
line before the match) reveals:

OUTPUT 9-1 (continued)

c09.indd 338c09.indd 338 9/29/2012 5:32:28 PM9/29/2012 5:32:28 PM

mailto:1.6.2)@0xf97000-

Kernel Debugging x 339

morpheus@Ergo $ otool -tV -arch i386 /mach_kernel | grep -B 1 53e815
0053e80f call *0x000002e4(%eax)
0053e815 movl 0x28(%esi),%ebx

The closest symbol to this address is __ZN9IOService5closeEPS_m. The I/O Kit runtime and
various drivers are C++, not C, so their names are mangled. In this case, demangling would yield
IOService::close(IOService*, unsigned long). We can craft a rather crude shell script to fi nd
all the symbols by employing grep –B 1 on each address, as shown in Output 9-2:

OUTPUT 9-2: Finding and symbolicating the addresses of a panic

Load all the addresses from the crash dump into a variable, say $ADDRS

$ ADDRS=`cat /Library/Logs/DiagnosticReports/\
 Kernel_2011-07-16-085033_Mes-MacBook-Air.panic |
 grep ^0x |
 cut -d : -f2 | cut -d' ' -f2 | cut -dx -f2`

Next, for each address, symbolify. The line before the address is the
corresponding call instruction, so we use grep –B 1 to retrieve it

$ for addr in $ADDRS;
 do otool -tV -arch i386 /mach_kernel | grep -B 1 $addr | head -1;
 done
0021b50b calll _Debugger ; panic() calls _Debugger()
002aab54 calll 0x0021b353 ; calls _panic
002a09b3 calll _kernel_trap ; nearest symbol is lo_alltraps
.. (return to IOKit Driver)
0053e80f call *0x000002e4(%eax) ; __ZN9IOService5closeEPS_m
.. (call to IOKit Driver)
0030aab4 call *0x0083b690(%edx) ; nearest symbol is _spec_ioctl
002fdf31 call *(%eax,%edx,4) ; inside VNOP_IOCTL
002f29a7 calll _VNOP_IOCTL ; unnamed function @002f2860
00470ecd call *0x08(%edx) ; nearest symbol is _fo_ioctl
0049cbfd calll 0x00470e91 ; nearest symbol is ioctl
004f6072 call *0x04(%edi) ; Calling from syscall table
002a1448 calll _unix_syscall64 ; In _lo64_unix_scall

What do we do about the IOKit Driver? The dump identifi ed it as com.apple.iokit
.IOStorageFamily kext. The binary resides in /System/Library/Extensions (IOStorageFamily
.Kext/Contents/MacOS/IOStorageFamily). To make sure we have the right version, use grep on
the Info.plist fi le, as shown in Output 9-3:

OUTPUT 9-3: Verifying the kernel extension version

$ cat /System/Library/Extensions/IOStorageFamily.Kext/Contents/Info.plist |
 grep -B 1 1.6.2
 <key>CFBundleShortVersionString</key>
 <string>1.6.2</string>
--
 <key>CFBundleVersion</key>
 <string>1.6.2</string>

c09.indd 339c09.indd 339 9/29/2012 5:32:29 PM9/29/2012 5:32:29 PM

340 x CHAPTER 9 FROM THE CRADLE TO THE GRAVE — KERNEL BOOT AND PANICS

This is, as expected, 1.6.2. We can then try otool(1) on it. But, because a kext is a relocatable
fi le, the addresses displayed by otool(1) will be wrong — based at 0x00000000. Turning to the
panic log again, note the address range: 0xf97000 through 0xfaefff. It then becomes trivial
to fi nd the symbols. For example, to fi nd 0xfa60fa, we would have to look for the difference
between 0xfa60fa to 0xf97000 — i.e., 0xf0fa.

We can now reconstruct the chain of events (written in order), as shown in Output 9-4. Finding
the kext addresses is left as an exercise for the reader, and is done in a similar manner to the one
described here.

OUTPUT 9-4: Reconstructed chain of events.

002a1448 calll _unix_syscall64 ; Entry from user mode: syscall64
004f6072 call *0x04(%edi) ; Dispatch to syscall table
0049cbfd calll 0x00470e91 ; nearest symbol is ioctl
00470ecd call *0x08(%edx) ; nearest symbol is _fo_ioctl
002f29a7 calll _VNOP_IOCTL ; (*fp->f_ops->fo_ioctl)
002fdf31 call *(%eax,%edx,4) ; inside VNOP_IOCTL
0030aab4 call *0x0083b690(%edx) ; nearest symbol is _spec_ioctl
0xfa60fa (0xc267b00 0xa75df80 0x0 0x3) ; IOPartitionScheme::handleClose
0053e80f call *0x000002e4(%eax) ; IOService::close (provider)
0xf9ea1c (0xc267b00 0xe0000100 0x0 0x0) ; driver::close(this, e0001000 are kIO bits)
0xf9e909 (0xc267b00 0x0 0x0 0x0) ; . . .
0xf9a983 (0xe 0x48 0xd4f0010 0x10)
 << Page fault occurs and control passes to lo_alltraps >>
002a09b3 calll _kernel_trap ; nearest symbol is lo_alltraps
002aab54 calll 0x0021b353 ; i.e call _panic
0021b50b calll _Debugger

Because this is a 32-bit kernel, the arguments are all on the stack. You could thus dive even deeper,
as the panic log specifi es the four positions on the stack frame next to the return address — i.e. what
would be up to four arguments. On a 64-bit system, you won’t be so lucky and neither would you be
on iOS. Both Intel 64-bit and ARM use the registers for parameter passing, using the stack only for
those rare cases of more than 4-6 arguments. Reconstructing function arguments on those architec-
tures is next to impossible.

SUMMARY

This chapter described the two most important phases of the kernel lifecycle — birth and death.
The kernel is “born” when it is instantiated by the boot loader (in x86 - EFI’s boot.efi, and in
iOS - iBoot), and loads all the various subsystems and kernel threads before the fi rst process,
launched, emerges in user mode. The chapter followed the kernel startup, up to the beginning of the
fi rst BSD task — launchd. User mode boot is discussed in Chapter 7.

A kernel panic, which is the premature death of the kernel, isn’t all too frequent an occurrence,
but when it does happen, it is a serious incident. The kernel dumps whatever information it can,
and then halts the CPU to prevent any damage to the system. This chapter explained panics, and
described the means to diagnose them.

The next chapters will take you deeper into the kernel, by delving into the architectural components
of XNU.

c09.indd 340c09.indd 340 9/29/2012 5:32:29 PM9/29/2012 5:32:29 PM

References x 341

REFERENCES

1. iOS Kernel Exploitation, BlackHat 2011: https://media.blackhat.com/bh-us-11/
Esser/BH_US_11_Esser_Exploiting_The_iOS_Kernel_Slides.pdf

2. TN2118. Kernel Core Dumps — http://developer.apple.com/library/
mac/#technotes/tn2004/tn2118.html

3. Apple Developer Kernel Programming Guide — https://developer.apple.com/library/
mac/#documentation/Darwin/Conceptual/KernelProgramming/

4. VMWare Debugging. Hardware Debugging — http://ho.ax/posts/2012/02/
vmware-hardware-debugging/

5. TN2063. Understanding and Debugging Kernel Panics — http://developer.apple.com/
library/mac/technotes/tn2063/

c09.indd 341c09.indd 341 9/29/2012 5:32:29 PM9/29/2012 5:32:29 PM

https://media.blackhat.com/bh-us-11/Esser/BH_US_11_Esser_Exploiting_The_iOS_Kernel_Slides.pdf
http://developer.apple.com/library/mac/#technotes/tn2004/tn2118.html
https://developer.apple.com/library/mac/#documentation/Darwin/Conceptual/KernelProgramming/
http://ho.ax/posts/2012/02/vmware-hardware-debugging/
http://developer.apple.com/library/mac/technotes/tn2063/
https://media.blackhat.com/bh-us-11/Esser/BH_US_11_Esser_Exploiting_The_iOS_Kernel_Slides.pdf
http://developer.apple.com/library/mac/#technotes/tn2004/tn2118.html
https://developer.apple.com/library/mac/#documentation/Darwin/Conceptual/KernelProgramming/
http://ho.ax/posts/2012/02/vmware-hardware-debugging/
http://developer.apple.com/library/mac/technotes/tn2063/

c09.indd 342c09.indd 342 9/29/2012 5:32:29 PM9/29/2012 5:32:29 PM

10
The Medium Is the Message:
Mach Primitives

At the heart of XNU lies the Mach microkernel, which Apple assimilated from NeXTSTEP.
Mach is the very core of the kernel in both OS X and iOS, although it is somewhat modifi ed
from its original version, which is Carnegie Mellon University’s open source microkernel.

Even though the Mach core is wrapped by the BSD layer and the main kernel interface is in
the standardized POSIX system calls, the core works with its own particular set of APIs and
primitives. It is these constructs that this chapter discusses.

Mach may be a microkernel by design, but is a pretty complex system. This chapter therefore
focuses on its core building blocks, as follows:

 ‰ Introducing: Mach: Presents the Mach design philosophy and goals.

 ‰ Message Passing Primitives: Discusses messages and ports, the basic of Mach IPC.

 ‰ Synchronization Primitives: Details the various kernel objects — locks and semaphores,
which are used to ensure safety in concurrency.

 ‰ IPC in depth: Discusses what happens behind the scenes when Mach messages are
passed, and discusses the Mach Interface Generator (MIG) tool, which is used through-
out the kernel.

 ‰ Machine Primitives: Details the Mach host, clock processor, processor, and processor_
set abstractions. These abstractions provide an architecture-independent way to access
system information and functions.

The next chapters will cover specifi c domains in Mach — scheduling and virtual memory
management.

c10.indd 343c10.indd 343 9/29/2012 5:32:46 PM9/29/2012 5:32:46 PM

344 x CHAPTER 10 THE MEDIUM IS THE MESSAGE: MACH PRIMITIVES

INTRODUCING: MACH

Much has been written about the process that led to Apple adopting Mach in Mac OS X, but the
history is of less signifi cance to this book, which focuses primarily on the technical aspects. Suffi ce
it to say that Apple’s fl agship at the time, the ailing Mac OS 9, was heading for the reefs: As a less-
than-effi cient operating system, based on cooperative multitasking and highly proprietary, its per-
formance was limited and not up to par with its peers. Apple realized that sooner or later it would
have to re-engineer its entire kernel. With the acquisition of NeXT, the opportunity presented itself
to take its already proven (although somewhat avant-garde) kernel design, and use it in Mac OS.

Mach is the collaboration of many people, but arguably none have contributed to it as much as
one — Avadis Tevanian, Jr. His fi ngerprints (in the form of the fi le main comments) are still present
in much of the code. Tevanian was part of Mach since its inception at CMU, and later evolved it —
fi rst at NeXT, then at Apple, where he worked until 2006.

The Mach Design Philosophy
Mach started its life as academic research into operating system infrastructure. Contrary to the
monolithic philosophy, which implements a full-blown, complicated kernel, Mach boasts a highly
minimalist concept: a thin, minimal core, supporting an object-oriented model wherein individual,
well-defi ned components (in effect, subsystems) communicate with one another by means of mes-
sages. Unlike other operating systems, which present a complete model on top of which user mode
processes may be implemented, Mach provides a bare-bones model, on top of which the operating
system itself may be implemented. OS X’s XNU is one specifi c implementation of UNIX (specifi -
cally, BSD 4.4) over Mach, although in theory any operating system may use the same architecture.
Indeed, Windows borrows some design concepts from Mach as well, albeit with a vastly different
implementation.

In Mach, everything is implemented as its own object. Processes (which Mach calls tasks), threads,
and virtual memory are objects, each with its own properties. This, in itself, is not anything note-
worthy. Other operating systems also use objects (effectively, C structures with function pointers) to
implement their underlying primitives.

What makes Mach different is its choice of implementing object-to-object communication by means
of message passing. Unlike other architectures, in which one object can access another as the need
arises through a well-known interface, Mach objects cannot directly invoke or call on one another.
Rather, they are required to pass messages. The source object sends a message, which is queued by the
target object until it can be processed and handled. Similarly, the message processing may produce a
reply, which is sent back by means of a separate message. Messages are delivered reliably (if a message
is sent, it is guaranteed to be received) in a FIFO manner (received in the same order they are sent).
The content of the message is entirely up to the sender and the receiver to negotiate.

As a minimalist architecture, Mach does not concern itself with higher-level concepts. Once the
basic primitives of a process and a thread are defi ned, everything else may be handled by separate
threads. Files and fi le systems, for example, are left for a higher level to implement. Likewise, device
drivers are a higher-level concept that is left undefi ned at the Mach layer.

The Mach kernel thus becomes a low-level foundation, concerning itself with only the bare mini-
mum required for driving the operating system. Everything else may be implemented by some higher

c10.indd 344c10.indd 344 9/29/2012 5:32:51 PM9/29/2012 5:32:51 PM

Introducing: Mach x 345

layer of an operating system, which then draws on the Mach primitives and manipulate them in
whatever way it sees fi t.

It’s important to emphasize that while Mach calls are visible from user mode, they implement a deep
core, on top of which a larger kernel may be implemented. Mach is, essentially, a kernel-within-a-
kernel. The “offi cial” API of XNU is that of the BSD POSIX layer, and Apple keeps Mach to the
absolute bare minimum. The average developer knows nothing of Mach, thanks to the far richer
enveloping Cocoa APIs. Mach calls, however, remain a fundamental part of the architecture.

Although XNU is open source, Apple (probably intentionally) does not provide much documenta-
tion about Mach, whereas other components of XNU are well documented. To exacerbate the issue,
the documentation that is provided — in XNU’s osfmk/man directory — is a collection of anti-
quated, and sometimes inaccurate, man2html pages. Some documentation may be found in CMU’s
original documents[1,2], but it too, is quite venerable and sometimes irrelevant.

While XNU relies on Mach 3.0, there are some considerable differences between
the Mach implementation of XNU and that of CMU Mach, or GNU’s. Apple
has removed support for several Mach APIs that were previously supported —
for example, task_set_emulation() calls, which were used for system call
emulation (and in XNU return KERN_NOT_SUPPORTED). Likewise, thread tracing
is no longer supported, nor is Mach’s Event Trace Analysis Package (ETAP),
although these features were present in older incarnations of XNU.

On the other hand, XNU has made some signifi cant additions, including adding
custom virtual memory handlers. Even different versions of XNU sometimes
contain noticeable differences in Mach. The rest of this chapter explores those
Mach features that are present in XNU.

Mach Design Goals
The design document of Mach (which is still freely available from the Open Source Foundation[3])
lists several design goals, fi rst and foremost of which is moving all functionality out of the kernel
and into user mode, leaving the kernel with the bare minima, i.e:

 ‰ Management of “points of control” or execution units (threads).

 ‰ Allocation of resources to individual threads or groups (tasks).

 ‰ Virtual memory allocation and management.

 ‰ Allocation of low-level physical resources — namely, the CPU, memory, and any physical
devices.

Remember, that Mach only provides for the low-level arbitration primitives. That is, Mach will
provide a means to enforce a policy, but not the policy itself. Mach does not recognize any security
features, priority, or preferences — all of which need be defi ned by the higher-level implementation.

A powerful advantage of the Mach design is, that — unlike other operating systems — it has
taken into account aspects of multi-processing. Much of the kernel functionality is implemented

c10.indd 345c10.indd 345 9/29/2012 5:32:51 PM9/29/2012 5:32:51 PM

346 x CHAPTER 10 THE MEDIUM IS THE MESSAGE: MACH PRIMITIVES

by separate, distinct components, which pass well-defi ned messages between them, with no global
scope. As such, there is no real requirement that all the components execute on the same processor,
or even the same machine. Theoretically, Mach could be extended to an operating system for com-
puter clusters just as easily.

MACH MESSAGES

The most fundamental concept in Mach is that of a message, which is exchanged between two end-
points, or ports. The message is the core building block of Mach’s IPC, and is designed to be suit-
able for passing between any two ports — whether local to the same machine, or on some remote
host. Issues such as parameter serialization, alignment, padding and byte-ordering are all taken into
consideration and hidden by the implementation.

Simple Messages
A message, like a network packet, is defi ned as an opaque blob encapsulated by a fi xed header. In
Mach’s case, this is defi ned in <mach/message.h> simply as:

typedef struct
{
 mach_msg_header_t header;
 mach_msg_body_t body;
} mach_msg_base_t;

The message header is mandatory, and defi nes the required meta data about the message, namely:

typedef struct
{
 mach_msg_bits_t msgh_bits; // header bits—optional flags
 mach_msg_size_t msgh_size; // Size, in bytes
 mach_port_t msgh_remote_port; // Dst (outgoing) or src (incoming)
 mach_port_t msgh_local_port; // Src (outgoing) or dst (incoming)
 mach_msg_size_t msgh_reserved; // …
 mach_msg_id_t msgh_id; // Unique ID
} mach_msg_header_t;

Simply put, a message is a blob of size msgh_size, sent from one port to another, with some
optional fl ags.

A message may optionally have a trailer, specifi ed as a mach_msg_trailer_type_t (really just an
unsigned int):

typedef struct
{
 mach_msg_trailer_type_t msgh_trailer_type;
 mach_msg_trailer_size_t msgh_trailer_size;
} mach_msg_trailer_t;

Each type further defi nes a particular trailer format. These are left extensible for future implementa-
tion, although the following trailers, listed in Table 10-1, are already defi ned:

c10.indd 346c10.indd 346 9/29/2012 5:32:52 PM9/29/2012 5:32:52 PM

Mach Messages x 347

TABLE 10-1: Mach Trailers

 TRAILER USED FOR

mach_msg_trailer_t Empty trailer

mach_msg_security_trailer_t Sender security token

mach_msg_seqno_trailer_t Sequential numbering

mach_msg_audit_trailer_t

mach_msg_context_trailer_t

Auditing token (for BSM)

mach_msg_mac_trailer_t Mandatory Access Control policy label

Replies and kernel-based messages use the trailer option, which may be specifi ed with a reserved
fl ag, as shown later in Table 10-3.

Complex messages
The Mach message structures described so far are fairly simply simple, as one could expect. Some
messages, however, require additional fi elds and structure. These messages, aptly titled “complex,”
are indicated by the presence of the MACH_MSGH_BITS_COMPLEX bit in their header fl ags, and are struc-
tured differently: The header is followed by a descriptor count fi eld, and serialized descriptors back to
back (though possibly of different sizes). The currently defi ned descriptors are shown in Table 10-2:

TABLE 10-2: Complex message descriptors

TRAILER USED FOR

MACH_MSG_PORT_DESCRIPTOR Passing around a port right

MACH_MSG_OOL_DESCRIPTOR Passing out-of-line data

MACH_MSG_OOL_PORTS_DESCRIPTOR Passing out-of-line ports

MACH_MSG_OOL_VOLATILE_DESCRIPTOR Passing out-of-line data which may be subject to

change (volatile)

As you can see in Table 10-2, most descriptors involve “out-of-line” data. This is an important fea-
ture of Mach messages, which allows the addition of scattered pointers to various data, in a manner
somewhat akin to adding an attachment to an e-mail. This is defi ned in <mach/message.h> for a
64-bit structure as follows (32-bits defi ned similarly):

typedef struct
{
 uint64_t address; // pointer to data
 boolean_t deallocate: 8; // deallocate after send?
 mach_msg_copy_options_t copy: 8; // copy instructions
 unsigned int pad1: 8; // reserved
 mach_msg_descriptor_type_t type: 8; // MACH_MSG_OOL_DESCRIPTOR

c10.indd 347c10.indd 347 9/29/2012 5:32:52 PM9/29/2012 5:32:52 PM

348 x CHAPTER 10 THE MEDIUM IS THE MESSAGE: MACH PRIMITIVES

 mach_msg_size_t size; // size of the data at address
} mach_msg_ool_descriptor64_t;

Simply put, the OOL descriptor specifi es the address and size of the data to be attached, and
instructions as to how to deal with it: whether it can be deallocated, and copy options (e.g. physical/
virtual copy). OOL-data descriptors are commonly used to pass large chunks of data, alleviating the
need for a costly copy operation.

Sending Messages
Mach messages are sent and received with the same API function, mach_msg(). The function has
implementations in both user and kernel mode, and has the following prototype:

mach_msg_return_t mach_msg
 (mach_msg_header_t msg,
 mach_msg_option_t option,
 mach_msg_size_t send_size,
 mach_msg_size_t receive_limit,
 mach_port_t receive_name,
 mach_msg_timeout_t timeout,
 mach_port_t notify);

The function takes a message buffer, which is an in pointer for a send operation, and an out pointer
for a receive operation. A sister function, mach_msg_overwrite, lets the caller specify two more
arguments — a mach_msg_header_t * to a receive buffer and the mach_msg_size_t buffer size.

In both cases, the actual operation — send or receive — can be determined and tweaked using any
bitwise combination of the options shown in Table 10-3.

TABLE 10-3: mach_msg() Send Options

OPTION FLAG USED TO

MACH_RCV_MSG Receive a message into the msg buff er.

MACH_RCV_LARGE Leave large messages queued and fail with MACH_RCV_TOO_LARGE

if the receive buff er is too small. In this case, only the message

header (which specifi es the message size) will be returned, so the

caller can allocate more memory.

MACH_RCV_TIMEOUT Pay attention to the timeout fi eld for receive operation and fail with

a MACH_RCV_TIMED_OUT after timeout milliseconds if no message

received. The timeout value may also be 0.

MACH_RCV_NOTIFY Receive notifi cation.

MACH_RCV_INTERRUPT Allow operation to be interrupted (and return

MACH_RCV_INTERUPTED), rather than retrying operation.

MACH_RCV_OVERWRITE In mach_msg_overwrite, specifi es the extra parameter — the

receive buff er — is in/out.

c10.indd 348c10.indd 348 9/29/2012 5:32:52 PM9/29/2012 5:32:52 PM

Mach Messages x 349

MACH_SEND_MSG Send the message in the msg buff er.

MACH_SEND_INTERRUPT Allow send operation to be interrupted (and return

MACH_SEND_INTERUPTED), rather than retrying operation.

MACH_SEND_TIMEOUT Pay attention to the timeout fi eld for send operation — and fail after

timeout milliseconds with a MACH_SEND_TIMED_OUT.

MACH_SEND_NOTIFY Notify message delivery to notify port.

MACH_SEND_ALWAYS Used internally.

MACH_SEND_TRAILER Specifi es one of the known Mach trailers lies at off set size of the

message (i.e. immediately after the message buff er).

MACH_SEND_CANCEL (Removed in Lion) Cancel a message.

Originally, Mach messages were designed for a true micro-kernel architecture. That is, the mach_
msg() function had to copy the memory backing the message between the sender and receiver.
While this is true to the microkernel paradigm, the performance impediment of frequent memory
copy operations proved unbearable. XNU, therefore, “cheats” by being monolithic: All kernel com-
ponents share the same address space, so message passing can simply pass the pointer to the mes-
sage, thereby saving a costly memory copy operation.

To actually send or receive messages, the mach_msg() function invokes a Mach trap. This is, essen-
tially, the Mach equivalent of a system call, which was discussed in Chapter 8, which deals with ker-
nel architectures. Calling mach_msg_trap() from user mode will use the trap mechanism to switch
to kernel mode, wherein the kernel implementation of mach_msg() will do the work.

Ports
Messages are passed between end points, or ports. These are really nothing more than 32-bit integer
identifi ers, although they are not used as such, but as opaque objects. Messages are sent from some
port to some other port. Each port may receive messages from any number of senders but has only
one designated receiver, and sending a message to a port queues the message until it can be handled
by the receiver.

All Mach primitive objects are accessed through corresponding ports. That is, by seeking a handle
on an object, one really requests a handle to its port. Access to a port is by means of port rights,
defi ned in <mach/port.h>, as shown in Table 10-4:

TABLE 10-4: Mach Port Rights

MACH_PORT_RIGHT_ MEANING

SEND Send (enqueue) messages to this port. Multiple senders are allowed.

RECEIVE Read (dequeue) messages from this port. Eff ectively, this is ownership of the port.

continues

c10.indd 349c10.indd 349 9/29/2012 5:32:53 PM9/29/2012 5:32:53 PM

350 x CHAPTER 10 THE MEDIUM IS THE MESSAGE: MACH PRIMITIVES

MACH_PORT_RIGHT_ MEANING

SEND_ONCE Send only one message. The right immediately revoked afterwards, into

DEAD_NAME.

PORT_SET Receive rights to multiple ports simultaneously.

DEAD_NAME Port right after SEND_ONCE is exhausted.

The key rights are, as one can imagine, SEND and RECEIVE. SEND_ONCE is the same as SEND, but
allows for only one message (that is, it is revoked by the system after its fi rst use). The holder of the
MACH_PORT_RIGHT_RECEIVE right is, in effect, the owner of the port, and the only entity allowed to
dequeue messages from the port.

The functions in <mach/mach_port.h> can be used to manipulate task ports, even from outside
the task. In particular, the mach_port_names routine can be used to dump the port namespace of a
given task. Listing 10-1 reproduces the functionality of GDB’s info mach-ports command.

LISTING 10-1: A simple Mach port dumper

kern_return_t lsPorts(task_t TargetTask)
{
 kern_return_t kr;
 mach_port_name_array_t portNames = NULL;
 mach_msg_type_number_t portNamesCount;
 mach_port_type_array_t portRightTypes = NULL;
 mach_msg_type_number_t portRightTypesCount;
 mach_port_right_t portRight;
 unsigned int p;

 // Get all of task's ports
 kr = mach_port_names(TargetTask,
 &portNames,
 &portNamesCount,
 &portRightTypes,
 &portRightTypesCount);
 if (kr != KERN_SUCCESS)
 { fprintf (stderr,"Error getting mach_port_names.. %d\n", kr);return (kr); }
 // Ports will be dumped in hex, like GDB, which is somewhat limited. This can be
 // extended to recognize the well known global ports (left as an exercise for the
 // reader)
 for (p = 0; p < portNamesCount; p++) {
 printf("0x%x 0x%x\n", portNames[p], portRightTypes[p]);
 } // end for
} // end lsPorts

int main(int argc, char * argv[])
{
 task_t targetTask;
 kern_return_t kr;

TABLE 10-4 (continued)

c10.indd 350c10.indd 350 9/29/2012 5:32:53 PM9/29/2012 5:32:53 PM

Mach Messages x 351

 int pid = atoi (argv[1]);
 // task_for_pid() is required to obtain a task port from a given
 // BSD PID. This is discussed in the next chapter
 kr = task_for_pid(mach_task_self(),pid, &targetTask);
 lsPorts (targetTask);
 // Not strictly necessary, but be nice
 kr = mach_port_deallocate(mach_task_self(), targetTask);
}

A more complete example can be found in Apple Developer’s sample code for MachPortDump[4].

Passing Ports Between Tasks
Ports and rights may be passed from one entity to another. Indeed, it is not uncommon to see com-
plex Mach messages containing ports delivered from one task to another. This is a very powerful
feature in IPC design, somewhat akin to mainstream UNIX’s domain sockets, which allow the pass-
ing of fi le descriptors between processes.

Lion enables the conversion of UNIX fi le descriptors into Mach ports, and vice versa. These objects,
appropriately called fi leports, are primarily used by the notifi cation system.

Port Registration and the Bootstrap Server
Mach allows ports to be registered globally — that is, on a system-wide level, with a port nam-
ing server. In XNU, this “bootstrap server” is none other than launchd(8) — PID 1 — which, at
the Mach task level, registers the bootstrap service port. (recall the discussion in Chapter 7, which
explained this in detail under launchd's role of mach_init). Because every other process (and
therefore Mach task) on the system is a descendant of launchd, it inherits this port upon birth. The
APIs in Chapter 7 can then be used to locate service ports.

The Mach Interface Generator (MIG)
Mach’s model of message passing is one implementation of Remote Procedure Call (RPC). In a per-
fect world, the programmer need not bother with the implementation of message passing, since these
are performed at a lower-level, and are largely independent of the message contents. The underlying
support code can therefore be automatically generated: The programmer need only write the inter-
face specifi cation, using a higher level Interface Defi nition Language (IDL), from which a specialized
pre-processor tool can generate the code required to construct the actual messages, and send them
(In higher level languages this is sometimes referred to as serialization, or marshaling). To enable
RPC to be architecture-independent and agnostic to byte-ordering, a network data representation is
often adopted.

Classic UN*X has SUN-RPC, which is still widely used (as an integral part of NFS). In it, a
portmapper (running on TCP or UDP port 111) is responsible for maintaining registered pro-
grams. The programs themselves make use of the rpcgen compiler to generate code from the
IDL. Data is converted into an external data representation (XDR), which is in network byte
ordering. Mach does not use a dedicated port mapper (though launchd(8) handles some of the
logic), but has a component very similar to rpcgen, called the Mach Interface Generator, com-
monly referred to as MIG.[5]

c10.indd 351c10.indd 351 9/29/2012 5:32:53 PM9/29/2012 5:32:53 PM

352 x CHAPTER 10 THE MEDIUM IS THE MESSAGE: MACH PRIMITIVES

If you look at the /usr/include/mach directory, you will see (alongside the miscellaneous header
fi les), .defs fi les. These fi les contain the IDL defi nition fi les for the various Mach “subsystems,” as
shown in Table 10-5:

TABLE 10-5: Mach subsystem interface defi nition fi les in <mach/*>

BASE SUBSYSTEM USE

123 audit_triggers Audit logging facility. Contains a single routine

— audit_triggers

1000 Clock Clock and alarm routines

1200 clock_priv Kernel clock privileged interface defi nitions

3125107 clock_reply Contains reply to clock_alarm request

2401

2405

exc

mach_exc

Mach exception handling

950 host_notify_reply Contains a single routine, host_calendar_changed

400 host_priv Host privileged operations, such as reboot, kernel modules, and

physical memory

600 host_security Contains defi nitions for task tokens

5000 ledger Contains defi nitions for the resource book-keeping subsystem.

This was part of the Mach specifi cation, but was inactive in XNU up

until iOS 5.0 and Mountain Lion

617000 lock_set Lock set subsystem (detailed in the previous section)

200 mach_host Mach host abstraction routines (detailed in this chapter)

3200 mach_port Mach port handling functions

– mach_types Data type defi nitions for kernel objects

4800 mach_vm Miscellaneous virtual memory handling functions. Supersedes vm

(detailed in Chapter 12)

64 notify Port notifi cation routines

3000 processor Processor control (detailed in this chapter)

4000 processor_set Processor set control (detailed in this chapter)

5200 security Security and Mandatory Access Control interfaces

– std_types Data type defi nitions

3400 task Task operations (detailed in Chapter 11)

c10.indd 352c10.indd 352 9/29/2012 5:32:53 PM9/29/2012 5:32:53 PM

Mach Messages x 353

27000 task_access OS X/iOS enhancement to support access checks on task handles

and code signature checks (detailed in Chapter 10)

3600 thread_act Thread operations (detailed in Chapter 11)

3800 vm_map Miscellaneous virtual memory handling functions. Superseded by

mach_vm (detailed in Chapter 12)

The subsystems are collections of operations that are grouped together. The operations will be seri-
alized in Mach messages. User programs can declare and use additional subsystems, as launchd(8)
does (e.g. protocol_vproc, subsystem #400, by means of which launchctl(1) can communicate
with it). There is also no need for global uniqueness (the abovementioned protocol_vproc overlaps
with host_priv), so long as the destination of the message knows which subsystem is relevant.

An operation can be one of several types. The MIG specifi cation lists the following types shown in
Table 10-6.

TABLE 10-6: MIG Operation types

OPERATION TYPE PURPOSE

Routine

Simpleroutine

Sends a message to the server. A routine blocks until a reply is received, and

returns a kern_return_t. A simpleroutine does not block to receive a reply,

but returns immediately with the return code from msg_send().

Procedure

Simpleprocedure

As routines, but do not return a kern_return_t .

Function Returns a value from the server function.

In practice, XNU only uses routines and simpleroutines. The various operations are numbered
sequentially, starting with the subsystem’s base number. The keyword “skip” may be used to reserve
numbers for deprecated or obsolete operations.

The mig(1) command line tool acts as the pre-processor for the .defs fi les, and creates the .h and
.c fi les for the client and the server (the latter are actually created by migcom(1), a utility used inter-
nally). This command is not normally part of OS X or XCode, but is part of the bootstrap_cmds
package which can be readily downloaded from http://opensource.apple.com.

For each operation, mig(1) generates a substantial portion of code, for both the client and the
server, along with a C-style header fi le. The operation is converted into a C function which encap-
sulates the message passing code (i.e. the call to mach_msg()with MACH_SEND_MSG and MACH_RCV_
MSG fl ags). The generated code handles all the message house-keeping, such as validation of types,
lengths, and return values. A signifi cant chunk of the code also handles Network Data Representa-
tion (NDR, akin to SUNRPC’s XDR, eXternal Data Representation), which is largely empty con-
version macros, as XNU does not support network-borne Mach messaging.

The following experiment illustrates how the Mach Interface Generator is used to automatically
generate code.

c10.indd 353c10.indd 353 9/29/2012 5:32:53 PM9/29/2012 5:32:53 PM

http://opensource.apple.com

354 x CHAPTER 10 THE MEDIUM IS THE MESSAGE: MACH PRIMITIVES

Experiment: Using mig(1) to Generate Files Automatically
The mig(1) utility operates on .defs fi les in a similar manner. To show this, pick an arbitrary fi le
in /usr/include/mach — in this example, mach_host.defs. Looking at the fi le, you should be able
to see the defi nitions of routines, as shown in Listing 10-2:

LISTING 10-2: mach_host.defs and the host MIG subsystem

...
subsystem
#if KERNEL_SERVER
 KernelServer
#endif /* KERNEL_SERVER */
 mach_host 200;

/*
 * Basic types
 */

#include <mach/std_types.defs>
#include <mach/mach_types.defs>
#include <mach/clock_types.defs>
#include <mach_debug/mach_debug_types.defs>

...

routine host_info(
 host : host_t;
 flavor : host_flavor_t;
 out host_info_out : host_info_t, CountInOut);
...

routine host_kernel_version(
 host : host_t;
 out kernel_version : kernel_version_t);
...

skip; /* was enable_bluebox */ // was message 211
skip; /* was disable_bluebox */ // was message 212

Copy the fi le into an empty directory, and run the mig(1) utility on the fi le. You should see the fol-
lowing fi les as in Output 10-1:

OUTPUT 10-1: Output of running mig(1) on mach_host.defs

morpheus@Ergo (/tmp/scratch)$ ls -l
total 792
-r--r--r-- 1 morpheus wheel 6975 Mar 26 11:34 mach_host.defs
-rw-r--r-- 1 morpheus wheel 20334 Mar 26 11:34 mach_host.h
-rw-r--r-- 1 morpheus wheel 164125 Mar 26 11:34 mach_hostServer.c
-rw-r--r-- 1 morpheus wheel 207442 Mar 26 11:34 mach_hostUser.c

Message Base

Message #200 (Base + 0)

Message #201 (Base + 1)

c10.indd 354c10.indd 354 9/29/2012 5:32:54 PM9/29/2012 5:32:54 PM

Mach Messages x 355

The resulting mach_host.h fi le is the #include fi le readily usable by C programs, and should be
nearly or entirely identical to the <mach/mach_host.h>. Looking at the client fi le, you will notice
the considerable amount of automatically generated code. Looking specifi cally at the host_info
message, you should see something like listing 10-3, which has been further annotated for
readability:

LISTING 10-3: The mach_hostUser.c fi le generated by mig(1) from mach_host.defs

...
/* Routine host_info */

// prototype generated directly from defs
mig_external kern_return_t host_info
(
 host_t host,
 host_flavor_t flavor,
 host_info_t host_info_out,
 mach_msg_type_number_t *host_info_outCnt
)
{

// MIG defines the request and reply structures next.

#ifdef __MigPackStructs
#pragma pack(4)
#endif
 typedef struct {
 mach_msg_header_t Head;
 NDR_record_t NDR; // Network data representation
 // information
 host_flavor_t flavor;
 mach_msg_type_number_t host_info_outCnt;
 } Request;
#ifdef __MigPackStructs
#pragma pack()
#endif

#ifdef __MigPackStructs
#pragma pack(4)
#endif
 typedef struct {
 mach_msg_header_t Head;
 NDR_record_t NDR; // Network data representation
 // information
 kern_return_t RetCode;
 mach_msg_type_number_t host_info_outCnt;
 integer_t host_info_out[15];
 mach_msg_trailer_t trailer;
 } Reply;
#ifdef __MigPackStructs
#pragma pack()
#endif

 union {

routine host_info(
 host : host_t;
 flavor : host_flavor_t;
 out host_info_ out : host_info_t,
 CountInOut);

continues

c10.indd 355c10.indd 355 9/29/2012 5:32:54 PM9/29/2012 5:32:54 PM

356 x CHAPTER 10 THE MEDIUM IS THE MESSAGE: MACH PRIMITIVES

 Request In;
 Reply Out;
 } Mess;

 Request *InP = &Mess.In;
 Reply *Out0P = &Mess.Out;

 mach_msg_return_t msg_result;

#ifdef __MIG_check__Reply__host_info_t__defined
 kern_return_t check_result;
#endif /* __MIG_check__Reply__host_info_t__defined */

 DeclareSendRpc(200, "host_info")

 InP->NDR = NDR_record;

 InP->flavor = flavor;

 // somewhat crude sanity check on argument length. "15" is the hard-coded limit
 if (*host_info_outCnt < 15)
 InP->host_info_outCnt = *host_info_outCnt;
 else
 InP->host_info_outCnt = 15;

 // Prepare message header
 InP->Head.msgh_bits =
 MACH_MSGH_BITS(19, MACH_MSG_TYPE_MAKE_SEND_ONCE);
 /* msgh_size passed as argument */
 InP->Head.msgh_request_port = host;
 InP->Head.msgh_reply_port = mig_get_reply_port();
 InP->Head.msgh_id = 200;

 __BeforeSendRpc(200, "host_info")

 // this is the heart of host_info and, indeed, most MIG generated code: A call to
 // mach_msg.

 msg_result = mach_msg(&InP->Head, MACH_SEND_MSG|MACH_RCV_MSG|
 MACH_MSG_OPTION_NONE, (mach_msg_size_t)sizeof(Request),
 (mach_msg_size_t)sizeof(Reply), InP->Head.msgh_reply_port, MACH_MSG_TIMEOUT_NONE,
 MACH_PORT_NULL);
 __AfterSendRpc(200, "host_info")

 // If the message sending fails, we have nothing more to seek here. Abort.
 if (msg_result != MACH_MSG_SUCCESS) {
 __MachMsgErrorWithoutTimeout(msg_result);
 { return msg_result; }
 }

 // MIG can optionally define reply checking logic. It is easier for it to generate
 // the code anyway, #ifdef'd, so as to generate uniform code in all cases.

#if defined(__MIG_check__Reply__host_info_t__defined)

Message #200 (Base + 0)

LISTING 10-3 (continued)

c10.indd 356c10.indd 356 9/29/2012 5:32:54 PM9/29/2012 5:32:54 PM

IPC, in Depth x 357

 check_result = __MIG_check__Reply__host_info_t((__Reply__host_info_t *)Out0P);
 if (check_result != MACH_MSG_SUCCESS)
 { return check_result; }
#endif /* defined(__MIG_check__Reply__host_info_t__defined) */

 // If output is within specified buffer bounds, copy what we can to caller, and
 // fail
 if (Out0P->host_info_outCnt > *host_info_outCnt) {
 (void)memcpy((char *) host_info_out, (const char *)
 Out0P->host_info_out,4 * *host_info_outCnt);
 *host_info_outCnt = Out0P->host_info_outCnt;
 { return MIG_ARRAY_TOO_LARGE; }
 }
 // Otherwise, it is safe to copy all the output to the caller.
 (void)memcpy((char *) host_info_out, (const char *) Out0P->host_info_out, 4 *
 Out0P->host_info_outCnt);

 // Set buffer count
 *host_info_outCnt = Out0P->host_info_outCnt;

 // And.. we're done!
 return KERN_SUCCESS;
}

Replies, by convention, are numbered at 100 over their respective requests. This means that the
reply to host_info (#200), for example, will be 300, as you can indeed verify by looking at the code
generated for __MIG_check__Reply__host_info_t, in the same fi le.

IPC, IN DEPTH

So far, we have covered the basic primitives required for IPC: the messages, the ports they are sent
from and received on, and the semaphores and locks required to enable safe concurrency. But we
have given little attention to the underlying implementation of these primitives, in particular the
port objects themselves. This section goes into more detail.

Every Mach task (the high-level abstraction somewhat corresponding to a process, as you will see in
the next chapter) contains a pointer to its own IPC namespace, which holds its own ports. Addition-
ally, a task can obtain the system-wide ports, such as the host port, the privileged ports, and others.

The port object exported to user space (the mach_port_t previously shown) is really a handle to the
“real” port object, which is an ipc_port_t. This is defi ned in osfmk/ipc/ipc_port.h as shown in
Listing 10-4.

LISTING 10-4: The structure behind a Mach port

struct ipc_port {

 /*
 * Initial sub-structure in common with ipc_pset
 * First element is an ipc_object second is a

continues

c10.indd 357c10.indd 357 9/29/2012 5:32:54 PM9/29/2012 5:32:54 PM

358 x CHAPTER 10 THE MEDIUM IS THE MESSAGE: MACH PRIMITIVES

 * message queue
 */
 struct ipc_object ip_object;

 struct ipc_mqueue ip_messages;

 union {
 struct ipc_space *receiver; // pointer to receiver's IPC space
 struct ipc_port *destination; // or pointer to global port
 ipc_port_timestamp_t timestamp;
 } data;

 ipc_kobject_t ip_kobject; // Type of object behind this port (IKOT_*
 // constant from osfmk/kern/ipc_kobject.h)

 mach_port_mscount_t ip_mscount;
 mach_port_rights_t ip_srights;
 mach_port_rights_t ip_sorights;

 struct ipc_port *ip_nsrequest;
 struct ipc_port *ip_pdrequest;
 struct ipc_port_request *ip_requests;
 boolean_t ip_sprequests;

 unsigned int ip_pset_count;
 struct ipc_kmsg *ip_premsg;
 mach_vm_address_t ip_context;

...

#if CONFIG_MACF_MACH
 struct label ip_label; // used to enforce BSD's Mandatory Access Control
 // Framework
#endif
};

struct ipc_object
 {
 ipc_object_bits_t io_bits;
 ipc_object_refs_t io_references;
 decl_lck_mtx_data(, io_lock_data)
 };

typedef struct ipc_mqueue {
 union {
 struct {
 struct wait_queue wait_queue;
 struct ipc_kmsg_queue messages;
 mach_port_msgcount_t msgcount;
 mach_port_msgcount_t qlimit;
 mach_port_seqno_t seqno;
 mach_port_name_t receiver_name;
 boolean_t fullwaiters;
 } port;
 struct {
 struct wait_queue_set set_queue;
 mach_port_name_t local_name;
 } pset;
 } data;
} *ipc_mqueue_t;

LISTING 10-4 (continued)

c10.indd 358c10.indd 358 9/29/2012 5:32:54 PM9/29/2012 5:32:54 PM

IPC, in Depth x 359

To gain a better understanding, it helps to look at the implementations of the two most important
IPC functions: mach_msg_send() and mach_msg_receive().

Behind the Scenes of Message Passing
Mach messages in user mode use the mach_msg() function, described earlier, which calls its corre-
sponding kernel function mach_msg_trap() through the kernel’s Mach trap mechanism (discussed
in Chapter 8). The mach_msg_trap() falls through to mach_msg_overwrite_trap(), which deter-
mines a send or receive operation by testing MACH_SEND_MSG or MACH_RCV_MSG fl ag, respectively.

Sending Messages
Mach message-sending logic is implemented in two places in the kernel: mach_msg_overwrite_
trap(), and mach_msg_send(). The latter is used only for kernel-mode message passing, and is not
visible from user mode.

In both cases, the logic is similar, and proceeds according to the following:

 ‰ Obtain current IPC space by a call to current_space().

 ‰ Obtain current VM space (vm_map) by a call to current_map().

 ‰ Sanity check on size of message.

 ‰ Compute msg size to allocate: This is taken from the send_size argument, plus a hard coded
MAX_TRAILER_SIZE.

 ‰ Allocate the message using ipc_kmsg_alloc.

 ‰ Copy the message (send_size bytes of it), and set msgh_size in header.

 ‰ Copy the port rights associated with the message, and any out-of-line memory into the cur-
rent vm_map by calling ipc_kmsg_copyin. This function calls ipc_kmsg_copyin_header
and ipc_kmsg_copyin_body, respectively.

 ‰ Call ipc_kmsg_send() to actually send the message:

 ‰ First, a reference to msgh_remote_port is obtained, and locked.

 ‰ If the port is a kernel port (i.e. the port ip_receiver is the kernel IPC space), the mes-
sage is processed using ipc_kobject_server() (from osfmk/kern/ipc_kobject.c).
This will fi nd the corresponding function in the kernel to execute on the message (or
call ipc_kobject_notify() to do so) and should also generate a reply to the message.

 ‰ In any case — that is, if the port is not in kernel space, or due to a reply returned
from ipc_kobject_server()— the function falls through to deliver the message (or
the reply to it) by calling ipc_mqueue_send(), which copies the message directly to
the port’s ip_messages queue and wakes up any waiting thread.

Receiving Messages
Similar to the message sending case, the Mach message-sending logic is implemented in two places
in the kernel. As before, the mach_msg_overwrite_trap() is used to serve requesters from user
mode, whereas mach_msg_receive() is reserved for kernel-mode ones.

 ‰ Obtain current IPC space by a call to current_space().

 ‰ Obtain current VM space (vm_map) by a call to current_map().

c10.indd 359c10.indd 359 9/29/2012 5:32:55 PM9/29/2012 5:32:55 PM

360 x CHAPTER 10 THE MEDIUM IS THE MESSAGE: MACH PRIMITIVES

 ‰ No sanity check is performed on the size of the message. This is unnecessary, as messages
have been validated during sending.

 ‰ The IPC queue is obtained by a call to ipc_mqueue_copyin()

 ‰ A reference is held on the current thread. Using a reference on the current thread makes it
suitable for Mach’s continuation model, which alleviates the need to maintain the full thread
stack. This model is described in more detail in the Mach scheduling chapter.

 ‰ The ipc_mqueue_receive() is called to dequeue the message.

 ‰ Finally, mach_msg_receive_results() is called. This function could also be called from a
continuation.

SYNCHRONIZATION PRIMITIVES

Message-passing is just one component of the Mach IPC architecture. The second is synchroniza-
tion, which enables two or more concurrent operations to determine access to shared resources.

Synchronization relies on the ability to exclude access to a resource while another is using it. The
most basic primitive, therefore, is a mutual exclusion object, or mutex. Mutexes are nothing more
than ordinary variables in kernel memory, usually integers up of machine size, with one special
requirement — the hardware must enforce atomic operations on them: “Atomic,” in the sense that
an operation on a mutex cannot be disrupted — not even by a hardware interrupt. In SMP systems,
a second requirement of physical mutual exclusion is required, which is usually implemented by
some type of memory fence or barrier.

The following section describes Mach’s synchronization primitives. There are quite a few of those,
and each is aimed at a particular purpose. As a quick guide, consult Table 10-7:

TABLE 10-7: Mach Synchronization Primitives

OBJECT IMPLEMENTED IN OWNER VISIBILITY WAIT

Mutex

(lck_mtx_t)

i386/i386_locks.c One Kernel Idle*

Semaphore

(semaphore_t)

kern/sync_sema.c Many User Idle

Spinlock

(hw_lock_t, ..)

i386/i386_lock.s One Kernel Busy

Lock sets

(lock_set_t)

kern/sync_lock.c One User Idle (as mutex)

c10.indd 360c10.indd 360 9/29/2012 5:32:55 PM9/29/2012 5:32:55 PM

Synchronization Primitives x 361

Like most of the primitives discussed in this chapter, Mach provides lock by putting together two
layers:

 ‰ The hardware specifi c layer: Relies on processor idiosyncrasies and specifi c assembly instruc-
tions to provide the atomicity and exclusion

 ‰ The hardware agnostic layer: Wraps the specifi cs with a uniform API. The API makes the lay-
ers on top of Mach (or the user API) totally oblivious to the implementation specifi cs. This is
usually achieved with a simple set of macros.

Lock Group Objects
Most Mach synchronization objects do not exist by their own right. Rather, they belong to a lck_
grp_t object. The lock groups are defi ned in osfmk/kern/locks.h as shown in Listing 10-5:

LISTING 10-5: The lck_grp_t, from osfmk/kern/locks.h

typedef struct _lck_grp_ {
 queue_chain_t lck_grp_link;
 uint32_t lck_grp_refcnt;
 uint32_t lck_grp_spincnt;
 uint32_t lck_grp_mtxcnt;
 uint32_t lck_grp_rwcnt;
 uint32_t lck_grp_attr;
 char lck_grp_name[LCK_GRP_MAX_NAME];
 lck_grp_stat_t lck_grp_stat;
} lck_grp_t;

Simply put, the lck_grp_t is simply a member in a linked list, with a given name, and up to three
lock types: spinlocks, mutexes, and read/write locks. A lock group also has statistics (the lck_grp_
stat_t), which can be used for debugging synchronization related issues. The attributes are largely
unused, though LCK_ATTR_DEBUG can be set. Table 10-8 lists the APIs for creating and destroying
lock groups:

TABLE 10-8: Mach lock group API functions

MACH MUTEX API USED TO

lck_grp_t
*lck_grp_alloc_init
 (const char* grp_name,
 lck_grp_attr_t *attr);

Create a new lock group. The group is identifi ed by

grp_name, and possesses the attributes specifi ed in

attr. In most cases, the attributes are default, as set by

lck_grp_attr_alloc_init();

void lck_grp_free
 (lck_grp_t *grp);

Deallocate lock group grp.

Virtually every subsystem of Mach, as well as most of BSD, creates and utilizes a lock group for
itself during initialization.

c10.indd 361c10.indd 361 9/29/2012 5:32:55 PM9/29/2012 5:32:55 PM

362 x CHAPTER 10 THE MEDIUM IS THE MESSAGE: MACH PRIMITIVES

Mutex Object
The most commonly used lock object is the mutex. Mutexes are defi ned as lck_mtx_t objects.
The mutex objects are largely architecture agnostic. A mutex must belong to a lock group and are
defi ned in osfmk/kern/locks.h with the operations in Table 10-9:

TABLE 10-9: Mach mutex API functions

MACH MUTEX API USED TO

lck_mtx_t
*lck_mtx_alloc_init(
lck_grp_t *grp,
lck_attr_t *attr);

Allocate a new mutex object, belonging

to group grp, with the attributes speci-

fi ed by attr.

lck_mtx_init(
lck_mtx_t *lck,
lck_grp_t *grp,

lck_attr_t *attr);

As lck_mtx_alloc_init, but initial-

izes an already allocated mutex lck.

lck_mtx_lock(lck_mtx_t *lck)

lck_mtx_try_lock(lck_mtx_t *l)

Lock the mutex lck. This will block

indefi nitely. The try variant doesn’t

block, but may fail.

lck_mtx_unlock(lck_mtx_t*lck); Unlock the mutex lck.

lck_mtx_destroy(lck_mtx_t *lck,

 lck_grp_t *grp);

Mark lck as destroyed and no longer

usable. The mutex is still allocated, how-

ever (and may be reinitialized)

lck_mtx_free(lck_mtx_t *lck,

 lck_grp_t *grp);

Mark lck as destroyed, and deallocate

it.

wait_result_t lck_mtx_sleep

(lck_mtx_t *lck,

 lck_sleep_action_t action,

 event_t event,

 wait_interrupt_t inter);

Make current thread sleep until lck

becomes available.

wait_result_t lck_mtx_sleep_deadline

(lck_mtx_t *lck,

 lck_sleep_action_t action,

 event_t event,

 wait_interrupt_t inter,

 uint64_t deadline);

Make current thread sleep until lck

becomes available, or until deadline has

been met.

The implementation of the mutex operation is architecture-dependent, and in the open source XNU
is split between osfmk/kern/locks.c and osfmk/i386/locks_i386.c, with optimized assembly

c10.indd 362c10.indd 362 9/29/2012 5:32:55 PM9/29/2012 5:32:55 PM

Synchronization Primitives x 363

primitives in osfmk/i386/i386_lock.s. There are additionally lck_mtx_lock__[try]_spin_*
functions, which on Intel architectures can convert mutexes to spinlocks (discussed later).

Read-Write Lock Object
Mutexes have a major drawback, which is that only one thread can hold them at a given time. In many
scenarios, multiple threads may require read-only access to a resource. In those cases, using a mutex
would prevent concurrent access, even though the threads would not interfere with one another.

Enter: The read-write lock. This is a “smarter” mutex, which distinguishes between read and write
access. Multiple readers (“consumers”) can hold the lock at any given time, but only one writer
(“producer”) can hold the lock. When a writer holds the lock, all other threads are blocked. The
API for read-write locks is largely identical to that of mutexes, save for the locking functions, which
accept a second argument specifying the lock type.

TABLE 10-10: Mach rwlock API functions

MACH RWLOCK API USED TO

lck_rw_t
*lck_rw_alloc_init
 (lck_grp_t *grp,
 lck_attr_t *attr);

Allocate a new rwlock object, belonging to group grp, with

the attributes specifi ed by attr.

lck_rw_init(lck_rw_t *lck,
 lck_grp_t *grp,

 lck_attr_t *attr);

As lck_rw_alloc_init, but initializes an already allocated

rw lck.

lck_rw_lock(lck_rw_t *lck,

lck_rw_type_t read_or_write);
Lock the mutex lck for read_or_write access.

Readers: This call will block only if a writer holds the lock.

Writers: This call will block until all other threads give up the

lock.

This call is a wrapper of lck_rw_lock_shared and

lck_rw_lock_exclusive.

lck_rw_unlock(lck_mtx_t *lck,

lck_rw_type_t read_or_write);
Unlock the mutex lck. This call is a wrapper of lck_rw_

unlock_shared and lck_rw_unlock_exclusive.

lck_rw_destroy(lck_mtx_t *lck,

 lck_grp_t*grp);

Mark lck as destroyed and no longer usable. The mutex is

still allocated, however (and may be reinitialized).

lck_mtx_free(lck_mtx_t *lck,

lck_grp_t *grp);

Mark lck as destroyed, and deallocate it.

wait_result_t lck_rw_sleep

(lck_mtx_t *lck,

 lck_sleep_action_t action,

 event_t event,

 wait_interrupt_t inter);

Make current thread sleep until lck becomes avail-

able. The action can specify LCK_SLEEP_SHARED or

LCK_SLEEP_EXCLUSIVE.

c10.indd 363c10.indd 363 9/29/2012 5:32:56 PM9/29/2012 5:32:56 PM

364 x CHAPTER 10 THE MEDIUM IS THE MESSAGE: MACH PRIMITIVES

Spinlock Object
Both mutexes and semaphores are idle-wait objects. This means that if the lock object is held by
some other owner, the thread requesting access is added to a wait queue, and is blocked. Blocking a
thread involves giving up its time slice and yielding the processor to whichever thread the scheduler
decrees should be next. When the lock is made available, the scheduler will be notifi ed and — at
its discretion — dequeue the thread and reschedule it. This, however, could severely impact perfor-
mance, since often times the object is only held for a few cycles, whereas the cost of two or more
context switches is orders of magnitude greater. In these cases, it may be advisable to not yield the
processor, and — instead — continue to try to access the lock object repeatedly, in what is called
a busy-wait. If, indeed, the current owner of the lock object relinquishes it anyway in a matter of a
few cycles, it saves at least two context switches.

This “if,” however, is a really big “if.” A spinning thread does so in what may end up being an
endless loop: The current owner may not give up the spinlock so quickly, and could in fact hold it
indefi nitely while waiting for some other resource. This leads to the much-dreaded busy deadlock
scenario, in which the entire system may grind to a halt.

The basic spinlock type is the hardware-specifi c hw_lock_t. On top of it are implemented the other
lock types: the lck_spin_t (a thin wrapper), the simple_lock_t, and the usimple_lock_t.
The locks may have different implementations, though in practice the simple lock is usually just
#defined over the usimple one.

The APIs for all three spinlock types resemble those of the other objects. A detailed example of
locking at the hardware level (the hw_lock_t), contrasting ARM and Intel as well as UP and SMP,
can be found in the appendix in this book.

Semaphore Object
Mach offers semaphores, which are generalizations of mutex objects. A semaphore is a mutex
object whose value can be other than 0 or 1 — up to some positive number, which is the count of
concurrent semaphore holders. To put it another way, a mutex can be considered as a special case of
a binary semaphore. Semaphores, however, are visible in user mode, whereas mutexes aren’t.

Mach semaphores are not the same as POSIX semaphores. The API presented
here is different, and not POSIX compliant. The underlying implementation of
POSIX semaphores, however, is over Mach semaphores (e.g. POSIX’s
sem_open() calls on Mach’s semaphore_create())

The API for semaphores, listed in Table 10-11 is straightforward to use:

c10.indd 364c10.indd 364 9/29/2012 5:32:56 PM9/29/2012 5:32:56 PM

Synchronization Primitives x 365

TABLE 10-11: Mach Semaphore API functions

MACH SEMAPHORE API USED TO

semaphore_create(task_t t,

 semaphore_t *sem,

 int policy,

 int value);

Create a new semaphore in sem for task t, with initial

count value. The policy indicates how blocking threads

will be awakened, as per the same values of lock policies.

semaphore_destroy (task_t t,

 semaphore_t semaphore);

Destroy a semaphore port semaphore in t.

semaphore_signal

 (semaphore_t semaphore);

Increment count of a semaphore. If the count becomes

greater than or equal to zero, a blocking thread is awak-

ened, according to the policy.

semaphore_signal_all

 (semaphore_t semaphore);

Set count of semaphore to zero, thereby waking all

threads.

semaphore_wait

 (semaphore_t semaphore);

Decrement count on semaphore, and block until count

becomes non-negative again.

The semaphore itself is not a lockable object. It is a small struct, containing the reference to the
owner and its port. Additionally, it contains a wait_queue_t, which is a linked list of threads wait-
ing on it. It is that wait_queue_t which gets locked, by means of a hardware lock. This is shown in
Listing 10-6:

LISTING 10-6: THE SEMAPHORE OBJECT, FROM osfmk/kern/sync_sema.h

typedef struct semaphore {
 queue_chain_t task_link; /* chain of semaphores owned by a task */
 struct wait_queue wait_queue; /* queue of blocked threads & lock */
 task_t owner; /* task that owns semaphore */
 ipc_port_t port; /* semaphore port */
 uint32_t ref_count; /* reference count */
 int count; /* current count value */
 boolean_t active; /* active status */
} Semaphore;

#define semaphore_lock(semaphore) wait_queue_lock(&(semaphore)->wait_queue)
#define semaphore_unlock(semaphore) wait_queue_unlock(&(semaphore)->wait_queue)

c10.indd 365c10.indd 365 9/29/2012 5:32:57 PM9/29/2012 5:32:57 PM

366 x CHAPTER 10 THE MEDIUM IS THE MESSAGE: MACH PRIMITIVES

Semaphores also have one other interesting property — they may be converted to and from ports.
The functions in osfmk/kern/ipc_sync.c allow this. This functionality, however, is not exposed
to user mode, and is not used in the kernel proper.

Lock Set Object
Tasks can utilize lock sets at the user mode level. These are conceptually arrays of locks (actually,
mutexes), which can be acquired by a given lock ID. The locks can also be given — handed off —
to other threads. Handing off will block the handing thread and wake up the receiving thread.

The lock sets are essentially wrappers over the kernel’s mutexes, lck_mtx_t’s, as shown in the
Figure 10-1:

Public interface

lock_acquire

<mach/lock_set.h> osfmk/kern/sync_lock.c osfmk/kern/sync_lock.h osfmk/i386/i386_lock.c

ulock_lock

Implement lock_t over
a ulock object

#define ulock_lock to
be a lck_mtx_lock, and
lck_mtx_lock as extern

Implement the
lck_mtx_lock in

low-level assembly

lck_mtx_lock lck_mtx_lock

Kernel private Architecture agnostic,
but more primitive

objects

Architecture specific

FIGURE 10-1: Lock set implementation over mutexes

The APIs are listed in Table 10-12:

TABLE 10-12: Lock Set APIs (visible in user mode)

MACH LOCK SET API USED TO

lock_set_create(task_t t,

lock_set_t lock_set,

int count,

int policy);

Create a lock set lock_set for task t, with up to count

locks. Wake up threads obtaining lock in set according to

policy:

 SYNC_POLICY_FIFO: queued

 SYS_POLICY_FIXED_PRIORITY: by priority

lock_set_destroy(task_t t,

lock_set_t lock_set);

Destroy a lock set and any locks it may contain.

lock_acquire

(lock_set_t lock_set,

 int lock_id);

Acquire lock lock_id in lock set lock_set. This function

may block indefi nitely.

lock_release

(lock_set_t lock_set,

 int lock_id);

Release lock lock_id in lock set lock_set, if held.

c10.indd 366c10.indd 366 9/29/2012 5:32:57 PM9/29/2012 5:32:57 PM

Machine Primitives x 367

lock_try

(lock_set_t lock_set,

 int lock_id);

Try to acquire, but fail if lock is already held with

KERN_LOCK_OWNED, rather than block until available.

lock_make_stable

(lock_set_t lock_set,

 int lock_id);

Make a lock, which was acquired and returned

KERN_LOCK_UNSTABLE, once again stable.

lock_handoff

(lock_set_t lock_set,

 int lock_id);

Give a lock (which is currently owned) to another thread.

lock_handoff_accept

(lock_set_t lock_set,

 int lock_id);

Accept a lock which was previously given with

lock_handoff_accept.

The interesting aspect of locksets is that they allow the handoff of locks. This is the act of passing
a lock from one task to another. Mach also uses handoff in the context of scheduling, allowing one
thread to yield the processor but specify which thread to run in its stead.

MACHINE PRIMITIVES

Mach abstracts the machine it is operating on by several so called “machine primitives,” which
include the host (physical machine abstraction), clock (time keeping), processor (CPU), and proces-
sor set (logical groupings of CPUs). These are described next.

Host Object
Mach’s most fundamental object is the “host,” which represents the machine itself. The host object
is a simple construct, defi ned in <osmfk/kern/host.h> as shown in Listing 10-7:

LISTING 10-7: Host abstraction defi nition from osfmk/kern/host.h

struct host {
 decl_lck_mtx_data(,lock) /* lock to protect exceptions */
 ipc_port_t special[HOST_MAX_SPECIAL_PORT + 1]; // ports such as priv, I/O,
 pager, struct exception_action exc_actions[EXC_TYPES_COUNT];
};
typedef struct host host_data_t;

The host is really nothing more than a collection of “special ports,” which are used to send the host
various messages, and a collection of exception handlers (which are described later in this chapter).
A lock is defi ned over the host to avoid concurrent access during exception processing.

c10.indd 367c10.indd 367 9/29/2012 5:32:57 PM9/29/2012 5:32:57 PM

368 x CHAPTER 10 THE MEDIUM IS THE MESSAGE: MACH PRIMITIVES

The host structure serves three basic functions:

 ‰ Provides machine information: Mach provides a surprisingly rich set of API calls to query
machine information, and all require obtaining the host port in order to function.

 ‰ Provide access to subsystems: Through the host abstraction, an application can request access
to any of several “special” ports used by subsystems. Additionally, it is possible to gain
access to all the other machine abstractions (notably, the processor and processor_set).

 ‰ Provides default exception handling: As shown later, exceptions are escalated from the
thread level to the process (task) level, and — if not handled — to the host level for generic
handling.

The important aspect of the host APIs is that they provide information that is virtually unobtainable
in other ways. The Mach APIs provide the most straightforward way to get information about ker-
nel modules, memory tables, and other aspects, which POSIX (and, therefore, the BSD layer) does
not offer. Table 10-13 lists these APIs:

TABLE 10-13: Mach host APIs

MACH HOST API USED TO

host_info

(host_t host,

 host_flavor_t flavor,

 host_info_t host_info_out,

 mach_msg_type_number_t

 *host_info_outCnt

Get various system information, according to

flavor:

HOST_BASIC_INFO: Basic informa-

tion on the host — host_info_out is a

host_basic_info.

HOST_SCHED_INFO: host_info_out is a

host_sched_info specifying scheduling

information.

host_processor_info

(host_t host,

processor_flavor_t flavor,

natural_t *processorCount,

processor_info_array_t *info,

mach_msg_type_number_t *count);

Get detail on the host processors:

processorCount will hold the number of

processors, and information (according to

flavor) will be returned in info, an array of

infoCnt bytes.

host_get_clock_service

(host_t host,

 clock_id_t clock_id,

 clock_serv_t *clock_serv);

Get a pointer to the host’s clock service

(discussed later).

kmod_get_info

(host_t host,

kmod_args_t *modules,

mach_msg_type_number_t *modulesCnt);

Get a list of kernel modules on the host —

deprecated in Snow Leopard, and unsup-

ported in Lion and iOS.

c10.indd 368c10.indd 368 9/29/2012 5:32:57 PM9/29/2012 5:32:57 PM

Machine Primitives x 369

host_virtual_physical_table_info

(host_t host,

 hash_info_bucket_array_t *info,

 mach_msg_type_number_t *infoCnt);

Virtual to physical address mapping tables.

Only supported on debug kernels (#if

MACH_VM_DEBUG).

host_statistics

(host_t host_priv,

 host_flavor_t flavor,

 host_info_t host_info_out,

 mach_msg_type_number_t hioCnt);

Obtain various statistics about host. A

host_statistics64 function also exists.

host_lockgroup_info

(host_t host,

 lockgroup_info_array_t *lockgroup_info,

 mach_msg_type_number_t *lgiCnt);

Obtain information about kernel lock groups

(internal lock objects in kernel).

OS X and jailbroken iOS contain a hostinfo(1) command, which displays the mach_host_info_t
structure information in user-friendly form as shown in Listings 10-8a through 10-8c:

LISTING 10-8A: hostinfo(1) on the author’s MacBook Air

root@Ergo (/)# hostinfo
Mach kernel version:
 Darwin Kernel Version 10.8.0: Tue Jun 7 16:33:36 PDT 2011; root:xnu-1504.15.3~1/
 RELEASE_I386
Kernel configured for up to 2 processors.
2 processors are physically available.
2 processors are logically available.
Processor type: i486 (Intel 80486)
Processors active: 0 1
Primary memory available: 4.00 gigabytes
Default processor set: 74 tasks, 337 threads, 2 processors
Load average: 1.29, Mach factor: 1.14

LISTING 10-8B: hostinfo(1) on an iPod Touch

Podicum:~ root# hostinfo
Mach kernel version:
 Darwin Kernel Version 11.0.0: Thu Sep 15 23:34:16 PDT 2011; root:xnu-1878.4.43~2/
 RELEASE_ARM_S5L8930X
Kernel configured for a single processor only.
1 processor is physically available.
1 processor is logically available.

continues

c10.indd 369c10.indd 369 9/29/2012 5:32:58 PM9/29/2012 5:32:58 PM

370 x CHAPTER 10 THE MEDIUM IS THE MESSAGE: MACH PRIMITIVES

Processor type: armv7 (arm v7)
Processor active: 0
Primary memory available: 248.95 megabytes
Default processor set: 33 tasks, 233 threads, 1 processors
Load average: 0.46, Mach factor: 0.58

LISTING 10-8C: hostinfo(1) on the iPad 2 (Note two processors = 2 cores)

Padishah:~ root# hostinfo
Mach kernel version:
 Darwin Kernel Version 11.0.0: Wed Mar 30 18:52:42 PDT 2011; root:xnu-1735.46~10/
 RELEASE_ARM_S5L8940X
Kernel configured for up to 2 processors.
2 processors are physically available.
2 processors are logically available.
Processor type: armv7 (arm v7)
Processors active: 0 1
Primary memory available: 502.00 megabytes
Default processor set: 34 tasks, 281 threads, 2 processors
Load average: 0.07, Mach factor: 1.92

These commands are a straightforward dump of the host_basic_info struct defi ned in osfmk/
mach/host_info.h (and <mach/host_info.h>). If the “i486” processor type is somewhat surpris-
ing, it is because the APIs have not been updated in a long, long time.

Experiment: Using Host Functions to Obtain Information
Listing 10-9 shows how you can create a hostinfo(1) like utility using a few lines of code:

LISTING 10-9: The source of a hostinfo(1) like utility.C

#include <mach/mach.h>
#include <stdio.h>

// A quick & dirty hostinfo(1) like utility

int main(int argc, char **argv)
{

 mach_port_t self = host_self();
 kern_return_t rc;
 char buf[1024]; // suffices. Better code would sizeof(..info)
 host_basic_info_t hi;
 int len = 1024;

 // Getting the host info is simply a matter of calling host_info
 // on the host_self(). We do not need the privileged host port for
 // this..
 rc = host_info (self, // host_t host,
 HOST_BASIC_INFO, // host_flavor_t flavor,
 (host_info_t) buf, // host_info_t host_info_out,

LISTING 10-8B (continued)

c10.indd 370c10.indd 370 9/29/2012 5:32:58 PM9/29/2012 5:32:58 PM

Machine Primitives x 371

 &len); // mach_msg_type_number_t *host_info_outCnt

 if (rc != 0) { fprintf(stderr,"Nope\n"); return(1);}

 hi = (host_basic_info_t) buf; // type cast, so we can print fields

 // and print fields..
 printf ("CPUs:\t\t %d/%d\n", hi->avail_cpus, hi->max_cpus);
 printf ("Physical CPUs:\t %d/%d\n", hi->physical_cpu, hi->physical_cpu_max);
 printf ("Logical CPUs:\t %d/%d\n", hi->logical_cpu, hi->logical_cpu_max);
 printf ("CPU type:\t %d/%d, Threadtype: %d\n", hi->cpu_type,
 hi->cpu_subtype, hi->cpu_threadtype);

 // Note memory_size is a signed 32-bit! Max value is 2GB, then it flips to negative
 printf ("Memory size:\t %d/%ld\n", hi->memory_size, hi->max_mem);

 return(0);
}

This listing will compile cleanly on OS X and iOS. The “physical/logical” distinction between the
CPUs doesn’t really work, as Mach can’t tell the difference. The reader is encouraged to add other
_info like utilities as an exercise.

Host Special Ports
The Mach host object also contains “special” ports. These, as you can see in Listing 10-7, are main-
tained in an internal array — so merely having the host port is insuffi cient to obtain access to them.
A call to host_get_special_port must be made and, as most specifi c ports are well known, mac-
ros exist to obtain each of them, as shown in Listing 10-10:

LISTING 10-10: Host special ports and the macros to get them (osfmk/mach/
host_special_ports.h)

/*
 * Always provided by kernel (cannot be set from user-space).
 */
#define HOST_PORT 1
#define HOST_PRIV_PORT 2
#define HOST_IO_MASTER_PORT 3 // used by IOKit (see chapter 13)
#define HOST_MAX_SPECIAL_KERNEL_PORT 7 /* room to grow */

/*
 * Not provided by kernel
 */

#define HOST_DYNAMIC_PAGER_PORT (1 + HOST_MAX_SPECIAL_KERNEL_PORT)
#define HOST_AUDIT_CONTROL_PORT (2 + HOST_MAX_SPECIAL_KERNEL_PORT)
#define HOST_USER_NOTIFICATION_PORT (3 + HOST_MAX_SPECIAL_KERNEL_PORT)
#define HOST_AUTOMOUNTD_PORT (4 + HOST_MAX_SPECIAL_KERNEL_PORT)
#define HOST_LOCKD_PORT (5 + HOST_MAX_SPECIAL_KERNEL_PORT)
#define HOST_SEATBELT_PORT (7 + HOST_MAX_SPECIAL_KERNEL_PORT)
#define HOST_KEXTD_PORT (8 + HOST_MAX_SPECIAL_KERNEL_PORT)

continues

c10.indd 371c10.indd 371 9/29/2012 5:32:58 PM9/29/2012 5:32:58 PM

372 x CHAPTER 10 THE MEDIUM IS THE MESSAGE: MACH PRIMITIVES

#define HOST_CHUD_PORT (9 + HOST_MAX_SPECIAL_KERNEL_PORT)
#define HOST_UNFREED_PORT (10 + HOST_MAX_SPECIAL_KERNEL_PORT)
#define HOST_AMFID_PORT (11 + HOST_MAX_SPECIAL_KERNEL_PORT)
#define HOST_GSSD_PORT (12 + HOST_MAX_SPECIAL_KERNEL_PORT) // Lion
#define HOST_MAX_SPECIAL_PORT (13 + HOST_MAX_SPECIAL_KERNEL_PORT)
 /* room to grow here as well */

/*
 * Special node identifier to always represent the local node.
 */
#define HOST_LOCAL_NODE -1

/*
 * Definitions for ease of use.
 *
 * In the get call, the host parameter can be any host, but will generally
 * be the local node host port. In the set call, the host must the per-node
 * host port for the node being affected.
 */

#define host_get_host_port(host, port) \
 (host_get_special_port((host), \
 HOST_LOCAL_NODE, HOST_PORT, (port)))
#define host_set_host_port(host, port) (KERN_INVALID_ARGUMENT)

#define host_get_host_priv_port(host, port) \
 (host_get_special_port((host), \
 HOST_LOCAL_NODE, HOST_PRIV_PORT, (port)))
#define host_set_host_priv_port(host, port) (KERN_INVALID_ARGUMENT)

#define host_get_io_master_port(host, port) \
 (host_get_special_port((host), \
 HOST_LOCAL_NODE, HOST_IO_MASTER_PORT, (port)))
#define host_set_io_master_port(host, port) (KERN_INVALID_ARGUMENT)

... (others defined similarly)…

Not all the special ports are necessarily kernel ones. In fact, most of those #define’d in Listing
10-10 are in user mode, owned by specifi c daemon processes. These user-mode special ports are
listed in Table 10-15:

TABLE 10-15: Host special ports claimed by user mode processes

CONSTANT USED FOR

HOST_DYNAMIC_PAGER_PORT(8) OS X: Used by dynamic_pager. Serves swap fi le resizing

requests (described in Chapter 11).

HOST_AUDIT_CONTROL(9) OS X: used by auditd (described in Chapter 3).

HOST_USER_NOTIFICATION_PORT(10) OS X: Used by the kuncd, Kernel/User Notifi cation Center

daemon. This is a daemon which receives requests from

kernel mode and displays dialogs to the user.

LISTING 10-10 (continued)

c10.indd 372c10.indd 372 9/29/2012 5:32:58 PM9/29/2012 5:32:58 PM

Machine Primitives x 373

HOST_AUTOMOUNTD_PORT(11) OS X: used by the fi le system automount daemon.

HOST_LOCKD_PORT(12) OS X: used by the RPC lockd.

HOST_SEATBELT_PORT(14) Seatbelt — the former name of the Sandbox API. Used by

the sandboxd.

HOST_KEXTD_PORT(15) OS X: The Kernel Extension Daemon — Responsible for

centralizing kernel extension load requests from user

mode, and assisting the kernel when loading multiple

kexts. Unused in iOS.

HOST_CHUD_PORT(16) The Computer Hardware Understanding Port, reserved for

CHUD programs, for low-level profi ling and diagnostics.

Used by appleprofilepolicyd.

HOST_UNFREED_PORT(17) iOS: Used by fairplayd, Apple’s DRM enforcer.

HOST_AMFID_PORT(18) iOS: Used by amfid and AppleMobileFileIntegrity,

which enforces code signatures and entitlements.

HOST_GSSD_PORT(19) As of Lion: Used by GSS. Before Lion, this was a task-level

special port (#8). Unused in iOS.

The special ports can be requested from launchd, in the MachServices key, by specifying the Host
SpecialPort key. Listing 10-11 shows the sandboxd requesting the HOST_SEATBELT_PORT on OS X
or iOS:

LISTING 10-11: Requesting HOST_SEATBELT_PORT (#14) in com.apple.sandboxd.plist

...
 <key>MachServices</key>
 <dict>
 <key>com.apple.sandboxd</key>
 <dict>
 <key>HostSpecialPort</key>
 <integer>14</integer>
 </dict>
 </dict>
...

Whether they are kernel-provided or external, the same function can be used to retrieve special
ports, however. This function is host_get_special_port(), which is defi ned in osfmk/kern/
host.c, and shown in Listing 10-12:

LISTING 10-12: host_get_special_port(), as defi ned in osfmk/kern/host.c

host_get_special_port(
 host_priv_t host_priv,
 __unused int node,

continues

c10.indd 373c10.indd 373 9/29/2012 5:32:58 PM9/29/2012 5:32:58 PM

374 x CHAPTER 10 THE MEDIUM IS THE MESSAGE: MACH PRIMITIVES

 int id,
 ipc_port_t *portp)
{
 ipc_port_t port;

 if (host_priv == HOST_PRIV_NULL ||
 id == HOST_SECURITY_PORT || id > HOST_MAX_SPECIAL_PORT || id < 0)
 return KERN_INVALID_ARGUMENT;

 host_lock(host_priv);
 port = realhost.special[id];
 *portp = ipc_port_copy_send(port);
 host_unlock(host_priv);

 return KERN_SUCCESS;
}

Host Privileged Operations
The most important special host port is the host’s privileged port. It is a prerequisite to quite a few
operations, which are deemed “privileged” and require accessing special ports. While anyone is able
to get the host port by means of mach_host_self(), discussed previously, only privileged users can
get the privileged port by calling host_get_host_priv_port(), shown in Listing 10-8. Once the
port is obtained, it can be used in any of the calls shown in Table 10-16, defi ned in <mach/host_
priv.h>:

TABLE 10-16: Functions in <mach/host_priv.h>

MACH HOST_PRIV API USED FOR

host_get_boot_info

(host_priv_t host_priv,

 kernel_boot_info_t info)

Return boot information in info. Actual imple-

mentation is machine-specifi c. OS X’s (in osfmk/

i386/AT386/model_dep.c) returns an empty

string.

host_reboot

 (host_priv_t hp,

 int options);

Reboot host, according to options.

Currently defi ned are HOST_REBOOT_

DEBUGGER (to invoke the kernel debugger) and

HOST_REBOOT_UPSDELAY.

This function calls on the Platform Expert to do

the actual work of halting/restarting.

host_priv_statistics

 (host_priv_t host_priv,

 host_flavor_t flavor,

 host_info_t host_info_out,

 mach_msg_type_number_t *hioCnt);

In OS X and iOS, same as host_statistics.

LISTING 10-12 (continued)

c10.indd 374c10.indd 374 9/29/2012 5:32:59 PM9/29/2012 5:32:59 PM

Machine Primitives x 375

host_default_memory_manager

 (host_priv_t host_priv,

 memory_object_default_t *def,

 memory_object_cluster_size_t

 cluster_size);

Register default pager task (discussed in

Chapter 12).

[mach]_vm_wire

(host_priv_t host_priv,

 vm_map_t task,

 vm_address_t address,

 vm_size_t size,

 vm_prot_t desired);

Change residency of memory range (address—

address+size) resident in VM map of task

according to desired. This is very similar to

mlock(2). To unwire (munlock(2)), specify

VM_PROT_NONE in fl ags.

Note, that while BSD treats mlock(2) as a per-

process API, in Mach this is a host level call, as it

aff ects the entire machine’s physical memory.

This calls mach_vm_wire() internally.

vm_allocate_cpm

 (host_priv_t host_priv,

 vm_map_t task,

 vm_address_t *address,

 vm_size_t size,

 int flags);

Experimental API meant to off er a contiguous

physical memory allocator.

host_processors

 (host_t host_priv,

 processor_port_array_t pl,

 mach_msg_type_number_t *count);

Populate array of count processors ports pl on

the system.

host_get_clock_control

 (host_priv host_priv,

 clock_id_t id,

 clock_ctrl_t control);

Set control to be a handle (send right) to the

clock specifi ed by id.

kmod_create(...);

kmod_destroy(...);

kmod_control(...);

Mach kernel module support. No longer sup-

ported in either OS X or iOS.

host_get_special_port

 (host_priv_t host_priv,

 int node,

 int which,

 mach_port_t *port);

Get or set any of the host’s special ports

(discussed in the last section).

continues

c10.indd 375c10.indd 375 9/29/2012 5:32:59 PM9/29/2012 5:32:59 PM

376 x CHAPTER 10 THE MEDIUM IS THE MESSAGE: MACH PRIMITIVES

MACH HOST_PRIV API USED FOR

host_set_special_port

 (host_priv_t host_priv,

 int which,

 mach_port_t port);

host_set_exception_ports

 (host_priv_t host_priv,

 exception_mask_t exc_mask,

 exception_mask_array_t masks,

 mach_msg_type_number_t *mCnt,

 exception_handler_array_t old,

 exception_behavior_array_t oldb,

 exception_flavor_array_t oldf);

host_get_exception_ports (...);

host_swap_exception_ports (...);

Get/Set or swap between the host-level excep-

tion handlers (discussed under “Exceptions,” in

the next chapter).

host_load_symbol_table As noted in the sources — “This has never and

will never be supported on Mac OS X” (would

have loaded the kernel symbol table into kernel

debugger).

host_processor_sets

 (host_priv_t host_priv,

 processor_set_name_port_array_t

 processor_set_name_list,

 mach_msg_type_number_t *count);

Similar to host_processor but get array of

processor_sets. Processor sets are primitives

that group the machine’s CPUs. They are dis-

cussed later.

set_dp_control_port

 (host_priv_t host,

 mach_port_t control_port);

 get_dp_control_port

 (host_priv_t host,

 mach_port_t *contorl_port);

Get or set Dynamic Pager control port. The

Dynamic Pager is discussed in Chapter 12.

host_set_UNDServer

 (host_priv_t host_priv,

 UNDServerRef server)

host_get_UNDServer

 (host_priv_t host_priv,

 UNDServerRef *server)

Wrappers over host_get/set_user_notifi-

cation_port. Used in XNU’s UNC mechanisms

to export kernel messages to user mode. This is

a deprecated API which allows drivers and other

kernel-level code to display GUI prompts.

TABLE 10-16 (continued)

c10.indd 376c10.indd 376 9/29/2012 5:32:59 PM9/29/2012 5:32:59 PM

Machine Primitives x 377

kext_request

(host_priv_t hp,

 uint32_t clientLogSpec,

 vm_offset_t requestIn,

 mach_msg_type_number_t reqLen,

 vm_offset_t * responseOut,

 mach_msg_type_number_t * lenOut,

 vm_offset_t * logDataOut,

 mach_msg_type_number_t * ldoLen,

 kern_return_t * op_result)

Apple-specifi c extension to support Kernel Exten-

sions — used in place of the kmod_* api to

insert kexts. The message is used to load, query

and remove kernel extensions (described in

detail in Chapter 18).

An interesting observation is that, for a privileged user, the host’s “regular” and “privileged” port
appear alike (i.e. comparing the port numbers reveals they are very much the same), whereas the
unprivileged user gets a “0” when attempting to retrieve the privileged port.

Experiment: Rebooting Using the Privileged Port
The following (very simple) listing (Listing 10-13) shows how to reboot the system if access to the
privileged port can be obtained. Naturally, you will need root permissions to access this (but do be
careful, as — unlike the OS X GUI, which gives you a chance to change your mind — this will halt/
restart your machine without warning):

LISTING 10-13: Rebooting the system, via the host API

#include <mach/mach.h>
void main()
{

 mach_port_t h = mach_host_self();
 mach_port_t hp;
 kern_return_t rc;

 /* request host privileged port. Will only work if we are root */
 /* Note, this is the "right" way of doing it.. but we could also */
 /* use a short cut, left as an exercise */
 rc = host_get_host_priv_port (h, &hp);

 if (rc == KERN_SUCCESS) host_reboot(hp, 0);

 // If we are root, this won't even be reached.
 printf ("sorry\n");

}

As an exercise, run the preceding program, but change the hp parameter — the privileged host port
— to h. What happens? What does that tell you about the necessity of host_get_host_priv_port?
Validate this by examining host_priv_self() and host_self() in osfmk/kern/host.c.

c10.indd 377c10.indd 377 9/29/2012 5:32:59 PM9/29/2012 5:32:59 PM

378 x CHAPTER 10 THE MEDIUM IS THE MESSAGE: MACH PRIMITIVES

Clock Object
The Mach kernel provides a simple abstraction of a “clock” object. This object is used for timekeep-
ing and alarms, and is defi ned in osfmk/kern/clock.h, shown in Listing 10-14:

LISTING 10-14: The clock object, from osfmk/kern/clock.h

struct clock_ops {
 int (*c_config)(void); /* configuration */
 int (*c_init)(void); /* initialize */
 kern_return_t (*c_gettime)(/* get time */
 mach_timespec_t *cur_time);
 kern_return_t (*c_getattr)(/* get attributes */
 clock_flavor_t flavor,
 clock_attr_t attr,
 mach_msg_type_number_t *count);

struct clock {
 clock_ops_t cl_ops; /* operations list */
 struct ipc_port *cl_service; /* service port */
 struct ipc_port *cl_control; /* control port */
};

As can be seen from the listing, the clock is a simple object with two ports — one for “service” func-
tions (e.g. time-telling or alarms), and the other for “control” functions, such as setting the time of day.

From user mode, however, the visible API is fairly basic, as detailed in <mach/clock.h>, and shown
in Table 10-17:

TABLE 10-17: The Mach user-mode visible APIs

MACH CLOCK API USED FOR

clock_get_time

 (clock_serv_t clock_serv,

 mach_timespec_t *cur_time);

Get the current time from clock_serv into cur_time.

clock_get_attributes

 (clock_serv_t clock_serv,

 clock_flavor_t flavor,

 clock_attr_t clock_attr,

 mach_msg_type_number_t

*clock_attrCnt);

Get clock clock_serv’s attribute, of selected fl avor,

into clock_attr_t.

Currently defi ned attributes:

CLOCK_GET_TIME_RES

CLOCK_ALARM_CURRES

CLOCK_ALARM_MINRES CLOCK_ALARM_MAXRES.

clock_alarm

 (clock_serv_t clock_serv,

 alarm_type_t alarm_type,

 mach_timespec_t alarm_time,

 clock_reply_t alarm_port);

Request an alarm message from theclock_serv. This

message will be sent to thealarm_port at the speci-

fi ed alarm_time. Time is specifi ed as TIME_ABSO-

LUTE or TIME_RELATIVE.

c10.indd 378c10.indd 378 9/29/2012 5:33:00 PM9/29/2012 5:33:00 PM

Machine Primitives x 379

In all the API functions shown, the client fi rst obtains a handle to the clock (clock_serv_t) by call-
ing host_get_clock_service. Mach exposes two types of clocks — SYSTEM_CLOCK/REALTIME_
CLOCK, and CALENDAR_CLOCK (SYSTEM and REALTIME are both the same clock) — and the caller
needs to specify the clock type as the second parameter to this call. Whereas SYSTEM_CLOCK keeps
the time since boot, CALENDAR_CLOCK is synchronized with the machine’s RTC to provide both the
time and date.

Internally, however, there are quite a few clock functions. XNU provides a newer API than the orig-
inal Mach and has deprecated the original API to “old” status, so if you examine the sources you
are likely to see references to both the new functions and their “old” counterparts.

All the clocks are created as part of the kernel’s initialization process. The clocks are defi ned in a
global clock_list (in osfmk/i386/AT386/conf.c):

struct clock clock_list[] = {

 /* SYSTEM_CLOCK */
 { &sysclk_ops, 0, 0 },

 /* CALENDAR_CLOCK */
 { &calend_ops, 0, 0 }
};
int clock_count = sizeof(clock_list) / sizeof(clock_list[0]);

The clock_init()function, called from kernel_bootstrap(), falls through to clock_oldinit()
and initializes each clock in the list by calling its c_init function. For the system clock, which is
the important abstraction of the system’s timer tick, the sysclk_ops are defi ned in osfmk/kern/
clock_oldops.c, as follows:

struct clock_ops sysclk_ops = {
 rtclock_config, // the c_config member
 rtclock_init, // the c_init member
 rtclock_gettime,
 rtclock_getattr,
};

The kernel_bootstrap_thread() then calls clock_service_create(), which in turn calls ipc_
clock_init() to create each clock’s service and confi guration port, and then ipc_clock_enable()
to enable IPC access to it. Finally, it wraps up by allocating a global alarm_zone called “alarms,”
which is used for clock alarms.

Clock alarms are really just wrappers over the well-known Mach messages. These alarms, defi ned in
osfmk/kern/clock_oldops.c, are stored in a linked list of struct alarm, defi ned as follows:

struct alarm {
 struct alarm *al_next; /* next alarm in chain */
 struct alarm *al_prev; /* previous alarm in chain */
 int al_status; /* alarm status */
 mach_timespec_t al_time; /* alarm time */
 struct { /* message alarm data */
 int type; /* alarm type */
 ipc_port_t port; /* alarm port */
 mach_msg_type_name_t port_type; /* alarm port type */

c10.indd 379c10.indd 379 9/29/2012 5:33:00 PM9/29/2012 5:33:00 PM

380 x CHAPTER 10 THE MEDIUM IS THE MESSAGE: MACH PRIMITIVES

 struct clock *clock; /* alarm clock */
 void *data; /* alarm data */
 } al_alrm;

The clock_alarm function, callable from both user and kernel mode, validates the arguments
and sets up an alarm by obtaining the global alarm_lock, allocating a new alarm object from the
alarm_zone, copying the arguments to it, and posting it using post_alarm, which in turn calls set_
alarm to set the alarm_expire_timer to the time specifi ed in the alarm, converted to absolute time.

When the alarm expires, the clock thread wakes up into alarm_done, which delivers the alarm to
the al_port specifi ed — i.e. sends a message by calling clock_alarm_reply().

The most important internal API clocks offer is clock_deadline_for_periodic_event: This API
is used by schedulers (discussed next chapter) to set up a recurring notifi cation — and thus, a call-
back into the scheduler, which keeps the system’s multitasking engine running.

Processor Object
The processor object represents a logical CPU or core present on the machine. In today’s multicore
default architecture, each core is considered to be a CPU, and Mach does not make the distinction
between the two terms. Processors are assigned to processor sets, which are logical groupings of one
or more processors.

The processor is a simple abstraction of a CPU, used by Mach for basic operations, such as starting
and stopping a CPU or core and dispatching threads to it. The structure is defi ned in osfmk/kern/
processor.h and is fairly well commented, as shown in Listing 10-15:

LISTING 10-15: The processor object, from osfmk/kern/processor.h

struct processor {
 queue_chain_t processor_queue;/* idle/active queue link,
 * MUST remain the first element */
 int state; /* one of OFFLINE,SHUTDOWN,START,INACTIVE,
 * IDLE, DISPATCHING, or RUNNING */
 struct thread *active_thread, /* thread running on processor */
 next_thread, / next thread when dispatched */
 idle_thread; / this processor's idle thread. */

 processor_set_t processor_set; /* assigned set (discussed later) */
 int current_pri; /* priority of current thread */
 sched_mode_t current_thmode; /* sched mode of current thread */
 int cpu_id; /* platform numeric id */

 timer_call_data_t quantum_timer; /* timer for quantum expiration */
 uint64_t quantum_end; /* time when current quantum ends */
 uint64_t last_dispatch; /* time of last dispatch */

 uint64_t deadline; /* current deadline */
 int timeslice; /* quanta before timeslice ends */

 /* Specific thread schedulers defined in the mach kernel require expanding this

c10.indd 380c10.indd 380 9/29/2012 5:33:00 PM9/29/2012 5:33:00 PM

Machine Primitives x 381

 * structure with their own fields—this will be explained next chapter
 */
#if defined(CONFIG_SCHED_TRADITIONAL) || defined(CONFIG_SCHED_FIXEDPRIORITY)
 struct run_queue runq; /* runq for this processor */
 int runq_bound_count; /* # of threads bound to this
 * processor */
#endif
#if defined(CONFIG_SCHED_GRRR)
 struct grrr_run_queue grrr_runq; /* Group Ratio Round-Robin runq */
#endif
 processor_meta_t processor_meta; /* meta data on processor */

 struct ipc_port * processor_self; /* port for operations */

 processor_t processor_list; /* all existing processors */
 processor_data_t processor_data; /* per-processor data */
};

Most important in the processor object is the runq element, which is the processor’s local queue of
threads that have been dispatched to it. Run queues are discussed in Chapter 11.

The processors on a host can be obtained by a call to host_processors(), which will return an array
of processor_t objects. Mach defi nes the operations shown in Table 10-18, on the processor_t:

TABLE 10-18: Processor operations

MACH PROCESSOR API USED TO

processor_start (processor_t p); Start the processor or core p. Cannot start an

already active processor.

processor_exit(processor_t p) Exit (shut down) the processor or core p.

processor_info(processor_t p,

processor_flavor_t flavor,

host_t *host,

processor_info_t pi_out,

mach_msg_type_number_t *outCnt)

Return information on processor according to

flavor requested. Flavors supported are

PROCESSOR_BASIC_INFO and

PROCESSOR_CPU_LOAD_INFO.

Information will be placed into pi_out and

will be outCnt bytes.

processor_control(processor_t p,

processor_info_t cmd,

mach_msg_type_number_t cnt);

Pass cnt commands (in cmd) to processor p.

Not implemented on Intel architectures.

processor_assign (processor_t p,

processor_set_t new_set, boolean_t wait);
Assign processor p to processor set

new_set, possibly waiting until the process

queue is empty.

processor_get_assignment (processor_t p,

processor_set_name_t *pset);
Get the pset the current processor is

assigned to.

c10.indd 381c10.indd 381 9/29/2012 5:33:00 PM9/29/2012 5:33:00 PM

382 x CHAPTER 10 THE MEDIUM IS THE MESSAGE: MACH PRIMITIVES

The APIs in the preceding table are simple, yet quite powerful. They can be used, among other
things, to display detailed information about the processors in the system, as in the next experiment.

Experiment: Fun with Mach processor_ts
Listing 10-16 demonstrates using processor_info() to display the information on the current pro-
cessors in a system:

LISTING 10-16: Using processor_info()

#include <stdio.h> // fprintf, stderr, and friends
#include <mach/mach.h> // Generic Mach stuff, like kern_return_t
#include <mach/processor.h> // For the processor_* APIs
#include <mach-o/arch.h> // For NXArch

int main(void) {

 kern_return_t kr;
 host_name_port_t host = mach_host_self();
 host_priv_t host_priv;
 processor_port_array_t processors;
 natural_t count, infoCount;
 processor_basic_info_data_t basicInfo;
 int p;

 // First, get the privileged port – otherwise we can't query the processors

 kr = host_get_host_priv_port(host, &host_priv);

 if (kr != KERN_SUCCESS)
 { fprintf(stderr, "host_get_host_priv_port %d (you should be root)", kr);
 exit(1); }

 // If we're here, we can try to get the process array
 kr = host_processors (host_priv, &processors, &count);
 if (kr != KERN_SUCCESS) { fprintf(stderr, "host_processors %d", kr); exit(1); }

 // And if we got this far, we have it! Iterate, then:
 for (p = 0; p < count; p++)
 {
 // infoCount is in/out, so we have to reset it on each iteration
 infoCount = PROCESSOR_BASIC_INFO_COUNT;

 // Ask for BASIC_INFO. It is left to the reader as an exercise
 // to implement CPU_LOAD_INFO
 kr = processor_info (processors[p], // the processor_t
 PROCESSOR_BASIC_INFO, // Information requested
 &host, // The host
 (processor_info_t) &basicInfo, // Information returned here
 &infoCount); // Sizeof(basicInfo) (in/out)

 if (kr != KERN_SUCCESS) {fprintf(stderr, "?!\n"); exit(3);}

c10.indd 382c10.indd 382 9/29/2012 5:33:00 PM9/29/2012 5:33:00 PM

Machine Primitives x 383

 // Dump to screen. We use NX APIs to resolve the cpu type and subtype
 printf("%s processor %s in slot %d\n",
 (basicInfo.is_master ? "Master" : "Slave"),
 NXGetArchInfoFromCpuType(basicInfo.cpu_type,
 basicInfo.cpu_subtype)->description,
 basicInfo.slot_num);
 }
}

As suggested in the comments, you are encouraged to adapt this exercise to PROCESSOR_CPU_LOAD_
INFO. If you look at <mach/processor_info.h>, you will see references to two other informational
types: PROCESSOR_PM_REGS_INFO and PROCESSOR_TEMPERATURE — but neither are supported on
Intel or ARM. ARM supports the PROCESSOR_CPU_STAT fl avor, which allows obtaining processor
exception statistics (defi ned in <mach/arm/processor_info.h>, in the iPhone SDK).

Another interesting feature enabled by the Mach APIs is the starting and stopping (shutting down)
of processors on-the-fl y. Consider the following program (Listing 10-17):

LISTING 10-17: A program to stop all but the main processor on a system

#include <mach/mach.h>
#include <stdio.h>
void main(int argc, char **argv)
{

 host_t myhost = mach_host_self();
 host_t mypriv;

 int proc;
 kern_return_t kr;
 processor_port_array_t processorPorts;
 mach_msg_type_number_t procCount;

 kr = host_get_host_priv_port(myhost,&mypriv);
 if (kr) { printf ("host_get_host_priv_port: %d\n", kr); exit(1);}

 // Get the ports of all the processors in the system
 kr = host_processors (mypriv, // host_t host,
 &processorPorts, // processor_port_array_t *out_processor_ports,
 &procCount); // mach_msg_type_number_t *out_processorCnt

 if (kr) { printf ("host_processors: %d\n", kr); exit(2);}

 printf ("Got %d processors . kr %d\n", procCount, kr);
 for (proc = 0 ; proc <procCount; proc++)
 {
 printf ("Processor %d\n", processorPorts[proc]);
 // you really want to leave proc 0 active!
 if (proc > 0) { processor_exit(processorPorts[proc]);
 if (kr != KERN_SUCCESS) printf ("Unable to stop %d\n",
 proc);}
 }

c10.indd 383c10.indd 383 9/29/2012 5:33:01 PM9/29/2012 5:33:01 PM

384 x CHAPTER 10 THE MEDIUM IS THE MESSAGE: MACH PRIMITIVES

You can easily adapt the following program (on a multi-core CPU or SMP system) to selectively dis-
able or enable processors. It’s worth stating the obvious — that it is possible to modify this program
to stop all processors in your system, which will require you to reboot. Be warned.

Processor Set Object
One or more processor_t objects can be grouped into a processor set, or a pset (this is the proces-
sor_set member of the processor object), shown in Listing 10-18. A processor set is a logically
coupled group of processors and allows Mach to effi ciently scale to SMP architectures by using the
set as a container for related processors.

Processors in a pset are maintained in one of two queues: an active_queue, for those proces-
sors that are currently executing threads, and an idle_queue, for processors that are idle (i.e.
executing the idle_thread). The processor set also has a global run_queue (pset_runq), which
contains threads to execute on the set’s processors. Like all other objects, processor sets expose
ports: pset_self, — for operations on the set, and pset_name_self, used for operations on the
processor set.

LISTING 10-18: processor_set defi nition (from osfmk/kern/processor.h)

struct processor_set {
 queue_head_t active_queue; /* active processors */
 queue_head_t idle_queue; /* idle processors */

 processor_t low_pri, low_count;

 int online_processor_count;

 int cpu_set_low, cpu_set_hi;
 int cpu_set_count;

 decl_simple_lock_data(,sched_lock) /* lock for above */

#if defined(CONFIG_SCHED_TRADITIONAL) || defined(CONFIG_SCHED_FIXEDPRIORITY)
 struct run_queue pset_runq; /* runq for this processor set */
 int pset_runq_bound_count;
 /* # of threads in runq bound to any processor in pset */
#endif

 struct ipc_port * pset_self; /* port for operations */
 struct ipc_port * pset_name_self; /* port for information */

 processor_set_t pset_list; /* chain of associated psets */
 pset_node_t node;
}

c10.indd 384c10.indd 384 9/29/2012 5:33:01 PM9/29/2012 5:33:01 PM

Machine Primitives x 385

The operations provided by the processor set are shown in Table 9-10:

TABLE 9-10: Processor set APIs

MACH PROCESSOR SET API USAGE

processor_set_statistics

(processor_set_name_t pset,

 processor_set_flavor_t flavor,

 processor_set_info_t info_out,

 mach_msg_type_number_t *ioCnt)

Get processor set statistics of flavor about

pset into info_out, with size ioCnt.

processor_set_destroy

(processor_set_t pset);
Destroy the processor set pset. This function

is not implemented (returns KERN_FAILURE).

There is also a processor_set_create in

kernel mode, though it, too, is

unimplemented.

processor_set_max_priority

(processor_set_t pset,

int max_prio,

boolean_t change_threads);

Set maximum priority on new threads

assigned to pset. If change_threads is true,

also set maximum priority for existing threads.

processor_set_policy_enable

(processor_set_t pset,

int policy);

Apply policy on processor set pset.

processor_set_policy_disable

(processor_set_t pset,

int policy,

boolean_t change_threads);

Disable policy on processor set pset.

Optionally, change thread behavior due to

disablement.

processor_set_tasks

(processor_set_t set,

 task_array_t *task_list,

mach_msg_type_number_t *tlCnt);

Obtain the tlCnt tasks in the task_list

array on processor_set.

processor_set_threads

(processor_set_t set,

thread_act_array_t *thread_list,

mach_msg_type_number_t *tlCnt);

Same, for threads. Apparently intentionally

unsupported on iOS.

continues

c10.indd 385c10.indd 385 9/29/2012 5:33:01 PM9/29/2012 5:33:01 PM

386 x CHAPTER 10 THE MEDIUM IS THE MESSAGE: MACH PRIMITIVES

MACH PROCESSOR SET API USAGE

kern_return_t

processor_set_policy_control

(processor_set_t pset,

 processor_set_flavor_t flavor,

 processor_set_info_t info,

 mach_msg_type_number_t infoCnt,

 boolean_t change);

Change policy on processor set.

Unsupported (returns

KERN_INVALID_ARGUMENT).

kern_return_t

processor_set_stack_usage

(processor_set_t pset,

 unsigned *ltotal,

 vm_size_t *space,

 vm_size_t *resident,

 vm_size_t *maxusage,

 vm_offset_t *maxstack);

In debug kernels only.

processor_set_info

(processor_set_name_t pset,

int flavor,

host_t *host,

processor_set_info_t iout,

mach_msg_type_number_t *ioCnt);

Obtain info of type flavor on pset.

flavor can be one of many constants

defi ned in <mach/processor_info.h>.

The processor_set_tasks and processor_set_threads are both internally implemented over an
internal function, processor_set_things, which abstracts the array argument and takes an addi-
tional argument, “type,” which specifi es THING_TASK or THING_THREAD.

Experiment: Listing Tasks on the Current Processor Set
As an example, consider the following ps type process listing program (Listing 10-19), which
takes a processor set object, and obtains a list of its tasks. For now, both tasks and threads are left
as opaque structures. The listing will be developed in the next chapter, however, to further show
detailed information for the tasks and threads.

TABLE 9-10 (continued)

c10.indd 386c10.indd 386 9/29/2012 5:33:01 PM9/29/2012 5:33:01 PM

Machine Primitives x 387

LISTING 10-19: Displaying the tasks on the default processor set

void main(int argc, char **argv)
{

 host_t myhost = mach_host_self();
 mach_port_t psDefault;
 mach_port_t psDefault_control;
 task_array_t tasks;
 mach_msg_type_number_t numTasks;
 int t; // a task index

 kern_return_t kr;

 // Get default processor set
 kr = processor_set_default(myhost, &psDefault);

 // Request control port
 kr = host_processor_set_priv(myhost, psDefault, &psDefault_control);
 if (kr != KERN_SUCCESS) { fprintf(stderr, "host_processor_set_priv - %d", kr);
 exit(1); }

 // Get tasks. Note this behaves a bit differently on iOS.
 // On OS X, you can also get the threads directly (processor_set_threads)

 kr = processor_set_tasks(psDefault_control, &tasks, &numTasks);
 if (kr != KERN_SUCCESS) { fprintf(stderr,"processor_set_tasks - %d\n",kr); exit(2); }

 // Iterate through tasks. For now, just display the task ports and their PIDs
 // We use "pid_for_task" to map a task port to its BSD process identifier

 for (t = 0; t < numTasks; i++)
 {
 int pid;
 pid_for_task(tasks[t], &pid);
 printf("Task: %d pid: %d\n", tasks[i],pid);

 // Stay tuned:
 // In the next chapter, this experiment will be expanded to list task
 // information, as well as the threads of each task

}
}

The output of the program in this example differs slightly in iOS: proces-
sor_set_tasks will not return PID 0 (the kernel_task), as getting a handle to
the kernel_task can open up potentially dangerous access to the kernel memory
maps. Likewise, processor_set_threads is (apparently intentionally) not sup-
ported. There is therefore no legitimate way (jailbreaks not withstanding) to
obtain kernel thread or memory handles from user mode — which is just the
way Apple would like to keep it.

c10.indd 387c10.indd 387 9/29/2012 5:33:01 PM9/29/2012 5:33:01 PM

388 x CHAPTER 10 THE MEDIUM IS THE MESSAGE: MACH PRIMITIVES

SUMMARY

This chapter describes the basic principles of Mach. Ports are the underlying primitives on top of
which virtually all other objects in Mach are implemented. Messages are passed between ports,
and allow performing various operations on them. Additionally, messages enable IPC, a feature
which is built into the Mach kernel, and extended using the synchronization primitives — spinlocks,
mutexes, semaphores, and lock sets.

Mach also defi nes basic machine-level primitives — the host, clock, processor and processor_set
abstractions. These are essential in performing various system-related tasks, primarily scheduling,
which is covered in the next chapter.

REFERENCES

1. “Mach Tutorials,” http://www.cs.cmu.edu/afs/cs/project/mach/public/www/doc/
tutorials.html

2. Loepere, Keith, ed. “Mach 3 Kernel Interfaces,” http://www.cs.cmu.edu/afs/cs/
project/mach/public/doc/osf/kernel_interface.ps

3. Loepere, Keith. “Mach 3 Kernel Principles,” http://www.cs.cmu.edu/afs/cs/project/
mach/public/doc/osf/kernel_principles.ps

4. Apple Developer. “Mach Port Dumper Utility Sample Code,” https://developer.apple
.com/library/mac/#samplecode/MachPortDump/Listings/MachPortDump_c.html

5. Draves, et al. “The Mach Interface Generator,” http://www.cs.cmu.edu/afs/cs/
project/mach/public/doc/unpublished/mig.ps

c10.indd 388c10.indd 388 9/29/2012 5:33:02 PM9/29/2012 5:33:02 PM

http://www.cs.cmu.edu/afs/cs/project/mach/public/www/doc/tutorials.html
http://www.cs.cmu.edu/afs/cs/project/project/mach/public/doc/osf/kernel_interface.ps
http://www.cs.cmu.edu/afs/cs/project/mach/public/doc/osf/kernel_principles.ps
https://developer.apple.com/library/mac/#samplecode/MachPortDump/Listings/MachPortDump_c.html
http://www.cs.cmu.edu/afs/cs/project/mach/public/doc/unpublished/mig.ps
http://www.cs.cmu.edu/afs/cs/project/mach/public/www/doc/tutorials.html
http://www.cs.cmu.edu/afs/cs/project/project/mach/public/doc/osf/kernel_interface.ps
http://www.cs.cmu.edu/afs/cs/project/mach/public/doc/osf/kernel_principles.ps
https://developer.apple.com/library/mac/#samplecode/MachPortDump/Listings/MachPortDump_c.html
http://www.cs.cmu.edu/afs/cs/project/mach/public/doc/unpublished/mig.ps

11
Tempus Fugit — Mach
Scheduling

Based on the core primitives discussed in Chapter 10, Mach provides many important fea-
tures, almost all of which revolve around the management of system resources — hardware
devices, virtual memory, and the CPU itself. Managing the CPU is also referred to as schedul-
ing, because it refers to the operation of deciding which of the many programs vying for the
CPU will get to use it and when.

This chapter focuses on scheduling. It is divided into the following sections:

 ‰ Scheduling Primitives: Describes tasks and threads, and the application programming
interfaces (APIs) they offer.

 ‰ Scheduling: Discusses high-level concepts of scheduling, such as the algorithms.

 ‰ Asynchronous Software Traps (ASTs): Explains Mach’s concept of ASTs, which are
instrumental in scheduling.

 ‰ Exception Handling: Discusses Mach’s unique approach to hardware
traps — exceptions.

 ‰ Scheduling Algorithms: Details Mach’s default thread scheduler, as well as the schedul-
ing framework, which allows extending or replacing the scheduler with other algorithm
implementations.

SCHEDULING PRIMITIVES

Like all modern operating systems, the kernel sees threads, not processes. Mach, in fact, does
not recognize the notion of a process as UN*X does. It employs a slightly different approach,
using the concepts of the more lightweight tasks rather than processes. Classic UN*X uses a
top-down approach, in which the basic object is a process that is further divided into one or
more threads. Mach, on the other hand, uses a bottom-up approach in which the fundamental
unit is a thread, and one or more threads are contained in a task.

c11.indd 389c11.indd 389 9/29/2012 5:42:54 PM9/29/2012 5:42:54 PM

390 x CHAPTER 11 TEMPUS FUGIT — MACH SCHEDULING

Threads
A thread defi nes the atomic unit of execution in Mach. It represents the underlying machine register
state and various scheduling statistics. Defi ned in kern/thread.h, a thread is designed to provide
the maximum information required for scheduling, while maintaining the lowest overhead possible.
(See Listing 11-1.)

LISTING 11-1: The Mach thread structure, from osfmk/kern/thread.h

struct thread {
 /*
 * NOTE: The runq field in the thread structure has an unusual
 * locking protocol. If its value is PROCESSOR_NULL, then it is
 * locked by the thread_lock, but if its value is something else
 * then it is locked by the associated run queue lock.
 *
 * When the thread is on a wait queue, these first three fields
 * are treated as an unofficial union with a wait_queue_element.
 * If you change these, you must change that definition as well
 * (kern/wait_queue.h).
 */
 /* Items examined often, modified infrequently */
 queue_chain_t links; /* run/wait queue links */
 processor_t runq; /* run queue assignment */
 wait_queue_t wait_queue; /* wait queue we are currently on */
 event64_t wait_event; /* wait queue event */
 integer_t options; /* options set by thread itself */
#define TH_OPT_INTMASK 0x03 /* interrupt / abort level */
#define TH_OPT_VMPRIV 0x04 /* may allocate reserved memory */
#define TH_OPT_DTRACE 0x08 /* executing under dtrace_probe */
#define TH_OPT_SYSTEM_CRITICAL 0x10 /* Thread must always be allowed to run -
even under heavy load */

 /* Data updated during assert_wait/thread_wakeup */
 decl_simple_lock_data(,sched_lock) /* scheduling lock (thread_lock()) */
 decl_simple_lock_data(,wake_lock) /* for thread stop / wait (wake_lock())
*/
 boolean_t wake_active; /* wake event on stop */
 int at_safe_point; /* thread_abort_safely allowed */
 ast_t reason; /* why we blocked */
 wait_result_t wait_result; /* outcome of wait -
 * may be examined by this thread
 * WITHOUT locking */
 thread_continue_t continuation; /* continue here next dispatch */
 void *parameter; /* continuation parameter
*/

 /* Data updated/used in thread_invoke */
 struct funnel_lock *funnel_lock; /* Non-reentrancy funnel */
 int funnel_state;
#define TH_FN_OWNED 0x1 /* we own the funnel */
#define TH_FN_REFUNNEL 0x2 /* re-acquire funnel on
dispatch */

c11.indd 390c11.indd 390 9/29/2012 5:43:00 PM9/29/2012 5:43:00 PM

Scheduling Primitives x 391

 vm_offset_t kernel_stack; /* current kernel stack */
 vm_offset_t reserved_stack; /* reserved kernel stack */

 /* Thread state: */
 int state;
/*
 * Thread states [bits or'ed]
 */
#define TH_WAIT 0x01 /* queued for waiting */
#define TH_SUSP 0x02 /* stopped or requested to stop */
#define TH_RUN 0x04 /* running or on runq */
#define TH_UNINT 0x08 /* waiting uninteruptibly
#define TH_TERMINATE 0x10 /* halted at termination */
#define TH_TERMINATE2 0x20 /* added to termination queue */

#define TH_IDLE 0x80 /* idling processor */

 /* Scheduling information */
 sched_mode_t sched_mode; /* scheduling mode */
 sched_mode_t saved_mode; /* saved mode during forced mode
demotion */
 // Bitmask of miscellaneous TH_SFLAG bits
 unsigned int sched_flags; /* current flag bits */
 integer_t sched_pri; /* scheduled (current) priority */
 integer_t priority; /* base priority */
 integer_t max_priority; /* max base priority */
 integer_t task_priority; /* copy of task base priority */
 integer_t promotions; /* level of promotion */
 integer_t pending_promoter_index;
 void *pending_promoter[2];
 integer_t importance; /* task-relative importance */

 /* real-time parameters */
 struct { /* see mach/thread_policy.h */
 uint32_t period;
 uint32_t computation;
 uint32_t constraint;
 boolean_t preemptible;

 uint64_t deadline;
 } realtime;

 uint32_t was_promoted_on_wakeup;
 uint32_t current_quantum; /* duration of current quantum */
 uint64_t last_run_time; /* time when thread was switched away
from */
 uint64_t last_quantum_refill_time; /* time current_quantum refilled after
expiration */

 /* Data used during setrun/dispatch */
 timer_data_t system_timer; /* system mode timer */
 processor_t bound_processor; /* bound to a processor? */
 processor_t last_processor; /* processor last dispatched on */

continues

c11.indd 391c11.indd 391 9/29/2012 5:43:00 PM9/29/2012 5:43:00 PM

392 x CHAPTER 11 TEMPUS FUGIT — MACH SCHEDULING

 processor_t chosen_processor; /* Where we want to run this thread */

 /* Fail-safe computation since last unblock or qualifying yield */
 uint64_t computation_metered;
 uint64_t computation_epoch;
 uint64_t safe_release; /* when to release fail-safe */

 /* Call out from scheduler */
 void (*sched_call)(int type,
 thread_t thread);
#if defined(CONFIG_SCHED_PROTO)
 uint32_t runqueue_generation; /* last time runqueue was drained */
#endif

 /* Statistics and timesharing calculations */
#if defined(CONFIG_SCHED_TRADITIONAL)
 natural_t sched_stamp; /* last scheduler tick */
 natural_t sched_usage; /* timesharing cpu usage [sched] */
 natural_t pri_shift; /* usage -> priority from pset */
 natural_t cpu_usage; /* instrumented cpu usage [%cpu] */
 natural_t cpu_delta; /* accumulated cpu_usage delta */
#endif
 uint32_t c_switch; /* total context switches */
 uint32_t p_switch; /* total processor switches */
 uint32_t ps_switch; /* total pset switches */

 /* Timing data structures */
 timer_data_t user_timer; /* user mode timer */
 uint64_t user_timer_save; /* saved user timer value */
 uint64_t system_timer_save; /* saved system timer value */
 uint64_t vtimer_user_save; /* saved values for vtimers */
 uint64_t vtimer_prof_save;
 uint64_t vtimer_rlim_save;

 /* Timed wait expiration */
 timer_call_data_t wait_timer;
 integer_t wait_timer_active;
 boolean_t wait_timer_is_set;

 /* Priority depression expiration */
 timer_call_data_t depress_timer;
 integer_t depress_timer_active;
 /* Processor/cache affinity
 * - affinity_threads links task threads with the same affinity set
 */
 affinity_set_t affinity_set;
 queue_chain_t affinity_threads;

 /* Various bits of stashed state */
 union {
 struct {
 mach_msg_return_t state; /* receive state */
 ipc_object_t object; /* object received on */

LISTING 11-1 (continued)

c11.indd 392c11.indd 392 9/29/2012 5:43:00 PM9/29/2012 5:43:00 PM

Scheduling Primitives x 393

 mach_vm_address_t msg_addr; /* receive buffer pointer */
 mach_msg_size_t msize; /* max size for recvd msg */
 mach_msg_option_t option; /* options for receive */
 mach_msg_size_t slist_size; /* scatter list size */
 mach_port_name_t receiver_name; /* the receive port name */
 struct ipc_kmsg *kmsg; /* received message */
 mach_port_seqno_t seqno; /* seqno of recvd message */
 mach_msg_continue_t continuation;
 } receive;
 struct {
 struct semaphore *waitsemaphore; /* semaphore ref */
 struct semaphore *signalsemaphore; /* semaphore ref */
 int options; /* semaphore options */
 kern_return_t result; /* primary result */
 mach_msg_continue_t continuation;
 } sema;
 struct {
 int option; /* switch option */
 } swtch;
 int misc; /* catch-all for other state */
 } saved;
/* IPC data structures */
 struct ipc_kmsg_queue ith_messages;
 mach_port_t ith_rpc_reply; /* reply port for kernel RPCs */

 /* Ast/Halt data structures */
 vm_offset_t recover; /* page fault recover(copyin/out) */
 uint32_t ref_count; /* number of references to me */

 queue_chain_t threads; /* global list of all threads */

 /* Activation */
 queue_chain_t task_threads;

 /*** Machine-dependent state ***/
 struct machine_thread machine;

 /* Task membership */
 struct task *task;
 vm_map_t map;

 decl_lck_mtx_data(,mutex)

 /* Kernel holds on this thread */
 int suspend_count;

 /* User level suspensions */
 int user_stop_count;

 /* Pending thread ast(s) */
 ast_t ast;

 /* Miscellaneous bits guarded by mutex */
 uint32_t active:1, /* Thread is active and has not been
 terminated */

continues

c11.indd 393c11.indd 393 9/29/2012 5:43:00 PM9/29/2012 5:43:00 PM

394 x CHAPTER 11 TEMPUS FUGIT — MACH SCHEDULING

 started:1, /* Thread has been started after
 creation */
 static_param:1, /* Disallow policy parameter changes */
 :0;

 /* Return Handers */
 struct ReturnHandler {
 struct ReturnHandler *next;
 void (*handler)(
 struct ReturnHandler *rh,
 struct thread *thread);
 } *handlers, special_handler;

 /* Ports associated with this thread */
 struct ipc_port *ith_self; /* not a right, doesn't hold ref */
 struct ipc_port *ith_sself; /* a send right */
 struct exception_action exc_actions[EXC_TYPES_COUNT];

 /* Owned ulocks (a lock set element) */
 queue_head_t held_ulocks;

#ifdef MACH_BSD
 // this field links us from the Mach layer to the BSD layer
 void *uthread;
#endif

#if CONFIG_DTRACE
 uint32_t t_dtrace_predcache;/* DTrace per thread predicate value hint */
 int64_t t_dtrace_tracing; /* Thread time under dtrace_probe() */
 int64_t t_dtrace_vtime;
#endif

 uint32_t t_page_creation_count;
 clock_sec_t t_page_creation_time;

 uint32_t t_chud; /* CHUD flags, used for Shark */

 integer_t mutex_count; /* total count of locks held */

 uint64_t thread_id; /*system wide unique thread-id*/

 /* Statistics accumulated per-thread and aggregated per-task */
 uint32_t syscalls_unix;
 uint32_t syscalls_mach;
 zinfo_usage_store_t tkm_private; /* private kernel memory allocs/frees */
 zinfo_usage_store_t tkm_shared; /* shared kernel memory allocs/frees */
 struct process_policy ext_actionstate; /* externally applied actions */
 struct process_policy ext_policystate; /* externally defined process policy
states*/
 struct process_policy actionstate; /* self applied acions */
 struct process_policy policystate; /* process wide policy states */
};

LISTING 11-1 (continued)

c11.indd 394c11.indd 394 9/29/2012 5:43:00 PM9/29/2012 5:43:00 PM

Scheduling Primitives x 395

The preceding structure is huge, and therefore most threads are created by cloning off of a generic
template, which fi lls the structure with default values. This template is the thread_template
defi ned in osfmk/thread/thread.c. It is fi lled by thread_bootstrap(), which is called as part of
the kernel boot (in i386_init), and is copied off of in thread_create_internal(), which imple-
ments the thread_create() Mach API.

One particular fi eld of interest is the uthread member, which is a void pointer to the BSD layer.
This member points to a BSD user thread, which is opaque to Mach, and remains opaque, as it will
in this chapter (although we will explore it in Chapter 13, which unravels the BSD layer).

Notice that while it is full of miscellaneous fi elds, a thread contains no actual resource references.
Mach defi nes the task as a thread container, and it is the task level in which resources are handled.
A thread has access (via ports) to only the resources and memory allocated in its containing task.

Tasks
A task serves as a container object, under which the virtual memory space and resources are man-
aged. These resources are devices and other handles. The resources are further abstracted by ports.
Sharing resources thus becomes a matter of providing access to their corresponding ports.

Strictly speaking, a task is not what other operating systems call a process, as Mach, being a micro-
kernel, provides no process logic, only the bare bones implementation. In the BSD model, however,
a straightforward 1:1 mapping exists between the two concepts, and every BSD (and therefore, OS
X) process has an underlying Mach task object associated with it. This mapping is accomplished by
specifying an opaque pointer, bsd_info, to which Mach remains entirely oblivious. Mach represents
the kernel by a task as well, (globally referred to as the kernel_task) though this task has no cor-
responding PID (technically, it can be thought of as PID 0).

The task is a relatively lightweight structure (at least, compared to the threads), defi ned in osfmk/
kern/task.h as shown in Listing 11-2. The noteworthy fi elds are emphasized.

LISTING 11-2 The Mach task structure, from osfmk/kern/task.h

struct task {
 /* Synchronization/destruction information */

decl_lck_mtx_data(,lock) /* Task's lock */
 uint32_t ref_count; /* Number of references to me */
 boolean_t active; /* Task has not been terminated */
 boolean_t halting; /* Task is being halted */

 /* Miscellaneous */
vm_map_t map; /* Address space description */

 queue_chain_t tasks; /* global list of tasks */
 void *user_data; /* Arbitrary data settable via IPC */

 /* Threads in this task */
queue_head_t threads; // Threads, in FIFO queue

 processor_set_t pset_hint;
 struct affinity_space *affinity_space;

continues

c11.indd 395c11.indd 395 9/29/2012 5:43:01 PM9/29/2012 5:43:01 PM

396 x CHAPTER 11 TEMPUS FUGIT — MACH SCHEDULING

int thread_count; // #threads in threads queue
 uint32_t active_thread_count; // #active threads (<=thread_count)
 int suspend_count; /* Internal scheduling only */

 /* User-visible scheduling information */
 integer_t user_stop_count; /* outstanding stops */

 task_role_t role;

 integer_t priority; /* base priority for threads */
 integer_t max_priority;/* maximum priority for threads */

 /* Task security and audit tokens */
 security_token_t sec_token;
 audit_token_t audit_token;
 /* Statistics */
 uint64_t total_user_time; /* terminated threads only */
 uint64_t total_system_time;

 /* Virtual timers */
 uint32_t vtimers;

 /* IPC structures */
 decl_lck_mtx_data(,itk_lock_data)
 struct ipc_port *itk_self; /* not a right, doesn't hold ref */
 struct ipc_port *itk_nself; /* not a right, doesn't hold ref */
 struct ipc_port *itk_sself; /* a send right */
 struct exception_action exc_actions[EXC_TYPES_COUNT];
 /* a send right each valid element */
 struct ipc_port *itk_host; /* a send right */
 struct ipc_port *itk_bootstrap; /* a send right */
 struct ipc_port *itk_seatbelt; /* a send right */
 struct ipc_port *itk_gssd; /* yet another send right */
 struct ipc_port *itk_task_access; /* and another send right */
 struct ipc_port *itk_registered[TASK_PORT_REGISTER_MAX];
 /* all send rights */

// remember that each task has its own private port namespace.
 // (Namespaces are explained in the section dealing with Mach IPC)
 struct ipc_space *itk_space; // task local port namespace

 /* Synchronizer ownership information */
 queue_head_t semaphore_list; /* list of owned semaphores */
 queue_head_t lock_set_list; /* list of owned lock sets */
 int semaphores_owned; /* number of semaphores owned */
 int lock_sets_owned; /* number of lock sets owned */

 /* Ledgers */ // These are likely different in Mountain Lion and iOS
 struct ipc_port *wired_ledger_port;
 struct ipc_port *paged_ledger_port;
 unsigned int priv_flags; /* privilege resource flags */

LISTING 11-2 (continued)

c11.indd 396c11.indd 396 9/29/2012 5:43:01 PM9/29/2012 5:43:01 PM

Scheduling Primitives x 397

 MACHINE_TASK

// If you've ever wondered where top(1) gets its info – this is it
// These fields can be queried with task_info flavor 2 (task_events_info)

 integer_t faults; /* faults counter */
 integer_t pageins; /* pageins counter */
 integer_t cow_faults; /* copy on write fault counter */
 integer_t messages_sent; /* messages sent counter */
 integer_t messages_received; /* messages received counter */
 integer_t syscalls_mach; /* mach system call counter */
 integer_t syscalls_unix; /* unix system call counter */
 uint32_t c_switch; /* total context switches */
 uint32_t p_switch; /* total processor switches */
 uint32_t ps_switch; /* total pset switches */

 zinfo_usage_store_t tkm_private;/* private kmem alloc/free stats */
 zinfo_usage_store_t tkm_shared; /* shared kmem alloc/free stats */
 zinfo_usage_t tkm_zinfo; /* per-task, per-zone usage statistics */

#ifdef MACH_BSD
 void *bsd_info; // MAPPING TO BSD PROCESS OBJECT
#endif
 struct vm_shared_region *shared_region;
 uint32_t taskFeatures[2]; // 64-bit addressing/register flags.

 mach_vm_address_t all_image_info_addr; /* dyld __all_image_info */
mach_vm_size_t all_image_info_size; /* section location and size */

#if CONFIG_MACF_MACH
 ipc_labelh_t label;
#endif

#if CONFIG_COUNTERS
#define TASK_PMC_FLAG 0x1 /* Bit in "t_chud" signifying PMC interest */
 uint32_t t_chud; /* CHUD flags, used for Shark */
#endif

 process_policy_t ext_actionstate; /* externally applied actions */
 process_policy_t ext_policystate; /* ext. def. process policy states*/
 process_policy_t actionstate; /* self applied acions */
 process_policy_t policystate; /* process wide policy states */

 uint64_t rsu_controldata[TASK_POLICY_RESOURCE_USAGE_COUNT];

 vm_extmod_statistics_data_t extmod_statistics;
};

On its own, a task has no life. Its raison d’être is to serve as a container of one or more threads.
The threads in a task are maintained in the threads member, which is a queue containing thread_
count threads, as highlighted in the preceding code.

Additionally, most of the operations on a task are really just iterations of the same corresponding
thread operations for all threads in the given task. For example, to set the task priority, task_
priority() is implemented as in Listing 11-3:

c11.indd 397c11.indd 397 9/29/2012 5:43:01 PM9/29/2012 5:43:01 PM

398 x CHAPTER 11 TEMPUS FUGIT — MACH SCHEDULING

LISTING 11-3: The implementation of task_priority(), from osfmk/kern/task_policy.c

static void task_priority(
 task_t task,
 integer_t priority,
 integer_t max_priority)
{
 thread_t thread;

 task->max_priority = max_priority;

 if (priority > task->max_priority)
 priority = task->max_priority;
 else
 if (priority < MINPRI)
 priority = MINPRI;

 task->priority = priority;

 queue_iterate(&task->threads, thread, thread_t, task_threads) {
 thread_mtx_lock(thread);

 if (thread->active)
 thread_task_priority(thread, priority, max_priority);

 thread_mtx_unlock(thread);
 }
}

The queue_iterate macro loops over the queue_head_t. Each thread, in turn, is locked. If it is
active, its priority can be set. The thread can then be unlocked.

Ledgers
Ledgers provide a mechanism to charge quotas and set limits for Mach tasks. This is somewhat
similar to the getrlimit(2)/setrlimit(2) system calls offered by POSIX, but offers more
advanced resource throttling capabilties: Resources (typically CPU and memory) can be transferred
in between ledgers, and exceeding their limits can result in a Mach exception, callback execution, or
thread block until the ledger is “refi lled”.

Ledgers have been around since the inception of Mach, but have only recently been implemented in
XNU. In fact, they will only be supported offi cially as of Mountain Lion, having made their debut
in iOS. Though the Lion kernel sources have an osfmk/kern/ledger.c fi le, the comment on the fi le
admits it is nothing more than a “half-hearted attempt” for “dysfunctional” ledgers, providing only
the root_wired_ledger and root_paged_ledger ledgers. Both are initialized (by ledger_init) to
be unlimited (LEDGER_ITEM_INFINITY), so the system keeps track, but does not enforce any limits
on its wired and paged memory.

A new BSD System call, #373 (aptly named ledger) is currently undocumented, but supported in
iOS and will likely be supported in Mountain Lion. The call is a BSD bridge to the underlying Mach

c11.indd 398c11.indd 398 9/29/2012 5:43:01 PM9/29/2012 5:43:01 PM

Scheduling Primitives x 399

APIs of ledger_info(), ledger_entry_info(), and ledger_template_info() for codes of 0,
1, or 2, respectively. It remains, at the time of writing, undocumented. This will enable ledgers to be
used on a per-task basis, allowing for greater control over system resources such as CPU and mem-
ory, which are especially scarce and precious on iOS.

Task and Thread APIs
The rich structures of task_t and thread_t presented so far are in some ways too rich — the struc-
tures are huge and contain a plethora of detail that most kernel APIs do not need to access, at least
not directly. Another problem is that the structures may change in between kernel versions (and,
in fact, are slightly different in the closed source iOS). Fortunately, Mach contains an assortment
of API calls that you can use on tasks and threads in an object-oriented manner, leaving the actual
implementations opaque. You can and should use specifi c accessor functions for the important
fi elds, such as get_bsdthread_info(), get_bsdtask_info(), get_bsdthreadtask_info(), and
so on. Additionally, you can use APIs corresponding to task and thread “methods,” discussed next
in this section.

Getting the Current Task and Thread
At any given point, the kernel must be able to get the handle of the current task and
current thread. It accomplishes this via two functions: current_task() and current_thread(),
respectively.

Although the functions are defi ned in osfmk/kern/task.h and osfmk/kern/thread.h, respec-
tively, they are really wrappers over architecture-dependent variants. Both functions are macros
over corresponding “fast” functions. The trick involved in both operations is in getting current_
thread(), i.e., current_thread_fast(), because the current_task() can be retrieved by simply
returning the task fi eld of the current thread (and, in fact, current_task_fast() is defi ned over the
current_thread() -> task).

If you look through the XNU sources, you will fi nd that current_thread() (in osfmk/i386/
machine_routines.c and as a macro in osfmk/i386/cpu_data.h) wraps current_thread_
fast(), which in turn is #defined over get_active_thread(). The implementation of get_
active_thread() wraps CPU_DATA_GET(cpu_active_thread,thread_t), which is inline assembly
(relying on the GS register). In iOS, the assembly call relies on the ARM coprocessor’s special regis-
ter c13. If you’re interested in the low level specifi cs, refer to the appendix in this book.

Task APIs
Mach provides a complete subsystem of functions to handle tasks. The APIs exposed to user mode
are in <mach/task.h>, which includes an architecture header (i.e., <mach/i386/task.h>, or <mach/
arm/task.h>. The latter can be found in the iPhoneOS5.0.sdk directories). Table 11-1 details these
functions, which are (with the exception of mach_task_self()) all implemented over Mach mes-
sages (MIG subsystem 3400):

c11.indd 399c11.indd 399 9/29/2012 5:43:01 PM9/29/2012 5:43:01 PM

400 x CHAPTER 11 TEMPUS FUGIT — MACH SCHEDULING

TABLE 11-1: Task APIs available in user mode

MACH TASK APIS USED FOR

mach_task_self() Obtains task’s port, with names of send rights.

task_create(task_t target_task,

ledger_array_t ledgers,

mach_msg_type_number_t,

boolean_t,

task_t *child_task);

Creates child_task from target_task. Initializes with

array of ledgersCnt ledgers. Inherits parent’s memory

task if set. Otherwise, task starts with no memory, and

memory must be set up manually.

This call is no longer supported. Its body,

task_create_internal, is still visible privately from

the kernel to support BSD’s fork() and cloneproc().

task_terminate(task_t

 target_task)
Terminates the existing task.

task_threads(task_t target_task,

 thread_act_array_t *act_list,

 mach_msg_type_number_t *alCnt);

Enumerates all threads in target_task into array,

act_list, containing alCnt entries of the ports of

target task.

task_info(task_name_t,

 task_flavor_t kern/

thread.h,

 task_info_t,

 task_info_out,

 mach_msg_type_number_t

 *task_info_outCnt)

task_set_info(task_t,

 task_flavor_t flavor,

 task_info_t,

 mach_msg_type_number_t);

Queries information on task_name_t. Information is of

type task_flavor_t.

See the following experiment for an example of fl avors.

set_info similarly sets information on task.

task_suspend(task_t target_task);

task_resume(task_t target_task);
Suspends or resumes target_task, done by enumer-

ating all the task threads and calling thread_suspend/

resume directly

Calling task_suspend increments the suspension count;

task_resume decrements it. A task will be runnable if its

suspend count is 0.

Wrapped by the BSD layer’s pid_suspend and pid_

resume system calls.

get_special_port

(task_t task,

 int which_port,

 mach_port_t *special_port)

Get special port for a given task. A corresponding set_

special_port is available as well.

c11.indd 400c11.indd 400 9/29/2012 5:43:02 PM9/29/2012 5:43:02 PM

Scheduling Primitives x 401

MACH TASK APIS USED FOR

task_set_exception_ports

(task_t task,

 exception_mask_t,

 mach_port_t,

 exception_behavior_t,

 thread_state_flavor_t);

task_get_exception_ports

(task_t,

 exception_mask_t,

 exception_mask_array_t,

 mach_msg_type_number_t *,

 exception_handler_array_t,

 exception_behavior_array_t,

 exception_flavor_array_t);

Queries, sets, or swaps between task-level exception

ports, which are where Mach exception messages will be

sent.

task_policy_set (task_t,

 task_policy_flavor_t,

 task_policy_t,

 mach_msg_type_number_t);

task_policy_get(task_t,

 task_policy_flavor_t,

 task_policy_t,

 mach_msg_type_number_t *,

 boolean_t *);

Set or get scheduling policy for a task (i.e., all its threads).

task_sample (task_t task,

 mach_port_t reply);
Periodically samples and saves IP (Intel) or PC (ARM) of

task. Removed.

task_get_state(task_t task,

 thread_state_flavor_t,

 thread_state_t,

 mach_msg_type_number_t *);

Gets the state of a task. A corresponding task_set_

state() is also available.

Additionally, internal APIs — unexposed to user mode — include the ones in Table 11-2.

TABLE 11-2: Mach kernel private task APIs

MACH TASK APIS USED FOR

task_priority (task_t,

 Integer_t priority,

 Integer_t max);

Sets priority of task_t to be priority, and sets maximum

allowed priority to be max. This is achieved by iterating all

threads and calling thread_task_priority.

task_importance(task_t,

 integer_t importance)
Wrapper over task_priority(), used when

renice(2)ing processes. Eff ectively calls the former with

importance + BASEPRI_DEFAULT.

c11.indd 401c11.indd 401 9/29/2012 5:43:02 PM9/29/2012 5:43:02 PM

402 x CHAPTER 11 TEMPUS FUGIT — MACH SCHEDULING

The task port is the path to complete and unfettered control over the task, its
threads and its resources. The APIs shown in the preceding tables are but a frac-
tion of the operations Mach allows on a task. The next section shows how a
task’s threads can be manipulated externally, and Chapter 12 will show even
more APIs (and a companion tool), which enable breaching and defi ling the
task’s sanctum sanctorum — its virtual memory image.

These capabilities become immeasurably more potent when applied to the
kernel_task., allowing a privileged user to peek and modify kernel memory.
It is for this reason that Apple goes to great lengths to prevent user mode access
to the kernel_task in iOS, and why jailbreaking patches usually target these
protections fi rst.

Experiment: Using the Task APIs
The preceding chapter showed you the host_info() function, and it’s only natural to expect similar
functions to exist for tasks and threads. The chapter ended with a demonstration of enumerating tasks
on the default processor set, but did not really show anything other than the corresponding PIDs.

Using task_info it is possible to extend Listing 10-19 to also provide highly detailed information
about tasks. The second parameter to task_info is the task_flavor_t, specifying the type of
information requested. The fl avors are somewhat volatile, and their changes from version to version
can make it hard for third parties to rely on them for diagnostics. But the risk of recompiling (and
dealing with insipid, obsoleted constants) is well worth the cornucopia of diagnostic information
provided by these APIs. It is through task_info that top(1) gets all the highly detailed and Mach-
specifi c information it displays if its terminal window size permits.

Listing 11-4 shows how task_info can be used to query some of the fl avors supported in Lion and
later:

LISTING 11-4: Using task_info with various fl avors from Lion and iOS

doTaskInfo(task_t Task)
{
 // proper code does validation checking on calls.
 // Omitted here for brevity
 mach_msg_type_number_t infoSize;

 char infoBuf[TASK_INFO_MAX];
 struct task_basic_info_64 *tbi;
 struct task_events_info *tei;

#if LION // Will also work on iOS 5.x or later
 struct task_kernelmemory_info *tkmi;
 struct task_extmod_info *texi;
 struct vm_extmod_statistics *ves;
#endif

 kern_return_t kr;

c11.indd 402c11.indd 402 9/29/2012 5:43:02 PM9/29/2012 5:43:02 PM

Scheduling Primitives x 403

 infoSize = TASK_INFO_MAX;
 kr = task_info(Task,
 TASK_BASIC_INFO_64,
 (task_info_t)infoBuf,
 &infoSize);
 tbi = (struct task_basic_info_64 *) infoBuf;

 printf ("\tSuspend Count: %d\n", tbi->suspend_count);
 printf ("\tMemory: %dM virtual, %dK resident\n",

tbi->virtual_size / (1024 * 1024), tbi->resident_size / 1024);
 printf ("\tSystem/User Time: %ld/%ld\n", tbi->system_time, tbi->user_time);

 infoSize = TASK_INFO_MAX; // need to reset (this is an in/out parameter)
kr = task_info(Task,
 TASK_EVENTS_INFO,
 (task_info_t)infoBuf,
 &infoSize);

 tei = (struct task_events_info *) infoBuf;
 printf("Faults: %d, Page-Ins: %d, COW: %d\n", tei->faults, tei->pageins,

tei->cow_faults);
 printf ("Messages: %d sent, %d received\n", tei->messages_sent, tei->messages_received);
 printf ("Syscalls: %d Mach, %d UNIX\n", tei->syscalls_mach, tei->syscalls_unix);

#if LION
 infoSize = TASK_INFO_MAX; // need to reset (this is an in/out parameter)
 kr = task_info(Task,
 TASK_KERNELMEMORY_INFO, // defined as of Lion
 (task_info_t)infoBuf,
 &infoSize);

 tkmi = (struct task_kernelmemory_info *) infoBuf;

 printf ("Kernel memory: Private: %dK allocated %dK freed, Shared: %dK allocated, %dK
freed\n",
 tkmi->total_palloc/ 1024, tkmi->total_pfree /1024,
 tkmi->total_salloc/ 1024, tkmi->total_sfree /1024);

// Lion and later offer the VM external modification information – really
// useful to detect all sorts of attacks certain tools (like gdb and corerupt, presented
// in the next chapter) utlize to debug/trace processes

 infoSize = TASK_INFO_MAX; // need to reset (this is an in/out parameter)
 kr = task_info(Task,
 TASK_EXTMOD_INFO, // defined as of Lion
 (task_info_t)infoBuf,
 &infoSize);
if (kr == KERN_SUCCESS) {printf("--OK\n");}
 texi = (struct vm_extmod_statistics *) infoBuf;
 ves = &(texi->extmod_statistics);

 if (ves->task_for_pid_count)
 { printf ("Task has been looked up %ld times\n", ves->task_for_pid_count); }
 if (ves->task_for_pid_caller_count)
 { printf ("Task has looked up others %ld times\n", ves->task_for_pid_caller_count); }

continues

c11.indd 403c11.indd 403 9/29/2012 5:43:03 PM9/29/2012 5:43:03 PM

404 x CHAPTER 11 TEMPUS FUGIT — MACH SCHEDULING

 if (ves->thread_creation_count || ves->thread_set_state_count)
 { printf ("Task has been tampered with\n"); }
 if (ves->thread_creation_caller_count || ves->thread_set_state_caller_count)
 { printf ("Task has tampered with others\n"); }

#endif
}

Plugging this function into Listing 10-19 is straightforward. In a manner similar to this experiment,
you can drill down further to the thread level by using the thread_info() function. This is but one
of many thread APIs, discussed next.

Thread APIs
Much as it does for tasks, Mach provides a rich API for thread management. Most of these achieve
the same functionality as the task APIs. Indeed, the task APIs often just iterate over the list of
threads in each task, and apply these in turn. As can be expected, these calls (aside from mach_
thread_self) are implemented over Mach messages (and generated by MIG subsystem 3600). Table
11-3 lists the thread APIs. All return a kern_return_t, unless otherwise noted.

TABLE 11-3: Mach Thread APIs

MACH THREAD API USED FOR

thread_t mach_thread_self() Sends rights to thread’s kernel port.

thread_terminate(thread_t thread) Terminates self.

[thread/act]_[get/set]_state

(thread_t thread,

 int flavor,

 thread_state_t state,

 mach_msg_type_number_t *count)

Gets/sets thread context. The act functions disallow

getting/setting the current thread, but otherwise fall

through to the thread functions.

The thread_state_t is platform dependent. In OS X,

it is an x86_thread_state_t (either 32- or 64-bit). In

iOS, it is an arm_thread_state_t.

thread_suspend(thread_t thread)

thread_resume (thread_t thread)
Suspends or resumes thread by incrementing/decre-

menting the suspend count. The thread may only exe-

cute if both its suspend count and its containing task

suspend count is zero.

thread_abort[_safely]

(thread_t thread)
Destroys another thread.

thread_depress_abort

(thread_t thread)
Cancel thread depression (forced lowering of priority).

LISTING 11-4 (continued)

c11.indd 404c11.indd 404 9/29/2012 5:43:03 PM9/29/2012 5:43:03 PM

Scheduling Primitives x 405

MACH THREAD API USED FOR

thread_[get/set]_special_port

 (thread_act_t thread,

 int which_port,

 thread special_port);

Gets or sets one of several special ports for the thread.

The only special port supported in XNU is

THREAD_KERNEL_PORT.

thread_info(thread_t thread,

 thread_flavor_t flavor,

thread_info_t tinfo_out,

mach_msg_type_number_t *ti_count)

Queries information on thread according to flavor,

and returns it in buff er specifi ed by tinfo_out, which is

ti_count bytes long.

GDB uses this call when you use the info task or

info thread command.

thread_get_exception_ports

thread_set_exception_ports

thread_swap_exception_ports

Queries, sets, or swaps between exception ports, which

are where Mach exception messages will be sent. Dis-

cussed later under Exceptions.

thread_policy/thread_set_policy Obsolete; has been replaced by thread_policy_get/

set.

thread_policy_[get/set]

 (thread_t thread,

 thread_policy_flavor_t flavor,

 thread_policy_t policy_info,

 mach_msg_type_number_t *count,

 boolean_t *get_default))

Threads scheduling policy.

thread_policy_set is defi ned similarly (no get_

default_argument, and count is an in parameter).

thread_sample Deprecated and removed. On CMU Mach, this allows

the periodic sampling of a thread’s program counter

(IP/PC) and receiving of the samples using a receive_

samples API.

etap_trace_thread Deprecated and removed in Leopard and later. Similar

to thread_sample(), above, this once enabled tracing

a thread using ETAP buff ers.

thread_assign(thread_t thread,

 processor_set_t new_pset))

thread_assign_default

 (thread_t thread)

Assigns (=affine) thread to a particular processor set

new_pset, or the default one. Unsupported (returns

KERN_FAILURE).

thread_get_assigment

(thread_t thread,

 processor_set_t *pset)

Returns current thread assignment to processor set

(CPU affi nity). Always returns a reference to pset0, the

default processor set.

As an exercise, you might want to extend the listing in the previous experiment to also list threads.
This can be done by calling task_threads() on the task port, and thread_info (with THREAD_
BASIC_INFO) on each of the thread ports returned.

c11.indd 405c11.indd 405 9/29/2012 5:43:03 PM9/29/2012 5:43:03 PM

406 x CHAPTER 11 TEMPUS FUGIT — MACH SCHEDULING

In-Kernel Thread APIs
Mach provides a set of thread control functions, which are accessible in kernel mode only. These are
declared in osfmk/kern/sched_prim.h:, and a subset of them is shown in Table 11-4:

TABLE 11-4 Some of the kernel-internal thread control functions in osfmk/kern/sched_prim.h

MACH THREAD API USED FOR

wait_result_t assert_wait

(event_t event,

wait_interrupt_t interruptible)

Adds the current thread to the wait queue on event.

The event is converted to a wait queue by a wait_

hash() function.

wait_result_t

assert_wait_deadline(

event_t event,

wait_interrupt_t interruptible,

uint64_t deadline)

As assert_wait(), but allows specifi cation of a

future deadline.

kern_return_t thread_wakeup_prim

(event_t event,

boolean_t one_thread,

wait_result_t result);

Wakes up a thread (one_thread = TRUE) or threads

waiting on specifi ed event. This function wraps

around thread_wakeup_prim_internal, which in

turn calls wait_queue_wakeup_[one|all].

This function is usually wrapped by one of these

macros:

thread_wakeup(x)

thread_wakeup_with_result(x,z)

thread_wakeup_one(x)

wait_result_t thread_block_reason(

thread_continue_t continuation,

void *parameter,

ast_t reason);

Blocks the current thread, yielding CPU execution,

and optionally setting a continuation routine and

a parameter for it. May specify AST in reason.

This function is usually wrapped by one of

lightweight:

thread_block(thread_continue_t , specifying a

NULL parameter, and AST_NONE for reason

thread_block_parameter (thread_

continue_t, void *), specifying AST_NONE for

reason.

thread_bind

 (processor_t processor);
Sets the CPU affi nity of this thread to processor or

removes affi nity (PROCESSOR_NULL);.

int thread_run

(thread_t self,

thread_continue_t continuation,

void *parameter,

thread_t new_thread)

Performs thread handoff ; the current thread yields

CPU execution (parameters are the same as

thread_block_parameter), but transfers control

directly to new_thread. Used in handoff s (described

later in this chapter).

This function wraps around thread_invoke(),

which is internal to the scheduler.

c11.indd 406c11.indd 406 9/29/2012 5:43:04 PM9/29/2012 5:43:04 PM

Scheduling Primitives x 407

MACH THREAD API USED FOR

kern_return_t thread_go

(thread_t thread,

 wait_result_t wresult);

Unblock a thread and dispatch it. Used when remov-

ing a thread from a wait queue.

void thread_setrun

(thread_t thread,

integer_t options)

Dispatch a thread, to its bound (affi ned processor) or

any (preferably idle) processor.

Calls realtime_setrun for realtime threads,

fairshare_setrun for fairshare_setrun, or

processor_setrun.

Thread Creation
Of particular interest is the thread creation API. Since a thread cannot exist outside of some con-
taining task, this API is defi ned in task.h (more specifi cally, <mach/ARCH/task.h>, and imple-
mented in osfmk/kern/thread.c. (See Table 11-5.)

TABLE 11-5: Thread creation functions

MACH THREAD API USED FOR

thread_create

 (task_t parent,

 thread_act_t *child_act)

Create a thread in the parent task, and return it in

child_act.

thread_create_running

(task_t parent,

thread_state_flavor_t flavor,

thread_state_t new_state,

mach_msg_type_number_t nsCnt,

thread_act_t *child_act);

Create a thread in the parent task, and initialize its

state to new_state. The thread_state_t is depen-

dent on machine architecture (and changes between

i386, x86_64, and ARM)

Notice the fi rst argument: task_t is the task in which the thread will be created. This means that,
from Mach’s perspective, a thread can be created in any task the user has the corresponding port
for. This makes the Mach infrastructure extremely fl exible in enabling the creation of remote
threads.1

Thus, when one uses pthread_create(), an underlying API call to Mach’s thread_create ensues,
with mach_task_self() as the fi rst argument (followed by pthread house keeping, and bsdthread_
create for the corresponding BSD thread, as will be discussed in Chapter 13). But if you have
another task’s port, you can inject threads into it. In the right (or wrong?) hands, uncanny function-
ality can be achieved, as injected threads obtain full access to the virtual memory of their task, and
are extremely hard to detect.

1Windows also has a powerful thread creation API — using the CreateRemoteThread() along with
WriteProcessMemoryEx(), which enables the user to write to the memory of any process whose handle
can be obtained. Mainstream UNIX and Linux, however, do not have this ability, and threads may only be
created locally.

c11.indd 407c11.indd 407 9/29/2012 5:43:04 PM9/29/2012 5:43:04 PM

408 x CHAPTER 11 TEMPUS FUGIT — MACH SCHEDULING

Creating a thread is simple, but having it do something meaningful is a tad more
complicated. For starters, you would usually need to “bring your own code,”
using the mach_vm_write API (presented in the next chapter) to inject code into
the foreign task. Then, you would need to use thread_set_state (shown in
Table 11-3) to initialize the thread’s register state to load and run the supplied
code. All of these, however, are mere minutiae, as these APIs will all work once
you have the task port at hand.

SCHEDULING

No matter how many CPUs (or cores) a system has, threads will surely outnumber them. The kernel,
therefore, has to be able to “juggle” threads on CPUs, allowing as many threads to execute in what
the human user would perceive as concurrency. In actuality, however, because each core can only
execute one thread at a time, the kernel has to be able to perform context switches between threads
by preempting one thread and replacing it with another.

Multiprocessing is now commonplace, and various technologies — hyperthread-
ing, multiple cores, and multiple processors — can be used at the hardware
level to enable this functionality. Although each technology has its plusses and
minuses, from the kernel’s perspective, no real difference exists among the
aforementioned technologies. Whether you use hyperthreading, two cores, or
two distinct CPUs, most operating systems see two logical processors.

With the processor-set abstraction, Mach is somewhat better suited than Linux or Windows and
can actually manage cores of the same CPU in the same pset and separate CPUs in separate psets.
The rest of this section makes no distinction between the cases, and uses the term CPU for a logical,
rather than a physical CPU.

The High-Level View
Recall that context switching is the task of freezing a given thread by recording its register state into
a predefi ned memory location. The register state is machine-specifi c (because each machine type has
a different set of registers). After a thread is preempted, the CPU registers can be loaded with the
saved thread of another thread, thereby resuming its execution.

Irrespective of operating system, the basic idea of thread scheduling is the same: A thread executes
in the CPU (or core, or hyperthread) for as long as it needs. Executing refers to the fact that the CPU
registers are fi lled with the thread state, and — as a consequence — the code the CPU is executing
(by EIP/RIP or PC) is the code of the thread function in question. This execution goes on until one
of the following occurs:

 ‰ The thread terminates. Most threads eventually reach an endpoint. Either the thread function
returns, or the thread calls pthread_exit(), which will call thread_terminate.

c11.indd 408c11.indd 408 9/29/2012 5:43:04 PM9/29/2012 5:43:04 PM

Scheduling x 409

 ‰ The thread voluntarily gives up the CPU. Even though the thread work is not done, because
of waiting for a resource or other blocking operation, continuing at this point in time makes
no sense. The thread therefore willingly requests the scheduler to context switch to some other
thread. The thread also needs to inform the system on when it would like to return to the CPU,
either by specifying some deadline (in clock ticks) or requesting notifi cation of some event.

 ‰ An external interrupt interferes with thread execution, directing the CPU to save the thread
register state and immediately execute the interrupt-handling code. Since the thread is inter-
rupted anyway, before returning from the interrupt-handling code the system invokes the
scheduler to fi gure out whether a non-voluntary context switch (i.e., preemption) is in order.
Such a non-voluntary context switch is the result of the thread’s timeslice (quantum) expir-
ing, or some other, higher priority thread waking up.

Priorities
All threads are equal, but some threads are more equal than others. In other words, threads are assigned
specifi c priorities, which directly affect the frequency with which they are scheduled. Every operating
system provides a range of such priorities: Windows has 32, Linux has 140, and Mach has 128.

The scheduler’s osfmk/kern/sched.h fi le illustrates the usage of priority ranges (which Apple calls
“priority bands”) with ASCII graphics. Figure 11-1 presents it with more modern graphics:

Setting the kernel threads’ minimum priority to 80, high above that of user mode, ensures that
kernel and system-housekeeping will preempt user mode threads, except for very specifi c cases as
shown in the next experiment.

Experiment: Viewing Priorities using ps -l
Using ps(1)’s OS X specifi c -l switch will display both the priority and nice values of every (-e)
running processes. First, try this on OS X, and optionally use tr(1) and cut(1), as shown in Out-
put 11-1 to isolate the priority, nice value, and command names. Note that in OS X the depressed
processes are reniced:

OUTPUT 11-1 Using ps –l to show process priorities and nice values in OS X

morpheus@Minion(~)$ ps -le | tr -s ' ' | cut -d' ' -f7,8,16 | sort -n
PRI NI CMD
4 17 …/Frameworks/Metadata.framework/Versions/A/Support/mdworker
4 17 …/CoreServices.framework/Frameworks/Metadata.framework/Versions/A/Support/mdworker
4 20 /usr/sbin/netbiosd
23 10 /usr/libexec/warmd
23 10 /usr/libexec/warmd_agent
31 0 -bash
…
54 0 /System/Library/CoreServices/loginwindow.app/Contents/MacOS/loginwindow
…
63 0 /sbin/dynamic_pager
63 0 /usr/libexec/hidd
97 0 /Applications/iTunes.app/Contents/MacOS/iTunes ; iTunes is real time
(TIME_CONSTRAINT)
97 0 /usr/sbin/coreaudiod ; along with the audiod

c11.indd 409c11.indd 409 9/29/2012 5:43:05 PM9/29/2012 5:43:05 PM

410 x CHAPTER 11 TEMPUS FUGIT — MACH SCHEDULING

127

96

95

80

79

64

63

52

51

31

11

0

10

MINPRI_KERNEL

MAXPRI_RESERVED

MINPRI_RESERVED

MAXPRI_USER

BASEPRI_DEFAULT

MINPRI, MINPRI_USER

0

+20

+20

nice(2) range

BASEPRI_REALTIME

MAXPRI_KERNEL

46

47

48BASEPRI_CONTROL

BASEPRI_FOREGROUND

BASEPRI_BACKGROUND

The top 25% of the priority range (MAXPRI - (NRQS / 4) + 1)
is allocated for real time threads. Mach defines RTQUEUES here,
which are threads whose policy is set to TH_MODE_REALTIME.

The next 12.5% of the priority range (BASEPRI_REALTIME - (NRQS / 8))
is allocated for kernel priorities

The next 12.5% of the priority range (MINPRI_KERNEL - (NRQS / 8))
is reserved for system

Whever is left after MINPRI_RESERVED (i.e., 50% of the priority range)
is left for the plebes

Tasks given roles of CONTROL, FOREGROUND
or BACKGROUND (discussed under “The Mach
Implementation,” later) enjoy a higher priority
than the default

FIGURE 11-1: The Mach priority ranges

c11.indd 410c11.indd 410 9/29/2012 5:43:05 PM9/29/2012 5:43:05 PM

Scheduling x 411

Next, if you try the same command on iOS, you will reveal some interesting patterns: The back-
grounded apps are all depressed with a priority of 4, the currently active app has a priority of 47,
SpringBoard is at 63, and configd is actually real time. These priorities are all policy enforced,
however, as the nice values for all these processes are 0. (See Output 11-2.)

OUTPUT 11-2: Using ps –l to show process priorities and nice values in iOS

root@Padishah (~)# ps -le | tr -s ' ' | cut -d' ' -f7,8,16 | sort -n
PRI NI CMD
4 0 /Applications/AppStore.app/AppStore ;
4 0 /Applications/MobileNotes.app/MobileNotes ; Background
4 0 /Applications/MobileSafari.app/MobileSafari ;
4 0 /Applications/Preferences.app/Preferences ;
Applications
4 0 /var/mobile/Applications/0CCB04C5-8D03-4D07-8A0F-E4112F5B6534/WSJ.app/WSJ
..
31 0 -sh
31 0 /sbin/launchd
31 0 /usr/sbin/fairplayd.K95
31 0 /usr/sbin/syslogd
..
47 0 /Applications/MobileMusicPlayer.app/MobileMusicPlayer
47 0 /System/Library/PrivateFrameworks/IAP.framework/Support/iapd
47 /System/Library/PrivateFrameworks/MediaRemote.framework/Support/mediaremoted
47 /usr/libexec/locationd
47 /var/mobile/Applications/70565622-4490-4174-9531-EEB7B7C5715D/Remote.app/Remote ;
foreground
47 /usr/libexec/locationd
61 /usr/sbin/mediaserverd
63 /System/Library/CoreServices/SpringBoard.app/SpringBoard ; Always at MAXPRI_USER
97 /usr/libexec/configd ; Real time

Priority Shifts
Assigning thread priorities is a start, but often those priorities need to be adjusted during runtime.
Mach dynamically tweaks the priorities of each thread, to accommodate for the thread’s CPU usage,
and overall system load. Threads can thus “drift” in their priority bands, decreasing in priority
when using the CPU too much, and increasing in priority if not getting enough CPU. The traditional
scheduler uses a macro (do_priority_computation) and a function (update_priority), both in
osfmk/kern/priority.c, to update dynamically the priority of each thread. The macro toggles the
thread priority by subtracting its calculated sched_usage (calculated by the function, accounting for
CPU usage delta), shifted by a pri_shift value. The pri_shift value is derived from the global
sched_pri_shift, which is updated by the scheduler regularly as part of the system load calcula-
tion in compute_averages (osfmk/kern/sched_average.c). Subtracting the CPU usage delta
effectively penalizes those threads with high CPU usage (positive usage delta detracts from priority)
and rewards those of low CPU usage (negative usage delta adds to priority).

To make sure the thread’s CPU usage doesn’t accrue to the point where the penalty is lethal, the
update_priority function gradually ages CPU usage. It makes use of a sched_decay_shifts
structure, to simulate the exponential decay of the CPU usage by a factor of (58)n, defi ned in the

c11.indd 411c11.indd 411 9/29/2012 5:43:06 PM9/29/2012 5:43:06 PM

412 x CHAPTER 11 TEMPUS FUGIT — MACH SCHEDULING

same fi le as shown in Listing 11-5. By using the pre-computed shift values, the computation can be
sped up, expressed in terms of bit shifts and additions, which take less time than multiplication:

LISTING 11-5 The sched_decay_shifts structure in osfmk/kern/priority.c

/*
 * Define shifts for simulating (5/8) ** n
 *
 * Shift structures for holding update shifts. Actual computation
 * is usage = (usage >> shift1) +/- (usage >> abs(shift2)) where the
 * +/- is determined by the sign of shift 2.
 */
struct shift_data {
 int shift1;
 int shift2;
};

// The shift data at index i provides the approximation of (5/8)i
#define SCHED_DECAY_TICKS 32
static struct shift_data sched_decay_shifts[SCHED_DECAY_TICKS] = {
 {1,1},{1,3},{1,-3},{2,-7},{3,5},{3,-5},{4,-8},{5,7},
 {5,-7},{6,-10},{7,10},{7,-9},{8,-11},{9,12},{9,-11},{10,-13},
 {11,14},{11,-13},{12,-15},{13,17},{13,-15},{14,-17},{15,19},{16,18},
 {16,-19},{17,22},{18,20},{18,-20},{19,26},{20,22},{20,-22},{21,-27}
};

Mach also supports “throttling” and defi nes MAXPRI_THROTTLE(4) for priority throttled processes,
i.e., those processes that are intentionally penalized by the system. In iOS (CONFIG_EMBEDDED) the
throttled priority is used for the DEPRESSPRI constant for apps in the background and affects the
calculation of the do_priority_computation macro. The Mach host APIs provide the HOST_
PRIORITY_INFO fl avor to the host_info() function (discussed in Chapter 10), which returns a
host_priority_info structure, reporting the various priority levels.

All the threads, with their various and volatile priorities must somehow be managed in an effi cient
way, to allow the scheduler to fi nd the next runnable thread of the highest priority in the minimum
amount of time possible. This is where run queues enter the picture.

Run Queues
Threads are placed into run queues, which are priority lists defi ned in osfmk/kern/sched.h as
shown in Listing 11-6:

LISTING 11-6 The run queue, from osfmk/kern/sched.h

struct runq_stats {
 uint64_t count_sum;
 uint64_t last_change_timestamp;
};

#if defined(CONFIG_SCHED_TRADITIONAL) || defined(CONFIG_SCHED_PROTO) ||
defined(CONFIG_SCHED_FIXEDPRIORITY)

c11.indd 412c11.indd 412 9/29/2012 5:43:06 PM9/29/2012 5:43:06 PM

Scheduling x 413

struct run_queue {
 int highq; /* highest runnable queue */
 int bitmap[NRQBM]; /* run queue bitmap array */
 int count; /* # of threads total */
 int urgency; /* level of preemption urgency */
 queue_head_t queues[NRQS]; /* one for each priority */

 struct runq_stats runq_stats;
};

#endif /* defined(CONFIG_SCHED_TRADITIONAL) || defined(CONFIG_SCHED_PROTO) ||
defined(CONFIG_SCHED_FIXEDPRIORITY) */

The run queue is a multi-level list, or an array of lists, one queue for each of the 128 priorities
(#defined as NRQS). To make for a quick lookup of the next priority to execute, Mach uses a tech-
nique (which was used in Linux 2.6, prior to 2.6.23) called O(1) scheduling. That is, rather than
looking at the array, checking each entry until a non-NULL one is found — which is also techni-
cally O(1), but really is O(128) scheduling — Mach checks a bitmap, which enables it to look at 32
(#defined as NRQBM)2 simultaneously. This makes the lookup O(4), which is about as fast as pos-
sible, and most important, considering that the scheduling logic runs frequently and in critical time.

Notice that the very defi nition of the run queue becomes conditional on using
one of several schedulers. Mach uses a “traditional” or default scheduler, but
the scheduler is modular, and may be modifi ed or replaced altogether with other
schedulers. (See the later section, “Scheduling Algorithms,” for more on this topic).

Code cannot just modify the thread’s sched_pri fi eld directly, as assigning a new priority for a
thread also means moving it from one queue to another. This is performed by set_sched_pri
(osfmk/kern/sched_prim.c), which is called from compute_priority (osfmk/kern/priority.c).
This is shown in Figure 11-2.

thread_run_queue_remove

thread_setrun (thread,

SCHED_PREEMPT |SCHED_TAILQ)
Handle potential context switch/AST

Removed?

thread->sched_pri = priority Set thread’s sched_priority field to new priority

Remove thread from current runqueue,

Clear bit in bitmap if queue is empty,

Set thread->runq to NULL

Assign thread to new runqueue according

to scheduling policy, add at end of queue

(light bitmap if necessary) and signal

preemption.

FIGURE 11-2: Setting thread priority and moving the threads between queues

2NRQBM is hard #defined in osfmk/kern/sched.h to be NRQS/32, even for the 64-bit architecture.
A sizeof() would have been more adequate.

c11.indd 413c11.indd 413 9/29/2012 5:43:06 PM9/29/2012 5:43:06 PM

414 x CHAPTER 11 TEMPUS FUGIT — MACH SCHEDULING

Wait Queues
A thread is optimally either in the running state or the ready state, waiting for the processor. There
are times when the thread is blocking, waiting for some IPC object (such as a mutex or semaphore),
some I/O operation (for example, a fi le or socket), or event. In those cases, there is no benefi t in con-
sidering scheduling the thread, since execution can only be resumed once the object or operation is
at hand, or the event has occurred.

In those cases, a thread may be placed into a wait queue. A wait queue_t is defi ned as an opaque
point in osfmk/kern/kern_types.h, with the implementation in osfmk/kern/wait_queue.c, as
shown in Listing 11-7:

LISTING 11-7: The wait queue implementation, from osfmk/kern/wait_queue.c

/*
 * wait_queue_t
 * This is the definition of the common event wait queue
 * that the scheduler APIs understand. It is used
 * internally by the gerneralized event waiting mechanism
 * (assert_wait), and also for items that maintain their
 * own wait queues (such as ports and semaphores).
 *
 * It is not published to other kernel components. They
 * can create wait queues by calling wait_queue_alloc.
 *
 * NOTE: Hardware locks are used to protect event wait

 * queues since interrupt code is free to post events to
 * them.
 */
typedef struct wait_queue {
 unsigned int /* flags */
 /* boolean_t */ wq_type:16, /* only public field */
 wq_fifo:1, /* fifo wakeup policy? */
 wq_prepost:1, /* waitq supports prepost? set only */
 :0; /* force to long boundary */
 hw_lock_data_t wq_interlock; /* interlock */
 queue_head_t wq_queue; /* queue of elements */
} WaitQueue;

The wait queue handling functions are exported for use by kernel components in osfmk/kern/
wait_queue.h. To add a thread to a wait queue, any of the wait_queue_assert_wait[64[_
locked]] variants may be used. The functions all enqueue the thread at the tail of the queue (unless
the thread is realtime, privileged, or on a FIFO wait queue, in which case it is enqueued at the head
of the queue). The functions are further wrapped by assert_wait (in osfmk/kern/sched_prim.c)
and other wrappers, used throughout the kernel, and especially in the BSD layer.

When the wait condition is satisfi ed, the waiting thread(s) can be unblocked and dispatched again.
The wait_queue_wakeup64_[all|one]_locked (to wake up one or all threads when an event
occurs) are used for this purpose. The functions dequeue the thread(s) from the wait queue, and dis-
patch them using thread_go, which unblocks (using thread_unblock) and dispatches the threads
(using thread_setrun).

c11.indd 414c11.indd 414 9/29/2012 5:43:07 PM9/29/2012 5:43:07 PM

Mach Scheduler Specifi cs x 415

CPU Affi nity
In modern architectures using multi-core, SMP, or hyperthreading, it is also possible to affi ne a par-
ticular thread with one or more specifi c CPUs. This can be useful to both the thread and the system
as a whole because the thread can benefi t from its data being “left behind” in the CPU caches when
it returns to execute on the same CPU.

In Mach parlance, a thread’s affi nity to a CPU is defi ned as a binding. thread_bind(osfmk/kern/
sched_prim.c) is used for this purpose, and merely updates the thread_t’s bound_processor
fi eld. If the fi eld is set to anything but PROCESSOR_NULL, future scheduling decisions involving the
thread (e.g., thread_setrun) will only dispatch the thread to that processor’s run queue.

MACH SCHEDULER SPECIFICS

The view of scheduling presented so far is actually common to all modern operating systems. Mach,
however, adds several noteworthy features:

 ‰ Handoffs allow a thread to voluntarily yield the CPU, but not to just any other thread.
Rather, it hands the CPU off to a particular thread (of its choice). This feature is especially
useful in Mach, given that it is a message-passing kernel, and messages pass between threads.
This way, the messages can be processed with minimal latency, rather than opportunistically
waiting for the next time the message-processing thread, sender or receiver, gets scheduled.

 ‰ Continuations are used in cases where the thread does not care much for its own stack, and
can discard it, enabling the system to resume it without restoring the stack. This key feature,
specifi c to Mach, and used in many places around the kernel.

 ‰ Asynchronous Software Traps (ASTs) are software complements to the low-level hardware
traps mechanisms. Using ASTs the kernel can respond to out-of-band events requiring atten-
tion such as scheduling events.

 ‰ Scheduling algorithms are modular, and the scheduler can be dynamically set on boot (using
the sched boot-arg). In practice, however, only one scheduler (the so-called traditional
scheduler) is used.

Handoff s
All operating system support the notion of yielding, which is the act of voluntarily giving up the
CPU to some other thread. The classic form of yielding does not enable the yielding thread to choose
its successor, and the choice is left up to the scheduler.

Mach improves on this by adding the option to handoff the CPU. This enables the yielding thread
to supply a hint to the scheduler as to what is the next best thread to execute. This doesn’t fully obli-
gate the scheduler, which may choose to transfer control to some other thread (if the thread specifi ed
is, for example, not runnable). The scheduler does, however, ignore thread policies and so handoffs
usually succeed. As a result of a handoff, the current thread’s remaining quantum is given to the
new thread to be scheduled.

To handoff, rather than yield, a thread calls thread_switch(), specifying the port of the thread
to switch to, optional fl ags (such as depressing the replacing thread’s priority), and the time these

c11.indd 415c11.indd 415 9/29/2012 5:43:07 PM9/29/2012 5:43:07 PM

416 x CHAPTER 11 TEMPUS FUGIT — MACH SCHEDULING

options will be in effect. What’s even more interesting is that the thread handoff mechanism is
accessible from user mode: Mach exports the thread_switch() as a trap (#61), so it can be called
from user mode. This is actually one of the few Mach traps that has a manual page (osfmk/man/
thread_switch.html).

Continuations
Although context switching is straightforward in most operating systems, following a classic model
wherein each thread has its own task, Mach offers an alternative by introducing the concept of a
continuation. A continuation is an optional resumption function (along with a parameter to it),
which a thread may specify if it is voluntarily requesting a context switch. If a continuation is speci-
fi ed, when the thread is resumed it will be reloaded from the point of continuation with a new stack
and no previous state saved. This makes context switching much faster, since the saving and loading
of registers can be omitted (In addition, this saves a signifi cant amount of space on the kernel stack,
which is fairly small, only four pages, or 16 K). Threads in a continuation require only 4–5 KB for
the thread state, saving an additional 16 K that would be otherwise needed. Instead of a full register
state and thread stack, only the continuation and an optional parameter need to be saved, and this
can be done on the thread structure itself. A simple test for continuation may be performed and,
if one is found, it is simply jumped to, with its parameter passed to it. A thread specifi es its desire
to be blocked using thread_block(), optionally specifying a continuation (or using THREAD_CON-
TINUE_NULL, if the standard mode is preferred). A parameter to the continuation may be specifi ed
by thread_block_parameter(). Both calls are wrappers over thread_block_reason(), which is
described in the section “Explicit Preemption,” later in this chapter.

Continuations are a quick and effi cient mechanism to alleviate the cost of context switching, and
they are used primarily in Mach’s kernel threads. In fact, Mach’s kernel_thread_create (and its
main caller, kernel_thread_start_priority) is built over the idea of a continuation, as shown in
Listing 11-8.

LISTING 11-8 kernel_thread_create and its use of continuations

kern_return_t
kernel_thread_create(
 thread_continue_t continuation,
 void *parameter,
 integer_t priority,
 thread_t *new_thread)
{
 kern_return_t result;
 thread_t thread;
 task_t task = kernel_task;

// thread_create_internal sets the thread.continuation
 result = thread_create_internal
 (task, priority, continuation, TH_OPTION_NONE, &thread);
 if (result != KERN_SUCCESS)
 return (result);

 task_unlock(task);

c11.indd 416c11.indd 416 9/29/2012 5:43:07 PM9/29/2012 5:43:07 PM

Mach Scheduler Specifi cs x 417

 lck_mtx_unlock(&tasks_threads_lock);

 stack_alloc(thread);
 assert(thread->kernel_stack != 0);
#if CONFIG_EMBEDDED
 if (priority > BASEPRI_KERNEL) // Set kernel stack for high priority threads
#endif
 thread->reserved_stack = thread->kernel_stack;

// and the parameter is set manually here
 thread->parameter = parameter;

 if(debug_task & 1)
 kprintf("kernel_thread_create: thread = %p continuation = %p\n",
 thread, continuation);

 *new_thread = thread;

 return (result);
}

..
kern_return_t kernel_thread_start_priority(
 thread_continue_t continuation,
 void *parameter,
 integer_t priority,
 thread_t *new_thread)
{
 kern_return_t result;
 thread_t thread;

 result = kernel_thread_create(continuation, parameter, priority, &thread);
 if (result != KERN_SUCCESS)
 return (result);

 *new_thread = thread;

 thread_mtx_lock(thread);
 thread_start_internal(thread);
 thread_mtx_unlock(thread);

 return (result);
}

Continuations are particularly attractive in kernel threads, since it is a simple matter to set the con-
tinuation is simply the thread entry point. Hence, this is the way Mach kernel threads are started.
User mode thread creation also makes use of continuations, by setting (in thread_create_
internal2) the continuation to thread_bootstrap_return(). This is just a DTrace hook, followed
by thread_exception_return(), which returns to user mode.

Note that continuations require the setting thread to be aware of both the preemption and the
continuation logic. It follows, therefore, that Mach supports two different models of preemp-
tion — explicit and implicit — with the continuation model only available for explicit preemptions.
These are discussed next.

c11.indd 417c11.indd 417 9/29/2012 5:43:08 PM9/29/2012 5:43:08 PM

418 x CHAPTER 11 TEMPUS FUGIT — MACH SCHEDULING

Continuations are the brainchild of Richard Draves, one of the original developers of Mach (whose
name still adorns the XNU sources in osfmk/ipc and elsewhere). Continuations were introduced in
1991[3], in a paper by Draves, Bershad, and Rashid, part of a Ph.D. thesis at CMU[4]).

Preemption Modes
Threads in a system may be preempted in one of two ways: explicitly, when a thread gives up control
of the CPU or enters an operation defi ned as blocking, and implicitly, due to an interrupt. Explicit
preemption is sometimes referred to as synchronous, as it is a priori predictable. Interrupts, which
by their very nature are unpredictable, make implicit preemption asynchronous.

Explicit Preemption

Explicit preemption occurs when a thread voluntarily wants to relinquish the CPU. This could be
due to waiting for a resource, or I/O, or sleeping for a set amount of time. User mode threads are
subject to explicit preemption when calling blocking system calls, such as read(), select(), sleep,
and so on.

To provide explicit preemption, Mach offers the thread_block_reason() function. This function,
defi ned in osfmk/kern/sched_prim.c, takes three parameters: A continuation function, a param-
eter for it, and a reason. The reason is an AST_ (Asynchronous Software Trap) constant, discussed
later.

thread_block_reason is defi ned as shown in Listing 11-9.

LISTING 11-9: thread_block_reason() in osfmk/kern/sched_prim.c

/*
 * thread_block_reason:
 *
 * Forces a reschedule, blocking the caller if a wait
 * has been asserted.
 *
 * If a continuation is specified, then thread_invoke will
 * attempt to discard the thread's kernel stack. When the
 * thread resumes, it will execute the continuation function
 * on a new kernel stack.
 */

thread_block_reason(
 thread_continue_t continuation,
 void *parameter,
 ast_t reason){
 register thread_t self = current_thread();
 register processor_t processor;
 register thread_t new_thread;
 spl_t s;

 counter(++c_thread_block_calls);

c11.indd 418c11.indd 418 9/29/2012 5:43:08 PM9/29/2012 5:43:08 PM

Mach Scheduler Specifi cs x 419

 s = splsched();

 if (!(reason & AST_PREEMPT))
 funnel_release_check(self, 2);

 processor = current_processor();

 /* If we're explicitly yielding, force a subsequent quantum */
 if (reason & AST_YIELD)
 processor->timeslice = 0;

 /* We're handling all scheduling AST's */
 ast_off(AST_SCHEDULING);

 // Save continuation and its relevant parameter, if any, on our own uthread

 self->continuation = continuation;
 self->parameter = parameter;
 // improbable kernel debug stuff omitted here
 do {
 thread_lock(self);
 new_thread = thread_select(self, processor);
 thread_unlock(self);
 } while (!thread_invoke(self, new_thread, reason)); // thread_invoke will switch
context

 funnel_refunnel_check(self, 5);
 splx(s);

 return (self->wait_result);
}

Two helper functions are also defi ned: thread_block_parameter() and thread_block(). The for-
mer calls thread_block_reason() with the reason parameter set to AST_NONE, and the latter does
the same, but also sets the parameter to NULL.

Calling thread_block allows the setting of a continuation, which is stored on the thread_t
structure (current_thread()->continuation) along with its parameter (current_thread()
->parameter). The thread_block() function then calls thread_select() to get the next thread
on the current processor (which may or may not be different from the current), and tries to call
thread_invoke() on it.

The thread_invoke() function is responsible for performing the context switch and handling the
continuation. This function is quite long (and could benefi t from an overhaul!), but basically checks
whether the new thread to be invoked has a continuation function. If it does, the continuation func-
tion is directly called. Otherwise, performing a full context switch becomes necessary.

From a higher-level perspective, the operation is actually quite simple, as shown in Figure 11-3.

c11.indd 419c11.indd 419 9/29/2012 5:43:08 PM9/29/2012 5:43:08 PM

420 x CHAPTER 11 TEMPUS FUGIT — MACH SCHEDULING

thread_block_reason(cont,param,reason)
(osfmk/kern/sched_prim.c)

thread_invoke
(osfmk/kern/sched_prim.c)

Continuation?

call_continuation()Return from thread_block()

Save continuation and parameter to self
Select new thread

Call thread_invoke(self, new, reason)

Possibly switch kernel stack
if new thread has continuation, call it
else perform full context switch

FIGURE 11-3: Thread Invocation

call_continuation() is a machine-dependent, much faster mechanism to restore state. Listing
11-10 shows how on x86_64 this can be implemented with effi cient code:

LISTING 11-10: the call_continuation implementation on x86_64

//prototype: call_continuation(thread_continue_t continuation,
// void *parameter,
// wait_result_t wresult);

Entry(call_continuation)
 movq %rdi,%rcx /* get continuation */
 movq %rsi,%rdi /* continuation param */
 movq %rdx,%rsi /* wait result */
 movq %gs:CPU_KERNEL_STACK,%rsp /* set the stack */
 xorq %rbp,%rbp /* zero frame pointer */
 call *%rcx /* call continuation */
 // usually not reached – if reached, thread will terminate:
 movq %gs:CPU_ACTIVE_THREAD,%rdi
 call EXT(thread_terminate)

Implicit Preemption

Mac OS 9 was built entirely around the concept of explicit preemption, which made it a coopera-
tive multitasking system. But explicit preemption is inherently limited, as leaving the choice of
relinquishing the CPU to the running thread is extremely unreliable. Threads can be caught in time-
consuming processing, or worse, endless loops, and never get to a point of explicit preemption.

Mac OS X, by contrast, is a preemptive multitasking system. In plain terms, Mach reserves the
right to preempt a thread at any given time, whether or not the thread is ready for it. Unlike explicit

c11.indd 420c11.indd 420 9/29/2012 5:43:08 PM9/29/2012 5:43:08 PM

Mach Scheduler Specifi cs x 421

preemption, this implicit form of preemption is invisible to the thread. The thread remains blissfully
unaware, and its state is saved and restored transparently. Most threads won’t care about this, as
they are likely to be I/O bound anyway. But for CPU-intensive threads, this could be problematic,
especially when time-critical performance may be required (for example, video and audio decoding).

Implicit preemption is far simpler, conceptually, from its explicit counterpart. This is because it does
not involve any continuations. Since the thread is unaware of its being suspended, it cannot ask for a
continuation.

While a thread cannot explicitly control its own scheduling, Mach does offer several pre-set policies
that can work toward guaranteeing classes of service. Note “work toward” because Mach is a time-
sharing system, not a real-time one, and there can be no true guarantee of service. Using thread_
policy_set(), which is a Mach trap visible from user mode, it is possible to request such a policy.
The function is defi ned in osfmk/kern/thread_policy.c as follows:

kern_return_t
thread_policy_set(
 thread_t thread,
 thread_policy_flavor_t flavor,
 thread_policy_t policy_info,
 mach_msg_type_number_t count);

The function verifi es its arguments (that is, that thread is not THREAD_NULL and that thread
->static_param is false), and then calls thread_policy_set_internal(), which switch()es
on the fl avor argument, which may be one of the following items in Table 11-6.

TABLE 11-6: Flavor arguments

TASK POLICIES SPECIFIES

STANDARD_POLICY Fair queuing. Approximately equal share to all computations. No data

be provided to the policy. This is deprecated, eff ectively equivalent

to EXTENDED_POLICY, below, with timesharing.

EXTENDED_POLICY Fair queuing, but provides a forward hint for long-running computa-

tion. An optional parameter, timeshare, may be specifi ed.

TIME_CONSTRAINT_POLICY Policy defi ned by period, computation, constraint, and

preemptible — soft real time. This boosts the thread’s priority to the

real-time range (discussed later).

PRECEDENCE_POLICY Policy defi ned by thread’s importance fi eld, which enables preferring

it with respect to other threads in the same task.

AFFINITY_POLICY Thread scheduled by affinity_tag, which prefers scheduling by

L2 cache affi nity.

BACKGROUND_POLICY Policy defi ned by priority. This is used only if CONFIG_EMBEDDED

(iOS), suggesting low priority for background tasks (i.e., those not

visible as i-Device’s primary).

c11.indd 421c11.indd 421 9/29/2012 5:43:08 PM9/29/2012 5:43:08 PM

422 x CHAPTER 11 TEMPUS FUGIT — MACH SCHEDULING

These fl avors allow fi ne-grained control of the scheduling of individual threads. The default policy,
THREAD_STANDARD_POLICY, is used for fair time sharing. It requires no additional parameters.
THREAD_EXTENDED_POLICY builds on it, and adds one Boolean parameter, timeshare, which when
false, specifi es an alternate policy, and when true, falls back to the standard policy.

A more complicated, and closer to real-time policy is THREAD_TIME_CONSTRAINT_POLICY, which
allows fi ne-grained tuning of scheduling. Key to this policy is the notion of “processing arrivals,”
which is the scheduling of the thread in question. Units are measured in the kernel’s CPU clock
cycles. This policy is based on several parameters:

 ‰ Period: Requests a time between two consecutive processing arrivals. If this value is not zero,
the thread in question is assumed to seek processor time once every period cycle.

 ‰ Computation: A 32-bit integer specifying the computation time needed each time the thread
is scheduled.

 ‰ Constraint: The maximum amount of (real) time between the beginning and the end of the
computation.

 ‰ Preemptible: A Boolean value specifying whether the computation may be interrupted; that
is, whether these computation cycles have to be contiguous (preemptible = false) or not
(preemptible = true)

THREAD_PRECEDENCE_POLICY takes one parameter, importance, which provides the relative impor-
tance of this thread compared to other threads of the same task. The value is signed, meaning
threads can bump up or down relative to their peers, yet in XNU the minimum priority is IDLE_PRI,
which is defi ned as zero.

THREAD_AFFINITY_POLICY provides for L2 cache affi nity between threads of the same cache. This
means that these threads are likely to run on the same CPU, regardless of cores (as all cores share
the same L2 cache, anyway), but not likely to cross CPUs in a true SMP environment. To provide
this affi nity, this policy uses an affinity_tag that is shared among related processes (that is, parent
and descendants).

THREAD_BACKGROUND_POLICY is used for background threads; that is, threads that are of lesser pri-
ority and importance to the system. This is not defi ned in OS X, but is used in iOS, suggesting its
use for Apps which are sent to the background by SpringBoard.

Tasks lend an extra level of scheduling, by providing a “role” fi eld, which may be one of the follow-
ing shown in Table 11-7.

TABLE 11-7: Task roles

TASK ROLES (TASK_CONSTANT) SPECIFIES

RENICED Any task altered using nice(1) or renice(1).

UNSPECIFIED Default value, unless otherwise specifi ed.

FOREGROUND_APPLICATION GUI foreground.

c11.indd 422c11.indd 422 9/29/2012 5:43:09 PM9/29/2012 5:43:09 PM

Mach Scheduler Specifi cs x 423

TASK ROLES (TASK_CONSTANT) SPECIFIES

BACKGROUND_APPLICATION GUI background.

CONTROL_APPLICATION Task is a GUI Control application (usually the

dock). Only one task can hold this at any given

time. The priority range is set to BASEPRI_CON-

TROL, up to the task’s already maximum priority.

GRAPHICS_SERVER Reserved for Window Manager use. Only one

task at a time can hold this role, and it is usually

the WindowServer. The priority range is MAX-

PRI_RESERVED - 3, MAXPRI_RESERVED.

THROTTLE_APPLICATION Set to the maximum priority (MAXPRI_THROTTLE).

Mapped from PRIO_DARWIN_BG.

NONUI_APPLICATION Mapped from PRIO_DARWIN_NONUI. Priority

range is BASEPRI_DEFAULT, MAXPRI_USER.

DEFAULT_APPLICATION Default, unless otherwise stated.

The task “role” thus affects the scheduling of its threads.

To allow implicit preemption, some mechanism must exist to support asynchronous events and
interruptions at the kernel level. This mechanism is Mach’s Asynchronous Software Traps (ASTs),
and is described next.

Asynchronous Software Traps (ASTs)
The discussion of trap handling in Chapter 8 explained what happens when a transition is
made back from kernel mode into user mode, but has intentionally omitted a key component —
Asynchronous Software Traps (ASTs). An AST is an artifi cial, non-hardware trap condition that has
been raised. ASTs are crucial for kernel operations and serve as the substrate on top of which sched-
uling events (such as preemption, discussed earlier in this chapter), and BSD’s signals (discussed in
Chapter 13) are implemented.

An AST is implemented as a fi eld of various bits in the thread’s control block, which can be indi-
vidually set by a call to thread_ast_set(). This is a macro, as shown in Listing 11-11:

LISTING 11-11 Setting ASTs in osfmk/kern/ast.h

#define thread_ast_set(act, reason) (hw_atomic_or_noret(&(act)->ast, (reason)))
#define thread_ast_clear(act, reason) (hw_atomic_and_noret(&(act)->ast, ~(reason)))
#define thread_ast_clear_all(act) (hw_atomic_and_noret(&(act)->ast, AST_NONE))

The “reasons” defi ned in Mach are in osfmk/kern/ast.h, but are really quite poorly documented.
Table 11-8 shows the defi ned ASTs, and their purpose.

c11.indd 423c11.indd 423 9/29/2012 5:43:09 PM9/29/2012 5:43:09 PM

424 x CHAPTER 11 TEMPUS FUGIT — MACH SCHEDULING

TABLE 11-8: Defi ned ASTs

AST CONSTANT MEANING

AST_PREEMPT Current thread is being preempted.

AST_QUANTUM Current thread’s quantum (time slice) has expired.

AST_URGENT AST must be handled immediately. Used when inserting real time threads.

AST_HANDOFF Current thread is handing off the CPU to a specifi c other thread. This is set by

thread_run() (osfmk/kern/sched_prim.c).

AST_YIELD Current thread has voluntarily yielded the CPU.

AST_APC Migration.

AST_BSD Special AST used during BSD initialization to start the init task; that is,

launchd(1).

AST_CHUD[_URGENT] Computer Hardware Understanding ASTs for profi ling and tracing. See dis-

cussion of CHUD in Chapter 5.

ASTs can also be used in combos, which are bitwise ORs of the preceding fl ags. These are shown in
Table 11-9.

TABLE 11-9: AST Combinations

AST COMBO BITWISE OR OF MEANING

AST_NONE 0 Used to clear all AST reasons.

AST_PREEMPTION (AST_PREEMPT | AST_
QUANTUM | AST_URGENT)

Bitmask of all ASTs that involve preempting the

current thread. The ast_taken() function will

cause the thread to block, and force a context

switch.

AST_SCHEDULING AST_PREEMPTION | AST_
YIELD | AST_HANDOFF)

Bitmask of all ASTs that can be set by the

scheduler.

AST_PER_THREAD AST_APC | AST_BSD |

MACHINE_AST…
Bitmask of ASTs that are used on a per -hread

basis. MACHINE_AST_PER_THREAD is unused in

OS X (set to 0).

AST_CHUD_ALL AST_CHUD_URGENT |

AST_CHUD
All CHUD ASTs.

AST_ALL 0xFFFFFFFF Used to set all AST reasons. Set by

i386_astintr().

The combos are used to group the ASTs into two classes: those that involve preemption, and those
that may be set or unset by the scheduler.

c11.indd 424c11.indd 424 9/29/2012 5:43:09 PM9/29/2012 5:43:09 PM

Mach Scheduler Specifi cs x 425

When the system returns from a trap (after the call to user_trap_returns) or interrupt (after the
call to INTERRUPT), it doesn’t immediately return to user mode. Instead, the code checks for the
presence of an AST by looking at the thread’s ast fi eld. If it is not 0, it calls i386_astintr() to
process it, as shown in Listing 11-12.

LISTING 11-12: AST checks on return from trap in osfmk/s86_64/idt64.s

Entry(return_from_trap)
 movq %gs:CPU_ACTIVE_THREAD,%rsp
 movq TH_PCB_ISS(%rsp), %rsp /* switch back to PCB stack */
 movl %gs:CPU_PENDING_AST,%eax
 testl %eax,%eax
 je EXT(return_to_user) /* branch if no AST */
 // otherwise we fall through to here:
L_return_from_trap_with_ast:
 …
 …
2:
 STI /* interrupts always enabled on return to user mode */

 xor %edi, %edi /* zero %rdi */
 xorq %rbp, %rbp /* clear framepointer */
 CCALL(i386_astintr) /* take the AST */

 CLI
 xorl %ecx, %ecx /* don't check if we're in the PFZ */
 jmp EXT(return_from_trap) /* and check again (rare) */

Figure 11-4 shows the AST check points on return from traps and interrupts as shown in
Listing 11-12.

ASTs are thus a little bit like Linux’s softIRQs in that they run with all interrupts enabled, but still
“out of process time.”

i386_astintr() is a wrapper over ast_taken(), as shown in Listing 11-13:

LISTING 11-13: The implementation of i386_astintr

i386_astintr(int preemption)
{
 ast_t mask = AST_ALL;
 spl_t s;

 if (preemption)
 mask = AST_PREEMPTION;

 s = splsched();

 ast_taken(mask, s);

 splx(s);
}

c11.indd 425c11.indd 425 9/29/2012 5:43:09 PM9/29/2012 5:43:09 PM

426 x CHAPTER 11 TEMPUS FUGIT — MACH SCHEDULING

i386_astinstr()

return_from_trap

return_to_user

return_from_trap_with_ast

ast_from_interrupt_user

hndl_allintrs

interrupt

ast pending?

ast_taken()
…

FIGURE 11-4: AST check points on trap and interrupt return

The ast_taken function, (which can also be called from kernel traps, and upon kernel thread ter-
mination), is responsible for handling the ASTs in all threads save kernel idle threads. ASTs marked
as AST_URGENT and AST_PREEMPT (that is, the AST_PREEMPTION combo) cause immediate preemp-
tion of the thread. Otherwise, this function checks for AST_BSD, which is a temporary hack that
was put into Mach for BSD events (such as signals), but remained indefi nitely. If a BSD AST is set,
bsd_ast (from bsd/kern/kern_sig.c), is called to handle signals. Chapter 9 covers signals in
greater detail.

In IOS, the common code that returns from fleh_irq, undef, and prefabt does something similar,
but calls ast_taken directly. The ast_taken function is also called on enable_preemption().

A special case with ASTs is when function execute in a special region of the commpage (discussed in
Chapter 4) known as the Preemption Free Zone (PFZ). Outstanding ASTs are deferred (or pended)
while in this zone. If you look back at Figure 8-6, you will see in return_from_trap_with_ast
a call to commpage_is_in_pfz[32|64] (both defi ned for OS X in osfmk/i386/commpage/
commpage.c). If the address is determined to be in the PFZ, the ASTs are marked pending until the
PFZ is exited. Neither PFZ nor commpage are well documented, but what little is provided is shown
in Listing 11-14.

c11.indd 426c11.indd 426 9/29/2012 5:43:09 PM9/29/2012 5:43:09 PM

Mach Scheduler Specifi cs x 427

LISTING 11-14: The PFZ defi nition, from osfmk/i386/commpage/commpage.c

/* PREEMPTION FREE ZONE (PFZ)
 *
 * A portion of the commpage is speacial-cased by the kernel to be "preemption free",
 * ie as if we had disabled interrupts in user mode. This facilitates writing
 * "nearly-lockless" code, for example code that must be serialized by a spinlock but
 * which we do not want to preempt while the spinlock is held.
 *
 * The PFZ is implemented by collecting all the "preemption-free" code into a single
 * contiguous region of the commpage. Register %ebx is used as a flag register;
 * before entering the PFZ, %ebx is cleared. If some event occurs that would normally
 * result in a premption while in the PFZ, the kernel sets %ebx nonzero instead of
 * preempting. Then, when the routine leaves the PFZ we check %ebx and
 * if nonzero execute a special "pfz_exit" syscall to take the delayed preemption.
 *
 * PFZ code must bound the amount of time spent in the PFZ, in order to control
 * latency. Backward branches are dangerous and must not be used in a way that
 * could inadvertently create a long-running loop.
 *
 * Because we need to avoid being preempted between changing the mutex stateword
 * and entering the kernel to relinquish, some low-level pthread mutex manipulations
 * are located in the PFZ.
 */

Scheduling Algorithms
Mach’s thread scheduling is highly extensible, and actually allows changing the algorithms used for
thread scheduling. Table 11-10 shows what you will see if you look at osfmk/kern/sched_prim.h.

TABLE 11-10: Supported schedulers in Mach

KSCHED… CONSTANT (STRING) USED FOR

TraditionalString ("traditional") Traditional (default)

TraditionalWithPsetRunQueueString

("traditional_with_pset_runqueue")
Traditional, with PSet affi nity

ProtoString ("proto") Global runqueue based scheduler

GRRRString ("grrr") Group Ratio Round Robin

FixedPriorityString ("fixedpriority") Fixed Priority

FixedPriorityWithPsetRunqueueString

("fixedpriority_with_pset_runqueue")
Fixed Priority with PSet affi nity

Normally, only one scheduler, the traditional one, is enabled, but the Mach architecture allows
for additional schedulers to be defi ned and selected during compilation using corresponding

c11.indd 427c11.indd 427 9/29/2012 5:43:10 PM9/29/2012 5:43:10 PM

428 x CHAPTER 11 TEMPUS FUGIT — MACH SCHEDULING

CONFIG_SCHED_ directives. The scheduler that will be used can then be specifi ed with the scheduler
boot-arg, or a device tree entry.

Each scheduler object maintains a sched_dispatch_table structure, wherein the various opera-
tions (think: methods) are held as function pointers. A global table, sched_current_dispatch,
holds the currently active scheduling algorithm and allows scheduler switching during runtime. All
schedulers must implement the same fi elds, which the generic scheduler logic invokes using a SCHED
macro, as shown in Listing 11-15:

LISTING 11-15: sched_prim.h generic scheduler mechanism

/*
 * Scheduler algorithm indirection. If only one algorithm is
 * enabled at compile-time, a direction function call is used.
 * If more than one is enabled, calls are dispatched through
 * a function pointer table.
 */

#if !defined(CONFIG_SCHED_TRADITIONAL) && !defined(CONFIG_SCHED_PROTO) &&
!defined(CONFIG_SCHED_GRRR
) && !defined(CONFIG_SCHED_FIXEDPRIORITY)
#error Enable at least one scheduler algorithm in osfmk/conf/MASTER.XXX
#endif

#define SCHED(f) (sched_current_dispatch->f)
struct sched_dispatch_table {
 .. // shown in table below //
..
extern const struct sched_dispatch_table *sched_current_dispatch;

The scheduler dispatch table itself is described in Table 11-11:

TABLE 11-11: Scheduler dispatch table methods

SCHEDULER METHOD USED FOR

init() Initializing the scheduler. Any specifi c scheduler

data structures and bookkeeping is set up here.

Called by sched_init().

timebase_init() Time base initialization.

processor_init(processor_t) Any per-processor scheduler init code.

pset_init(processor_set_t) Any per-processor-set scheduler init code.

maintenance_continuation() The periodic function providing a scheduler

tick. This function normally computes the vari-

ous averages (such as the system load factors),

and updates threads on run queues. This func-

tion usually re-registers itself.

c11.indd 428c11.indd 428 9/29/2012 5:43:10 PM9/29/2012 5:43:10 PM

Mach Scheduler Specifi cs x 429

SCHEDULER METHOD USED FOR

choose_thread(processor_t, int); Choosing next thread of greater (or equal)

priority int.

steal_thread(processor_set_t) “Stealing” thread from another processor in

pset (used if no runnable threads remain on a

processor).

compute_priority(thread_t, boolean_t) Computing priority of given thread. Boolean is

override_depress.

choose_processor(processor_set_t pset,

processor_t processor,

thread_t thread);

Choosing a processor for thread_t, starting

the search at the pset specifi ed. May provide

a processor “hint” if a processor is

recommended.

processor_enqueue(processor_t

processor,

thread_t thread,

integer_t options)

Enqueueing thread_t on processor_t by

calling run_queue_enqueue on the processor’s

run queue.

Returns TRUE if a preemption is in order.

Only option is SCHED_TAILQ – enqueue last.

processor_queue_shutdown(processor_t) Removing all non-affi ned/bound threads from

processor’s run queue.

processor_queue_remove(processor_t,

thread_t)
Removing the thread thread_t from the pro-

cessor queue of the processor_t.

processor_queue_empty(processor_t) A simple Boolean check for entries in run

queue.

priority_is_urgent(int priority) Returns TRUE if the priority is urgent and would

mandate preemption.

processor_csw_check(processor_t) Returns an ast type specifying whether a con-

text switch from (i.e., preemption of) the running

thread is required.

processor_queue_has_priority

(processor_t, int, boolean_t)
Determining if queue of processor_t has

thread(s) with priority greater (boolean_t =

false) or greater-equal (true) than priority int.

initial_quantum_size(thread_t) Returns the initial quantum size of a given

thread?

initial_thread_sched_mode(task_t) Returns a sched_mode_t denoting the schedul-

ing mode for a new thread created in task_t.

supports_timeshare(void) Returns true if scheduler implementation sup-

ports quantum decay.

continues

c11.indd 429c11.indd 429 9/29/2012 5:43:10 PM9/29/2012 5:43:10 PM

430 x CHAPTER 11 TEMPUS FUGIT — MACH SCHEDULING

SCHEDULER METHOD USED FOR

can_update_priority(thread_t) Determines ifhread's priority can be safely

updated?

update_priority(thread_t) Used to update thread thread_t’s priority.

lightweight_update_priority(thread_t) A lighter alternative to update_priority,

requiring less processing.

quantum_expire(thread_t) Denotes quantum expiration for thread_t.

should_current_thread_rechoose_processor

(processor_t)
Check whether this processor is preferable for

this thread (e.g., because of affi nity) or is a bet-

ter processor available

int processor_runq_count(processor_t) Returning queue load of processor_t. Useful

for load balancing.

uint64_t processor_runq_stats_count_

sum(processor_t)
Aggregating statistics on processor_t’s run

queue.

fairshare_init() Any initialization required for fair share threads.

int fairshare_runq_count() Returning number of fair share threads.

uint64_t fairshare_runq_stats_count_sum

(processor_t)
Aggregating statistics on processor_t’s fair-

share run queue.

fairshare_enqueue(thread_t thread) Enqueueing fair share thread_t.

thread_t fairshare_dequeue() Dequeueing and returning a fair share thread.

boolean_t

direct_dispatch_to_idle_processors;
If TRUE, can directly send a thread to an idle pro-

cessor without needing to enqueue.

To keep the thread scheduling going, every schedule implements a maintenance_continuation
function. This is just an application of the continuation mechanism described earlier in this chapter
for kernel threads. In it, the scheduler thread registers a clock notifi cation using clock_deadline_
for_periodic_event. A call to assert_wait_deadline ensures the thread will run within the
specifi ed deadline, and the thread is blocked on the continuation. The process is jumpstarted in the
scheduler’s init function.

The schedulers make heavy use of the Asynchronous Software Trap (AST) mechanism, which was
discussed in this chapter. Specifi cally, the scheduler uses traps of a very specifi c type: AST_
PREEMPTION. These tie the scheduling logic to interrupt handling and kernel/user space transitions.
It’s also worth noting that the scheduling logic is laced with calls to the kdebug mechanism
(discussed in Chapter 5). The kdebug codes (defi ned with DBG_MACH_SCHED and declared in bsd
/sys/kdebug.h) mark most of the important points in the scheduler’s fl ow.

TABLE 11-11 (continued)

c11.indd 430c11.indd 430 9/29/2012 5:43:10 PM9/29/2012 5:43:10 PM

Timer Interrupts x 431

TIMER INTERRUPTS

This chapter has so far dealt with the primitives and constructs Mach uses in its scheduling logic. In
this section, these ideas are integrated with the “engine” which drives scheduling, namely the timer
interrupts.

Interrupt-Driven Scheduling
For a system to offer preemptive multitasking, it must support some mechanism to fi rst enable the
scheduler to take control of the CPU, thereby preempting the thread currently executing, and then
perform the scheduling algorithm, which will decide whether the current thread may resume execu-
tion or should instead be “kicked out” to relinquish the CPU to a more important thread.

To usurp control of the CPU from the existing thread, contemporary operating systems (Apple’s
included) harness the already-existing mechanism of hardware interrupts. Because the very nature
of interrupts forces the CPU to “drop everything” on interrupt and longjmp to the interrupt handler
(also known as the interrupt service routine, or ISR), it makes sense to rely on the interrupt mecha-
nism to run the scheduler on interrupt.

One small problem remains, however: Interrupts are asynchronous, which means that they can occur
at any time and are quite unpredictable. While a busy system processes thousands of interrupts every
second, a system with a quiet period of I/O — wherein the usual interrupt sources (the disk, network,
and user) are all idle — can also be idle interrupt-wise. There is, therefore, a need for a predictable
interrupt source, one that can be relied on to trigger an interrupt within a given time frame.

Fortunately, such an interrupt source exists, and XNU calls it the real time clock, or rtclock.
This clock is hardware dependent — the Intel architecture uses the local CPU’s APIC for this pur-
pose — and can be confi gured by the kernel to generate an interrupt after a given number of cycles.
The interrupt source is often referred to as the Timer Interrupt. Older versions of XNU triggered
the Timer Interrupt a fi xed number of times per second, a value referred to as hz. This value is glob-
ally defi ned in the BSD portion of the kernel, in bsd/kern/clock.c, (shown in Listing 11-16) and is
unappreciated, to say the least:

LISTING 11-16: The now deprecated Hz hardware interval, in bsd/kern/kern_clock.c

/*
 * The hz hardware interval timer.
 */

int hz = 100; /* GET RID OF THIS !!! */
int tick = (1000000 / 100); /* GET RID OF THIS !!! */

There is, indeed, good reason to be contemptuous of this. A timer interrupting the kernel at a fi xed
interval will cause predictable, but extraneous interrupts. Too high a value of hz implies too many
unnecessary interrupts. On the other hand, too low a value would mean the system is less respon-
sive, as sub-hz delays would only be achievable by a tight loop. The old hertz_tick() function
used in previous versions of OS X is still present, but unused and conditionally compiled only if
XNU is compiled with profi ling.

c11.indd 431c11.indd 431 9/29/2012 5:43:11 PM9/29/2012 5:43:11 PM

432 x CHAPTER 11 TEMPUS FUGIT — MACH SCHEDULING

The solution is to adopt a different model of a tick-less kernel. This model is much like the one from
Linux (versions 2.6.21 and above), in which on every Timer Interrupt the timer is reset to schedule
the next interrupt only when the scheduler deems it necessary. This means that, on every Timer
Interrupt, the interrupt handler has to make a (very quick) pass over the list of pending deadlines,
which are primarily sleep timeouts set by threads, act on them, if necessary, and schedule the next
Timer Interrupt accordingly. More processing in each Timer Interrupt is well worth the savings in
spurious interrupts, and the processing can be kept to a minimum by keeping track of only the most
exigent deadline.

Timer Interrupt Processing in XNU
XNU defi nes, per CPU, an rtclock_timer_t type (in osfmk/i386/cpu_data.h), which is used
to keep track of timer-based events. This structure notes the deadline of a timer and a queue of
call_entry structures (from osfmk/kern/call_entry.h), holding the callouts defi ned as shown in
Listing 11-17:

LISTING 11-17: The rtclock_timer_t, from osfmk/i386/cpu_data.h

typedef struct rtclock_timer {
 mpqueue_head_t queue; // A queue of timer call_entry structures
 uint64_t deadline; // when this timer is set to expire
 uint64_t when_set; // when this timer was set
 boolean_t has_expired; // has the deadline passed already?
} rtclock_timer_t;

typedef struct cpu_data
{
 …
 int cpu_running;
 rtclock_timer_t rtclock_timer; // Per CPU timer
 boolean_t cpu_is64bit;
 …
}

The rtclock_timer’s queue is kept sorted in order of ascending deadlines, and the deadline fi eld is
set to the nearest deadline (i.e., the head entry in the queue).

XNU uses another machine-independent concept of an event timer (also called the etimer) to wrap
the rtclock_timer and hide the actual machine-level timer interrupt implementation. Its usage is
discussed next.

Scheduling Deadlines
Deadline timers are set (read: added to the rtclock’s queue) through a call timer_queue_
assign(osfmk/i386/etimer.c). This function sets a deadline only if it is earlier (read: expires
sooner) than the one already set in the current CPU’s rtclock_timer.deadline. The actual setting

c11.indd 432c11.indd 432 9/29/2012 5:43:11 PM9/29/2012 5:43:11 PM

Timer Interrupts x 433

of the deadline at the hardware level is handled by etimer_set_deadline, followed by a call to
etimer_resync_deadlines (osfmk/i386/etimer.c), which sets the CPU’s local APIC, and will
be discussed soon.

The scheduler interfaces with timer_queue_assign through the higher-level abstraction of a timer
callout, by using timer_call_enter, from osfmk/kern/timer_call.c, on the thread’s wait_
timer. The callout is a function pointer with pre-set arguments, defi ned in osfmk/kern/timer_
call_entry.h as shown in Listing 11-18:

LISTING 11-18: The callout structure, from osfmk/kern/timer_call_entry.h

typedef struct call_entry {
 queue_chain_t q_link; // next
 queue_head_t *queue; // queue head
 call_entry_func_t func; // callout to invoke
 call_entry_param_t param0; // first parameter to callout function
 call_entry_param_t param1; // second parameter to callout
 uint64_t deadline; // deadline to invoke function by
} call_entry_data_t;

// Adjust with flags and a soft deadline, this becomes struct timer_call
typedef struct timer_call {
 struct call_entry call_entry;
 decl_simple_lock_data(,lock); /* protects call_entry queue */
 uint64_t soft_deadline; // Tests expiration in
timer_queue_expire()
 uint32_t flags;
 boolean_t async_dequeue; /* this field is protected by
 call_entry queue's lock */
} *timer_call_t;

Timer events not deemed critical are added with a so-called “slop” value which coalesces them so
as to increase the probability that they expire at the same time (and thus reduce overall timer inter-
rupts). The various callers of timer_call_enter can declare their calls to be critical by specifying
the TIMER_CALL_CRITICAL fl ag.

The process of setting timer deadlines from the scheduler’s end is shown in Figure 11-5.

Timer Interrupt Handling
Timer Interrupt handling is performed by rtclock_intr (osfmk/i386/rtclock.c). The function
itself doesn’t do much: It merely asserts all interrupts are disabled determines which mode (kernel or
user) was interrupted, and saves the existing thread’s registers. The real work is accomplished by a
call to etimer_intr (osfmk/i386/etimer.c), which checks whether the timer deadline (rtclock_
timer->deadline) or the power management deadline (as returned from pmCPUGetDeadline(), in
osfmk/i386/pmCPU.c) expired, and, if they did, acts on them. If the scheduler can be thought of as
the producer of the deadline queue, then this function is its consumer.

c11.indd 433c11.indd 433 9/29/2012 5:43:11 PM9/29/2012 5:43:11 PM

434 x CHAPTER 11 TEMPUS FUGIT — MACH SCHEDULING

Scheduler functions

thread_set_timer_deadline

thread_set_timer

thread_dispatch
(osfmk/kern/sched_prim.c)

timer_call_enter
(osfmk/kern/timer_call.c)

timer_queue_assign
(osfmk/i386/etimer.c)

etimer_set_deadline
(osfmk/i386/etimer.c)

etimer_resync_deadlines
(osfmk/i386/etimer.c)

timer_call_enqueue_
deadline_unlocked

thread_quantum_expire
(osfmk/kern/priority.c)

wait_queue_assert_wait64
(osfmk/kern/wait_queue.c)

Falls through to timer_call_enter_internal, which sets up
timer_call_entry, adds a “slop” to coalesce non-critical timer calls,
and calls timer queue_assign

Calls etimer_set_deadline if deadline more imminent than
current CPU’s. Returns either current CPU’s queue (if CPU active)
or Master CPU’s

Sets new deadline on current CPU’s
rtc_clock and calls etimer_resync_deadlines

Calls setPop() to set hardware deadline (the
next timer interrupt) on current CPU’s Local
APIC (see figure 12-9)

Inserts call in queue sorted by deadline (by eventually calling
call_entry_enqueue_deadline, osfmk/kern/call_entry.h)

FIGURE 11-5: Setting deadlines

To act on timers etimer_intr calls timer_queue_expire (or pmCPUDeadline, for the power
management related deadlines), which walks the queue and invokes the expired timer’s callout
function, with its two arguments (and also logs a kdebug event before and after the call). The func-
tion dequeues and invokes callouts until it hits the fi rst callout whose deadline has not yet expired.
Because the queue is sorted in order of increasing deadlines, all other deadlines are guaranteed to be
pending, as well. The fi rst non-expired deadline effectively becomes the next deadline to process, so
it is returned to etimer_intr. This is shown in Figure 11-6.

c11.indd 434c11.indd 434 9/29/2012 5:43:11 PM9/29/2012 5:43:11 PM

Timer Interrupts x 435

rtclock_intr
(osfmk/i386/rtclock.c)

etimer_intr
(osfmk/i386/etimer.c)

etimer_resync_deadlines
(osfmk/i386/etimer.c)

timer_queue_expire()
(osfmk/kern/timer_call.c)

pmCPUDeadline()
(osfmk/i386/pmCPU.c)

Assert interrupts disabled check

CS register for user mode/kernel mode

Calls setPop() to set hardware deadline (the

next timer interrupt) on current CPU’s Local

APIC (see figure 12-9)

CPU timer expired?

Record next deadline

PM deadline expired?

uint64_t timer_queue_expire(mpqueue_head_t queue,
 uint64_t deadline)
{
timer_call_lock_spin(queue); // acquire lock
while (!queue_empty(&queue->head)) {
 call=TIMER_CALL(queue_first(&queue->head));
 // Only process if soft deadline expired
 if (call->soft_deadline <= deadline) {
 timer_call_func_t func;
 timer_call_param_t param0, param1;

 // dequeue this callout and invoke it
 timer_call_entry_dequeue(call);
 func = CE(call)->func;
 param0 = CE(call)->param0;
 param1 = CE(call)->param1;
 (*func)(param0, param1);
...
 } else break; // queue is sorted by deadline,
 // no sense in looping anymore
} // end while
// If still have (not-yet expired) deadlines,
// return earliest to our caller
if (!queue_empty(&queue->head))
 deadline = CE(call)->deadline;
else
 deadline = UINT64_MAX;
timer_call_unlock(queue); // release lock
return(deadline)
}

FIGURE 11-6: Timer interrupt processing in XNU

Setting the Hardware Pop
Deadline timers must be communicated to the hardware level, so as to request the hardware to gener-
ate the next timer interrupt when they expire. This is why both cases (i.e., scheduling a timer event
and acting on timer expiration) involve a call to etimer_resync_deadlines(). This function checks
on whether either timer or power management deadlines are pending (as they may be rescheduled
post expiration). If either type of deadline is found, the function schedules the next interrupt to the
earlier of the two by calling setPop() (osfmk/i386/rtclock.c). If no deadline is pending, setPop()
is called with a value denoting EndOfAllTime. setPop() uses the rtc_timer global, which sets the
timer on the CPU’s local APIC. Figure 11-7 shows the fl ow of etimer_resync_deadlines.

etimer_resync_deadlines
(osfmk/i386/etimer.c)

setPop
(osfmk/i386/rtclock.c)

rtc_lapic_set[*]_timer
(osfmk/i386/rtclock_native.c)

lapic_set_timer_fast
(osfmk/i386/lapic_native.c)

Calls setPop() with the earliest deadline of :
….Current CPU’s rtclock_timer->deadline
….PMCPUGetDeadline()
….EndOfAllTime (if no other deadline)

If EndOfAllTime: rtc_timer->set (0,0) (clear timer)
Else : rtc_timer->set(time, now);

Calls TmrCvt (converts delta to bus ticks)

Call LAPIC_WRITE (wraps legacy
PIC MMIO or x2apic wrmsr)

FIGURE 11-7: Setting the hardware pop

c11.indd 435c11.indd 435 9/29/2012 5:43:12 PM9/29/2012 5:43:12 PM

436 x CHAPTER 11 TEMPUS FUGIT — MACH SCHEDULING

EndOfAllTime is, quite literally, the end of time as we know it. It is set in
etimer.h to 264–1. Given that there are only some 31.5 million seconds in
a year, (224.91 or so), this allows for almost 240 years to pass, or about 1012,
which — by some estimates — will be around the time the universe may crunch
back into the singularity whence it originated (or expand faster than light could
catch up). The Earth will be long gone by then, incinerated by the sun (which
will have decayed as well).

EXCEPTIONS

Recall our low-level discussion of processor traps and exceptions in Chapter 9, one of the kernel’s
responsibilities is the processing of these events, and in that respect all modern kernels are similar.
What is different is the particular approach each kernel may take to achieve this functionality.

Mach takes a unique approach to exceptions implemented over the already-existing message-passing
architecture. This model, presented in the following section, is a lightweight architecture and does
not actually handle (that is, process and possibly correct) the exception. This is left for an upper
layer, which, as you will see in Chapter 13, is BSD.

The Mach Exception Model
The designers of the Mach exception-handling facility mention[1], among others, these factors:

 ‰ Single facility with consistent semantics: Mach provides only one exception-handling mecha-
nism, for all exceptions, whether user defi ned, platform agnostic, or platform specifi c. Excep-
tions are grouped into exception types, and specifi c platforms can defi ne specifi c subtypes.

 ‰ Cleanliness and simplicity: The interface is very elegant (if less effi cient), relying on Mach’s
already well-defi ned architecture of messages and ports. This allows extensibility for debug-
gers and external handlers — and even, in theory, network-level exception handling.

In Mach, exceptions are handled via the primary facility of the kernel: message passing. An excep-
tion is little more than a message, which is raised (that is, with msg_send()) by the faulting thread
or task, and caught (that is, with msg_recv()) by a handler. The handler can then process the
exception, and either clear the exception (that is, mark the exception as handled, and continue) or
decide to terminate the thread.

Unlike other models, wherein the exception handler runs in the context of the faulting thread, Mach
runs the exception handler in a separate context by making the faulting thread send a message to a
predesignated exception port and wait for a reply. Each task may register an exception port, and this
exception port will affect all threads of the same task. Additionally, individual threads may register
their own exception ports, using thread_set_exception_ports. Usually, both the task and thread
exception ports are NULL, meaning exceptions are not handled. Once created, these ports are just
like any other ports in the system, and they may be forwarded to other tasks or even other hosts.

When an exception occurs, an attempt is made to raise the exception fi rst to the thread exception
port, then to the task exception port, and fi nally, to the host (i.e., machine-level registered default)
exception port. If none of these result in KERN_SUCCESS, the entire task is terminated. As noted,

c11.indd 436c11.indd 436 9/29/2012 5:43:12 PM9/29/2012 5:43:12 PM

Exceptions x 437

however, Mach does not provide exception processing logic — only the framework to deliver the
notifi cation of the exception.

Implementation Details
Exceptions usually begin their life as processor traps. To process traps, every modern kernel installs
trap handlers. These are low-level functions installed by the kernel’s assembly-language core and
matching the underlying processor architecture, as described in Chapter 8.

Recall that Mach does not maintain a hardware abstraction layer, yet it aims to provide as clean-cut
a dichotomy as possible between the machine-specifi c and the machine-agnostic parts. The exception
codes are included in separate fi les pertaining to specifi c architectures and included in the compilation
of XNU manually. Architecture-independent exception codes are #defined in <mach/exception_
types.h>. These codes are common to all platforms, and an #include of <mach/machine
/exception.h> provides support for machine-specifi c subcodes. In the XNU open source, this fi le is
a stub containing an #include for i386/x86_64’s common <mach/i386/exception.h>, and fails
compilation (#error architecture is not supported) for all other platforms. For iOS, however, Apple
defi nes a <mach/arm/exception.h>, which can be found in the iPhone SDK’s usr/include.

Listing 11-19 shows the common Mach exceptions.

LISTING 11-19: Mach architecture-independent exceptions from <mach/exception_types.h>

#define EXC_BAD_ACCESS 1 /* Could not access memory */
 /* Code contains kern_return_t describing error. */
 /* Subcode contains bad memory address. */

#define EXC_BAD_INSTRUCTION 2 /* Instruction failed */
 /* Illegal or undefined instruction or operand */

#define EXC_ARITHMETIC 3 /* Arithmetic exception */
 /* Exact nature of exception is in code field */

#define EXC_EMULATION 4 /* Emulation instruction */
 /* Emulation support instruction encountered */
 /* Details in code and subcode fields */

#define EXC_SOFTWARE 5 /* Software generated exception */
 /* Exact exception is in code field. */
 /* Codes 0 - 0xFFFF reserved to hardware */
 /* Codes 0x10000 - 0x1FFFF reserved for OS emulation (Unix) */

#define EXC_BREAKPOINT 6 /* Trace, breakpoint, etc. */
 /* Details in code field. */

#define EXC_SYSCALL 7 /* System calls. */

#define EXC_MACH_SYSCALL 8 /* Mach system calls. */

#define EXC_RPC_ALERT 9 /* RPC alert */

#define EXC_CRASH 10 /* Abnormal process exit */

// Mountain Lion/iOS Add code 11 (constant unknown) for ledger resource exceptions

c11.indd 437c11.indd 437 9/29/2012 5:43:13 PM9/29/2012 5:43:13 PM

438 x CHAPTER 11 TEMPUS FUGIT — MACH SCHEDULING

Likewise, the Mach exception handler, exception_triage() (in osfmk/kern/exception.c), is a
generic handler responsible for converting exceptions into Mach messages. In both iOS and OS X it
is called from abnormal_exit_notify (osfmk/kern/exception.c), with EXC_CRASH from BSD’s
proc_prepareexit (bsd/kern/kern_exit.c) whenever a process exits with a core dump. Its invo-
cation elsewhere in the kernel, however, is architecture dependent.

On i386/x64, the i386_exception() function (from osfmk/i386/trap.c) calls exception_
triage() (shown in Figure 11-8). i386_exception() itself can be called from several locations:

 ‰ Low level Interrupt Descriptor Table (IDT) handlers — idt.s and idt64.s call i386_
exception()for kernel mode exceptions by using the CCALL3 and CCALL5 macros (the
latter passes fi ve arguments, although i386_exception() only takes three).

 ‰ user_trap() (osfmk/i386/trap.c) — Itself called from the IDT handlers, it calls i386_
exception() with a code.

 ‰ mach_call_munger_xx functions (i386 and x64, both in osfmk/bsd_i386.c) — These call
i386_exception() with EXC_SYSCALL on an invalid Mach system call.

 ‰ fpextovrflt (osfmk/i386/fpu.c) — A specifi c FPU fault, this is called when the fl oating
point processor generates a memory access fault, either from user-mode or kernel mode.

exception_triage()

IDT handlers

i386_exception()

user_trap

abnormal_exit_notify

fpextovrflt

FIGURE 11-8 Exception Triage on OS X

On ARM, it seems that there is no equivalent arm_exception, because exception_
triage() is called directly by the low-level exception handlers:

 ‰ fleh_swi — The system call handler, it calls exception_triage with EXC_SYSCALL on an
invalid system call, or EXC_BAD_ACCESS.

 ‰ sleh_undef — This is called from fleh_undef, the undefi ned instruction handler, on an
undefi ned instruction.

 ‰ sleh_abort (called from fleh_prefabt or fleh_dataabt, for instruction prefetch or data
abort handlers) — From a processor instruction or data abort, it calls exception_triage
with a code of EXC_BAD_ACCESS.

c11.indd 438c11.indd 438 9/29/2012 5:43:13 PM9/29/2012 5:43:13 PM

Exceptions x 439

exception_triage() works the main exception logic, which — being at the Mach message
level — is the same for both architectures. This function attempts to deliver the exception in the
manner described previously — thread, task, and fi nally, host — using exception_deliver() (also
in osfmk/kern/exception.c).

Each thread or task object, as well as the host itself, has an array of exception ports, which are ini-
tialized (usually to IP_NULL), and may be set using the xxx_set_exception_ports() call, where
xxx is thread, task, or host. The former two are both defi ned in osfmk/kern/ipc_tt.c, and the lat-
ter in ipc_host.c. Their prototypes are all highly similar:

set_exception_ports(xxx_priv_t xxx_priv, // xxx is thread, task, or host
 exception_mask_t exception_mask,
 ipc_port_t new_port,
 exception_behavior_t new_behavior,
 thread_state_flavor_t new_flavor)

The “behaviors” (see Table 11-12) are machine-independent indications of what type of message will
be generated on exception. Each behavior has a (possibly operating system–specifi c) “fl avor.”

TABLE 11-12: Exception behaviors (defi ned in exception_types.h)

BEHAVIOR PURPOSE

EXCEPTION_DEFAULT Passes thread identity to exception handler.

EXCEPTION_STATE Passes thread register state to exception handler. Specifi c

“fl avors” are in mach/ARCH/thread_status.h, and include

THREAD_STATE_X86, THREAD_STATE_X64, and possibly

THREAD_STATE_ARM in iOS.

EXCEPTION_STATE_IDENTITY Passes both identity and state to exception handler.

The behaviors are implemented by corresponding functions: [mach]_exception_raise for
EXCEPTION_DEFAULT, [mach]_exception_state_raise for EXCEPTION_STATE, and so on where the
function names are the same as the behavior constants (albeit lowercase), and [mach] functions are
used instead, if the exception code is a 64-bit code.

The various behaviors are handled at the host level by hard-coded exception catchers, catch_
[mach]_exception_xxx. As before, the function names map to the behaviors (and the [mach]
variants are for the 64-bit mach_exception_data_t). These functions, all in </bsd/uxkern/
ux_exception.c>, eventually convert the exception to the corresponding UNIX signal by calling
ux_exception, and deliver it to the faulting thread by threadsignal, as discussed in Chapter 12.

The exception ports are the mechanism that enables one of OS X’s most important features — the
crash reporter. The launchd(8) registers its exception ports, and — as ports are inherited across
forking — the same exception ports apply to all of its children. Launchd sets ReportCrash as the
MachExceptionHandler. This way, when an exception occurs in a launchd job, the crash
reporter can be automatically started on demand. Debuggers also make use of exception ports to
trap exceptions and break on errors. The following experiment demonstrates aspects of exception
handling.

c11.indd 439c11.indd 439 9/29/2012 5:43:13 PM9/29/2012 5:43:13 PM

440 x CHAPTER 11 TEMPUS FUGIT — MACH SCHEDULING

Experiment: Mach Exception Handling
To try exception handling for yourself, code the basic example shown in Listing 11-20:

LISTING 11-20: Mach sample exception handling program, step 1

#include <mach/mach.h>
#include <mach/port.h> // port rights
#include <mach/exception.h>
#include <mach/exception_types.h> // EXC_MASK_*
#include <mach/task.h> // mach_task_self, etc
#include <stdio.h> // fprintf..

mach_port_t myExceptionPort; // Global, for reasons which will become clear later

void signalHandler (int SigNum)
{
 printf("Got signal %d\n", SigNum);
 exit(1);

} // signalHandler

void causeSomeException(int WantUNIXSignals)
{

 char *nullPtr = NULL;
 // If we want UNIX signals, also install a signal handler
 if (WantUNIXSignals) signal(11, signalHandler);

 // Null pointer dereference will result in SIGSEGV, 11.
 // You can try other exceptions (e.g. zero-divide), but
 // remember to change the signal number (e.g. SIGFPE, 8)
 nullPtr[0] = 1;

} // end causeSomeException

void catchMACHExceptions(mach_port_t TargetTask)
{
 // Simple code to catch exceptions occuring in TargetTask.
 // In step 1, code simply catches, and does nothing.
 kern_return_t rc;

 exception_mask_t myExceptionMask;

 // create an exception port
 rc = mach_port_allocate (mach_task_self(), MACH_PORT_RIGHT_RECEIVE, &myExceptionPort);

 if (rc != KERN_SUCCESS) { fprintf (stderr, "Unable to allocate exception port\n");
exit(1); }

 // We next call port_insert_right to allow MAKE_SEND, which is required for
 // set_exception_ports
 rc = mach_port_insert_right (mach_task_self(),
 myExceptionPort, // mach_port_name_t

c11.indd 440c11.indd 440 9/29/2012 5:43:14 PM9/29/2012 5:43:14 PM

Exceptions x 441

 myExceptionPort, // mach_port_poly_t
 MACH_MSG_TYPE_MAKE_SEND);

 if (rc != KERN_SUCCESS) { fprintf(stderr,"Unable to insert right\n"); exit(2); }

 myExceptionMask = EXC_MASK_ALL;

 // Now set this port as the target task's exception port
 rc = task_set_exception_ports(TargetTask,
 myExceptionMask,
 myExceptionPort,
 EXCEPTION_DEFAULT_IDENTITY, // Msg 2403
 MACHINE_THREAD_STATE);

 if (rc != KERN_SUCCESS) { fprintf(stderr,"Unable to set exception\n"); exit(3); }

 // For now, do nothing.

} // end catchMACHExceptions

void main (int argc, char **argv)
{

 int arg, wantUNIXSignals = 0, wantMACHExceptions = 0;

 for (arg = 1; arg < argc; arg++)
 {
 if (strcmp(argv[arg], "-m") == 0) wantMACHExceptions++;
 if (strcmp(argv[arg], "-u") == 0) wantUNIXSignals++;
 }

 // Example first starts capturing our own exceptions. Step 2 will soon
 // illustrate other tasks, so pass ourself as parameter for now

 if (wantMACHExceptions) catchMACHExceptions(mach_task_self());

 causeSomeException(wantUNIXSignals);

 fprintf(stderr,"Done\n"); // not reached

}

This simple code offers you three choices:

 ‰ No arguments — Code will run with the default exception handling.

 ‰ -u — Use this if you want UNIX signals. UNIX signals (in this example, SIGSEGV, Segmen-
tation Fault) will be caught by the signal handler.

 ‰ -m — Use this if you want Mach exception handling. Mach exceptions will be caught by the
special setting of exception ports.

Running this code as is will result in a crash if neither the Mach exception nor resulting UNIX sig-
nal is caught. Running it with -u will indeed catch the UNIX signal, as expected. With -m, however,
the code will hang, rather than crash. Take a moment to contemplate why that may be.

c11.indd 441c11.indd 441 9/29/2012 5:43:14 PM9/29/2012 5:43:14 PM

442 x CHAPTER 11 TEMPUS FUGIT — MACH SCHEDULING

The program is hanging because it has triggered an exception, and the message is sent to its regis-
tered exception port. There is no active receiver on this port, however, and therefore the message
hangs indefi nitely on the port. Mach exception handling occurs before UNIX exception handling,
and therefore the UNIX signal does not get to your process. Because we asked for EXC_MASK_ALL,
you can replace the crash with other faults, such as a zero divide. You can also experiment with the
EXC_ constants, shown in Listing 11-19.

The program as shown here is useless — it catches an exception, but does not do any handling.
A much more useful approach would be to actually do something when notifi ed of an exception. To
achieve this, use mach_msg to create an active listener on the exception port. This can be accomplished
by another thread in the same program, though a more interesting effect is achieved if a second pro-
gram altogether implements the exception handling part. This is similar to launchd(1)’s registration
of processes’ exception ports, by means of which it can launch CrashReporter. The modifi cations
required to turn Listing 11-20 into an external exception handler are shown in Listing 11-21:

LISTING 11-21: Mach sample exception handling program, step 2

// Adding an exception message listener:

static void *exc_handler(void *ignored) {

 // Exception handler – runs a message loop. Refactored into a standalone function
 // so as to allow easy insertion into a thread (can be in same program or different)

 mach_msg_return_t rc;

 fprintf(stderr, "Exc handler listening\n");

 // The exception message, straight from mach/exc.defs (following MIG processing)
 // copied here for ease of reference.
 typedef struct {
 mach_msg_header_t Head;
 /* start of the kernel processed data */
 mach_msg_body_t msgh_body;
 mach_msg_port_descriptor_t thread;
 mach_msg_port_descriptor_t task;
 /* end of the kernel processed data */
 NDR_record_t NDR;
 exception_type_t exception;
 mach_msg_type_number_t codeCnt;
 integer_t code[2];
 int flavor;
 mach_msg_type_number_t old_stateCnt;
 natural_t old_state[144];
 } Request;

 Request exc;

 for(;;) {

 // Message Loop: Block indefinitely until we get a message, which has to be

c11.indd 442c11.indd 442 9/29/2012 5:43:14 PM9/29/2012 5:43:14 PM

Exceptions x 443

 // an exception message (nothing else arrives on an exception port)

 rc = mach_msg(
 &exc.Head,
 MACH_RCV_MSG|MACH_RCV_LARGE,
 0,
 sizeof(Request),
 myExceptionPort, // Remember this was global – that's why.
 MACH_MSG_TIMEOUT_NONE,
 MACH_PORT_NULL);

 if(rc != MACH_MSG_SUCCESS) { /*... */ return; };

 // Normally we would call exc_server or other. In this example, however, we wish
 // to demonstrate the message contents:

 printf("Got message %hd. Exception : %d Flavor: %d. Code %d/%d. State count is %d\n"
,
 exc.Head.msgh_id, exc.exception, exc.flavor,
 exc.code[0], exc.code[1], // can also print as 64-bit quantity
 exc.old_stateCnt);

#ifdef IOS

 // The exception flavor on iOS is 1

 // The arm_thread_state (defined in the SDK's <mach/arm/_structs.h>)
 // and contains r0-r12, sp, lr, pc and cpsr (total 17 registers). Its count is 17
 // In this example, we print out CPSR and PC.

 struct arm_thread_state *atsh = &exc.old_state;

 printf ("CPSR is %p, PC is %p, etc.\n", atsh->cpsr, atsh->pc);

#else // OS X

 struct x86_thread_state *x86ts = &exc.old_state;

 printf("State flavor: %d Count %d\n", x86ts->tsh.flavor, x86ts->tsh.count);

 if (x86ts->tsh.flavor == 4) // x86_THREAD_STATE64
 {
 printf ("RIP: %p, RAX: %p, etc.\n",
 x86ts->uts.ts64.__rip, x86ts->uts.ts64.__rax);
 }
 else {
 // Could be x86_THEAD_STATE32 on older systems or 32-bit binaries
 ...
 }
#endif

continues

c11.indd 443c11.indd 443 9/29/2012 5:43:14 PM9/29/2012 5:43:14 PM

444 x CHAPTER 11 TEMPUS FUGIT — MACH SCHEDULING

 // You are encouraged to extend this example further, to call on exc_server and
 // perform actual exception handling. But for our purposes, q.e.d.
 exit(1);
 }
} // end exc_handler

…
…

void catchMACHExceptions(mach_port_t TargetTask)
{
…
 // at the end of catchMachExceptions, spawn the exception handling thread
 pthread_t thread;
 pthread_create(&thread,NULL,exc_handler,NULL);

} // end catchMACHExceptions

// and simplify the main to be:
int main()
{

 int rc;

 mach_port_t task;

 // Note: Requires entitlements on iOS, or root on OS X!
 rc = task_for_pid(mach_task_self(),atoi(argv[argc -1]), &task);
 catchMACHExceptions(task);
 sleep (1000); // Can also loop endlessly. Processing will be in another thread
}

To test this code on arbitrary programs, create a simple program to sleep for a few seconds, then
crash (pick your poison: NULL pointer dereferencing, zero division, etc.). While the program sleeps,
quickly attach the exception handling program. The code will show you something similar to out-
puts 11-3 and 11-4, on OS X and iOS, respectively (note that the iOS binary needs to be pseudo-
signed to allow the task_for_pid-allow/get-task-allow entitlements).

OUTPUT 11-3: Output of modifi ed exception handling sample, on OS X

root@Ergo (/tmp)# cat /tmp/a.c
int main (int argc, char **argv) {
 int c = 24;
 sleep(10);
 c = c /0;
 printf ("Boom\n"); // Not reached
 return(0);
}

LISTING 11-21 (continued)

c11.indd 444c11.indd 444 9/29/2012 5:43:14 PM9/29/2012 5:43:14 PM

Exceptions x 445

root@Ergo (/tmp)# cc /tmp/a.c -o a
/tmp/a.c: In function 'main':
/tmp/a.c:4: warning: division by zero # Duh!
/tmp/a.c:5: warning: incompatible implicit declaration of built-in function 'printf'

root@Ergo (/tmp)# /tmp/a &
[1] 67934

Attaching to the program, while it sleeps. (Note we are root)
root@Ergo (/tmp)$./exc 67934 &
Exc handler listening
Got message 2403. Exception : 3 Flavor: 7 Code: 1/0
State: 44 bytes State flavor: 4 Count 42
RIP: 0x100000ee8, RAX: 0xffff, etc.

morpheus@Ergo (/tmp)$ gdb ./a
Program received signal EXC_ARITHMETIC, Arithmetic exception.
0x0000000100000ee8 in main ()
(gdb) info reg
rax 0xffff 65535
…
rip 0x100000ee8 0x100000ee8 <main+88>
…

OUTPUT 11-4: Output of modifi ed exception handling sample, on iOS

root@Padishah (…/test)# cat a.c
int main()
{
 char *c = 0L;
 sleep(10);
 c[0] = 1;
 return(0); // not reached
}

root@Padishah (…/test)# ./a &
[1] 2978

root@Padishah (…/test)# ./exc 2978 &
Exc handler listening
Got message 2403. Exception : 1 Flavor: 1 Code 2/0. State count is: 17
CPSR is 0x10, PC is 0x2250, etc.

root@Padishah (…/test)# gdb ./a
…
Program received signal EXC_BAD_ACCESS, Could not access memory.
Reason: KERN_PROTECTION_FAILURE at address: 0x00000000
0x00002250 in main ()
…

Exception ports are revisited in Chapter 13, which shows how XNU’s BSD layer converts the low
level Mach exception to the well known UNIX Signals.

3: EXC_ARITHMETIC
1: EXC_I386_DIV

Comparing with
GDB: perfect
match

1: EXC_BAD_ACCESS
2: KERN_PROTECTION_FAILURE

Again, compare with GDB.

c11.indd 445c11.indd 445 9/29/2012 5:43:15 PM9/29/2012 5:43:15 PM

446 x CHAPTER 11 TEMPUS FUGIT — MACH SCHEDULING

SUMMARY

Mach is the microkernel core of XNU. Although Mach is relatively obscure and poorly documented
architecture, it still dominates XNU in both OS X and iOS. The chapter thus aimed to demystify
and clearly explain the architecture by focusing on its primitive abstractions: at the machine level
(host, processor, processor_set, clock), application level (tasks, threads), scheduling (schedulers and
exceptions), and virtual memory (pagers).

Implementing additional layers on top of these abstractions is possible. In Chapter 12 you will see
the main “personality” XNU exposes to the user, which is the BSD layer. This layer, which uses
Mach for its underlying primitives and abstractions, exposes the popular POSIX API to applica-
tions, making OS X compatible with many other UNIX implementations. Mach is still, however, the
core of XNU, and is present in both OS X and iOS.

REFERENCES

1. Black, David L. et.al., The Mach Exception Handling Facility. http://www.cs.cmu.edu/
afs/cs/project/mach/public/www/doc/publications.html

2a. Abraham Silberschatz, Peter B. Galvin, and Greg Gagne et.al., Operating System Con-
cepts. http://www.amazon.com/Operating-System-Concepts-Windows-Update/
dp/0471250600/ref=sr_1_4?ie=UTF8&qid=1343088692&sr=8-4&keywords=tannenbaum+

operating+system+concepts

2b. Tannenbaum, Albert S., http://www.amazon.com/
Modern-Operating-Systems-3rd-Edition/dp/0136006639/ref=pd_sim_b_1

3. Draves, Bershad, and Rashid, “Using Continuations to Implement Thread Management and
Communication in Operating Systems,” Oct 1991. Carnegie Mellon University, http://
zoo.cs.yale.edu/classes/cs422/2010/bib/draves91continuations.pdf

4. CMU-CS-94-142. “Control Transfer in Operating System Kernels,” May 13, 1994, Carnegie
Mellon University, citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.55.2132

c11.indd 446c11.indd 446 9/29/2012 5:43:15 PM9/29/2012 5:43:15 PM

http://www.cs.cmu.edu/afs/cs/project/mach/public/www/doc/publications.html
http://www.amazon.com/Operating-System-Concepts-Windows-Update/dp/0471250600/ref=sr_1_4?ie=UTF8&qid=1343088692&sr=8-4&keywords=tannenbaum+operating+system+concepts
http://www.amazon.com
http://zoo.cs.yale.edu/classes/cs422/2010/bib/draves91continuations.pdf
http://zoo.cs.yale.edu/classes/cs422/2010/bib/draves91continuations.pdf
http://www.amazon.com/Operating-System-Concepts-Windows-Update/dp/0471250600/ref=sr_1_4?ie=UTF8&qid=1343088692&sr=8-4&keywords=tannenbaum+operating+system+concepts
http://www.amazon.com/Operating-System-Concepts-Windows-Update/dp/0471250600/ref=sr_1_4?ie=UTF8&qid=1343088692&sr=8-4&keywords=tannenbaum+operating+system+concepts
http://www.cs.cmu.edu/afs/cs/project/mach/public/www/doc/publications.html

12
Commit to Memory:
Mach Virtual Memory

The most important resource a kernel manages aside from the CPU itself (see Chapter 11,
“Mach Scheduling”) is memory. Mach, like all kernels, devotes a large portion of its code to
efficiently handling virtual memory (VM).

This chapter delves into Mach’s powerful VM primitives, as well as the extensible framework
of external virtual memory managers, which is used in XNU.

We begin by examining the virtual memory architecture, at a glance. We then discuss physical
memory management, followed by an overview of the myriad memory allocators the kernel
offers. Finally, we discuss pagers and custom memory managers.

VIRTUAL MEMORY ARCHITECTURE

The most important mechanism provided by Mach is the abstraction of virtual memory,
through memory objects and pagers. As with scheduling and the Mach primitives, we are
dealing with an abstraction layer here, with low-level primitives meant to be utilized by an
upper layer which, in XNU’s case, is BSD.

The implementation is intentionally broad and generic. It is composed of two layers: the hard-
ware-specific aspects, on top of which are built hardware agnostic, and common aspects. OS
X and iOS use a nearly identical underlying mechanism, with the hardware agnostic layer (and
the overlying BSD mechanisms) the same, and only the architecture-specific portion changed
to the semantics of ARM virtual memory.

This section builds on the discussion of virtual memory started in Chapter 4, “Process
Internals,” so if you’ve skipped that chapter and are wondering about the nomenclature, it is
defined there. This chapter offers a detailed look at the internals of memory management, and
how the commands covered in Chapter 4 actually work. You might also want to have a look at

c12.indd 447c12.indd 447 9/29/2012 5:43:29 PM9/29/2012 5:43:29 PM

448 x CHAPTER 12 COMMIT TO MEMORY:MACH VIRTUAL MEMORY

Chapter 8, which details the kernel’s boot process, and details the initialization of the various com-
ponents listed in this chapter.

The 30,000-Foot View of Virtual Memory
Mach’s VM subsystem is, justifiably, as complex and detail-ridden as the virtual memory it seeks
to manage. From a high-level view, however, you can see two distinct planes, the virtual and the
physical.

The Virtual Memory Plane
The virtual memory plane handles the virtual memory management in a manner that is entirely
machine agnostic and independent. Virtual memory is represented by several key abstractions:

 ‰ The vm_map (vm_map.h): Represents one or more regions of virtual memory in a task’s
address space. Each of the regions is a separate vm_map_entry, maintained in a doubly
linked list of vm_map_links.

 ‰ The vm_map_entry (vm_map.h): This the key structure, yet it is accessed only within the
context of its containing map. Each vm_map_entry is a contiguous region of virtual memory.
Each such region may be protected with specifi c access protections (the usual r/w/x pertain-
ing to virtual memory pages). Regions may also be shared between tasks. A vm_map_entry
usually points to a vm_object, but may also point to a nested vm_map, i.e. a submap.

 ‰ The vm_object (vm_object.h): Used to connect a vm_map_entry with the actual backing
store memory. It contains a linked list of vm_pages, as well as a Mach port (called a memory_
object) to the appropriate pager, by means of which the pages may be retrieved or fl ushed.

 ‰ The vm_page (vm_page.h): This is the actual representation of the vm_object or a part
thereof (as identifi ed by an offset into the vm_object). The vm_page may be resident,
swapped, encrypted, clean, dirty, and so on.

Mach allows for more than one pager. In fact, by default three or four pagers exist. Mach’s pagers
are considered external entities: dedicated tasks, somewhat akin to the kernel-swapping threads
one finds on other systems. Mach’s design allows for pagers to be separate kernel tasks, or even
user mode ones. Likewise, the underlying backing store can reside on disk swap (handled by the
default_pager in OS X), can be mapped from a file (and handled by the vnode_pager), a device
(and its device_pager), or even (though unused in OS X) a remote machine.

Note that in Mach, each pager handles the paging request of pages which belong to it, but that
request must be made by a pageout daemon. These daemons (in reality, kernel threads) maintain
the kernel’s page lists and decide which pages need to be flushed. There is, therefore, a separation
between the paging policy, which the daemons maintain, and the paging operation, which the pag-
ers implement.

The Physical Memory Plane
The physical memory plane handles the mapping to physical memory, because virtual memory even-
tually has to be stored somewhere. Only one abstraction exists here — the “pmap” — but it is an

c12.indd 448c12.indd 448 9/29/2012 5:43:34 PM9/29/2012 5:43:34 PM

Virtual Memory Architecture x 449

important one, because it offers a machine-independent interface. This interface hides underneath
it the platform specifics, which allow paging operations at the processor level — the hardware page
table entries (PTEs), translation lookaside buffers (TLBs), and so on.

The Bird’s Eye View
Figure 12-1 shows a closer, yet somewhat simplified view of how all these objects connect. It might
be a bit overwhelming at first (and remember, it is the simplified view!), but the rest of this chapter
aims to make sense of it, and discuss each of the abstractions, in detail.

From task

struct vm_map

Platform

dependent

struct pmap

struct vm_object struct vm_object

struct vm_page

Union: vm_map/vm_object

Recursive

submap

struct vm_map

struct vm_map_entry struct vm_map_entry struct vm_map_entry

Union: vm_map/vm_object

is_submap = false;is_submap = false

Union: vm_map/vm_object

is_submap = true;

struct vm_map_links

vm_map_entry *prev vm_map_entry *next vm_map_entry *prev

vm_map_entry *next

vm_map_entry *prev

vm_map_entry *next vm_map_entry *next vm_map_entry *next

queue_head_t memq

ppnum_t phys_page;

vm_object_t object

vm_offset_t offset

memory_object_t pager memory_object_t pager

queue_head_t memq

flags

flags

queue_chain_t listq;

ppnum_t phys_page;

vm_object_t object

vm_offset_t offset

queue_chain_ t listq;

……

more flags

vm_map_entry *hint

vm_map_entry *first_free

boolean_t jit_entry_exists

flags

pmap_t pmap;

vm_map_size_t size;

int ref_count;

Quick lookup and free space hints

Pager Interface

offset_t paging_offset

memory_object_control_t

pager_control;

struct vm_pageout_queue (page lists)

queue_head_t pgo_pending

queue_chain_t pageq; queue_chain_ t pageq;

Unsigned int pgo_laundry;

1. Scan page list

2. for each page, call

corresponding pager to flush

page to backing store

…

data_return (page out)

data_request (page in)

…

Pageout iothread

FIGURE 12-1: The menagerie that is the Mach VM

c12.indd 449c12.indd 449 9/29/2012 5:43:34 PM9/29/2012 5:43:34 PM

450 x CHAPTER 12 COMMIT TO MEMORY:MACH VIRTUAL MEMORY

Every Mach task has a virtual memory space of its own, which is held in its “map” member of its
struct task. This field is a vm_map struct. This struct is defined in osfmk/vm/vm_map.h as shown
in Listing 12-1:

LISTING 12-1: The vm_map struct

struct vm_map_header {
 struct vm_map_links links; /* first, last, min, max */
 int nentries; /* Number of entries */
 boolean_t entries_pageable;
 /* are map entries pageable? */
 vm_map_offset_t highest_entry_end_addr; /* The ending address of the
 /* highest allocated
 /* vm_entry_t */
#ifdef VM_MAP_STORE_USE_RB
 struct rb_head rb_head_store;
#endif
};

struct _vm_map {
 lock_t lock; /* uni- and smp-lock */
 struct vm_map_header hdr; /* Map entry header */
#define min_offset hdr.links.start /* start of range */
#define max_offset hdr.links.end /* end of range */
#define highest_entry_end hdr.highest_entry_end_addr
 pmap_t pmap; /* Physical map */
 vm_map_size_t size; /* virtual size */
 vm_map_size_t user_wire_limit;/* rlimit on user locked memory */
 vm_map_size_t user_wire_size; /* current size of user locked memory in
 /* this map*/
 int ref_count; /* Reference count */
#if TASK_SWAPPER
 int res_count; /* Residence count (swap) */
 int sw_state; /* Swap state */
#endif /* TASK_SWAPPER */
 decl_lck_mtx_data(, s_lock) /* Lock ref, res fields */
 lck_mtx_ext_t s_lock_ext;
 vm_map_entry_t hint; /* hint for quick lookups */
 vm_map_entry_t first_free; /* First free space hint */
 unsigned int
 /* boolean_t */ wait_for_space:1, /* Should callers wait for space? */
 /* boolean_t */ wiring_required:1, /* All memory wired? */
 /* boolean_t */ no_zero_fill:1, /* No zero fill absent pages */
 /* boolean_t */ mapped:1, /*has this map been mapped */
 /* boolean_t */ switch_protect:1, /* Protect from write faults while
 /* switched */
 /* boolean_t */ disable_vmentry_reuse:1, // entry alloc. Monotonically
 // increases
 /* boolean_t */ map_disallow_data_exec:1,// set NX bit, if possible
 /* reserved */ pad:25;
 unsigned int timestamp; /* Version number */
 unsigned int color_rr; /* next color (not protected by a lock) */
#if CONFIG_FREEZE // default freezer — we get to that later.

c12.indd 450c12.indd 450 9/29/2012 5:43:35 PM9/29/2012 5:43:35 PM

Virtual Memory Architecture x 451

 void *default_freezer_toc;
#endif
 boolean_t jit_entry_exists; // used for dynamic codesigning (iOS)
} ;

The vm_map represents the total memory of vm_map.size bytes, maintained in a list (vm_map.hdr
.links) of vm_map.hdr.nentries entries. Each of the links is a vm_map_entry, representing a
contiguous chunk of virtual memory, with plenty of details about the page range, as shown in
Listing 12-2:

LISTING 12-2: A vm_map_entry

struct vm_map_entry {
 struct vm_map_links links; /* links to other entries */
#define vme_prev links.prev
#define vme_next links.next
#define vme_start links.start
#define vme_end links.end

 struct vm_map_store store;
 union vm_map_object object; /* object I point to */
 vm_object_offset_t offset; /* offset into object */
 unsigned int
 /* boolean_t */ is_shared:1, /* region is shared */
 /* boolean_t */ is_sub_map:1, /* Is "object" a submap? */
 /* boolean_t */ in_transition:1, /* Entry being changed */
 /* boolean_t */ needs_wakeup:1, /* Waiters on in_transition */
 /* vm_behavior_t */ behavior:2, /* user paging behavior hint */
 /* behavior is not defined for submap type */
 /* boolean_t */ needs_copy:1, /* object need to be copied? */
 /* Only in task maps: */
 /* vm_prot_t */ protection:3, /* protection code */
 /* vm_prot_t */ max_protection:3,/* maximum protection */
 /* vm_inherit_t */ inheritance:2, /* inheritance */
 /* boolean_t */ use_pmap:1, /* nested pmaps */
 /*
 * IMPORTANT:
 * The "alias" field can be updated while holding the VM map lock
 * "shared". It's OK as along as it's the only field that can be
 * updated without the VM map "exclusive" lock.
 */
 /* unsigned char */ alias:8, /* user alias */
 /* boolean_t */ no_cache:1, /* should new pages be cached? */
 /* boolean_t */ permanent:1, /* mapping can not be removed */
 /* boolean_t */ superpage_size:3, /* use superpages of a certain size */
 /* boolean_t */ zero_wired_pages:1, // zero out wired pages on entry
 // deletion
 /* boolean_t */ used_for_jit:1, // added for dynamic codesigning
 // (iOS)
 /* unsigned char */ pad:1; /* available bits */
 unsigned short wired_count; /* can be paged if = 0 */
 unsigned short user_wired_count; /* for vm_wire */
};

c12.indd 451c12.indd 451 9/29/2012 5:43:35 PM9/29/2012 5:43:35 PM

452 x CHAPTER 12 COMMIT TO MEMORY:MACH VIRTUAL MEMORY

The key element in the vm_map_entry is the vm_map_object, a union which either holds another
vm_map (as a submap) or a vm_object_t (Because it is a union, determining its contents requires a
separate field, the is_sub_map boolean). The vm_object is a huge, but opaque structure (defined in
osfmk/vm/vm_object.h, but not readily visible anywhere outside the VM system), which contains
all the data necessary to deal with the underlying VM.

In the interest of keeping the avid reader avid (and saving a tree or two), we’ll stop short of showing
the vm_object listing — the structure is, after all, fairly well documented in the header file. Most
of the fields in it are bit-wise flags, denoting the underlying memory state (wired, physically con-
tiguous, persistent, etc.) or counters (reference, resident, wired, and so on). Three fields, however,
deserve specific mention:

 ‰ memq: Holds the linked list of struct vm_page objects, each corresponding to a resident
virtual memory page. Though an object can correspond to a single page, more often than not
containing an object takes quite a few pages, which is why each page links back to an object
at a given offset.

 ‰ pager: Is a memory_object structure, which is a Mach port to the pager. A pager connects
the non-resident pages to the backing store — a memory-mapped fi le, device, or swap, which
holds the pages when they are not in memory. In other words, the pagers (as there can be
more than one) are charged with moving data in and out of memory, to their backing store.
Pagers are of extreme importance to the virtual memory subsystem, and are discussed in their
own section later in this chapter.

 ‰ internal: is one of the many bit-fi elds in the vm_page, and is true if it is used internally by the
kernel. This bit affects which pageout queue the page ends up in.

The vm_page is a smaller structure, with many bit fields. It participates in two different lists: its
listq field points to a list of related pages of the same vm_object, and is used by the VM Map
layer. Its pageq field points to one of the kernel’s page lists, which is used by the kernel’s pageout
threads. The vm_page also contains a pointer back to its owner vm_object, which is used by the
kernel’s pageout threads to contact its pager when the pageout thread decides to flush this page.

A particularly important vm_map instance is the kernel_map. This is the virtual memory map of the
kernel space, and it is used frequently to determine user space or kernel space memory access.

The User Mode View
As with the task and thread APIs discussed in the previous chapter, Mach allows for a remarkable
user-level view of virtual memory. User mode can remain blissfully unaware of the gory details,
keeping API calls to a vm_map_t level, (which is itself an opaque mach_port_t) and just ask for spe-
cific address ranges, using the rich API presented next.

In Table 12-1, the vm_map_t is actually a task parameter; that is, you would pass in a Mach task,
whose corresponding VM map would be affected by the calls. There exist variants of these calls
with and without the mach_ prefix: The former is considered to be the “newer” set of APIs (for both
32- and 64-bit), but either set generally works, as in many cases they end up using the same underly-
ing implementation in the kernel.

c12.indd 452c12.indd 452 9/29/2012 5:43:35 PM9/29/2012 5:43:35 PM

Virtual Memory Architecture x 453

TABLE 12-1: Mach User-Mode Visible Calls of the VM Subsystem (osfmk/mach/mach_vm.h)

VM SUBSYSTEM FUNCTION DESCRIPTION

mach_vm_region(vm_map_t map,

 mach_vm_address_t *address,

 mach_vm_size_t *size,

 vm_region_flavor_t flavor,

 vm_region_info_t info,

 mach_msg_type_number_t *cnt,

 mach_port_t *object_name);

Displays information on VM region of task map, at

address according to flavor. Currently, only the

VM_BASIC_INFO_64 fl avor is supported. info con-

tains the returned information, in the form of count

entries of structs corresponding to the fl avor.

vmmap(1) uses this extensively; see example.

This function calls vm_map_region() internally,

which calls on vm_map_lookup_entry()to fi nd the

corresponding entry, and copy its properties into

the info struct.

mach_vm_region_recurse (

 vm_map_t map,

 mach_vm_address_t *address,

 mach_vm_size_t *size,

 uint32_t *depth,

vm_region_recurse_info_t info,

mach_msg_type_number_t *infoCnt);

Similar to mach_vm_region, but also recurses into

submaps, up to the depth specifi ed.

mach_vm_allocate(

 vm_map_t map,

 mach_vm_address_t *address,

 mach_vm_size_t size,

 int flags);

Allocates size bytes in map, according to flags.

Address is an in/out parameter — i.e. the kernel will

attempt to allocate at the address specifi ed, unless

VM_FLAGS_ANYWHERE is specifi ed.

Note that map is usually mach_task_self(), but

given the right permissions, could be any task on

the system! When used on mach_task_self() this

is the underlying system call used by malloc() and

its ilk.

In pre-Leopard OS X, this was the underlying call

supporting user mode’s malloc(). It calls vm_map_

enter() internally.

mach_vm_deallocate

 (vm_map_t map,

 mach_vm_offset_t start,

 mach_vm_size_t size);

Inverse of vm_allocate.

In pre-Leopard OS X, this was the underlying call

supporting user mode’s free(). Calls vm_map_

remove() internally.

mach_vm_protect(vm_map_t map,

mach_vm_offset_t start,

mach_vm_size_t size,

boolean_t set_maximum,

 vm_prot_t new_protection);

Sets the protection of the memory region from

start to start+size in map to either the maximum

defi ned (if set_maximum) or new_protection.

Implements BSD’s mprotect(2). Calls vm_map_

protect() internally.

continues

c12.indd 453c12.indd 453 9/29/2012 5:43:35 PM9/29/2012 5:43:35 PM

454 x CHAPTER 12 COMMIT TO MEMORY:MACH VIRTUAL MEMORY

VM SUBSYSTEM FUNCTION DESCRIPTION

mach_vm_inherit(

 vm_map_t map,

 mach_vm_offset_t start,

 mach_vm_size_t size,

 vm_inherit_t new_inherit)

Sets inheritance fl ags new_inherit in the specifi ed

range (start to start+size) of the specifi ed map.

Implements BSD’s minherit(2). Calls vm_map_

inherit() internally.

mach_vm_read(vm_map_t map,

mach_vm_address_t addr,

mach_vm_size_t size,

pointer_t *data,

mach_msg_type_number_t*dsize);

memcpy from foreign task: Reads size bytes of

memory from addr in map into data (of dsize

bytes).

Uses vm_map_copyin() internally.

mach_vm_read_list

 (vm_map_t map,

vm_read_entry_t data_list,

 natural_t count)

Copies list data_list of count addresses from the

target map.

Loops over data_list and uses vm_map_cop-

yin() and vm_map_copyout() internally.

mach_vm_write(vm_map_t map,

 vm_address_t address,

 pointer_t data,

unused mach_msg_type_number_t)

memcpy to foreign task: Writes data into address

in map.

Uses vm_map_copy_overwrite().

mach_vm_copy(vm_map_t map,

mach_vm_address_t source,

mach_vm_size_t size,

mach_vm_address_t dest)

memcpy in foreign task: Copy size bytes from

source to dest in map. Unlike mach_vm_write,

both source and dest are in the foreign map.

Implemented using vm_map_copy_in() and

vm_map_copy_overwrite().

mach_vm_read_overwrite

 (vm_map_t map,

 mach_vm_address_t address,

mach_vm_size_t size,

mach_vm_address_t data,

mach_vm_size_t *data_size)

Similar to vm_read, but overwrites the data pointer

in the current map. Whereas vm_read would allo-

cate more memory in the current task’s map, vm_

read_overwrite simply overwrites memory in it.

Uses vm_map_copy_overwriteinternally, rather

than vm_map_copy_in.

mach_vm_msync(vm_map_t map,

mach_vm_address_t address,

mach_vm_size_t size,

vm_sync_t sync_flags);

Synchronizes region, (address)-

(address+size), in map according to

sync_flags.

Used by BSD’s msync(2) system call, and calls on

vm_map_msync internally.

mach_vm_behavior_set

 (vm_map_t map,

 mach_vm_offset_t start,

 mach_vm_size_t size,

 vm_behavior_t new_behavior);

Sets paging behavior on range (start-

(start+size)) in map to new_behavior.

Used by BSD’s madvise(). Calls on vm_map_

behavior_set internally.

TABLE 12-1 (continued)

c12.indd 454c12.indd 454 9/29/2012 5:43:36 PM9/29/2012 5:43:36 PM

Virtual Memory Architecture x 455

VM SUBSYSTEM FUNCTION DESCRIPTION

mach_vm_map (

 vm_map_t target_task,

 mach_vm_address_t *address,

 mach_vm_size_t size,

 mach_vm_offset_t mask,

int flags,

mem_entry_name_port_t object,

memory_object_offset_t offset,

boolean_t copy,

vm_prot_t cur_protection,

vm_prot_t max_protection,

vm_inherit_t inheritance);

Creates a new memory mapping (as mmap(2)

does). Maps object to address space of tar-

get_task, at address, for size bytes, according

to flags. If object is NULL, the map is a zero-fi lled,

anonymous memory.

Flags can include:

 VM_MAP_ANYWHERE, allowing the kernel to deter-

mine the address

 VM_MAP_OVERWRITE, allowing the kernel to over-

write an existing address

 and other fl ags from <mach/vm_statistics.h>.

The address will be aligned as specifi ed in the

mask.

The mapping can optionally create a Copy of object

if set (otherwise mapping is direct), and set protec-

tion (VM_PROT_READ, _WRITE, _EXECUTE) to

cur_protection, with max_protection being the

maximum achievable. Likewise, inheritance con-

trols this mapping availability to child tasks, if set, by

VM_INHERIT_SHARE, _COPY (on write), or _NONE.

Actual work done by the kernel private vm_map_

enter_mem_object(), which also underlies BSD’s

mmap(2)

mach_vm_machine_attribute(

vm_map_t map,

mach_vm_address_t addr,

mach_vm_size_t size,

vm_machine_attribute_t attr,

vm_machine_attribute_val_t* value);

Sets machine-specifi c attr/value in map for region

addr-(addr+size).

Calls vm_map_machine_attribute() internally.

mach_vm_remap(vm_map_target,

mach_vm_offset_t *address,

mach_vm_size_t size,

mach_vm_offset_t mask,

 int flags,

 vm_map_t src,

mach_vm_offset_t mem_address,

boolean_t copy,

vm_prot_t *cur_protection,

vm_prot_t *max_protection,

vm_inherit_t inheritance);

Remaps memory in task, or between tasks (that is,

from smap to tmap, which may be the same). Also is

used to change permissions of a memory mapping.

Uses vm_map_remap() internally.

continues

c12.indd 455c12.indd 455 9/29/2012 5:43:36 PM9/29/2012 5:43:36 PM

456 x CHAPTER 12 COMMIT TO MEMORY:MACH VIRTUAL MEMORY

VM SUBSYSTEM FUNCTION DESCRIPTION

mach_make_memory_entry(

 vm_map_t target_task,

 memory_object_size_t *size,

 memory_object_offset_t offset,

 vm_prot_t permission,

 mem_entry_name_port_t

*object_handle,

 mem_entry_name_port_t

parent_handle);

Create a “name” reference for a memory region, for

later referencing, sharing or changing this region’s

settings. The named entry can be passed to another

task over IPC.

mach_vm_map_page_query

(vm_map_t map,

mach_vm_offset_t offset,

 int *disposition,

 int *ref_count);

Queries information — ref_count and disposition

on the page specifi ed by offset in map.

A passthrough vm_map_page_query_internal().

mach_vm_page_query

(vm_map_t target_map,

 mach_vm_offset_t offset,

 integer_t *disposition,

 integer_t *ref_count);

Query residency information about a page. Provides

reference count of page in ref_count, and VM_

PAGE_QUERY_PAGE_* fl ags in disposition.

Used by BSD’s mincore(2), which translates the

VM_PAGE_QUERY_PAGE_* fl ags to MINCORE_* fl ags.

mach_vm_page_info

(vm_map_t target_task,

mach_vm_address_t address,

vm_page_info_flavor_t flavor,

vm_page_info_t info,

mach_msg_type_number_t *iCnt);

Returns info corresponding to mapped page at

address in task.

Only fl avor supported is VM_PAGE_INFO_BASIC.

Not to be confused with vm_page_info(), which

is a function supported only #if MACH_VM_DEBUG,

and provides virtual/physical mapping information

(used by host_virtual_physical_table()).

mach_vm_purgable_control(

 vm_map_t map,

 mach_vm_offset_t address,

 vm_purgable_t control,

 int *state);

Controls purgeable settings of vm_map and underly-

ing objects. Purgeable objects may be lost — freed

without committing to a backing store — on low

memory conditions.

TABLE 12-1 (continued)

c12.indd 456c12.indd 456 9/29/2012 5:43:36 PM9/29/2012 5:43:36 PM

Virtual Memory Architecture x 457

One of the issues addressed by jailbreakers in their iOS kernel patches is the
removal of various custom security measures imposed by Apple on memory map
handling. Specifi cally, the vm_map_protect() and vm_map_enter() are inten-
tionally broken so as to disallow memory regions which are both executable
and writable (with the exception of Just-In-Time (JIT) mappings allowed for
dynamic-codesigning entitlements). This is meant to discourage hackers from cre-
ating code on-the-fl y. You can see this for yourself in the code (though why Apple
left it public, eludes this author) for vm_map_enter(), from osfmk/vm/vm_map.c:

#if CONFIG_EMBEDDED
 if (cur_protection & VM_PROT_WRITE){
 if ((cur_protection & VM_PROT_EXECUTE) && !(flags
 & VM_FLAGS_MAP_JIT)){
 printf("EMBEDDED: %s curprot cannot be
 write+execute. turning off execute\n",
 __PRETTY_FUNCTION__);
 cur_protection &= ~VM_PROT_EXECUTE;
 }
 }
#endif /* CONFIG_EMBEDDED */

Similarly, in the same fi le, the implementation of vm_map_protect() makes it so
that an executable page cannot be made writable:

#if CONFIG_EMBEDDED
 if (new_prot & VM_PROT_WRITE) {
 if ((new_prot & VM_PROT_EXECUTE) && !
 (current->used_for_jit)) {
 printf("EMBEDDED: %s can't have
 both write and exec at the same
 time\n", __FUNCTION__);
 new_prot &= ~VM_PROT_EXECUTE;
 }
 }
#endif

Jailbreakers simply patch both functions, so as to NOP out the check in vm_map_
enter() and the fl ag clearing in vm_map_protect(). By patching the low-level
Mach APIs, they handle both Mach calls and BSD.

An important function that was left out of osfmk/mach/mach_vm.h (and therefore Table 11-1) is
[mach_]vm_wire(). It is defined instead in osfmk/mach/host_priv.h (and implemented in osfmk
/vm/vm_user.c as shown in Listing 12-3:

c12.indd 457c12.indd 457 9/29/2012 5:43:36 PM9/29/2012 5:43:36 PM

458 x CHAPTER 12 COMMIT TO MEMORY:MACH VIRTUAL MEMORY

LISTING 12-3: mach_vm_wire, from osfmk/vm/vm_user.c:

/*
 * NOTE: these routine (and this file) will no longer require mach_host_server.h
 * when mach_vm_wire and vm_wire are changed to use ledgers.
 */
#include <mach/mach_host_server.h>
/*
 * mach_vm_wire
 * Specify that the range of the virtual address space
 * of the target task must not cause page faults for
 * the indicated accesses.
 *
 * [To unwire the pages, specify VM_PROT_NONE.]
 */
kern_return_t
mach_vm_wire(
 host_priv_t host_priv,
 vm_map_t map,
 mach_vm_offset_t start,
 mach_vm_size_t size,
 vm_prot_t access)

The function allows its caller to “hard-wire” virtual memory (read: part of a vm_map), so that it
remains resident and unpageable. Because this affects the host’s RAM and thereby impacts other
programs as well, it is defined as a privileged host level operation (ergo the host_priv port as its
first argument). The function has yet, at this time of writing, to be converted to using Mach ledgers
(see Chapter 10), but it is possible that in Mountain Lion it finally will.

Many of Mach VM functions are also functionally equivalent to POSIX system calls. In fact, BSD
memory management system calls (in bsd/kern/kern_mman.c) are usually implemented directly
over the Mach system calls. This is indicated in the table. For example, BSD’s msync(2) calls
mach_vm_msync. madvise(2) calls mach_vm_behavior_set(). The mlock(2)/munlock(2) calls
are simple wrappers over mach_vm_wire(), and so on. User mode memory allocation, which used
to be implemented over the Mach calls, has been moved to POSIX. Chapter 13 discusses the POSIX
memory management calls.

The Mach APIs, however, are far stronger than those offered by POSIX, particularly due to the ease
with which they allow one task to invade another’s address space. Permissions are required for this
(specifically, the foreign task’s port, which is the “map” argument in Table 12-1’s Mach calls). Barring
this minor technicality, however, these calls offer virtually boundless power. Indeed, many process
invasion and thread injection techniques in OS X rely on these Mach calls, not on those of BSD.

Experiment: Emulating vmmap(1) with mach_vm_region_recurse
The mach_vm_region_recurse is the main Mach call used in vmmap(1) and GDB’s show regions
command. You can see a good example of its usage in the GDB sources (specifically, macos_debug_
regions(), in gdb/macosx/macosx-nat-inferior-debug.c). The output of vmmap(1) is, for the
most part, that of vm_region64 with VM_REGION_BASIC_INFO , as shown in Listing 12-4:

c12.indd 458c12.indd 458 9/29/2012 5:43:37 PM9/29/2012 5:43:37 PM

Virtual Memory Architecture x 459

LISTING 12-4: The VM_REGION_BASIC_INFO_64 struct, from <mach/vm_region.h>

struct vm_region_basic_info_64 {
 vm_prot_t protection; // VM_PROT_* flags
 vm_prot_t max_protection; // likewise, for max possible
 vm_inherit_t inheritance; // VM_INHERIT_[SHARE|COPY|NONE]
 boolean_t shared;
 boolean_t reserved;
 memory_object_offset_t offset;
 vm_behavior_t behavior; // VM_BEHAVIOR_*, like madvise(2)
 unsigned short user_wired_count;
};

Constructing a quick and dirty implementation of vmmap(1) is straightforward, by relying on this
call, as is shown in Listing 12-5:

LISTING 12-5: A simple implementation of vmmap(1)

// Region listing code adapted from GDB's macosx_debug_regions, from open source GDB

void show_regions (task_t task, mach_vm_address_t address)
{
 kern_return_t kr;
 vm_region_basic_info_data_t info, prev_info;
 mach_vm_address_t prev_address;
 mach_vm_size_t size, prev_size;

 mach_port_t object_name;
 mach_msg_type_number_t count;

 int nsubregions = 0;
 int num_printed = 0;
 int done = 0;

 count = VM_REGION_BASIC_INFO_COUNT_64;
 // Call mach_vm_region, which obtains the vm_map_entry containing the address,
 // and populates the vm_region_basic_info_data_t with its statistics

 kr = mach_vm_region (task, &address, &size, VM_REGION_BASIC_INFO,
 (vm_region_info_t) &info, &count, &object_name);
 if (kr != KERN_SUCCESS)
 {
 printf ("Error %d - %s", kr, mach_error_string(kr));
 return;
 }
 memcpy (&prev_info, &info, sizeof (vm_region_basic_info_data_t));
 prev_address = address;
 prev_size = size;
 nsubregions = 1;

 while (!done)

continues

c12.indd 459c12.indd 459 9/29/2012 5:43:37 PM9/29/2012 5:43:37 PM

460 x CHAPTER 12 COMMIT TO MEMORY:MACH VIRTUAL MEMORY

 {
 int print = 0;

 address = prev_address + prev_size;

 /* Check to see if address space has wrapped around. */
 if (address == 0)
 {
 print = done = 1;
 }

 if (!done)
 {
 // Even on iOS, we use VM_REGION_BASIC_INFO_COUNT_64. This works.

 count = VM_REGION_BASIC_INFO_COUNT_64;

 kr =
 mach_vm_region (task, &address, &size, VM_REGION_BASIC_INFO,
 (vm_region_info_t) &info, &count, &object_name);

 if (kr != KERN_SUCCESS)
 {
 fprintf (stderr,"mach_vm_region failed for address %p - error %d\n",
 address, kr);
 size = 0;
 print = done = 1; // bail on error, but still print
 }
 }

 if (address != prev_address + prev_size)
 print = 1;
 // Print if there has been any change in region settings
 if ((info.protection != prev_info.protection)
 || (info.max_protection != prev_info.max_protection)
 || (info.inheritance != prev_info.inheritance)
 || (info.shared != prev_info.reserved)
 || (info.reserved != prev_info.reserved))
 print = 1;

 if (print)
 {
 int print_size;
 char *print_size_unit;
 if (num_printed == 0)
 printf ("Region ");
 else
 printf (" ... ");

LISTING 12-5 (continued)

c12.indd 460c12.indd 460 9/29/2012 5:43:38 PM9/29/2012 5:43:38 PM

Virtual Memory Architecture x 461

 /* Quick hack to show size of segment, which GDB does not */
 print_size = prev_size;
 if (print_size > 1024) { print_size /= 1024; print_size_unit = "K"; }
 if (print_size > 1024) { print_size /= 1024; print_size_unit = "M"; }
 if (print_size > 1024) { print_size /= 1024; print_size_unit = "G"; }
 /* End Quick hack */

 // the xxx_to_yyy functions merely change the flags/bits to a more readable
 // string representation. Their implementation is left as an exercise to
 // the reader

 printf (" %p-%p [%d%s](%s/%s; %s, %s, %s) %s",
 (prev_address),
 (prev_address + prev_size),
 print_size,
 print_size_unit,
 protection_bits_to_rwx (prev_info.protection),
 protection_bits_to_rwx (prev_info.max_protection),
 unparse_inheritance (prev_info.inheritance),
 prev_info.shared ? "shared" : "private",
 prev_info.reserved ? "reserved" : "not-reserved",
 behavior_to_xxx (prev_info.behavior));

 if (nsubregions > 1)
 printf (" (%d sub-regions)", nsubregions);

 printf ("\n");

 prev_address = address;
 prev_size = size;
 memcpy (&prev_info, &info, sizeof (vm_region_basic_info_data_t));
 nsubregions = 1;

 num_printed++;
 }
 else
 {
 prev_size += size;
 nsubregions++;
 }

 if (done)
 break;
 }

} // end show_regions
void main(int argc, char **argv)
{
 struct vm_region_basic_info vmr;
 kern_return_t rc;
 mach_port_t task;

continues

c12.indd 461c12.indd 461 9/29/2012 5:43:38 PM9/29/2012 5:43:38 PM

462 x CHAPTER 12 COMMIT TO MEMORY:MACH VIRTUAL MEMORY

 mach_vm_size_t size = 8;
 vm_region_info_t info = (vm_region_info_t) malloc(10000);
 mach_msg_type_number_t info_count;
 mach_port_t object_name;
 mach_vm_address_t addr =1;
 int pid;
 if (!argv[1]) { printf ("Usage: %s <PID>\n"); exit (1);}
 pid = atoi(argv[1]);

 // Obtain task port, using task_for_pid().
 rc = task_for_pid(mach_task_self(),pid, &task);

 if (rc) {
 fprintf (stderr, "task_for_pid() failed with error %d - %s (Am I entitled?)
 \n", rc,
 mach_error_string(rc));
 exit(1);
 }
 printf ("Task: %d\n", task);
 show_regions (task, addr);
 printf("Done\n");

}

You are encouraged to try this code in OS X, and especially in iOS — wherein vmmap(1) is a much
needed binary. In iOS, however, running this code will fail in the task_for_pid() call, even if you are
root! One extra step is required — getting past the kernel’s task_for_pid() protection, by entitling
your code to use task_for_pid(). To do this, you can use the entitlement file from Chapter 3, which
enables the task_for_pid-allow entitlement. Try putting in “0” as the PID for a pleasant surprise.

This vmmap(1) example in Listing 12-5 can easily be adapted to be even more
intrusive, including dumping the process memory map to disk, and even writing
to it. Amit Singh’s excellent website contained a program called gcore to dump
an active process’ memory map to a core compatible format, which can be then
inspected with GDB. This book provides a companion tool, corerupt, which
expands these abilities further in order to provide support for iOS, as well as
dumping encrypted segments or modifying the active memory image!

PHYSICAL MEMORY MANAGEMENT

Although the kernel, like user space, operates almost exclusively in the virtual address space, virtual
memory must inevitably be translated into physical addresses. The machine’s RAM is, in effect, a
window into virtual memory, providing access to finite, often disjointed regions of virtual memory,

LISTING 12-5 (continued)

c12.indd 462c12.indd 462 9/29/2012 5:43:38 PM9/29/2012 5:43:38 PM

Physical Memory Management x 463

up to however much memory the machine has. The rest of the virtual memory is either lazily allo-
cated, shared, or swapped to external stores, most often the disk.

Physical memory management, however, is specific to the underlying architecture. Although the
concepts of virtual and physical memory are inherently the same across all architectures, the under-
lying implementations are full of idiosyncrasies. XNU builds on Mach’s physical memory abstrac-
tion layer, called pmap. This layer, by its very design, allows for a uniform interface to the physical
memory, which hides the architecture specifics. This is naturally of great use to XNU, which was
previously adapted to the physical memory landscape of PowerPC, is now primarily on Intel, and —
in iOS — is built on ARM. In the words of Rashid and Tevanian themselves, a pmap implementor
“needs to know very little about the way Mach functions, but will need to know very much about
underlying architecture.”[1]

The pmap layer of the x86 architecture, as well as the now-deprecated PowerPC, are both part of
the open-source XNU employed in OS X. The same, lamentably, cannot be said for ARM. This
section thus focuses more on the interface, which is largely the same in all cases, and shows some
implementation specifics on the Intel architecture.

The PMAP APIs
Mach’s pmap is logically comprised of two sublayers:

 ‰ The machine-independent layer: Provides a set of APIs that are largely machine agnostic,
These APIs, defi ned in <osfmk/vm/pmap.h>, require only that the machine support the basic
concepts of VM paging. Note, we say “largely,” because the header isn’t perfectly free of
#ifdef’s for _i386 and __LP64__, though it does remain at a higher level. The VM layer
only sees and passes around a pmap_t, which is a pointer to a struct pmap, effectively a
void pointer.

 ‰ The machine-dependent layer: Ties pmap to a specifi c implementation, and deals with the
nooks and crannies of the underlying architecture. These are the set of #defines specifi c to
the particular hardware, such as PTE (page table entry) macros, bitmasks, registers (Intel’s
CR3 and ARM’s c7-c8), as well as the defi nition of the basic struct pmap, (in osfmk/_
arch_/pmap.h), which the pmap_t is only a reference to.

This layer is tied to the machine-independent one via #ifdefs and #includes: From <osfmk/
machine/pmap.h>, which in turn includes the hardware specific header; that is, <osfmk/i386/
pmap.h>, ppc, arm, and so on. Additionally, the implementation of the machine-independent func-
tions, from osfmk/vm/pmap.h , is in the machine-dependent pmap.c file, which is in osfmk/_arch_/
pmap.c.

In object-oriented terms, the machine-independent layer can be considered to be the interface to
pmap, and the machine-dependent layer is the implementation. From a software-engineering stand-
point, as long as the interface does not change, its clients (i.e, the Mach VM subsystem) can remain
blissfully unaware of the details. The pmap specifics are thus opaque to Mach’s VM. This maxi-
mizes portability, but does come at the cost of performance.

Table 12-2 shows some pmap APIs, from the machine independent layer:

c12.indd 463c12.indd 463 9/29/2012 5:43:39 PM9/29/2012 5:43:39 PM

464 x CHAPTER 12 COMMIT TO MEMORY:MACH VIRTUAL MEMORY

TABLE 12-2: Some of the pmap APIs, from osfmk/vm/pmap.h

PMAP FUNCTION USED FOR

pmap_t pmap_create

(vm_map_size_t size,

 boolean_t is_64bit);

A constructor for pmap_t objects. Note the pmap_t

(struct pmap) is architecture dependent, and there-

fore the returned value is opaque to the caller.

The size argument is always 0 for a hardware-

backed pmap. The second argument — is_64bit

— is used only on Intel 32-bit platforms (__i386__).

The pmap_t is created (the struct pmap is allocated

from the pmap zone, discussed in the section,

“Mach Zones,” later this chapter). Additionally, any

hardware page table entries are initialized. An inter-

nal reference count is also set to 1.

void pmap_reference(pmap_t pmap); Increases the reference count of a pmap_t.

Throughout the kernel this is only used by kmem_

suballoc(), which (as you will see later) can be

used to allocate memory as a suballocation of an

existing allocation.

void pmap_destroy(pmap_t pmap); Decreases the reference count of a pmap_t. This

also serves as the destructor of pmap_t objects,

when the reference count drops to 0.

void pmap_enter[_options]

 (pmap_t pmap,

 vm_map_offset_t v,

 ppnum_t pn,

 vm_prot_t prot,

 unsigned int flags,

 boolean_t wired,

 [unsigned int options]);

Establishes a mapping from virtual address v to

physical page number pn in pmap. Sets MMU page

protection to prot (the standard rwx page permis-

sions). The fl ags can include VM_MEM_GUARDED and

VM_MEM_NOT_CACHEABLE, which toggle the page

cacheability. Wired marks the page as such, as in

resident and not swappable.

Uppercase wrapper macros are available for both

_enter variants, which fi rst ensure the page is not

encrypted.

void pmap_page_protect

 (ppnum_t phys,

 vm_prot_t prot);

Changes VM_PROT bits on physical page number

phys according to prot.

void pmap_zero_page

 (ppnum_t pn);
Zeros physical page

c12.indd 464c12.indd 464 9/29/2012 5:43:39 PM9/29/2012 5:43:39 PM

Physical Memory Management x 465

PMAP FUNCTION USED FOR

unsigned int

pmap_disconnect(ppnum_t pa)
Disconnects a previous page mapping (and returns

VM_MEM_MODIFIED and VM_MEM_REFERENCED

fl ags, if set)

void pmap_remove(pmap_t map,

 addr64_t s64,

 addr64_t e64);

Removes addresses from s64 through e64.

Internally, this method converts the s64–e64

range to a set of page table entries, and calls

pmap_remove_range().

void pmap_switch(pmap_t tpmap); Switches to a new pmap. On Intel, this merely

disables interrupts and calls set_dirbase(),

which changes the value of CR3, unless switching

between related threads, or between kernel and

user (with CR3 shared). Most switching is done by

the PMAP_[DE]ACTIVATE family of macros, which

on Intel is set_dirbase() as well.

void *pmap_steal_memory

(vm_size_t size);
“Steals” physical memory before VM is fully

initialized

The pmap’s low-level memory functions, which accept pnum_t arguments, can operate directly on
physical pages.

The pmaps can be nested (so as to contain other pmaps). This is a fairly common technique, which
is relied upon heavily to allow the sharing of memory — both implicit (shared libraries) and explicit
(mmap(2)). Also, similarly to the kernel_map vm_map, there exists a global kernel_pmap, which
holds the physical memory pages used by the kernel.

API Implementation Example on Intel Architecture
To further comprehend how pmap can present a machine-independent interface to its clients, con-
sider a specific case — page entry bits on the Intel architecture, as shown in Figure 12-2. The illus-
tration specifically follows VM_MEM_SUPERPAGE and VM_PROT_WRITE (osfmk/mach/vm_prot.h), but
you can also deduce VM_NOT_CACHEABLE and other flags as well.

Figure 12-2 shows how the flags in osfmk/vm/pmap.h are translated (by pmap_enter, in osfmk/
i386/x86_common.c) to the specific page entry bits for Intel PTEs, as defined in the Intel architec-
ture manuals. The conversion is done in the platform-specific implementation of pmap_enter(),
which maintains the platform-independent interface, flags, and options. Many other pmap functions
are implemented in this manner.

The pmap_t implementation on Intel architectures is defined in osfmk/i386/pmap.h as in Listing
12-6. The reader is encouraged to make a segue here to the appendix in this book, which refreshes
the Intel architecture implementation of virtual memory.

c12.indd 465c12.indd 465 9/29/2012 5:43:39 PM9/29/2012 5:43:39 PM

466 x CHAPTER 12 COMMIT TO MEMORY:MACH VIRTUAL MEMORY

#define INTEL_PTE_VALID 0x00000001
#define INTEL_PTE_WRITE 0x00000002
#define INTEL_PTE_RW 0x00000002
#define INTEL_PTE_USER 0x00000004
#define INTEL_PTE_WTHRU 0x00000008
#define INTEL_PTE_NCACHE 0x00000010
#define INTEL_PTE_REF 0x00000020
#define INTEL_PTE_MOD 0x00000040
#define INTEL_PTE_PS 0x00000080
#define INTEL_PTE_PTA 0x00000080
#define INTEL_PTE_GLOBAL 0x00000100
#define INTEL_PTE_WIRED 0x00000200
#define INTEL_PDPTE_NESTED 0x00000400
#define INTEL_PTE_PFN PG_FRAME

#define INTEL_PTE_NX (1ULL << 63)

P
W

U
AD

R

S
W

P

T

C

P

D

P

S
G

P

T

A

X

D

0863

OS

USE

911

osfmk/i386/pmap.h flags

#define VM_MEM_GUARDED 0x1 /* (G) Guarded Storage */
#define VM_MEM_COHERENT 0x2 /* (M) Memory Coherency */
#define VM_MEM_NOT_CACHEABLE 0x4 /* (I) Cache Inhibit */
#define VM_MEM_WRITE_THROUGH 0x8 /* (W) Write-Through */

...
#define VM_MEM_SUPERPAGE 0x100// ...

osfmk/vm/pmap.h flags:

pmap_enter(
..
boolean_t superpage = flags & VM_MEM_SUPERPAGE;
...
if (flags & VM_MEM_NOT_CACHEABLE) {

if (!(flags & VM_MEM_GUARDED))
template |= INTEL_PTE_PTA;

template |= INTEL_PTE_NCACHE;
}

if (pmap != kernel_pmap)
template |= INTEL_PTE_USER;

if (prot & VM_PROT_WRITE)
template |= INTEL_PTE_WRITE;

if (set_NX)
template |= INTEL_PTE_NX;

if (superpage)
template |= INTEL_PTE_PS;

pmap_store_pte(pte, template);
...

osfmk/i386/pmap_x86_common.c:

Address of page frame...

FIGURE 12-2: Translation of platform-independent pmap fl ags to platform-dependent ones

c12.indd 466c12.indd 466 9/29/2012 5:43:39 PM9/29/2012 5:43:39 PM

Mach Zones x 467

LISTING 12-6: The Intel pmap_t implementation:

struct pmap {
 decl_simple_lock_data(,lock) /* lock on map */
 pmap_paddr_t pm_cr3; /* physical addr */
 boolean_t pm_shared;
 pd_entry_t *dirbase; /* page directory pointer */
#ifdef __i386__
 pmap_paddr_t pdirbase; /* phys. address of dirbase */
 vm_offset_t pm_hold; /* true pdpt zalloc addr */
#endif
 vm_object_t pm_obj; /* object to hold pde's */
 task_map_t pm_task_map;
 pdpt_entry_t *pm_pdpt; /* KVA of 3rd level page */
 pml4_entry_t *pm_pml4; /* VKA of top level */
 vm_object_t pm_obj_pdpt; /* holds pdpt pages */
 vm_object_t pm_obj_pml4; /* holds pml4 pages */
#define PMAP_PCID_MAX_CPUS (48) /* Must be a multiple of 8 */
 pcid_t pmap_pcid_cpus[PMAP_PCID_MAX_CPUS];
 volatile uint8_t pmap_pcid_coherency_vector[PMAP_PCID_MAX_CPUS];
 struct pmap_statistics stats; /* map statistics */
 int ref_count; /* reference count */
 int nx_enabled; // Data Execution Prevention
};

MACH ZONES

Zones are Mach’s (and XNU’s) idea of what Linux calls memory caches, and Windows call Pools
(q.v. Windows has its ExAllocatePool/WithTag). Zones are memory regions used for the quick
allocation and deallocation of frequently used objects of fixed size. The Zone API is internal to the
kernel and cannot be accessed from user mode. Nonetheless, zones are used extensively in Mach.

This section discusses kernel zones, which are entirely different from and not to
be confused with malloc() zones (i.e. malloc_create_zone(3) and friends).
The latter are in user mode, part of the C runtime library, and well documented
in man pages.

To display zones, you can use the zprint(1) command. the command relies on the mach_zone_
info() functionality exposed by the host port. Lion adds a task_zone_info() function, display-
ing zone utilization by a particular task (and also enables zprint(1)’s –p switch, which displays a
zone listing for a particular process). Since zprint(1) is open source and fairly short, the intrigued
reader is encouraged to have a look at its source.

c12.indd 467c12.indd 467 9/29/2012 5:43:40 PM9/29/2012 5:43:40 PM

468 x CHAPTER 12 COMMIT TO MEMORY:MACH VIRTUAL MEMORY

The Mach Zone Structure
A zone is a structure defined in osfmk/kern/zalloc.h, as shown in Listing 12-7:

LISTING 12-7 : Mach zones

struct zone {
 int count; /* Number of elements used now */
 vm_offset_t free_elements; // Linked list of free elements
 decl_lck_mtx_data(,lock) /* zone lock */
 lck_mtx_ext_t lock_ext; /* placeholder for indirect mutex */
 lck_attr_t lock_attr; /* zone lock attribute */
 lck_grp_t lock_grp; /* zone lock group */
 lck_grp_attr_t lock_grp_attr; /* zone lock group attribute */
 vm_size_t cur_size; /* current memory utilization */
 vm_size_t max_size; /* how large can this zone grow */
 vm_size_t elem_size; /* size of an element */
 vm_size_t alloc_size; /* size used for more memory */
 uint64_t sum_count; /* count of allocs (life of zone) */
 // the following italicized fields can be changed with zone_change()
 unsigned int
 /* boolean_t */ exhaustible :1, /* (F) merely return if empty? */
 /* boolean_t */ collectable :1, /* (F) garbage collect empty pages */
 /* boolean_t */ expandable :1, /* (T) expand zone (with message)? */
 /* boolean_t */ allows_foreign :1,/* (F) allow non-zalloc space */
 /* boolean_t */ doing_alloc :1, /* is zone expanding now? */
 /* boolean_t */ waiting :1, /* is thread waiting for expansion? */
 /* boolean_t */ async_pending :1,/* asynchronous allocation pending? */
#if CONFIG_ZLEAKS
 /* boolean_t */ zleak_on :1, /* Are we collecting allocation info? */
#endif /* ZONE_DEBUG */ // they mean CONFIG_ZLEAKS — mistake in source
 /* boolean_t */ caller_acct: 1,/* account allocation/free to caller? */
 /* boolean_t */ doing_gc :1, /* garbage collect in progress? */
 /* boolean_t */ noencrypt :1;
 int index; /* index into zone_info arrays for this zone */
 struct zone * next_zone; /* Link for all-zones list */
 call_entry_data_t call_async_alloc; /* callout for asynch alloc */
 const char *zone_name; /* a name for the zone */

#if ZONE_DEBUG
 queue_head_t active_zones; /* active elements */
#endif /* ZONE_DEBUG */

#if CONFIG_ZLEAKS
 uint32_t num_allocs; /* alloc stats for zleak benchmarks */
 uint32_t num_frees; /* free stats for zleak benchmarks */
 uint32_t zleak_capture; /* per-zone counter for capturing every N allocations */
#endif /* CONFIG_ZLEAKS */
};

Aside from the plentiful debug information (which is enabled on zones only if XNU is compiled
with CONFIG_ZLEAKS), a zone is really a rather small structure containing a linked list of free ele-
ments, and the zone statistics.

c12.indd 468c12.indd 468 9/29/2012 5:43:41 PM9/29/2012 5:43:41 PM

Mach Zones x 469

To create and handle zones, Mach offers several functions, all defined in the same header file, and
implemented in osfmk/kern/zalloc.c as shown in Table 12-3.

TABLE 12-3: Zone Functions from osfmk/kern/zalloc.h

ZONE FUNCTION DESCRIPTION

zone_t zinit(

vm_size_t size,

vm_size_t maxmem,

vm_size_t alloc,

const char *name);

Returns a new zone named name, which can hold

elements of size bytes. If the zone is full, an addi-

tional alloc bytes will be allocated.

Allocation of the zone is done asynchronously by

the thread_call_daemon (and the call_async_

alloc data).

void *zalloc(zone_t zone);

void *zalloc_noblock

 (zone_t zone);

void *zalloc_canblock

 (zone_t zone,

 boolean_t canblock);

Allocates an element from the zone. The ele-

ment allocated is of the fi xed size set when the

zone was created, by zinit. Both the former use

the last, passing canblock = TRUE and FALSE,

respectively.

void zcram(

register zone_t zone,

 void *newaddr,

 vm_size_t size)

Adds (“crams”) the memory at newaddr, of size

bytes to the zone specifi ed by zone.

void zfree(

 zone_t zone,

 void *elem);

Frees the element pointed to by elem, which must

be in the zone specifi ed by zone. Free elements

may be garbage collected.

void zone_change

(zone_t zone,

 unsigned int item,

 boolean_t value);

Changes zone properties by setting corresponding

fi eld in zone to value.

Z_NOENCRYPT: Zone is unencrypted during hiber-

nation (true for virtually all zones)

Z_EXHAUSTIBLE: Zone is of fi nite size, and may be

empty.

Z_COLLECT: Toggles garbage collection

Z_EXPAND: Zone may be expanded

Z_FOREIGN: Zone can contain non-zalloc()ed

object

Z_CALLERACCT: The calling thread will be held

accountable, memory quota-wise, for zone

allocations.

All zones memory is effectively pre-allocated in the call to zinit() (by a call to kernel_memory_
allocate(), which is a low-level allocator, discussed in the next section). Calls to zalloc() are
effectively wrappers over a REMOVE_FROM_ZONE macro, which returns the next element from the
zone’s free list (and resorts to kernel_memory_allocate() of the zone’s alloc_size bytes, if the
zone is full). A zfree() uses the opposite macro, ADD_TO_ZONE. Both functions also perform a fair

c12.indd 469c12.indd 469 9/29/2012 5:43:41 PM9/29/2012 5:43:41 PM

470 x CHAPTER 12 COMMIT TO MEMORY:MACH VIRTUAL MEMORY

amount of sanity checking, which hasn’t helped much so far: Zone allocation bugs in the past have
provided several exploitable memory corruptions. The more important client of zalloc() is the ker-
nel’s kalloc(), which allocates from kalloc.* zones (discussed in the next section). BSD’s mcache
mechanism (see Chapter 13) also allocates from its own zone (also called mcache), as do BSD kernel
zones, which are built directly over the Mach ones.

Zone Setup During Boot
Zones are set up during the kernel boot by two calls from vm_mem_bootstrap() (refer to Chapter 8
for the full details on this function)

 ‰ The fi rst, to zone_bootstrap(), sets up the master zone (“zones”) wherein all other zone
data is stored.

 ‰ The second, to zone_init(), initializes the zone subsystem locks and pages (using
zone_page_init()).

The zone handling functions are in osfmk/kern/zalloc.c. Individual zones can then be created by
various subsystems.

The zone_init() function takes an argument — zsize. This argument is set by default to one
quarter of maxmem, but may be overridden by a kernel command-line argument (specified in MB), in
which case it must be between ZONE_MAP_MIN and ZONE_MAP_MAX. You can set these values as part
of the kernel configuration (that is, using CONFIG_*) macros.

There are quite a few zones in XNU — about 120 in SL and more than 170 in Lion. These zones
are, for the most part, created by their corresponding subsystem’s init function during the kernel
boot. Table 12-4 lists but a few.

TABLE 12-4: Some of the More Important Mach Zones Used in OS X

ZONE NAME ALLOCATED BY USED FOR

Alarms clock_service_create()

osfmk/kern/

clock_oldops.c

Clock alarms.

buf headers

buf.nn
Bufzoneinit

bsd/vfs/vfs_bio.c
VFS buff ers. The nn zones

are powers of two, from 512

through 8192.

dtrace.dtrace_probe_t dtrace_init

bsd/dev/dtrace/dtrace.c
DTrace probes.

ipc spaces

ipc tree entries

ipc ports

ipc port sets

ipc_bootstrap

osfmk/ipc/ipc_init.c
Various Inter Process

Commication constructs.

c12.indd 470c12.indd 470 9/29/2012 5:43:41 PM9/29/2012 5:43:41 PM

Mach Zones x 471

ZONE NAME ALLOCATED BY USED FOR

kalloc.nn

kalloc.large (fake zone)

kalloc_init

osfmk/kern/kalloc.c

osfmk/kern/zalloc.c

Kernel allocations. Zones are

created for powers of 2 from

16 to 8192, as well as a “large”

zone. Calls to kalloc()

then allocate from the corre-

sponding zone, or use kmem_

alloc() if too large.

iOS 5 also has zones which are

not powers of 2.

kernel_stacks (fake zone) osfmk/kern/zalloc.c Records kernel stack utilization.

maps

non-kernel.map.entries

(iOS: VM map entries)

kernel.map.entries

(iOS: reserved VM map entries)

map.copies

vm_map_init() osfmk/vm/

vm_map.c
Zones used for the various

kernel vm_map.

mcache

mcache.bkt_nn

mcache.audit

mcache_init

bsd/kern/mcache.c
BSD’s Mcaches, which are

implemented over zones.

Tasks task_init

osfmk/kern/task.c
Mach task objects.

Threads thread_init

osfmk/kern/thread.c
Mach thread objects.

page_tables

(fake zone)

osfmk/kern/zalloc.c PTEs. This is among the largest

zones in the kernel on i386/

x86_64.

Pmap map_init

osfmk/x86_64/pmap.c
Page maps.

Uthreads uthread_zone_init

bsd/kern/kern_fork.c
BSD Thread objects.

Zones zone_bootstrap()

osfmk/kern/zalloc.c
The “zone of zones,” where all

zone data is stored.

Zone Garbage Collection
If the system is low on memory, zones may undergo garbage collection. This is handled by consider_
zone_gc()(from osfmk/kern/zalloc.c) which is called by the vm_pageout_garbage_collect

c12.indd 471c12.indd 471 9/29/2012 5:43:41 PM9/29/2012 5:43:41 PM

472 x CHAPTER 12 COMMIT TO MEMORY:MACH VIRTUAL MEMORY

thread. consider_zone_gc may choose to invoke the zone garbage collection (zone_gc) in one of
the following situations:

 ‰ zfree() has freed an element in a zone that was more than one page, and the system vm_
pool is low

 ‰ It has been a while since zone_gc last ran, as specifi ed by zone_gc_time_throttle.

 ‰ The system is hibernating, and hibernate_flush_memory() has been called.

These situations are depicted by the Figure 12-3.

zfree:

if (zone->elem_size >= PAGE_SIZE

&& vm_pool_low()){

zone_gc_forced = TRUE;

Consider_zone_gc (int force);

if (zone_gc_allowed &&

(zone_gc_allowed_by_time_throttle ||

zone_gc_forced || force))

zone_gc:

Perform two passes over all Z_COLLECTIBLE zones

Pass 1: over elements Pass 2: over pages

Then reclaim and kmem_free() the pages

vm_pageout_garbage_collect(int collect)

consider_machine_collect()

consider_zone_gc();

consider_machine_adjust()….

vm_pageout_scan(int collect)

encounters low memory

or decides to garbage collect

thread_wakeup((event_t)

&vm_pageout_garbage_collect)

zone_gc_forced

The vm_pageout_thread
The vm_pageout_garbage_collect thread

hibernate_flush_memory():

…

consider_zone_gc(1);

…

FIGURE 12-3 Zone garbage collection

c12.indd 472c12.indd 472 9/29/2012 5:43:41 PM9/29/2012 5:43:41 PM

Kernel Memory Allocators x 473

The garbage collection is a two-pass process, wherein the system first goes over all zones (skipping
over zones marked as non-collectable), examining their free lists and seeing which objects can be
claimed. On the second pass, the objects are translated into pages: Objects that share a page with
non-freed objects are of no use to the system, as only full pages can be freed. Finally, when the pages
to be freed are determined, they can be freed by a simple kmem_free().

Zone Debugging
In the unlikely case you will ever need to, it is possible to debug zones — past the simple functional-
ity provided zprint(1) command — in several ways:

 ‰ Compile with CONFIG_ZLEAKS: This, as you saw, allocates more data per struct zone to
check on memory leaks. CONFIG_ZLEAKS also makes zleaks toggleable from the BSD layer
and user mode by means of sysctl(8) calls on the kern.zleaks (as defi ned in bsd/kern/
kern_malloc.c).

 ‰ Toggle zone element checking: with the –zc boot argument

 ‰ Toggle zone poisoning: with the –zp boot argument

 ‰ Save zone info in each task: with the –zinfop boot argument

 ‰ Specifi c zone logging boot arguments: by using zlog you can specify the exact name of a
zone to log, and with zrecs you can specify how many records will be kept in the log
(up to 8000).

KERNEL MEMORY ALLOCATORS

The VM abstractions detailed thus far are important, yet when kernel code needs to allocate mem-
ory, especially within its own vm_map (that is, the kernel_map), it needs to rely on actual allocator
functions, that can allocate the virtual memory as well as back it up with physical pages. This sec-
tion covers the rich hierarchy of allocators in XNU (with one exception, BSD’s cache and slab allo-
cators), shown in Figure 12-4:

kernel_memory_allocate()
All kernel memory allocation paths (save contiguous physical memory), sooner or later, end up using
a single function, kernel_memory_allocate(). This function, defined in osfmk/vm/vm_kern.c,
performs the actual allocation of memory, handling both the vm_map and the pmap. It is shown in
Listing 12-8:

c12.indd 473c12.indd 473 9/29/2012 5:43:42 PM9/29/2012 5:43:42 PM

474 x CHAPTER 12 COMMIT TO MEMORY:MACH VIRTUAL MEMORY

size == kmz ->kz_elemsize

(osfmk/vm/vm_kern.c)

kmem_alloc_*

(osfmk/vm/vm_kern.c)

IOMallocAligned

(iokit/Kernel/IOLib.cpp)

zalloc() and zget_space()

(osfmk/kern/zalloc.c)

kalloc()

(osfmk/vm/vm_kern.c)

IOMalloc()

(iokit/Kernel/IOLib.cpp)
IOKit:

BSD _MALLOC()

(bsd/kern/kern_malloc.c)

MALLOC_ZONE()

(bsd/kern/kern_malloc.c)

size != kmz ->kz_elemsize

kern_os_malloc()

(libkern/c++/OSRuntime.cpp)

OSMalloc()

(osfmk/vm/vm_kern.c)

cpm_allocate()

(osfmk/vm/vm_resident.c)

kmem_alloc_contig() only

OSRunTime new operator

(libkern/c++/OSRuntime.cpp)

LibKern

Mach

KMA_LOMEM
kernel_memory_allocate()

FIGURE 12-4: The XNU memory allocator hierarchy

LISTING 12-8: kernel_memory_allocate(), from osfmk/vm/vm_kern

/*
 * Master entry point for allocating kernel memory.
 * NOTE: this routine is _never_ interrupt safe.
 *
 * map : map to allocate into
 * addrp : pointer to start address of new memory
 * size : size of memory requested

c12.indd 474c12.indd 474 9/29/2012 5:43:42 PM9/29/2012 5:43:42 PM

Kernel Memory Allocators x 475

 * flags : options
 * KMA_HERE *addrp is base address, else "anywhere"
 * KMA_NOPAGEWAIT don't wait for pages if unavailable
 // (returns KERN_RESOURCE_SHORTAGE instead)
 * KMA_KOBJECT use kernel_object
 * KMA_LOMEM support for 32 bit devices in a 64 bit world
 * if set and a lomemory pool is available
 * grab pages from it... this also implies
 * KMA_NOPAGEWAIT
 // And also:
 // KMA_NOENCRYPT Do not encrypt the pages (calls
 // pmap_set_noencrypt())
 // KMA_GUARD_[FIRST|LAST] Place guard pages before or after the
 // allocation
 */

kern_return_t
kernel_memory_allocate(
 register vm_map_t map,
 register vm_offset_t *addrp,
 register vm_size_t size,
 register vm_offset_t mask,
 int flags);

This function finds a large enough virtual address space in the vm_map it is handed, and takes
memory from the wired list to satisfy the allocation. In some cases (specifically, calls from stack_
alloc()), flags to kernel_memory_allocate() may specify a request for guard pages — before or
after the actual allocation. These are similar in principle to those of user mode’s libgmalloc
.dylib — and are virtual-only pages marked non-accessible, so as to trigger a page fault on access.
Getting guard pages therefore only requires space in the vm_map, but no physical backing (and hence
no pmem).

A simplified flow of kernel_memory_allocate() is shown in Figure 12-5:

The actual allocation of the physical page is done by looking at one of two free lists: the per-pro-
cessor free list (using vm_page_grab(), which uses the PROCESSOR_DATA macro to get a page from
free_pages list), or the low memory free list (using vm_page_grablo(), which queries the vm_
lopage_queue_free list). The latter case is rarely encountered, only when specific physical memory
regions (less than 16MB) are required. The vm_page_grablo()function calls on cpm_
allocate(), which is used to allocate contiguous physical memory by stealing pages directly from
the free list. The cpm_allocate() function (from osfmk/vm/vm_resident.c) is rarely called
on: It is otherwise only called from kmem_alloc_contig(), vm_map_enter() (for superpages) or
vm_map_enter_cpm().

The kernel_memory_allocate() function is also seldom called directly. Exceptions include early
startup (when there is little choice), kernel stack allocations, and IOKit’s IOMallocAligned(),
which requires specific aligned memory. In all other cases, wrappers are used, the most significant
of which is kmem_alloc().

c12.indd 475c12.indd 475 9/29/2012 5:43:42 PM9/29/2012 5:43:42 PM

476 x CHAPTER 12 COMMIT TO MEMORY:MACH VIRTUAL MEMORY

Stack allocations may request additional guard pages

before or after the allocations.These are fictitious

pages (i.e. only PTEs) and require no physical

backing – only virtual space.

Find space to insert all the pages in target’s vm_map.vm_map_find_space()
(osfmk/vm/vm_map.c)

vm_page_insert()
(osfmk/vm/vm_resident.c)

if(!(flags && KMA_KOBJECT)) vm_object_allocate()
(osfmk/vm/vm_object.c)

PMAP_ENTER()

if (!(flags && KMA_GUARD_*))

adjust allocation size for fill pages and get

fictitious pages (vm_page_grab_guard())

Grab pages one by one, and link to wired_page_list,

until wired_page_count is satisfied. Pages are grabbed

from per CPU free list (vm_page_grab) or global low page

queue (vm_page_grab_lo) if KMA_LOMEM was requested.

If unsuccessful, this can block indefinitely (using a call to

vm_page_wait(THREAD_UNINT), until the page is

obtained).

If KMA_NOPAGEWAIT was specified, the function will not

block, and fails with KERN_RESOURCE_SHORTAGE
immediately.

Get page by vm_page_grab[lo]
(osfmk/vm/vm_resident.c).

If successful, continue.

if KMA_NOPAGEWAIT – fail

otherwise, VM_PAGE_WAIT() and repeat.

While pages added have not satisfied, and we have

remaining pages in wired_page_list: insert them one by

one to the target vm_map and the kernel_pmap (using

the PMAP_ENTER macro). If we run out of pages, panic.

A similar loop also handles the insertion of the guard

pages (but does not call PMAP_ENTER for them, as they

have no physical backing).

Call vm_object_allocate()to alloc a

new object, unless we can use the kernel_object.

out

in

for(i =0;
i< wired_page_count;

i++)

out

in

pg_offset < fill_start + fill_size

Add page to wired_page_list

FIGURE 12-5: Simplifi ed fl ow of kernel_memory_allocate()

c12.indd 476c12.indd 476 9/29/2012 5:43:42 PM9/29/2012 5:43:42 PM

Kernel Memory Allocators x 477

kmem_alloc() and Friends
The most common memory allocator in Mach is provided by the kmem_alloc()family of
functions in osfmk/kern/vm_kern.c, which wrap kernel_memory_allocate(), as shown in
Figure 12-6.

kmem_alloc kmem_alloc_aligned kmem_alloc_kobject

kernel_memory_allocate

(map, addrp, size, 0, 0);

kernel_memory_allocate

(map, addrp, size, size -1, KMA_KOBJECT)

kernel_memory_allocate

(map, addrp, size,0, KMA_KOBJECT)

kernel_memory_allocate()

FIGURE 12-6: The Kmem_malloc family of functions.

All the kmem_alloc types shown in Figure 12-6 share the same prototype, taking as their three
arguments a map, an in/out address pointer, and a size argument. The map argument in these func-
tions is commonly the kernel_map vm_map, unless pageable memory is requested. As shown in the
figure, these functions are layered on top of kernel_memory_allocate(), discussed previously.

Other kmem_alloc_* functions exist, which are not implemented over kernel_memory_allocate().
These functions are:

 ‰ kmem_alloc_contig() — for contiguous physical memory (implemented over
cpm_allocate()).

 ‰ kmem_alloc_pageable() (allocated over vm_map_enter()), which allocates non-wired
memory. Non-wired memory, however, may be paged out without warning.

 ‰ kmem_alloc_pages() can be used to allocate new pages in an existing object, and wraps
vm_page_alloc() (which itself is just a wrapper over the vm_page_grab()/vm_page_
insert() of kernel_memory_allocate().

Using kmem_alloc() is quite expensive, particularly due to physical map backing: Recall, the under-
lying implementation of kernel_memory_allocate() may block indefinitely. More often, then, the
faster kalloc() alternative (built over the more efficient mechanism of zones) is used.

kalloc
Once Mach zones are initialized, they may be used for quick kernel internal allocations, as is
provided by the kalloc_() family of functions. These functions are all defined in osfmk/kern/
kalloc.h as shown in Listing 12-9.

c12.indd 477c12.indd 477 9/29/2012 5:43:43 PM9/29/2012 5:43:43 PM

478 x CHAPTER 12 COMMIT TO MEMORY:MACH VIRTUAL MEMORY

LISTING 12-9: Some of the kalloc functions in osfmk/kern/kalloc.h

extern void *kalloc(vm_size_t size);
extern void *kalloc_noblock(vm_size_t size);
extern void kfree(void *data, vm_size_t size);

These functions are functionally equivalent to user-mode malloc() and free(), but utilize zones
and can thus offer nonblocking functionality, as in the kalloc_noblock() function. Because the
zone memory is pre-allocated, kalloc() allocation is simply a call through to zalloc_
canblock() on the corresponding zone (one of the kalloc.nn zones, shown in Table 12-4). The
zones themselves are set up by kalloc_init(), which is called from vm_mem_bootstrap()during
system startup (as shown in Chapter 6). If kalloc() is called with a size larger than the maximum
zone, it calls kmem_alloc() instead (and must block). Likewise, if kfree() detects the size of the
block freed does not match one of the zones, it calls kmem_free(instead of zfree()).The kal-
loc()function keeps track of the largest block size it is required to allocate in a global, and kfree()
ignores attempts to free blocks larger than that size. Internally, a krealloc() function is defined as
well, but neither it nor a kget() function is used.

Overall, this mechanism is quite similar to Linux’s kmalloc(), which also allocates memory in a
fast, potentially non-blocking manner. Also like it, kalloc() sizes are rounded to the nearest power
of two, which can be quite wasteful (for example, 4,098 bytes actually consume 8,192 bytes).

In iOS 5, kalloc zones are also available in sizes which are not powers of 2. Listing 12-10 shows
the output of zprint from an iOS 5.0 host:

LISTING 12-10: kalloc zones. The bold zones are iOS specifi c

root@podicum (/)# zprint kalloc
zone name size size size #elts #elts inuse size count

kalloc.8 8 60K 60K 7680 7776 7392 4K 512 C
kalloc.16 16 88K 121K 5632 7776 5332 4K 256 C
kalloc.24 24 334K 410K 14280 17496 14034 4K 170 C
kalloc.32 32 124K 128K 3968 4096 3541 4K 128 C
kalloc.40 40 255K 360K 6528 9216 6374 4K 102 C
kalloc.48 48 87K 192K 1870 4096 1408 4K 85 C
kalloc.64 64 120K 256K 1920 4096 1612 4K 64 C
kalloc.88 88 229K 352K 2668 4096 2382 4K 46 C
kalloc.112 112 118K 448K 1080 4096 884 4K 36 C
kalloc.128 128 168K 512K 1344 4096 1133 4K 32 C
kalloc.192 192 94K 768K 504 4096 454 4K 21 C
kalloc.256 256 168K 1024K 672 4096 580 4K 16 C
kalloc.384 384 551K 1536K 1470 4096 1253 4K 10 C
kalloc.512 512 40K 512K 80 1024 42 4K 8 C
kalloc.768 768 82K 768K 110 1024 101 4K 5 C
kalloc.1024 1024 104K 1024K 104 1024 79 4K 4 C
kalloc.1536 1536 99K 1536K 66 1024 55 12K 8 C
kalloc.2048 2048 84K 2048K 42 1024 41 4K 2 C
kalloc.3072 3072 72K 3072K 24 1024 18 12K 4 C

c12.indd 478c12.indd 478 9/29/2012 5:43:43 PM9/29/2012 5:43:43 PM

Kernel Memory Allocators x 479

kalloc.4096 4096 136K 4096K 34 1024 32 4K 1 C
kalloc.6144 6144 258K 576K 43 96 41 12K 2 C
kalloc.8192 8192 144K 32768K 18 4096 16 8K 1 C
kalloc.large 59163 2657K 2906K 46 50 46 57K 1

The kalloc function is the most widely used memory allocator in XNU, with many wrappers,
including:

 ‰ IOKit’s IOMalloc (iokit/Kernel/IOLib.cpp): Directly wrapping kalloc() but also add-
ing a call to IOStatisticsAlloc macro, which records the allocations (for ioalloccount(8), as
discussed in chapter 18)

 ‰ Libkern’s kern_os_malloc(libkern/c++/OSRuntime.cpp): A direct wrapper over kal-
loc(), which prepends the block size to the allocation. This function is itself wrapped by the
new operator.

 ‰ BSD’s _MALLOC (bsd/kern/kern_malloc.c): used for various allocations in the BSD layer,
discussed in Chapter 13. Similar to kern_os_malloc(), it also prepends the block size to the
allocation.

OSMalloc
Mach exports yet another family of memory allocation functions, OSMalloc. The OSMalloc soror-
ity, though implemented alongside kalloc in osfmk/kern/kalloc.c, is actually defined in
libkern/libkern/OSMalloc.h as shown in Listing 12-11.

LISTING 12-11: OSMalloc functions, as defi ned in libkern/libkern/OSMalloc.h

typedef struct __OSMallocTag__ * OSMallocTag;

// First get a tag — this actually uses kalloc()
extern OSMallocTag OSMalloc_Tagalloc(const char * name,
 uint32_t flags);
// Then allocate with it:
extern void * OSMalloc(uint32_t size, OSMallocTag tag);
// The following two are equivalent:
extern void * OSMalloc_nowait(uint32_t size, OSMallocTag tag);
extern void * OSMalloc_noblock (uint32_t size, OSMallocTag tag);
// Freeing memory requires the tag, as well:
extern void OSFree(void * addr, uint32_t size, OSMallocTag tag);
// Finally, free tag
extern void OSMalloc_Tagfree(OSMallocTag tag);

The key concept in OSMalloc is that of the tag, an opaque type, which must be allocated first.
Once the caller is in possession of the tag, it can be passed to one of the OSMalloc functions (either
the blocking or non-blocking varieties) to allocate the memory. The memory can be freed (using
OSFree()), and when the tag is no longer required, it, too, can be freed. The OSMalloc memory
is allocated with kmem_alloc_pageable, if the tag flags allow it (specifying OSMT_PAGEABLE).
Otherwise, it is allocated with kalloc(), from wired memory. Alternatively, the noblock/nowait
functions (which are functionally equivalent) call on kalloc_noblock() for wired memory.

c12.indd 479c12.indd 479 9/29/2012 5:43:43 PM9/29/2012 5:43:43 PM

480 x CHAPTER 12 COMMIT TO MEMORY:MACH VIRTUAL MEMORY

The tag itself is part of a linked list of tags, each with a reference count. Allocations increment the
reference count of the tag. Listing 12-12 shows the structure of a tag.

LISTING 12-12: OSMalloc tags

typedef struct _OSMallocTag_ {
 queue_chain_t OSMT_link;
 uint32_t OSMT_refcnt;
 uint32_t OSMT_state;
 uint32_t OSMT_attr;
 char OSMT_name[OSMT_MAX_NAME];
} * OSMallocTag;

MACH PAGERS

Sooner or later, it happens to the best: The memory requirements of processes exceed the available
amount of RAM, and the system has to find a way to back up inactive pages and remove them from
RAM, at least temporarily, to make more RAM available for active ones.

In other operating systems, this is the role of dedicated kernel threads. Linux, for example, has
pdflush and kswapd. In Mach, these dedicated tasks are called pagers, and may be in-kernel
threads, or even external user mode (or remote) servers.

A Mach pager is a memory manager, charged with the task of backing up virtual memory to a back-
ing store of a particular type. The backing store holds the content of the memory pages when they
need to be swapped out, due to insufficient RAM, and recovered, when RAM becomes available
again. This is required only for these pages which are “dirty,” i.e. have changed in RAM, and there-
fore must be saved to prevent data loss.

Note, that the pagers listed here merely implement the paging operation of the memory objects they
are tied to. They do not manage or control the system’s paging policy. Doing so is the role of the vm_
pageout daemon, which is the role that kernel_bootstrap_thread() assumes once it completes
(as discussed in Chapter 8). The vm_pageout daemon is discussed in more detail at the end of this
chapter.

The Mach Pager interface
Although there are several types of pagers, all present the same interface to the kernel. The pag-
ers all expose particular routines, and perform operations on memory objects. Mach’s original
design treated pagers as fully external entities, and defined the External Memory Manager Interface
(EMMI), to specify the types of Mach messages pagers use to communicate with the kernel. The
MIG specifications for pagers can still be found in osfmk/mach, as shown in Table 12-5:

c12.indd 480c12.indd 480 9/29/2012 5:43:44 PM9/29/2012 5:43:44 PM

Mach Pagers x 481

TABLE 12-5: MIG Files in osfmk/mach Specifying Mach Pager Interfaces

FILE SPECIFIES

memory_object.defs Subsystem 2200, specifying initialization, termination and the

core routines involved in the object lifecycle, all of which oper-

ate on a memory_object_t.

memory_object_control.defs Subsystem 2000, specifying additional memory object opera-

tions, operating on a memory_object_control_t argument.

memory_object_default.defs Subsystem 2250, consisting of a single routine, memory_

object_create(), which is used to construct a new memory

object.

memory_object_name.defs Unused.

In practice, however, you have seen that XNU takes significant shortcuts and deviations from the
microkernel design of Mach, in order to achieve greater efficiency. The pagers in XNU are therefore
implemented in-kernel, and instead of over messages, the pager interface is implemented as function
calls. Much like the Mach thread schedulers, the Mach pagers are defined as objects and implement
a set of well-known methods, or operations. These operations correspond to the MIG routines in
memory_object.defs, and are defined in osfmk/mach/memory_object_types.h in a struct
memory_object_pager_ops as shown in Table 12-6.

TABLE 12-6: Pager Operations

PAGER METHOD USED FOR

memory_object_reference

 (memory_object_t mem_obj)
Marks mem_obj as referenced. This is required

for the LRU of the vm_pageout daemon, dis-

cussed later.

memory_object_deallocate

 (memory_object_t mem_obj)
Deallocates the memory object mem_obj.

memory_object_init

 (memory_object_t mem_obj,

 memory_object_control_t

 mem_control,

 memory_object_cluster_size_t size))

Initializes a new memory object of size bytes,

with mem_control data. The pager is expected

to set the object’s IPC class (IKOT_MEMORY_

OBJECT) and tie its operations to it (as function

pointers).

memory_object_terminate

 (memory_object_t mem_obj);
Terminates (destroys) memory object mem_obj.

continues

c12.indd 481c12.indd 481 9/29/2012 5:43:44 PM9/29/2012 5:43:44 PM

482 x CHAPTER 12 COMMIT TO MEMORY:MACH VIRTUAL MEMORY

PAGER METHOD USED FOR

memory_object_data_request

(memory_object_t mem_obj,

 memory_object_offset_t offset,

 memory_object_cluster_size_t length,

 vm_prot_t desired_access,

 memory_object_fault_info_t

fault_info);

Handles a page-in request (a request for mem_

obj at address off set of length bytes). The

kernel is requesting the pager to provide a page

from the backing store.

memory_object_data_return

(memory_object_t mem_obj,

 memory_object_offset_t offset,

 memory_object_cluster_size_t size,

 memory_object_offset_t

*resid_offset,

 int *io_error,

 boolean_t dirty,

 boolean_t kernel_copy,

 int upl_flags);

Handles a page-out request (a request for mem_

obj at address off set of length bytes). The

kernel is “returning” the dirty page to the pager,

which is expected to commit it to the backing

store.

memory_object_data_initialize

(memory_object_t mem_obj,

 memory_object_offset_t offset,

 memory_object_cluster_size_t size);

Similar to data_return, but allows initialization

of mem_obj. In practice, unimplemented in pag-

ers (results in panic).

memory_object_data_unlock

(memory_object_t mem_obj,

 memory_object_offset_t offset,

 memory_object_size_t size,

 vm_prot_t desired_access);

Change permissions on mem_obj to

desired_access.

memory_object_synchronize

(memory_object_t mem_obj,

 memory_object_offset_t offset,

 memory_object_size_t size,

 vm_sync_t sync_flags);

Synchronize mem_obj to backing store accord-

ing to sync_fl ags (equivalent to fl ushing a page).

memory_object_map(

memory_object_t mem_obj,

vm_prot_t prot);

Map pages in the mem_obj with the protections

specifi ed.

memory_object_last_unmap

(memory_object_t mem_obj);
Called when the last mapping of mem_obj is

removed.

memory_object_data_reclaim

(memory_object_t mem_obj,

boolean_t reclaim);

Request pager to reclaim page. In practice, left

NULL by most pagers.

TABLE 12-6 (continued)

c12.indd 482c12.indd 482 9/29/2012 5:43:44 PM9/29/2012 5:43:44 PM

Mach Pagers x 483

In the preceding table, the two most important operations are data_request (for swap in) and
data_return (for swap out). A pager does not have to implement all the methods listed in the table.
In fact, some memory managers panic if certain methods are called.

Additional memory object operations are defined on an opaque memory_object_control_t type.
These include getting/changing attributes, locking, and UPL related requests (more on UPLs later).
Both types, the memory_object_t and the memory_object_control_t, are defined in osfmk/
mach/memory_objects_types.h, as shown in Listing 12-13:

LISTING 12-13: Memory objects, as defi ned in osfmk/memory_object_types.h

/*
 * Temporary until real EMMI version gets re-implemented
 */

#ifdef KERNEL_PRIVATE

struct memory_object_pager_ops; /* forward declaration */

typedef struct memory_object {
 unsigned int _pad1; /* struct ipc_object_header */
#ifdef __LP64__
 unsigned int _pad2; /* pad to natural boundary */
#endif
 const struct memory_object_pager_ops *mo_pager_ops;
} *memory_object_t;

typedef struct memory_object_control {
 unsigned int moc_ikot; /* struct ipc_object_header. Must be
 /* IKOT_MEM_OBJ_CONTROL */
#ifdef __LP64__
 unsigned int _pad; /* pad to natural boundary */
#endif
 struct vm_object *moc_object;
} *memory_object_control_t;

As an old adage goes, the most permanent things in life start out as “temporary,” and so,
apparently, is the implementation of memory objects: Operations on a memory_object_t in
Table 12-6 are redirected to the implementing pager (via the mo_pager_ops field of the struc-
ture). Other operations, which require a memory_object_control_t argument, convert their
argument into a struct vm_object (described earlier in this chapter), by means of a memory_
object_control_to_vm_object() call, which really just returns the moc_object field of the
control structure.

The different pagers implement their own memory objects by extending the memory object. Their
pager object implementations must align with the memory_object_t, but the implementation is free
to add more fields, as shown in Figure 12-7

c12.indd 483c12.indd 483 9/29/2012 5:43:44 PM9/29/2012 5:43:44 PM

484 x CHAPTER 12 COMMIT TO MEMORY:MACH VIRTUAL MEMORY

pager_header

pager_ops

ref_count

control_handle

device_handle

size

flags

device_pager_t

pager_header

pager_ops

pager_queue

ref_count

is_ready

is_mapped

pager_control

backing_object

crypt

apple_protect_pager_t

pager_header

pager_ops

ref_count

control_handle

vnode_handle

vnode_pager_t

pager_header

pager_ops

pager_queue

ref_count

is_ready

is_mapped

pager_control

swapfile_vnode

swapfile_pager_t

vs_pager_header

vs_pager_ops

vs_control

vs_lock

vs_next_seqno

vs_seqno

vs_writers

vs_readers

flags

vs_async_pending

vs_errors

vs_clshift

vs_size

vs_map_lock

vs_dmap/vs_imap

vstruct_t

FIGURE 12-7

These pagers are all discussed shortly, but before we can turn to them, we must first consider
another important data structure required for paging — the Universal Page List.

Universal Page Lists
Mach uses the Universal Page List (UPL) structure to maintain information about pages in imple-
mentation-agnostic lists. The “Universal” term implies the pages can be backed on any backing store
type. The UPL structure is generally hidden from most other kernel components, with the exception
of the pagers (primarily, the page out daemon) and some BSD components (notably, filesystems and
the Unified Buffer Cache). It is defined as shown in Listing 12-14.

c12.indd 484c12.indd 484 9/29/2012 5:43:44 PM9/29/2012 5:43:44 PM

Mach Pagers x 485

LISTING 12-14: The Universal Page List

struct upl {
 decl_lck_mtx_data(, Lock) /* Synchronization */
 int ref_count;
 int ext_ref_count;
 int flags;
 vm_object_t src_object; /* object derived from */
 vm_object_offset_t offset;
 upl_size_t size; /* size in bytes of the address space */
 vm_offset_t kaddr; /* secondary mapping in kernel */
 vm_object_t map_object;
 ppnum_t highest_page;
 void* vector_upl;
#if UPL_DEBUG
 uintptr_t ubc_alias1;
 uintptr_t ubc_alias2;
 queue_chain_t uplq; /* List of outstanding upls on an obj */

 thread_t upl_creator;
 uint32_t upl_state;
 uint32_t upl_commit_index;
 void *upl_create_retaddr[UPL_DEBUG_STACK_FRAMES];

 struct ucd upl_commit_records[UPL_DEBUG_COMMIT_RECORDS];
#endif /* UPL_DEBUG */
};

The UPL serves to link the virtual addresses with the actual physical pages, somewhat like a
Windows Memory Descriptor List (MDL), or IOKit’s IOMemoryDescriptor. The corresponding
physical page properties are recorded in the UPL. This API is not used directly, passing through sev-
eral layers of abstraction, even for the few components, which are UPL-aware.

The MIG file osfmk/mach/upl.defs contains the definitions of some UPL operations. All the oper-
ations are implemented in osfmk/vm/vm_pageout.c, and shown in Table 12-7:

TABLE 12-7: UPL Operations

OPERATION USED TO

upl_create (int type,

 int flags,

 upl_size_t size);

Create a new UPL. Usually wrapped by other

functions.

continues

c12.indd 485c12.indd 485 9/29/2012 5:43:45 PM9/29/2012 5:43:45 PM

486 x CHAPTER 12 COMMIT TO MEMORY:MACH VIRTUAL MEMORY

OPERATION USED TO

upl_deallocate(upl_t upl);

upl_destroy(upl_t upl);
Decrement reference count of a UPL, destroying

if count drops to 0.

upl_clear_dirty(upl_t upl,

boolean_t value)
Explicitly mark the UPL clear or dirty (according

to value). Used by Apple Protect pager to pre-

vent swap out of pages

upl_abort[range]

(upl_t upl,

 upl_offset_t offset,

 upl_size_t size,

 int error,

 boolean_t *empty);

 upl_commit[_range]

(upl_t upl,

upl_offset_t offset,

upl_size_t size,

int flags,

upl_page_info_t *page_list,

mach_msg_type_number_t cnt,

boolean_t *empty);

Abort or commit changes to a UPL or part

thereof, from off set to size bytes (rounded to

nearest page).

The upl_abort() and upl_commit are wrap-

pers over their corresponding _range coun-

terparts, specifying an off set of 0 and a size of

upl->size.

Pager Types
XNU contains the same pagers in iOS and OS X (this includes the swapfile pager, even though iOS
has no real swap to speak of). iOS also contains an experimental new pager, called the Default
Freezer. These pagers are shown in Table 12-8.

TABLE 12-8: Memory Pagers in XNU

MEMORY PAGER DEFINED IN USED FOR

Default pager default_pager/* Anonymous memory

VNode Pager …/bsd_vm.c Memory mapped fi les

Device pager …/device_vm.c Device backed I/O

Swapfi le pager …/vm_swapfile_pager.c Handles specifi c swapfi le mapping attempts

to prevent reading swap fi le data by memory

mappings

Apple-protected

pager

…/vm_apple_protect Apple-specifi c extension; Provides support for

memory (and specifi cally, binary) encryption

TABLE 12-7 (continued)

c12.indd 486c12.indd 486 9/29/2012 5:43:45 PM9/29/2012 5:43:45 PM

Mach Pagers x 487

MEMORY PAGER DEFINED IN USED FOR

Freezer (iOS,

found in Lion

kernel sources,

but not enabled

by default)

…/default_freezer.c iOS specifi c extension to support “freezing”

processes.

Although Mach allows for pagers to be defined externally using the EMMI, these pagers are all in-
kernel threads.

The Default Pager
The default pager is, as its name implies, the basic pager in Mach and XNU. It is defined in osfmk/
default_pager/ in the following files, shown in Table 12-9:

TABLE 12-9: Default Pager Files

FILE SPECIFIES

default_pager.c Implementation

default_pager_internal.h Data structures

diag.h Diagnostics (statistics) lock

default_pager_alerts.defs MIG subsystem 2295: containing one message (default_

pager_space_alert) used to notify of high and low water mark

events

default_pager_object.defs MIG subsystem 2275: messages used to communicate with

default server

default_pager_types.defs Data types used in other MIG fi les

dp_backing_store.c Backing store support

dp_memory_object.c Implementation of default pager’s operations

The default pager is started by one of two Mach traps (macx_swapon() or macx_triggers(), both
discussed later). If either trap detects that the pager is not initialized (i.e. default_pager_init_
flag is zero), it calls on start_def_pager(), which calls on default_pager_initialize() (both
in osfmk/default_pager/default_pager.c).

When the default pager initializes, it creates a vstruct_zone for its pager objects, and registers a
Mach port using host_default_memory_manager() (defined in osfmk/vm/memory_object.c).
Clients wishing to communicate with it can call the same function to obtain its ports, and send it
one of the messages (defined in default_pager_objects.defs). The port can also be obtained
from user mode (via same Mach message, on the host’s privileged port). The pager itself maintains

c12.indd 487c12.indd 487 9/29/2012 5:43:45 PM9/29/2012 5:43:45 PM

488 x CHAPTER 12 COMMIT TO MEMORY:MACH VIRTUAL MEMORY

communication with the dynamic_pager(8) (discussed towards the end of this chapter), a user mode
accomplice which handles adding, deleting and adjusting swap files. This user mode daemon, however,
communicates back with the default_pager using dedicated Mach traps, rather than messaging.

Although the default pager port is accessible from user mode, in most cases it is not meant to be
used directly. Its only official user mode client is the dynamic_pager(8). For those clients wish-
ing to request information, the information message default_pager_info_64 was wrapped by the
macx_swapinfo() Mach trap. This trap, though, has since been wrapped as well, by the sysctl(2)
interface and kern.swapusage MIB.

As a side effect of the port registration, a new kernel thread, vm_pageout_iothread_internal, is
started by a call to vm_pageout_internal_start(). This is a dedicated thread which is used to
page out vm_objects that are used internally by the kernel (discussed in the next section, under
“The Pageout Daemon”).

The Vnode Pager
The vnode pager is responsible for supporting the memory mapping of files. When files are memory
mapped, their contents need to be read from the file system. When the memory mapped files are
dirtied in memory, they need to be written back to the file system. The pager is implemented in
osfmk/vm/bsd_vm.c.

When a vnode is created (using vnode_create(), as discussed in Chapter 15, “Files and
Filesystems”), VFS calls on the Unified Buffer Cache ubc_info_init() function to handle the
buffering required for the file’s contents. This method, in turn, calls vnode_pager_setup (), which
simply calls vnode_object_create() to create a new pager memory object, and tie the supplied
vnode handle to it. The vnode pager’s data_request and data_return methods respectively wrap
vnode_pagein() and vnode_pageout().

The Device Pager
The device pager is responsible for supporting the memory mapping of devices. It is similar in con-
cept to the vnode pager, but is closely integrated with IOKit. The device_pager_setup() (called
from IOKit’s IOGeneralMemoryDescriptor::doMap()) creates a new pager memory object, and ties
the supplied device handle to it. The device pager’s data_request and data_return methods then
call device_data_action() (again implemented in IOKit’s iokit/Kernel/IOMemoryDescriptor
.cpp) to read or write data, respectively from or to the device. Similarly, IOMemoryDescriptor::
handleFault() calls back on device_pager_populate_object().

The Swapfi le Pager
The swapfile pager’s name is misleading — this is not the pager charged with swapping (the default
pager is). In fact, it is meant to discourage attempts to directly map the swap file. If a user process
does try to map a swap file, the mapping is associated with the swapfile pager, rather than the
default, as shown in Listing 12-15:

c12.indd 488c12.indd 488 9/29/2012 5:43:45 PM9/29/2012 5:43:45 PM

Mach Pagers x 489

LISTING 12-15: Redirection of swap mmap(2) requests, from bsd/kern/kern_mman.c:

int mmap(proc_t p, struct mmap_args *uap, user_addr_t *retval)
{
 struct fileproc *fp;
 register struct vnode *vp;
 // ...
 int fd = uap->fd;
 // ...
 err = fp_lookup(p, fd, &fp, 0);
 // ...
 vp = (struct vnode *)fp->f_fglob->fg_data;
 // ...
 if (vnode_isswap(vp)) {
 /*
 * Map swap files with a special pager
 * that returns obfuscated contents.
 */
 control = NULL;
 pager = swapfile_pager_setup(vp);
 if (pager != MEMORY_OBJECT_NULL) {
 control = swapfile_pager_control(pager);
 }
 ...
}

The swapfile pager implements the swapfile_pager_data_request() method, which just returns
zeroed pages (by explicitly memset()using), as Listing 12-16 shows:

LISTING 12-16: The implementation of the swapfi le pager’s data request (osfmk/vm/vm_
swapfi le_pager.c)

kern_return_t
swapfile_pager_data_request(
 memory_object_t mem_obj,
 memory_object_offset_t offset,
 memory_object_cluster_size_t length,
#if !DEBUG
 __unused
#endif
 vm_prot_t protection_required,
 __unused memory_object_fault_info_t mo_fault_info)
{
 //...

 /*
 * Reserve a virtual page in the kernel address space to map each
 * destination physical page when it's its turn to be processed.
 */
 vm_object_reference(kernel_object); /* ref. for mapping */

continues

c12.indd 489c12.indd 489 9/29/2012 5:43:46 PM9/29/2012 5:43:46 PM

490 x CHAPTER 12 COMMIT TO MEMORY:MACH VIRTUAL MEMORY

 kr = vm_map_find_space(kernel_map,
 &kernel_mapping,
 PAGE_SIZE_64,
 0,
 0,
 &map_entry);
 // ...
 dst_vaddr = CAST_DOWN(vm_offset_t, kernel_mapping);
 dst_ptr = (char *) dst_vaddr;
 /*
 * Gather in a UPL all the VM pages requested by VM.
 */
 mo_control = pager->pager_control;

 upl_size = length;
 upl_flags =
 UPL_RET_ONLY_ABSENT |
 UPL_SET_LITE |
 UPL_NO_SYNC |
 UPL_CLEAN_IN_PLACE | /* triggers UPL_CLEAR_DIRTY */
 UPL_SET_INTERNAL;
 pl_count = 0;
 kr = memory_object_upl_request(mo_control,
 offset, upl_size,
 &upl, NULL, NULL, upl_flags);
 // ...
 /*
 * Fill in the contents of the pages requested by VM.
 */
 upl_pl = UPL_GET_INTERNAL_PAGE_LIST(upl);
 pl_count = length / PAGE_SIZE;
 for (cur_offset = 0; cur_offset < length; cur_offset += PAGE_SIZE) {
 ppnum_t dst_pnum;

 if (!upl_page_present(upl_pl, (int)(cur_offset / PAGE_SIZE))) {
 /* this page is not in the UPL: skip it */
 continue;
 }

 /*
 * Establish an explicit pmap mapping of the destination
 * physical page.
 * We can't do a regular VM mapping because the VM page
 * is "busy".
 */
 dst_pnum = (ppnum_t)
 upl_phys_page(upl_pl, (int)(cur_offset / PAGE_SIZE));
 assert(dst_pnum != 0);
 pmap_enter(kernel_pmap,
 kernel_mapping,
 dst_pnum,
 VM_PROT_READ | VM_PROT_WRITE,
 0,

LISTING 12-16 (continued)

c12.indd 490c12.indd 490 9/29/2012 5:43:46 PM9/29/2012 5:43:46 PM

Mach Pagers x 491

 TRUE);

 memset(dst_ptr, '\0', PAGE_SIZE); // explicit zeroing of pages
 /* add an end-of-line to keep line counters happy */
 dst_ptr[PAGE_SIZE-1] = '\n';

}

The pager cannot handle page-out requests, and will panic if its data_return function is called.

The Apple Protect Pager
A specific external memory manager of great importance is the Apple Protect pager. This is the memory
pager responsible for implementing Apple’s code encryption mechanism. This pager is somewhat simi-
lar to the swapfile pager (having likely been copied from it), but instead of zeroed out pages, it returns
pages after invoking a decryption function on them. The pager contains an additional field, a pager_
crypt_info structure, defined in <osfmk/kern/page_decrypt.h> as shown in Listing 12-17:

LISTING 12-17: page_crypt_info structure from osfmk/kern/page_decrypt.h

/*
 *Interface for text decryption family
 */
struct pager_crypt_info {
 /* Decrypt one page */
 int (*page_decrypt)(const void *src_vaddr, void *dst_vaddr,
 unsigned long long src_offset, void *crypt_ops);
 /* Pager using this crypter terminates - crypt module not needed anymore */
 void (*crypt_end)(void *crypt_ops);
 /* Private data for the crypter */
 void *crypt_ops;
};

The page_decrypt field is a function pointer, a hook, which can be externally set for various decryp-
tion modules. This mechanism enables Apple to plug-in encryption modules in order to decrypt memory
that is declared as “protected.” OS X’s XNU has a default module, the DSMOS, kernel extension.* In
iOS the corresponding modules are FairPlayIOKit and TextEncryptionFamily, which links to it. In either
case, the Apple Protect pager is totally oblivious of the decryption logic: When a data request arrives, it
calls on page_decrypt() function to do all the work, as shown in Listing 12-18.

LISTING 12-18: Apple Protect data request

kern_return_t apple_protect_pager_data_request(
 memory_object_t mem_obj,
 memory_object_offset_t offset,
 memory_object_cluster_size_t length,
#if !DEBUG
 __unused
#endif

*DSMOS is an acronym for “Don’t Steal Mac OS X.” This module has a very rigid (and threatening!) license,
preventing any reverse engineering of it. Therefore, the detail of memory decryption stops here.

continues

c12.indd 491c12.indd 491 9/29/2012 5:43:46 PM9/29/2012 5:43:46 PM

492 x CHAPTER 12 COMMIT TO MEMORY:MACH VIRTUAL MEMORY

 vm_prot_t protection_required,
 memory_object_fault_info_t mo_fault_info)
{
...

 /*
 * Decrypt the encrypted contents of the source page
 * into the destination page.
 */
 ret = pager->crypt.page_decrypt((const void *) src_vaddr,
 (void *) dst_vaddr,
 offset+cur_offset,
 pager->crypt.crypt_ops);

if (ret) {
 /*
 * Decryption failed. Abort the fault.
 */
 retval = KERN_ABORTED;
 } else {
 /*
 * Validate the original page...
 */
 if (src_page->object->code_signed) {
 vm_page_validate_cs_mapped(
 src_page,
 (const void *) src_vaddr);
 }
 /*
 * ... and transfer the results to the destination page.
 */
 UPL_SET_CS_VALIDATED(upl_pl, cur_offset / PAGE_SIZE,
 src_page->cs_validated);
 UPL_SET_CS_TAINTED(upl_pl, cur_offset / PAGE_SIZE,
 src_page->cs_tainted);
 }

Decrypted pages are never marked dirty, and therefore never swapped out to disk (which would
defeat the entire purpose of the encryption, if a plaintext copy could be excavated from the swap
file!). In fact, the Apple Protect pager cannot handle data return (read, page-out) requests and
panic()s if this method is called.

Although this mechanism can be used for various kinds of encrypted memory, Apple currently uses
it for encrypting binaries. Recall (from Chapter 3) that Mach-O segments can be protected. The ker-
nel’s Mach-O handler, load_segment(), checks whether the SG_PROTECTED_VERSION_1 flag is set
for a segment. If it is, it calls unprotect_segment().

LISTING 12-18 (continued)

c12.indd 492c12.indd 492 9/29/2012 5:43:46 PM9/29/2012 5:43:46 PM

Mach Pagers x 493

If XNU is compiled with CONFIG_CODE_DECRYPTION, as it is by default, then unprotect_segment()
calls the Apple protect pager, as shown in Listing 12-19.

LISTING 12-19: unprotect_segment() from bsd/kern/mach_loader.c

#if CONFIG_CODE_DECRYPTION

#define APPLE_UNPROTECTED_HEADER_SIZE (3 * PAGE_SIZE_64)

static load_return_t
unprotect_segment(
 uint64_t file_off,
 uint64_t file_size,
 struct vnode *vp,
 off_t macho_offset,
 vm_map_t map,
 vm_map_offset_t map_addr,
 vm_map_size_t map_size)

 struct pager_crypt_info crypt_info;

 crypt_info.page_decrypt = dsmos_page_transform;
 crypt_info.crypt_ops = NULL;
 crypt_info.crypt_end = NULL;
#pragma unused(vp, macho_offset)
 crypt_info.crypt_ops = (void *)0x2e69cf40;
 kr = vm_map_apple_protected(map,
 map_addr,
 map_addr + map_size,
 &crypt_info);

 }

 if (kr != KERN_SUCCESS) {
 return LOAD_FAILURE;
 }
 return LOAD_SUCCESS;
}

The vm_map_apple_protected() calls on apple_protect_pager_setup(), which iterates over the
the AP pager’s queue, and either looks for the object (if existing), or creates a new one. This way,
when the vm_map is retrieved using a data_request, the AP pager can invoke the decryption func-
tion supplied.

As previously noted, while the effort in encrypting binaries in this way is a valiant one, it can be
defeated quite easily. Mach’s powerful vm_map APIs, which can be used outside the task, enable
reading the task’s memory directly, in which the memory is already decrypted — this is one of the
things that the corerupt tool, presented in the chapter, can do. An even easier way is to force inject
a library using DYLD_INSERT_LIBRARIES (as was discussed in Chapter 4), and just read the memory
from inside the task. This is the reason why, despite App Store binaries being encrypted, iOS app
piracy is thriving.

c12.indd 493c12.indd 493 9/29/2012 5:43:46 PM9/29/2012 5:43:46 PM

494 x CHAPTER 12 COMMIT TO MEMORY:MACH VIRTUAL MEMORY

The Default Freezer (iOS)
The Default Freezer, a new addition in iOS, can be found in the Lion sources, though the com-
piled kernel does not use it (and, at this time of writing, it doesn’t look like Mountain Lion will
be using it, either). It will allow the system to selectively freeze a virtual memory image of a
given task and restore it on demand. Note the use of future tense, “will” — this is still an evolv-
ing implementation.

The discussion in this subsection relies mostly on the open source of XNU,
which (probably intentionally) leaks code segments dealing with hibernation,
and some inspection of the kernel binary. The source, however, remains behind
the iOS kernel version, and hibernation is virtually undocumented. The infor-
mation herein is, therefore, subject to change, though the general ideas are likely
to remain as described.

The rationale for doing this can be found in mobile environments. Indeed, iOS’s nemesis, Android,
has this feature.† On systems with relatively low amounts of physical memory and no real swap, it
is only a matter of time before a user, running too many applications, will also run out of memory.
Applications in a mobile environment, however, most often have no real need to execute when
not in the foreground. This is because the mobile platform normally only allows one app to be in
foreground mode and use the screen. When the user switches between apps, the app can be “fro-
zen,” put in the background, then “thawed” as it resumes. Because the frozen app is not running in
between the freeze and thaw operations, it can also, in theory, be killed altogether, then restored to
the same register state and virtual memory image at a later time.

This ability is thus designed for iOS (think of all those times one switches away Angry Birds to answer
a phone call, for example). Although Lion boasts a similar feature (resuming processes where the user
left off), in OS X the implementation is done through the CoreFoundation framework, and is really
a matter of saving the application state (in the Saved Application State directory). In iOS, the resump-
tion of processes is performed by the the Default Freezer. The freezer is implemented in osfmk/vm/
default_freezer.c, and is enabled if XNU is compiled with CONFIG_FREEZE. It is integrated into
the kernel memorystatus mechanism (also known as Jetsam, discussed in Chapter 13), and provides
new iOS specific system calls, such as pid_suspend() and pid_resume(). Note, that the current
implementation of the freezer seems incomplete (for example, pid_suspend() cannot directly freeze a
specific process) Chapter 13 discusses the mechanism in more detail.

PAGING POLICY MANAGEMENT

The Mach pager types discussed previously perform the dirty work of paging a memory object to or
from its corresponding backing store, but they do not act on their own accord. They merely await
callbacks (their published data_request and data_return methods). A separate entity must be able
to direct them, and make the decision as to which pages should be committed.

†Note that Android’s implementation is totally entirely different. Dalvik applications’ programming model
places the responsibility of saving state (as a “bundle”) at the hands of the application, which responds to
events. If the application is killed and restarted, its memory is reinitialized, not restored, but the application
is passed the previous state, and may resume from it.

c12.indd 494c12.indd 494 9/29/2012 5:43:46 PM9/29/2012 5:43:46 PM

Paging Policy Management x 495

The Pageout Daemon
The pageout daemon isn’t really a daemon, but a thread. Not just any thread: When kernel_
bootstrap_thread() completes the kernel initialization and has nothing more to do, it literally
becomes the pageout daemon, by a call to vm_pageout(), which never returns. The thread (with the
help of a few others) manages the page swapping policy, deciding which pages need to be written
back to their backing store.

vm_pageout thread:
The vm_pageout() function (in osfmk/vm/vm_pageout.c) converts the kernel_bootstrap_thread
to the pageout daemon, by effectively resetting the thread. The function sets the thread’s priority,
initializes various paging statistics and parameters, and then spawns two more threads: The exter-
nal iothread, and the garbage collector (a third, internal iothread, was started when the default
pager is registered).

When the set up is done, vm_pageout() finally calls vm_pageout_continue(), which periodically
wakes up to perform the vm_pageout_scan(). This is a massive, entangled function, which main-
tains four page lists (referred to as page queues). Every vm_page in the system is tied to one of these
four by means of its pageq field:

 ‰ vm_page_queue_active: Pages recently active, and resident.

 ‰ vm_page_queue_inactive: Pages not recently active, and therefore candidates for paging
out. These pages may be paged out, or reactivated, depending on their usage.

 ‰ vm_page_queue_free: The free page list. These are pages that were inactive, but have been
laundered (page out).

 ‰ vm_page_queue_speculative: Pages which were speculatively mapped, as the result
of a read-ahead. These are inactive, but are likely to be used very soon. This queue is
composed of many “bins” (from VM_PAGE_MIN_SPECULATIVE_AGE_Q) VM_PAGE_MAX_

SPECULATIVE_AGE_Q), and will generally be shielded from vm_pageout_scan() for a like
number of milliseconds. Pages gradually age until they fall to inactive status, and join the
vm_page_queue_inactive.

The function works to meet target values for all queues, maintained in the vm_page_[active|
inactive|free|speculative]_target variables, and then blocks the thread. If the current values
(maintained in similarly named count variables) fall below the targets, the thread is woken up. The
check is usually performed as the last stage of a vm_page_grab()or other page operation.

The pageout daemon’s statistics can be obtained by a call to host_statistics[64], (osfmk/kern/
host.c) with the HOST_VMINFO[64] request, as is shown in the next experiment:

Experiment: Virtual Memory Statistics
Recall from Chapter 4 the discussion of the vm_stat(1) command, used to display kernel virtual
memory statistics. The kernel keeps these statistics in a vm_statistics struct, defined in osfmk/
mach/vm_statistics.h as shown in Listing 12-20:

c12.indd 495c12.indd 495 9/29/2012 5:43:47 PM9/29/2012 5:43:47 PM

496 x CHAPTER 12 COMMIT TO MEMORY:MACH VIRTUAL MEMORY

LISTING 12-20: vm_statistics64 struct, from vm_statistics.h

struct vm_statistics64 {
 natural_t free_count; /* # of pages free */
 natural_t active_count; /* # of pages active */
 natural_t inactive_count; /* # of pages inactive */
 natural_t wire_count; /* # of pages wired down */
 uint64_t zero_fill_count; /* # of zero fill pages */
 uint64_t reactivations; /* # of pages reactivated */
 uint64_t pageins; /* # of pageins */
 uint64_t pageouts; /* # of pageouts */
 uint64_t faults; /* # of faults */
 uint64_t cow_faults; /* # of copy-on-writes */
 uint64_t lookups; /* object cache lookups */
 uint64_t hits; /* object cache hits */

 /* added for rev1 */
 uint64_t purges; /* # of pages purged */
 natural_t purgeable_count; /* # of pages purgeable */

 /* added for rev2 */
 /*
 * NB: speculative pages are already accounted for in "free_count",
 * so "speculative_count" is the number of "free" pages that are
 * used to hold data that was read speculatively from disk but
 * haven't actually been used by anyone so far.
 */
 natural_t speculative_count; /* # of pages speculative */

} __attribute__((aligned(8)));

The vm_stat(1) command therefore has very little work — just get the statistics using a host_
statistics64 call on mach_host_self(), and print it out. The code (which is part of Darwin’s
system-cmds package) has been little changed from Avadis Tevanian’s original Mach code, having
just been ported to Mac OS X and expanded to 64 bits. This is shown in Listing 12-21:

LISTING 12-21: Using vm_statistics64 in vm_stat (from system_cmds-541/vm_stat.tproj/vm_
stat.c)

void get_stats(vm_statistics64_t stat)
{
 unsigned int count = HOST_VM_INFO64_COUNT;
 kern_return_t ret;
 if ((ret = host_statistics64 (mach_host_self(),
 HOST_VM_INFO64,
 (host_info64_t) stat,
 &count) != KERN_SUCCESS)) {
 fprintf(stderr, "%s: failed to get statistics. Error %d\n", pgname,ret);
 exit(EXIT_FAILURE);
 }
}

c12.indd 496c12.indd 496 9/29/2012 5:43:48 PM9/29/2012 5:43:48 PM

Paging Policy Management x 497

Taking this code and embedding it in your own main() is straightforward. A simple printf() of the
structure fields from Listing 12-4, and there you have it — a quick implementation of vm_stat(1).

vm_pageout iothreads
The internal and external iothreads each look at a corresponding vm_pageout_queue_ts, which are
initialized by vm_pageout() as well. The vm_pageout_queue_internal is reserved for internal VM
objects (i.e. those created by the kernel, are maintained by default pager, and have their internal
flag set to true), and the vm_pageout_queue_external is used for all other VM objects.

Both threads employ the same thread function, vm_pageout_iothread_continue(), but on differ-
ent queues. This function (technically, a continuation), loops over its queue, dequeueing each page,
getting its corresponding pager (from its vm_object reference), and calling the pager’s
memory_object_data_return() function. This enables the pageout threads to be decoupled from
the actual paging implementation, for which the pager is solely responsible.

Garbage Collection Thread:
The garbage collection thread (vm_pageout_garbage_collect()) is occasionally woken up on its
continuation by vm_pageout_scan(). It handles garbage collection in three areas:

 ‰ stack_collect(): Pages from the kernel stack (implemented in osfmk/kern/stack.c)

 ‰ consider_machine_collect(): For machine dependent pages. In OS X, this is a null func-
tion (implemented in osfmk/i386/pcb.c)

 ‰ consider_buffer_cache_collect(): if the function is indeed defi ned. To defi ne the func-
tion, the caller uses vm_set_buffer_cleanup_callout(). The BSD layer registers the
buffer_cache_gc() in the bufinit() function. (Both are defi ned bsd/vfs/vfs_bio.c).

 ‰ consider_zone_gc(): For zone garbage collection, as discussed earlier in this chapter (This
function is implemented in osfmk/kern/zalloc.c)

The garbage collection thread also calls consider_machine_adjust() (again, a null function in OS
X). Finally, just before blocking on its continuation, it calls consider_pressure_events() (defined
in bsd/kern/vm_pressure.c), which falls through to vm_dispatch_memory_pressure() (in the
same file). This mechanism is tied into the BSD layer’s Jetsam mechanism (somewhat akin to Linux’s
low memory killer), which is explored in Chapter 13.

XNU’s paging code contains calls to VM_CHECK_MEMORYSTATUS, especially in the osfmk/vm/vm_
resident.c functions (vm_page_release(), vm_page_grab(), and friends). In OS X, this is just
an empty macro. In iOS, where physical memory is scarce and there is no swap, this macro calls vm_
check_memorystatus(), which wakes up the kernel_memorystatus thread, also part of Jetsam.

Handling Page Faults
The vm_pageout() daemon only handles one direction of swapping — from the physical memory
out to the backing store. The other direction, paging in, is handled when a page fault occurs. The
logic is quite complicated, but can be simplified as follows:

c12.indd 497c12.indd 497 9/29/2012 5:43:48 PM9/29/2012 5:43:48 PM

498 x CHAPTER 12 COMMIT TO MEMORY:MACH VIRTUAL MEMORY

 ‰ The machine level trap handler (Intel: user/kernel_trap(), ARM: sleh_abort) calls vm_
fault()if the trap reason is a page fault.

 ‰ The vm_fault() function calls vm_page_fault() to handle the actual faulting page, and
retrieve it from the backing store. This is done, as can be expected, by looking up the vm_
page’s corresponding vm_object, and obtaining the pager port from it. The pager’s data_
request function then does the work of paging in the contents from the backing store. A
page-in operation also decrypts the page (if it resides on encrypted swap) as well as validates
its code signature, if any.

 ‰ PMAP_ENTER() inserts the page into the task’s pmap.

Note, that there can be many types of page faults, and the behavior described above can be antici-
pated only when the fault is of a non-resident page type — that is, cases where the page is in the
vm_map, but not in the pmap. Other cases of page faults include:

 ‰ Invalid access: Access to an address which is not mapped into the process address space
(read: in the task’s vm_map). This is what usually happens when a stray pointer is derefer-
enced. This results in a SIGSEGV to the process.

 ‰ Page protection fault: Access to an address which is mapped, but whose page protection
mask forbids the requested access. This is generally the case with trying to jump to an
address in a data segment (enforced by NX/XD in Intel, or the XN bit in ARM), or when try-
ing to write (or read) to a non-writable (or non-readable) page. This results in a SIGBUS to
the process (Debuggers use this mechanisms to insert watchpoints).

 ‰ Copy-On-Write: A page may also be marked read-only, so that if a task attempts to write
to it, the fault is trapped, and the page may then be copied before the write operation is
retried. This is a very common tactic to allow sharing of memory in a way that enables
saving RAM. Most of the task’s vm_map is shared in this way (as the process loads many
shared libraries). The fault in this case is because of the kernel’s “laziness” in not having
pre-allocated a private copy of the page. The page fault handling code therefore handles
this transparently in a manner similar to the above, and the task remains unaware that any-
thing even happened.

Pre-Leopard, the page fault logic also contained mechanisms for detection of the “task
working set,” used to pre-fetch non-contiguous pages related to the faulting task. This was
meant as a read-ahead mechanism, to reduce subsequent page faults which result when a
task is brought in from swap. This is no longer the case.

The dynamic_pager(8) (OS X)
Recall the dynamic_pager, discussed in Chapter 4. The dynamic_pager(8) is a user mode daemon,
which maintains the system swap file, by default /private/var/vm/swapfile. The name is some-
what misleading, as this daemon isn’t one of the actual pagers from Table 12-9, and therefore does not
directly control paging operations. Rather, when the kernel’s default_pager needs to resize or oth-
erwise modify swap file settings in ways which require user mode intervention, it is called upon from
kernel space.

c12.indd 498c12.indd 498 9/29/2012 5:43:48 PM9/29/2012 5:43:48 PM

Summary x 499

The daemon communicates with the default_pager over Mach messages, and uses Mach
traps to control system swapping. Specifically, when the daemon starts, it registers the HOST_
DYNAMIC_PAGER_PORT (a host special port). It can also register a port as an alert port (using the
macx_triggers trap) to get messages from the kernel. The kernel can then send messages to the
daemon, which performs the required support operations in user mode (namely, creating, resiz-
ing or removing a file), and can invoke Mach traps to inform the kernel. These traps are actu-
ally defined as part of the BSD layer, in bsd/vm/dp_backing_file.c, as shown in Table 12-10.

TABLE 12-10: Mach Traps Used By the dynamic_pager(8) Program

MACH TRAP USAGE

macx_swapon

(uint64_t filename,

 int flags,

 int size,

 int priority);

Starts swapping to a given fi le.

Mach interface for BSD’s swapon(). This is a wrapper, which

communicates with default_pager.

Calls default_pager_backing_store _create() and

default_pager_add_file().

macx_swapoff

(uint64_t filename

 int flags);

Stops swapping to the given fi le. Calls

default_pager_backing_store_delete().

macx_triggers

(int hi_water,

 int low_water,

 int flags,

 mach_port_t alert_port);

Sets callbacks for high and low water marks (used for the –H

and –L switches, respectively). This is a fall through to mach_

macx_triggers(). Also used to set encryption on swap, if

UseEncryptedSwap is set in the dynamic_pager’s plist. The

dynamic_pager also uses this to registers its port as the

alert_port, to which the kernel will send messages on high/

low water marks.

SUMMARY

This chapter focused on one of Mach’s (and, by extension, XNU’s) most important and complicated,
yet least understood systems — virtual memory. In particular, we elaborated on the machine-inde-
pendent virtual memory layer, which enables the Mach core to adapt to multiple architectures, and
the machine-specific physical memory, pmap, which binds to them. Through the high-level abstrac-
tion of vm_map, which represents the task address space, virtual memory regions may be allocated,
adjusted, shared, and freed according to need.

Additionally, we discussed kernel memory allocator mechanisms, especially those based on Mach
zones, which allow a higher level of abstraction, akin to the user mode’s malloc(3).

The chapter then turned to paging, with an exploration of Mach’s pagers, which allow to extend
the backing store of virtual memory onto swap, memory mapped files, devices or even remote hosts.
All five pagers, common to OS X and iOS, were discussed, as well as iOS’s new Default Freezer. We

c12.indd 499c12.indd 499 9/29/2012 5:43:48 PM9/29/2012 5:43:48 PM

500 x CHAPTER 12 COMMIT TO MEMORY:MACH VIRTUAL MEMORY

concluded with an explanation of the workings of the pageout daemon and the dynamic pager, both
performing important operations despite misleading names.

As this chapter concludes, so does the detailed subsection of this book dealing with Mach. The next
chapters focus on the various components of the BSD layer (Chapter 13), advanced BSD primitives
(Chapter 14), and then the subsystems of files (VFS, Chapter 15) and networking (Chapter 17).

REFERENCES

1. Rashid, Tevanian, Young, Golub, Baron, Black, Bolosky, and Chew, CMU. “Machine-
Independent Virtual Memory Management of Paged Uniprocessor and Multiprocessor
Architectures,” ACM October, 1987

c12.indd 500c12.indd 500 9/29/2012 5:43:48 PM9/29/2012 5:43:48 PM

13
BS”D — The BSD Layer

Mach is merely a microkernel. Although some of its application programming interfaces (APIs)
are exposed to user mode, developers mainly use the much more popular API of POSIX,
which is implemented by the BSD layer of Mach.

This chapter discusses the BSD layer in considerable depth. “Considerable” because BSD by
itself is a complicated design spanning many implementations, notably FreeBSD and its various
sister operating systems. XNU largely conforms to 4.4BSD, and so, in places where this book
leaves off for brevity, refer to the BSD documents[1] listed in the references for this chapter.

This chapter starts with the discussion of the standards that BSD implements. It then dis-
cusses, in order, the fundamental objects of BSD: processes, threads, and the executable
programs that create them. It then continues to talk about process control calls, in particular
ptrace(2), and the undocumented policy control functions.

The chapter concludes by discussing UNIX signals, and how they correspond with the proces-
sor traps and Mach exceptions discussed in Chapter 11. Discussion of more advanced topics,
or features that are Apple proprietary, is left for the next chapter.

INTRODUCING BSD

Even before its incarnation in XNU, Mach was closely integrated with BSD. Mach traps
and services alone cannot provide for a full operating system, and by design are not meant
to. After all, they do not include something as fundamental as a fi le system. Another layer
needs to build on top of these primitives the well-known abstractions of fi les, devices, users,
groups, and more. The layer originally chosen in Mach, and kept in XNU, is BSD.

BSD and POSIX user mode developers in OS X can remain blissfully ignorant of the Mach lay-
ers. Even though the Mach APIs are still accessible in user mode via the Mach traps discussed
Chapters 11 and 12, XNU’s primary “personality” is that of BSD, and the system exposes the
full set of POSIX system calls. Though the fact is little known, Mac OS X received offi cial

c13.indd 501c13.indd 501 10/5/2012 4:18:52 PM10/5/2012 4:18:52 PM

502 x CHAPTER 13 BS”D — THE BSD LAYER

UNIX03[2] certifi cation in Leopard, something that most UNIX-like systems, including Linux,
cannot really claim. (Apple received this certifi cation from The Open Group in May 2007 and is due
for renewal as this book goes to print).

One Ring to Bind Them
The UNIX03 certifi cation means that OS X conforms to the Single UNIX specifi cation, com-
monly referred to as SUS. Following the great divide, UNIX has proliferated into so many versions
and fl avors that developers could no longer write portable code without having to consider OS
idiosyncrasies.

FIGURE 13-1: The logo of The Open Group, holders of the UNIX trademark (with apologies to NH)

The need for a reuniting standard emerged to once more allow portability, enabling developers to
write code they can deploy on multiple operating systems, conforming to said standard. Portability
is of two types:

 ‰ Source-level compatibility: This type implies that, even though the underlying architecture
might be different, all the common system APIs are identical. As such, compiling code cleanly
on the operating system–compatible compiler must be possible so as to create a binary that
executes with the exact expected behavior.

 ‰ Binary compatibility: This type is a stronger requirement than source-level compatibility and
implies that the program, once compiled, could be moved from one standards-compliant
operating system to the other (assuming the same underlying machine architecture) and
would run seamlessly.

Somewhat surprisingly, OS X makes no attempt for binary compatibility. In fact, at the time of
this writing, binary compatibility is impossible by design because the native binary format of OS
X is still the venerable Mach-O executable, which is yet another legacy of OS X’s NextSTEP roots.
Indeed, other UNIX-like systems, such as BSD, Linux, and Solaris, are somewhat closer to this in
that they all agree on the Executable and Library Format (ELF), which is the de facto standard in
UNIX-like environments, save OS X.

UNIX03 demands only source-level compatibility, however. With OS X declared compliant,
SUS-conforming sources, which rely on common and standardized APIs, are guaranteed to be able
to compile neatly on OS X.

c13.indd 502c13.indd 502 10/5/2012 4:18:57 PM10/5/2012 4:18:57 PM

Introducing BSD x 503

Note that the standards compliance ensures only compatibility for the minimum approved standard.
It does not imply the compliant system cannot expose its own idiosyncratic APIs, at the cost of
breaking compatibility with other operating systems. Indeed, OS X has many such APIs that don’t
even begin to compile on other operating systems. Mach-O is just one. It is therefore going to be a
long time before non-Apple operating systems can execute OS X binaries.

What’s in the POSIX Standard?
SUS v3 is aligned with another standard, POSIX (known also by another name, IEEE Std 1003.1-
2001). Table 13-1 shows some of what the standard includes.

TABLE 13-1: Single UNIX specifi cation components

SUS PART MAN SECTION CONTAINS

Base defi nitions

(XBD)

4, 5, 7 Conventions that are expected of a UNIX system. This lengthy

tome contains 13 chapters describing everything from environ-

ment variables and regular expression syntax through the com-

mon fi le system, devices, and tty specifi cations found on UNIX.

Additionally, the last chapter lists the constants, macros, and

data structures exposed by the operating system. These are

available to the developer as the familiar #include fi les in

/usr/include. The well-known <unistd.h> and <stdlib

.h>, alongside programmatic lynchpins such as <stdio.h>,

<string.h>, and nearly 100 other header fi les are included in

this part of the standard.

System Interfaces

(XSH)

2, 3 The APIs exposed by the system. Drawing on the standard data

structures and constants from XBD, this specifi cation defi nes

the system calls (section 2 of the manual) and library calls (sec-

tion 3 of the manual).

Base Utilities (XCU) 1, 6, 8 The shell (the familiar bash, ksh, and csh, at a bare minimum)

with some 150 command-line utilities making up the familiar

contents of the bin and sbin directories. From the man per-

spective, XCU contains sections 1 (user commands) and 8 (sys-

tem administration commands).

Implementing BSD
To expose the BSD APIs, XNU actually borrows code from the BSD code-base itself. Much of the
kernel code in the bsd/ directory is the original BSD code, which still contains the required copy-
right of the BSD license. The BSD license is considered to be very permissive, which allows Apple to
close off its operating system on a whim, as it has indeed done in iOS.

Like the original NeXTSTEP ancestor, which was Mach 2.5 tied to 4.3 BSD, so is xnu now based
on Mach 3.0, and tied to 4.4 BSD (and sharing a common code base ancestry with FreeBSD).

c13.indd 503c13.indd 503 10/5/2012 4:19:04 PM10/5/2012 4:19:04 PM

504 x CHAPTER 13 BS”D — THE BSD LAYER

XNU Is Not Fully BSD
Although XNU exports a fully functional BSD layer and API, it is not a full BSD implementation.
Parts of it, such as the Virtual Filesystem Switch (VFS) and network architecture, were copied
fully, but others were either partially ported or completely omitted. A few of the well-known BSD
APIs, such as sbrk() and swapon(), are missing. Additionally, XNU’s kexts (kernel extensions) are
incompatible with BSD’s kmods (kernel modules), and I/O Kit is entirely unique in XNU. As a con-
sequence, OS X remains a BSD-like system (and, in the UNIX genealogy, clearly sides with the BSD
branch, rather than AT&T’s), but cannot be considered fully BSD.

PROCESSES AND THREADS

The primitives and algorithms of Mach scheduling — tasks and threads — are discussed in great
detail in Chapter 10. As mentioned, Mach provides these primitives as low-level abstractions with a
deliberately basic and incomplete API, on top of which the upper layers are expected to implement
the full functionality.

BSD takes the two primitives and structures them into the well-known concepts of process and thread
from the UNIX landscape. This section goes on to discuss the specifi c BSD implementation of pro-
cesses and threads, and how it ties to the underlying Mach layer. Note that this builds on the basic
concepts of processes in UNIX, which were introduced in Chapter 4. If you are somewhat unfamiliar
with these concepts, you might want to review Chapter 3 before going on with this chapter.

BSD Process Structs
Mach provides a rich abstraction of tasks and threads, but is still incomplete and leaves much to be
desired. A BSD process can be uniquely mapped to a Mach task, but it contains more than the basic
scheduling and statistics information the Mach task offers. Most notably, BSD processes contain fi le
descriptors and signal handlers. Processes also support the complex genealogy linking them with
their parents, siblings, and children.

BSD maintains these features of a process and many more by means of a struct proc, which is yet
another mammoth structure, defi ned in bsd/sys/proc_internal.h. XNU’s version of the struct
proc is similar to that of BSD, but contains many idiosyncratic fi elds, relating to DTrace support,
code signing, work queues, and other specifi c features. Rather than fi ll page after page with a listing
of this huge structure, Table 13-2 highlights the important fi elds (shaded rows denote parameters
which copy over on process fork():

TABLE 13-2: Important fi elds of the struct proc (not in order)

FIELD PURPOSE

LIST_ENTRY(proc) p_list; Ties proc to list of all running processes.

pid_t p_pid, p_ppid, p_pgrpid; PID, PPID, and PGRP of this process.

uid_t p_uid, p_ruid, p_svuid,

gid_t p_gid, p_rgid, p_svgid;
UIDs and GIDs (current, real and saved) of process.

c13.indd 504c13.indd 504 10/5/2012 4:19:04 PM10/5/2012 4:19:04 PM

Processes and Threads x 505

FIELD PURPOSE

void * task; Pointer to underlying

Mach task.

char p_stat; Process status (letter shown in PS).

struct proc * p_pptr; Pointer to parent process

(this->p_pptr->p_pid == this->ppid).

LIST_ENTRY(proc) p_pglist;

LIST_ENTRY(proc)

 p_sibling;

LIST_ENTRY(proc)

 p_children;

Fellow members in same PGRP, siblings (other pro-

cesses which are children of same ppid), and children of

this process (which are all siblings to one another).

LIST_ENTRY(proc) p_hash; Pointer to process hash chain entry.

TAILQ_HEAD(, uthread)

 p_uthlist;

All of the BSD threads in to this process.

TAILQ_HEAD(,eventqelt)

 p_evlist;

Events associated with this process.

struct filedesc *p_fd; Open fi le descriptors. The int fd from user space is an

index into this p_fd array.

struct sigacts *p_sigacts; Signal behaviors.

struct plimit *p_limit;

struct timeval

 p_rlim_cpu;

Process resource limits (from setrlimit(2)). The remaining

CPU time is maintained separately.

pid_t si_pid;

u_int si_status;

u_int si_code;

uid_t si_uid;

Fields initialized from last SIGCHLD in case this process

has spawned children and needs to collect their exit

code.

u_int p_argslen;

int p_argc;

Length and number of command-line arguments.

char p_comm[MAXCOMLEN+1];

char p_name[(2*MAXCOMLEN)+1];

Command line and process name.

user_addr_t *user_stack; Address of user mode stack.

continues

c13.indd 505c13.indd 505 10/5/2012 4:19:05 PM10/5/2012 4:19:05 PM

506 x CHAPTER 13 BS”D — THE BSD LAYER

FIELD PURPOSE

u_char p_priority;

u_char p_resv0;

char p_nice;

u_char p_resv1;

BSD priority and nice fi elds, as well as calculated fi elds.

struct vnode *p_textvp;

off_t p_textoff;

uint8_t p_uuid[16];

Pointer to vnode of executable that is making up this

process image and the off set in it.

The UUID is copied from the Mach-O LC_UUID.

sigset_t p_sigmask;

sigset_t p_sigignore;

sigset_t p_sigcatch;

Signals masked, ignored and caught by this process.

(sigmask is deprecated).

int p_mac_enforce; Is process subject to MAC

enforcement?

uint32_t p_csflags; Code-signing fl ags (discussed later).

int p_iopol_disk; In iOS controls process I/O policy for disk.

int p_aio_total_count; int

p_aio_active_count;

TAILQ_HEAD

(, aio_workq_entry)

 p_aio_activeq;

TAILQ_HEAD

(, aio_workq_entry)

 p_aio_doneq;

Asynchronous I/O support: Counts and lists of AIO

requests.

struct lctx *p_lctx; LIST_

ENTRY(proc) p_lclist;
Support for login contexts: pointer to

current login context, and processes in that context.

user_addr_t p_threadstart;

int p_pthsize;

void * p_pthhash;

Pthread support. Size of thread, thread function, and

pointer to pthread waitqueue hash.

user_addr_t p_wqthread;

void *p_wqptr;

int p_wqsize;

boolean_t p_wqiniting;

lck_spin_t p_wqlock;

Work queue support (discussed in more detail in the

next chapter).

*Bold rows imply parameters that copy over on process fork()

TABLE 13-2 (continued)

c13.indd 506c13.indd 506 10/5/2012 4:19:05 PM10/5/2012 4:19:05 PM

Processes and Threads x 507

The structure is so massive it requires several disjoint locks to protect access to its various fi elds, and
the lists it participates in. The process lock (PL) locks the entire structure, but there exist a process
spin lock (PSL), a fi le descriptor lock (PFDL), and others that lock the groups and siblings.

Process Lists and Groups
XNU maintains processes in struct proclist variables, which are really nothing more than
linked lists of struct proc. There are two such lists and a special iterator function to traverse
them, as shown in Listing 13-1.

LISTING 13-1: proclists in XNU, from bsd/sys/proc_internal.h (implementation in bsd/kern/
kern_proc.c)

LIST_HEAD(proclist, proc);

/* defns for proc_iterate */
#define PROC_ALLPROCLIST 1 /* walk the allproc list (procs not exited yet) */
#define PROC_ZOMBPROCLIST 2 /* walk the zombie list */
#define PROC_NOWAITTRANS 4 /* do not wait for transitions (checkdirs only) */

extern struct proclist allproc; /* List of all processes. */
extern struct proclist zombproc; /* List of zombie processes. */
...
int proc_iterate(int flags, // PROC_* flags, above
 int (*callout)(proc_t,void *), // funciton to execute on each item
 void *arg, // 2nd argument to callout
 int (*filterfn)(proc_t,void *),// function to decide callout execution
 void *filterarg); // 2nd argument to be passed to filterfn

Processes may also belong to a process group, in which case an additional struct pgrp is used, as
shown in Listing 13-2:

LISTING 13-2: Process group declaration in bsd/sys/proc_internal.h (implemented in bsd/kern/
kern_proc.c)

// In the following, LL implies LIST_LOCK, and PGL implies Process Group Lock, which
// are system wide locks used to protect structure fields against concurrent access

struct pgrp {
 LIST_ENTRY(pgrp) pg_hash; /* Hash chain. (LL) */
 LIST_HEAD(, proc) pg_members; /* Pointer to pgrp members. (PGL) */
 struct session * pg_session; /* Pointer to session. (LL) */
 pid_t pg_id; /* Pgrp id. (static) */
 int pg_jobc; /* # procs qualifying pgrp for job control (PGL) */
 int pg_membercnt; /* Number of processes in the pgrocess group (PGL) */
 int pg_refcount; /* number of current iterators (LL) */
 unsigned int pg_listflags; /* (LL) */
 lck_mtx_t pg_mlock; /* mutex lock to protect pgrp */
};
..
..
/* defns for pgrp_iterate */
#define PGRP_DROPREF 1

continues

c13.indd 507c13.indd 507 10/5/2012 4:19:05 PM10/5/2012 4:19:05 PM

508 x CHAPTER 13 BS”D — THE BSD LAYER

#define PGRP_BLOCKITERATE 2
..
..
// pgrp_iterate is used to iterate over the pgrp->pg_members list
extern int pgrp_iterate(struct pgrp * pgrp, // pgrp to iterate over
 int flags,
 int (*callout)(proc_t , void *), // function to execute on each item
 void *arg, // 2nd argument to be passed to callout
 int (*filterfn)(proc_t , void *),// function to decide callout execution
 void *filterarg); // 2nd argument to be passed to filterfn

The iterator functions, both proc_iterate() and pgrp_iterate(), operate very similarly, as they
both traverse linked lists. The former function looks at the allproclist (if PROC_ALLPROCLIST is
set in fl ags) and at the zombproclist (if PROC_ZOMBPROCLIST is set in fl ags), whereas the latter looks
at the pg_members fi eld of the pgrp.

The iterators both accept a filterfn, a pointer to a function, which, if set, will be called for each
process in the list, along with an optional filterarg. If the function returns a non-zero value (or
no function exists to begin with), the callout function will be applied on the process in question,
with an optional calloutarg. A good example of how this mechanism is used can be found in the
process-killing logic, implemented by killpg1() bsd/kern/kern_proc.c, which is also described
in the “Signals” section of this chapter.

Threads
Processes serve as containers, but the actual execution units of a binary are threads. Mach provides
the thread primitive, but — yet again — it is insuffi cient for the requirements of higher level operat-
ing systems. A richer, more standardized API therefore needs to be provided by XNU.

The BSD Thread Object
BSD thread objects are defi ned as instances of a struct uthread, which is defi ned in bsd/sys/
user.h. Again, we are dealing with an overwhelming, large structure with inline structures that
further inhibit readability. Listing 13-3 attempts to simplify as much as possible, by highlighting the
important fi elds:

LISTING 13-3: The struct uthread, from bsd/sys/user.h

struct uthread {
 /* syscall parameters, results and catches */
 u_int64_t uu_arg[8]; /* arguments to current system call */
 int *uu_ap; /* pointer to arglist */
 int uu_rval[2];

 /* thread exception handling */
 int uu_exception;
 mach_exception_code_t uu_code; /* ``code'' to trap */
 mach_exception_subcode_t uu_subcode;
 char uu_cursig; /* p_cursig for exc. */

 /* support for syscalls which use continuations */
 struct _select { .. } uu_select;

LISTING 13-2 (continued)

c13.indd 508c13.indd 508 10/5/2012 4:19:05 PM10/5/2012 4:19:05 PM

Processes and Threads x 509

 union {
 struct _kqueue_scan { } ss_kqueue_scan; /* saved state for kevent_scan() */
 struct _kevent { } ss_kevent; /* saved state for kevent() */
 } uu_kevent;
 struct _kauth { } uu_kauth;
 ..
 /* internal support for continuation framework */
 int (*uu_continuation)(int);
 int uu_pri;
 int uu_timo;
 caddr_t uu_wchan; /* sleeping thread wait channel */
 const char *uu_wmesg; /* ... wait message */
 int uu_flag;

 int uu_iopol_disk; /* disk I/O policy */ // iOS only

 struct proc * uu_proc; // parent to owning process
 void * uu_userstate;

// ...
// signal stuff (uu_sig* fields)
struct vfs_context uu_context; /* thread + cred */

 sigset_t uu_vforkmask; /* saved signal mask during vfork */

 TAILQ_ENTRY(uthread) uu_list; /* List of uthreads in proc */
 struct kaudit_record *uu_ar; /* audit record */
 struct task* uu_aio_task; /* target task for async io */

 lck_mtx_t *uu_mtx;

 // throttled I/O support…

 struct kern_sigaltstack uu_sigstk;
 int uu_defer_reclaims;
 int uu_notrigger; // should this thread trigger automount?
 vnode_t uu_cdir; /* per thread CWD */
 int uu_dupfd; /* fd in fdesc_open/dupfdopen */

 // JOE_DEBUG's stuff..

 // DTRACE support ..

 void * uu_threadlist;
 char * pth_name; // used for pthread_setname_np (over proc_info)
 struct ksyn_waitq_element uu_kwe; // use*d* for pthread synch
};

A mysterious developer, forever known as JOE laced BSD thread handling
code all over XNU with conditional logic for debugging. If you peek at bsd/
sys/user.h, bsd/vfs/vfs_subr.c, and bsd/vfs_bio.c, you will see quite
a few #ifdef JOE_DEBUG statements. None of them are in the release kernel,
because JOE_DEBUG is #defined to 0 in osfmk/i386/loose_ends.c. Nonethe-
less, the #ifdefs have been around for a while now (at least since XNU 792),
and are still in the Lion kernel sources.

c13.indd 509c13.indd 509 10/5/2012 4:19:05 PM10/5/2012 4:19:05 PM

510 x CHAPTER 13 BS”D — THE BSD LAYER

User mode threads begin with a call to pthread_create. This function doesn’t do too much,
as its main functionality provided by the bsdthread_create system call, whose implemen-
tation is in bsd/kern/pthread_synch.c. bsdthread_create() is basically a long wrapper
over Mach’s thread create. It is the underlying Mach layer that creates the thread object.
bsdthread_create() merely goes on to set up its stack, if a custom stack is specified, its
(machine-specific) thread state, and custom scheduling parameters, if any. Figure 13-2 shows
this flow in more detail.

pthread_create

__bsdthread_create Invoke system call #360 – bsdthread_create()

Create a new Mach thread using thread_create

Increase thread’s reference count (for creator), convert to port

If bsdthread_create_args->flags & PTHREAD_START_CUSTOM:

mach_vm_map or mach_vm_allocate a custom stack
mach_vm_protect (..VM_PROTECT_NONE) stack guard page
mach_vm_fault() the new thread’s stack and pthread_t struct

Set up i386 or x86_64 (iOS: ARM) thread state

If bsdthread_create_args->flags & PTHREAD_START_SETSCHED:

Set thread scheduling parameters using thread_policy_set

Resume new thread (schedule it)

Deallocate creator reference to new thread

#360

bsdthread_create

thread_create

thread_reference

Set up thread state

thread_resume

thread_deallocate

Set up custom
thread stack

Set up thread
scheduling

FIGURE 13-2: Flow of thread creation

Mapping to Mach
As you saw in Chapter 11, the underlying Mach microkernel is what actually implements the
primitives for the massive process and thread structures. Every Mach task contains a bsd_info
pointer to its corresponding BSD proc structure, and likewise, Mach threads contain a uthread
fi eld pointing to the corresponding struct uthread. These pointers are void, so Mach functions

c13.indd 510c13.indd 510 10/5/2012 4:19:08 PM10/5/2012 4:19:08 PM

Processes and Threads x 511

need not know the specifi cs of the BSD structures. Similarly, the BSD process points back to its
corresponding task using a task fi eld (again, a void *), and a BSD thread (uthread) points to the
corresponding Mach thread using a vc_thread * fi eld, which is itself a subthread of a fi eld called
uu_context. This is shown in Figure 13-3.

TAILQ_ENTRY(uthread) uu_list

Mach Plane

BSD Plane

TAILQ_HEAD (,uthread) p_uthlist

queue head t threads

queue_chain_t task_threads

void *task

void *bsd info

The Mach task_t The Mach thread_t

The BSD uthreadThe BSD proc_t

FIGURE 13-3: Mach processes and threads, mapped to BSD threads

Even though the pointers are straightforward to follow, helper functions, such as get_bsdtask_
info(task_t) and get_bsdthread_info(thread_t), which are both in osfmk/kern/bsd_kern.c),
exist. They help preserve the implementation abstraction. On top of them, other functions, such as
current_proc() in bsd/kern/bsd_stubs.c, can be implemented (essentially by wrapping get_bsd-
task_info() on the current_task).

From the Mach side, the Mach call of task_for_pid() (bsd/vm/vm_unix.c) exists for mapping
a BSD PID to the underlying Mach task port. This call used to include PID 0 (the Mach kernel_
task), but now rejects this argument as invalid. The task_for_pid() call is deprecated, and in
iOS also requires special entitlements (and therefore requires code-signing the binary, and root per-
missions for a process not owned by you). This is for (obvio us) security reasons: Getting the
task port of an arbitrary PID opens a Pandora’s box of mischief and malice, enabling (among other
things) one to read and modify that task’s memory image. The coreruption tool, presented in Chap-
ter 12, demonstrates just how powerful these abilities are. As noted earlier in this book, obtaining

c13.indd 511c13.indd 511 10/5/2012 4:19:09 PM10/5/2012 4:19:09 PM

512 x CHAPTER 13 BS”D — THE BSD LAYER

the kernel_task’s port (for PID 0) is tantamount to omnipotence, which is why jailbreakers patch
the call and re-enable PID 0.

In XNU, all kernel threads are Mach threads and have no corresponding BSD processes. That is,
their uthread * is NULL, and they are contained in the kernel_task. Likewise, the kernel_task
has no BSD process identifi er (save PID 0, as just described).

PROCESS CREATION

Chapter 4 discussed binary loading by the kernel and dyld fairly in depth, but did not go through
the actual detail from the kernel perspective. This section picks up where Chapter 4 left off, by
discussing this perspective in depth.

The User Mode Perspective
The UNIX model (with which OS X complies) does not support the concept of a “new” or “empty”
process. In UNIX, a process cannot be created, only duplicated using the fork() system call.
fork() is a special system call in that it is called once, but returns twice:

 ‰ In the child process, fork() returns 0.

 ‰ In the parent process, fork() returns the PID of the child.

If the fork() operation fails, fork() returns only in its calling process, with a return value of -1, and
with errno set appropriately, usually EAGAIN or ENOMEM.

The child process is an exact duplicate of its parent, with a few notable exceptions:

 ‰ File descriptors, though having the same numbers and pointing to the same fi les, are copies
of the original descriptors. This means that subsequent calls that modify the descriptors (e.g.,
lseek() or close()) affect only the process that made them.

 ‰ Resource limits, as per getrlimit(2) or ulimit(1), are inherited by the child, but utiliza-
tion is set to zero.

 ‰ The memory image of the child seems (from the virtual memory perspective) private to the
child but is, in fact (from the physical memory perspective), shared with the parent, using the
same physical pages in memory. The virtual privacy is assured by setting the copy-on-write
bit on the pages, so that either process — child or parent — attempting a write to a page trig-
gers a page fault. In handling the page fault, the kernel duplicates the page, creating a sepa-
rate physical copy of the same page, and breaking the mapping.

The last point, physically sharing the same memory pages, greatly facilitates process creation,
as no memory is actually copied during the creation of the child, but does incur the overhead of
duplicating the page tables and setting copy-on-write. A duplicate process, however, is seldom
of any use. Most child processes continue to overwrite the entire memory space with a new
memory image — that of the executable being loaded. A somewhat more effi cient system call,
vfork(), was created to take advantage of this fact by skipping any address space operations,
essentially making any access to process memory in the child illegal. This is fi ne because this
memory is overwritten with the new executable image anyway. vfork(), however, is largely
considered deprecated.

c13.indd 512c13.indd 512 10/5/2012 4:19:09 PM10/5/2012 4:19:09 PM

Process Creation x 513

A third system call, posix_spawn(), has been defi ned in the POSIX standard to facilitate process
creation and subsequent image execution. This system call is defi ned in <spawn.h>, as shown in
Listing 13-4.

LISTING 13-4: posix_spawn

int posix_spawn(pid_t *restrict pid, // OUT pointer to spawned process pid
 const char *restrict path, // absolute or relative path to the image
 const posix_spawn_file_actions_t *file_act,// set up by posix_spawn_file_actions_init()
 const posix_spawnattr_t *restrict attrp, // set up by posix_spawnattr_init()
 char *const argv[restrict], // argv[0], or full argv[] command-line
 char *const envp[restrict]); // environment pointer (same as in exec*e)

There are several advantages in using posix_spawn over the traditional fork()/exec() model,
including that it enables using one system call, rather than two. Additionally, posix_spawn() allows
fi ne-grained control over attribute and fi le descriptor inheritance, achieved via the third and fourth
parameters: file_actions and the spawn attributes, as shown in Listing 13-5.

LISTING 13-5: posix_spawn_fi le_actions_t and posix_spawnattr_t manipulation

int posix_spawn_file_actions_init(posix_spawn_file_actions_t *file_actions);
int posix_spawn_file_actions_addopen

(posix_spawn_file_actions_t *restrict file_actions,
 int filedes, const char *restrict path,
 int oflag, mode_t mode);
int posix_spawn_file_actions_adddup2(posix_spawn_file_actions_t *file_actions,
 int filedes, int newfiledes);
int posix_spawn_file_actions_addclose(posix_spawn_file_actions_t *file_actions,
 int filedes);
int posix_spawn_file_actions_destroy (posix_spawn_file_actions_t *file_actions);
int posix_spawnattr_init(posix_spawnattr_t *attr);
int posix_spawnattr_getflags(const posix_spawnattr_t *restrict attr,
 short *restrict flags);
int posix_spawnattr_getpgroup(const posix_spawnattr_t *restrict attr,
 pid_t *restrict pgroup);
int posix_spawnattr_getsigmask(const posix_spawnattr_t *restrict attr,
 sigset_t *restrict sigmask);
int posix_spawnattr_setflags(posix_spawnattr_t *attr, short flags);
int posix_spawnattr_setpgroup(posix_spawnattr_t *attr, pid_t pgroup);
int posix_spawnattr_setsigmask(posix_spawnattr_t *restrict attr,
 const sigset_t *restrict sigmask);
int posix_spawnattr_destroy(posix_spawnattr_t *attr);

The Kernel Mode Perspective
Regardless of the system call used — fork(), vfork(), or posix_spawn() — all paths in the ker-
nel converge in the same underlying implementation, called fork1(), as shown in Figure 13-4. Its
behavior, however, differs based on its third parameter — kind — for which each function passes a
different value. These values are shown in Table 13-3:

int fork1 (proc_t parent_proc, thread_t *child_threadp, int kind);

c13.indd 513c13.indd 513 10/5/2012 4:19:10 PM10/5/2012 4:19:10 PM

514 x CHAPTER 13 BS”D — THE BSD LAYER

TABLE 13-3: fork1() “kinds” and their behavior

KIND PROCESS CREATED ADDRESS SPACE

PROC_CREATE_FORK Complete Copied (on write)

PROC_CREATE_VFORK Partial Newly created

PROC_CREATE_SPAWN Complete Lazy (Invalid)

It is fork1() that eventually creates the new process by creating a new Mach task for the process.
Though it serves as a focal point for the three functions it quickly splits back into the three distinct cases
by switch()ing on its kind argument, which indicates which one of the three called it, as shown in Fig-
ure 13-5. For vfork, it calls forkproc(), discussed in the following section. Otherwise, cloneproc() is
preferred. The latter wraps over forkproc(), but performs many more tasks, as will be discussed.

posix_spawn() and fork() calls are handled in the same way, save dup’ing the parent process’s
thread state into the child_thread, which is done only in fork by thread_dup(). Following the
call to clone/forkproc, fork1() marks the child as forked, but not exec()ed (using the AFORK set-
ting on its p_acflag fi eld), and if not posix_spawn()ed, handles DTrace.

PROC_CREATE_SPAWNPROC_CREATE_VFORK

#66

vfork(..) fork()

#2

posix_spawn(..)

#244

fork1()

PROC_CREATE_FORK

FIGURE 13-4 All paths leads to fork1()

fork1()

forkproc()

PROC_CREATE_SPAWN
PROC_CREATE_VFORK PROC_CREATE_FORK

cloneproc()

spawn = 1

forkproc()

fork_create_child() Create the Mach task_t and thread_t for this

Initialize a BSD proc_t, but not a real process

pinsertchild() Insert process into process list, link to parent

End of the road for vfork() –

No Mach task/thread created
unless execve() is called, later.

FIGURE 13-5: Fork() and demultiplexing the various process creation calls

c13.indd 514c13.indd 514 10/5/2012 4:19:10 PM10/5/2012 4:19:10 PM

Process Creation x 515

The forkproc() Function
The forkproc() function is in charge of doing the work of initializing the new process’s proc_t
structure, whether from fork(), vfork(), or posix_spawn(). It proceeds in the
following way:

 ‰ Allocates the child_proc proc_t from the M_PROC zone, and bzeros it.

 ‰ Allocates the child’s statistics (p_stats) and signal actions (p_sigacts).

 ‰ Allocates the interval timer callout (p_rcall).

 ‰ Gets a PID for the child, accommodating for possible wrapping of the PID past PID_MAX
(99999). Inserts in the PID hash table.

 ‰ Initializes other process fi elds. Most of these are bcopy()ed directly from the parent, from
in between the parent’s p_startcopy (set to p_argslen) and p_endcopy pointers (p_aio_
totalcount). Some are fi ltered out. For example, the only p_flags inherited are P_LP64,
P_TRANSLATED, P_AFFINITY, P_DISABLE_ASLR, and P_PROFIL.

 ‰ Copies all the parent’s fi le descriptors, using fdcopy().

 ‰ Copies System V shared memory from the parent (#if SYSV_SHM), using shmfork().

 ‰ Copies the parent’s resource limits (as in ulimit(1) or setrlimit(2)) using
proc_limitfork().

 ‰ Memsets the p_stats from pstat_startzero (p_ru) to endzero (p_start) using bzero(),
and record p_start (the process start time) to be now.

 ‰ If the parent has defi ned signal actions (p_sigacts), copies them over, or else initializes the
child’s to be all NULL.

 ‰ Sets child’s controlling terminal, if any.

 ‰ Blocks all signals by proc_signalstart (child_proc,0) and marks as in transition (using
proc_transstart(child_proc,0)).

 ‰ Initializes the child’s thread list (p_uthlist) and asynchronous I/O queues.

 ‰ Inherits the parent’s code-signing fl ags.

 ‰ Copies the parent’s work queue information.

 ‰ If the parent is in the login context, (and #if CONFIG_LCTX), adds the child as well, using
enterlctx();.

Note that one very important aspect is missing from this function — the creation of the actual
process and thread at the Mach level. This is not done in the case of a vfork(), but only in
fork() and posix_spawn(). This is why forkproc() is only called directly from vfork(),
and is otherwise wrapped by cloneproc() (discussed next), which also creates the required
Mach constructs. A vfork()ed process has no corresponding Mach task or thread. Only if it
is followed by an execve() will those items be created for it. In fact, a vfork() process has no
raison d’etre other than next calling execve(), because this system call was originally designed

c13.indd 515c13.indd 515 10/5/2012 4:19:10 PM10/5/2012 4:19:10 PM

516 x CHAPTER 13 BS”D — THE BSD LAYER

for this purpose. Its task_t and thread_t (as can be obtained with mach_task_self() and
mach_thread_self(), respectively) are exactly those of its parent, as is the vm_map. Only if a
later call to execve() results in a Mach-O image activation will a Mach task and thread even-
tually be created.

The cloneproc() function:
The cloneproc() function is called only on PROC_CREATE_SPAWN or PROC_CREATE_FORK. Because
we are interested in a “real” fork, rather than vfork(), it calls forkproc(), but then performs other
operations, as well. It proceeds as follows:

 ‰ Calls forkproc() on the parent_proc. This function, discussed earlier, returns a child_proc
proc_t, which will eventually become the child process’s fully populated control block.

 ‰ Calls fork_create_child() to create the child process’s uthread.

This function creates the new Mach task (using task_create_internal()) and Mach
thread (using thread_create), performs housekeeping (such as setting or clearing the vm_
map 32-/64-bitness), and ties the bsd proc_t to the Mach task. The memory_inherit fl ag
is handled by task_create_internal(). If, for some reason this fails, it calls forkproc_
free() on the child_proc to deconstruct the new child, effectively a stillborn. Otherwise,
the Mach thread_t created will eventually be returned to the caller. These tasks were all
previously carried out by procdup(), which has been removed in recent kernels.

 ‰ Sets the 64-bitness of the child according to the parent’s P_LP64.

 ‰ Calls pinsertchild() on the parent_proc and the newly born child_proc. This func-
tion ties the two by inserting the child process into the parent’s p_children list and also
announces the child to the world by inserting it into the allproc list. It has an additional
side effect of clearing the P_LIST_INCREATE fl ag from the child’s p_listflag. This fl ag, set
during forkproc(), hides the child from proc_ref_locked().

Loading and Executing Binaries
If a process can be likened to a body, then the binary executing in it can be likened to a brain. Sim-
ply giving birth to a new process by fork() would hardly be useful, unless the executing image
could be replaced with another, by means of an exec(). The heart of process creation, therefore,
lies in loading and executing the binary.

Executable Formats
Somewhat like Linux, the kernel contains designated handlers for various executable formats
it supports. Whereas Linux calls these binary formats (or binfmt), OS X calls them execsw.
Though very similar in function, in Linux these handlers are more powerful, primarily in that
they can be dynamically registered using register_binfmt. Even more powerful in Linux
is that registration can be done from within a kernel module, in effect making Linux able to
handle any executable format, at least in theory. Figure 13-6 compares the Linux binfmt with
the OS X execsw:

c13.indd 516c13.indd 516 10/5/2012 4:19:11 PM10/5/2012 4:19:11 PM

Process Creation x 517

struct list_head lh;

struct module *module;

int(*load_binary)

 (struct linux_binprm *,

 struct pt_regs * regs);

int(*load_shlib)(struct file *);

int(*core_dump)(struct
 coredump_params *cprm);

unsigned long min_coredump;

Linux: struct linux_binfmt OS X: struct execsw

int(*ex_imgact)

 (struct image_params*);

const char *ex_name;

Dynamic Registration: register_binfmt

Pre-registered: ELF, script, som, ..

No dynamic registration (hardcoded)

Pre-registered: Mach-O, FAT, interpreter

FIGURE 13-6: Comparison of Linux and OS X binary format handlers

By contrast, OS X execsw structs are hard-coded. In bsd/kern/kern_exec.c, you can fi nd the defi -
nition shown in Listing 13-6.

LISTING 13-6: “Image activators” for executable formats in bsd/kern/kern_exec.c

/*
 * Our image activator table; this is the table of the image types we are
 * capable of loading. We list them in order of preference to ensure the
 * fastest image load speed.
 *
 * XXX hardcoded, for now; should use linker sets
 */
struct execsw {
 int (*ex_imgact)(struct image_params *);
 const char *ex_name;
} execsw[] = {
 { exec_mach_imgact, "Mach-o Binary" },
 { exec_fat_imgact, "Fat Binary" },
#ifdef IMGPF_POWERPC /* Deprecated as of Leopard, unsupported in Lion */
 { exec_powerpc32_imgact, "PowerPC binary" },
#endif /* IMGPF_POWERPC */
 { exec_shell_imgact, "Interpreter Script" },
 { NULL, NULL}
};

So, although the code does hint at Apple’s eventual intent to make executable formats extensible,
at present — unlike Linux — they are very much set, offering only the native Mach-O, fat binaries,
and the generic script interpreter (all of which were discussed in Chapter 4). This architecture is
still fairly extensible; all it takes to extend a binary format is to add another execsw entry, but this
would mandate kernel recompilation.

c13.indd 517c13.indd 517 10/5/2012 4:19:11 PM10/5/2012 4:19:11 PM

518 x CHAPTER 13 BS”D — THE BSD LAYER

Image Parameters
The image_params expected by an execsw image activator are defi ned in bsd/sys/imgact.h as
shown in Listing 13-7.

LISTING 13-7: Image_params for execsw image activators

struct image_params {
 user_addr_t ip_username_fname; /* argument */
 user_addr_t ip_user_argv; /* argument */
 user_addr_t ip_user_envv; /* argument */
 int ip_seg; /* segment for arguments */
 struct vnode *ip_vp; /* file */
 struct vnode_attr *ip_vattr; /* run file attributes */
 struct vnode_attr *ip_origvattr; /* invocation file attributes */
 cpu_type_t ip_origcputype; /* cputype of invocation file */
 cpu_subtype_t ip_origcpusubtype; /* subtype of invocation file */
 char *ip_vdata; /* file data (up to one page) */
 int ip_flags; /* IMGPF_* bit flags specifying options */
 int ip_argc; /* argument count */
 int ip_envc; /* environment count */
 int ip_applec; /* apple vector count */
 char *ip_startargv; /* argument vector beginning */
 char *ip_endargv; /* end of argv/start of envv */
 char *ip_endenvv; /* end of envv/start of applev */
 char *ip_strings; /* base address for strings */
 char *ip_strendp; /* current end pointer */
 int ip_argspace; /* remaining space of NCARGS limit(argv+envv) */
 int ip_strspace; /* remaining total string space */
 // The following are used for fat binaries
 user_size_t ip_arch_offset; /* subfile offset in ip_vp */
 user_size_t ip_arch_size; /* subfile length in ip_vp */

// The following two context; /* VFS context */
 struct nameidata *ip_ndp; /* are used for interpreters (!#)

char ip_interp_buffer[IMG_SHSIZE]; /* interpreter buffer space */
 int ip_interp_sugid_fd; /* fd for sugid script */

 /* Next two fields are for support of architecture translation... */
 char *ip_p_comm; /* optional alt p->p_comm */
 struct vfs_context *ip_vfs_
 current nameidata */
 thread_t ip_new_thread; /* thread for spawn/vfork */

 struct label *ip_execlabelp; /* label of the executable */
 struct label *ip_scriptlabelp; /* label of the script */
 unsigned int ip_csflags; /* code signing flags */
 void *ip_px_sa;
 void *ip_px_sfa;
 void *ip_px_spa;
};

Architecture Handlers
Up until the release of Lion, OS X still had limited support for multiple architectures — both Intel
(i386/x86_64) and PowerPC. This was required for backward compatibility with PPC, which was —
until its fall from grace in Tiger and later extinction in Lion — the native architecture of OS X.

c13.indd 518c13.indd 518 10/5/2012 4:19:12 PM10/5/2012 4:19:12 PM

Process Creation x 519

During the transition period, support for PPC was handled somewhat similarly to the way interpret-
ers are: When a PPC binary was detected, it was replaced by its corresponding handler — in this
case, a binary originally called translate, and then renamed Rosetta.

From the kernel perspective, this meant utilizing a struct exec_archhandler, defi ned in bsd/
machine/exec.h as follows:

struct exec_archhandler {
 char path[MAXPATHLEN];
 uint32_t fsid;
 uint64_t fileid; };

The only handler defi ned in the kernel was Rosetta, defi ned in bsd/kern/bsd_init.c as follows:

struct exec_archhandler exec_archhandler_ppc = {
 .path = "/usr/libexec/oah/RosettaNonGrata",
};

Support for PPC is now removed, but, in theory, the exec_archhandler could be reused some
time in the future by Apple. One clever use of it would be to introduce ARM architecture sup-
port to OS X, which could enable (with a great deal of translation) running iOS binaries on OS
X or vice versa.

Sequence of Steps in Executing an Image
Armed with all this information, we can now piece together, step by step, the process of executing
an image, as shown in Figure 13-7.

#59

User space

Kernel space

__mac_execve()

#380

posix_spawn(..)exec_activate_image();

exec_fat_imgact exec_mach_imgact exec_shell_imgact

Loop over execsw

Read file

load_machfile(..)

#244

execl(..); execle(..); execlp(..); execv(..) execvP(..)

execve(..)__mac_execve(..); posix_spawn(..)

execve(..)

FIGURE 13-7: Flow of the various process execution functions in OS X

c13.indd 519c13.indd 519 10/5/2012 4:19:12 PM10/5/2012 4:19:12 PM

520 x CHAPTER 13 BS”D — THE BSD LAYER

User mode has several options in launching a new executable:

 ‰ Using the exec* family of functions, as listed in Table 13-4.

TABLE 13-4: exec* variants

EXEC* SUFFIX LETTER DENOTES

l (list) Arguments to the executed program are passed one by one, in a list, with

the end of the list specifi ed by a NULL argument. Because arguments are

passed left to right, the fi rst argument will be at the top of the stack (or,

alternatively, in the fi rst register), and the library call can keep inspecting the

stack until it fi nds NULL.

v (vector) Arguments to the executed program are passed in a vector — a char *argv[],

much like the standard argv[] found in C programs.

exec* SUFFIX LETTER DENOTES

e (environment) The set of environment variables is also passed to the program, as a char

*envp[]. The program can access these either by declaring envp[] as an

additional parameter or calling getenv(3)/setenv(3).

p (path) The program name — the fi rst argument — can be specifi ed as a relative

name (i.e., with no path separators), in which case the library call will search

for the program in the directories listed in the PATH environment variable.

P (path) This option is similar to the lowercase p, but the library function accepts a

second parameter, a char * specifying the search path (thereby overriding

any setting of the PATH environment variable).

All the exec* variants in Table 13-4 are really just library function wrappers over the system
call, execve(), which is why there is no need for an execve() library function.

 ‰ Calling the execve() system call directly, if there is no need for argument list setup code.
The execve() function, however, is itself only a pass through to __mac_execve().

 ‰ Calling __mac_execve() directly. This is, as one can guess, an extension, which is not
POSIX compliant. __mac_execve() differs from the standard execve() by only one param-
eter — an additional fi eld in its second argument, macp, which is a mandatory access control
(MAC) label. Normally, execve() falls right through to it, specifying this label to be USER_
ADDR_NULL, as shown in Listing 13-8.

LISTING 13-8: execve

int
execve(proc_t p, struct execve_args *uap, int32_t *retval)
{
 struct __mac_execve_args muap;
 int err;

 muap.fname = uap->fname;
 muap.argp = uap->argp;

c13.indd 520c13.indd 520 10/5/2012 4:19:12 PM10/5/2012 4:19:12 PM

Process Creation x 521

 muap.envp = uap->envp;
 muap.mac_p = USER_ADDR_NULL;
 err = __mac_execve(p, &muap, retval);

 return(err);
}

mac_execve, despite the misleading name, is not an OS X–specifi c call. It is a part of BSD’s
MAC architecture, which forms the basis for the seatbelt/sandbox mechanism, as discussed
in Chapter 3, and elaborated on from the kernel perspective in Chapter 14.

 ‰ Calling posix_spawn() takes care of the fork() operation as well. This system call
allows fi ner granularity of process attribute inheritance from the parent to the child —
namely, fi le descriptors, process group ID, user and group ID, signal masking/behavior,
and scheduling.

Eventually, all the image-loading work is performed by exec_activate_image(). This function
takes an image_params pointer as an argument and proceeds in the following way:

1. Gets the proc_t structure from the saved VFS context fi eld.

2. execargs_alloc allocates kernel memory for user-space arguments and the fi rst page of
image.

3. exec_save_path saves the program path (and fi xes up arguments).

4. Gets the image’s inode fi le using the NDINIT macro (in bsd/sys/namei.h) and namei().

5. Ensures thread safety by making sure no other thread in the calling process is calling exit()
or the like. It calls proc_transstart() (from bsd/kern/kern_proc.c) to raise the P_
LINTRANSIT fl ag, signifying an image transition is about to occur.

6. Checks the permissions on the inode about to be loaded. These are the standard +x per-
missions, along with any SetUID/SetGID, which we may need to allow (but not for
interpreters).

7. Calls vn_rdwr on the inode to read its fi rst page into memory.

8. Attempts to detect the image type by looping over the execsw[] array. The execsw handlers
return one of the following error codes:

 ‰ Error 0: The image was handled by the execsw[] handler and loaded. The only han-
dler to return 0, at present, is exec_mach_imgact, the Mach-O image loader.

 ‰ Error -1: The image is unrecognized. This is returned by all handlers if the handler
cannot handle or does not recognize the image. The next execsw[] handler, if any,
will be tried. Otherwise, exec_activate_image propagates the -1 to its caller, which
returns an ENOEXEC to user mode.

 ‰ Error -2: This error is returned only by the exec_fat_imgact and is returned if
image is encapsulated (i.e., a fat binary). In this case, exec_fat_imgact also retrieves
the preferred binary architecture from the fat archive, and this step is retried.

 ‰ Error -3: This error is reserved for the exec_shell_imgact and is returned if the
image is an interpreter. In this case, exec_shell_imgact redirects to the inode of
the interpreter fi le (that is, it loads the path specifi ed after the !#), and the process is
retried from step 6.

c13.indd 521c13.indd 521 10/5/2012 4:19:13 PM10/5/2012 4:19:13 PM

522 x CHAPTER 13 BS”D — THE BSD LAYER

Looking at Figure 13-7, you can clearly see that all image-loading paths either terminate with an error
or eventually result in a Mach image. Fat binaries are merely treated as archives of other images, and
interpreters would redirect to load the interpreter fi rst, which again brings us to the Mach image case.
The following section covers this case in depth, picking up where Chapter 4 left off.

The book’s website has a detailed experiment on extending XNU to recognize other types of binaries.

Mach-O Binaries
The Mach-O loading logic in XNU is still largely the same as it was in its inception back in 1988 in
NeXT. Apple has made a few changes over the years, most notably for code decryption, but the base
of the Mach-O fi le format has changed very little over the years.

Apple has wrapped that logic by means of exec_mach_imgact(), which as the previous section
described, is the registered handler for Mach binaries. This function fi rst reads the Mach header,
and then parses its architecture (32-bit or 64-bit) and fl ags. The function refuses DYLIB and
BUNDLE fi les — those are maintained by dyld(1) in user mode. It then goes on to apply posix_
spawn() arguments, if any. After this, it makes sure the binary is right for the current architecture
by grading the binary.

Before the actual loading of the Mach fi le commences, the function checks its imgp fl ags for
IMGPF_SPAWN and the bsdthread_info uu_flag for UT_VFORK. If any of these are true, it calls
fork_create_child() (discussed earlier in this chapter, as part of the fork operation) to create a
new Mach task and thread for this process. This is required because neither of these is created in
a vfork().

The main function handling the loading of Mach-O is load_machfile() in bsd/kern/
mach_loader.c.

This function is defi ned as shown in Listing 13-9.

LISTING 13-9: load_machfi le() , from bsd/kern/mach_loader.c

load_return_t load_machfile(
 struct image_params *imgp, // Image parameters as set by exec_mach_imgact
 struct mach_header *header, // Mach-O header (overlaid on imgp->ip_vdata)
 thread_t thread, // current_thread();
 vm_map_t new_map, // get_task_map() for vfexec or spawn, else NULL
 load_result_t *result); // out parameter, returning load operation data

The load_machfile() function is responsible for setting up the memory map that will eventually be
loaded by the various LC_SEGMENT commands. It proceeds as follows:

1. If new_map is a NULL_MAP or the ipgp fl ags state IMGPF_SPAWN, load_machfile() creates a
new vm_map by fi rst creating a new pmap using pmap_create(), and then vm_map_create().
Otherwise, use the new_map parameter as the vm_map.

2. Harden virtual memory security fi rst. This is done in two steps:

a. Disallow the execution of data segments. This step is similar to Window’s Data Execu-
tion Prevention (DEP) and is set if the Mach header fl ags state MH_NO_HEAP_EXECUTION
and unless the imgp fl ags specifi cally set IMGPF_ALLOW_DATA_EXEC.

c13.indd 522c13.indd 522 10/5/2012 4:19:13 PM10/5/2012 4:19:13 PM

Process Creation x 523

b. Set up address space layout randomization. This step generates a random aslr_offset
slide value for the image unless the imgp fl ags specifi cally set IMGPF_DISABLE_ASLR.

3. Call parse_machfile, which does the hard work of actually parsing the load commands.

4. If parsing fails, forget it — vm_map_deallocate() the map, if created. Return with failure.

5. Otherwise, if a new map has been created, commit to the new map, using swap_task_map(),
which places the new map as the active one, and then vm_map_deallocate() the previ-
ous map. This step also involves terminating the old task and any threads it might contain
(because their memory is invalid, anyway).

The heart of load_machfile is parse_machfile. This function is defi ned as shown in Listing 13-10.

LISTING 13-10: parse_machfi le

load_return_t
parse_machfile(
 struct vnode *vp, // vnode pointer from imgp
 vm_map_t map, // map, as initialized by load_machfile
 thread_t thread, // thread, from load_machfile
 struct mach_header *header, // header, from load_machfile
 off_t file_offset, // Architecture offset
 off_t macho_size, // Architecture binary size
 int depth, // recursion level. Started at 0.
 int64_t aslr_offset, // generated by load_..
 load_result_t *result);

load_machfile() calls parse_machfile, with most of the parameters copied directly from its own
arguments (thread and header), from its imgp (vp, file_offset, and macho_size), or from values
it sets up (map, depth set to 0, and slide).

The parsing operation is a potentially recursive one, which is why it is started with depth set to 0,
and incremented on subsequent calls. The maximum depth allowed is 6, after which a
LOAD_FAILURE is returned. The parse_machfile() function proceeds as follows:

1. Checks header to determine 64-bitness.

2. Fails if depth is greater than 6.

3. Validates architecture mask, or return LOAD_BADARCH.

4. Switches on the header’s fi letype fi eld:

 ‰ Allows MH_OBJECT, EXECUTE, or PRELOAD only for depth of 1.

 ‰ Allows MH_FVMLIB or MH_DYLIB only for a depth greater than 1.

 ‰ Allows MH_DYLINKER only for a depth of exactly 2.

 ‰ Otherwise, fails (return LOAD_FAILURE).

5. Maps all the load commands into memory by rounding to page size and by calling vn_
rdwr(), or fail with LOAD_IOERROR.

6. If the header fl ags state MH_PIE, or dyld is being loaded, applies the aslr_offset.

c13.indd 523c13.indd 523 10/5/2012 4:19:14 PM10/5/2012 4:19:14 PM

524 x CHAPTER 13 BS”D — THE BSD LAYER

7. Performs three passes. In each, while there are still load commands to execute, switches on
each load command, and act on it:

 ‰ On LC_SEGMENT/LC_SEGMENT_64, load_segment(), mapping the segment directly
into memory according to the segment directions.

 ‰ On LC_UNIXTHREAD, load_unixthread(), which itself calls load_threadentry()
and load_threadstate().

 ‰ On LC_LOAD_DYLINKER, if in pass 3 and depth is exactly 1, saves it (in the dlp
variable).

 ‰ On LC_UUID, copy the UUID into the result.

 ‰ On LC_CODE_SIGNATURE, if in pass 1, load_code_signature() but do not
validate yet.

 ‰ On LC_ENCRYPTION_INFO, set_code_unprotect() (using the Apple Protect Pager,
discussed in Chapter 11). If the decryption is unsuccessful, kill the poor process.

 ‰ All other load commands are ignored, being the responsibility of the DYLINKER
(dyld).

8. If, after the three passes, there is a saved dynamic linker command (in dlp), load the dynamic
linker into the new map, possibly adjusting by the ASLR offset. The load_dylinker()
function recursively calls parse_machfile().

When parse_machfile() is successful, it sets its load_result_t parameter, which is then passed
back to load_machfile and, eventually, to the caller, as shown in Listing 13-11.

LISTING 13-11: load_result returned from load_machfi le

typedef struct _load_result {
 user_addr_t mach_header;
 user_addr_t entry_point; // set by load_unixthread()
 user_addr_t user_stack; // set by load_unixthread()
 mach_vm_address_t all_image_info_addr;
 mach_vm_size_t all_image_info_size;
 int thread_count;
 unsigned int
 /* boolean_t */ unixproc :1, // by load_unixthread()
 dynlinker :1, // by load_dylinker()
 customstack :1, // by load_unixthread()
 validentry :1, // by load_segment()
 /* unused */ :0;
 unsigned int csflags; // code-signing flags, by load_code_signature();
 unsigned char uuid[16]; // parse_machfile, on LC_UUID
 mach_vm_address_t min_vm_addr;
 mach_vm_address_t max_vm_addr;
} load_result_t;

c13.indd 524c13.indd 524 10/5/2012 4:19:14 PM10/5/2012 4:19:14 PM

Process Control and Tracing x 525

If load_machfile() returns success, exec_mach_imgact picks up after it and does additional
housekeeping. Specifi cally, it performs the following actions:

 ‰ Sets the ulimit –m (MEM_LOCK) by calling vm_map_set_user_wire_limit.

 ‰ Sets code-signing fl ags:

 ‰ CS_HARD: Refuse to load invalid pages

 ‰ CS_KILL: Kill process if any pages are invalid

 ‰ CS_EXEC_*: Same as previous, but follow execve(2)

(This does not enforce anything yet: The actual code-signing enforcement is called
from Mach’s VM page fault handler, which calls cs_invalid_page (bsd/sys/
kern_proc.c) to enforce the policy)

 ‰ Sets up system memory areas and a custom stack, if any

 ‰ Sets the entry point (the register state from LC_UNIXTHREAD)

 ‰ Sets the process new name (p->comm)

 ‰ Delivers any delayed signals

PROCESS CONTROL AND TRACING

As discussed in Chapter 5, Mach offers extensive tracing facilities, fi rst and foremost of them being
DTrace. Chapter 5 discounted another mechanism, ptrace(2), which is (deliberately) only partially
functional in OS X and iOS.

ptrace (#26)
BSD and other UNIX systems offer a one-stop system call called ptrace(2) to support process tracing
and debugging. Much like an ioctl(2), it is a highly generic call that you can use for multiple opera-
tions. It is defi ned as follows:

int ptrace(int request, pid_t pid, caddr_t addr, int data);

The caller needs to specify a request (one of the values in Table 13-5) and a process ID to which this
request will apply. The caller may also specify two additional arguments — addr and data — that
are dependent on the request.

This system call is highly useful for both debugging and reverse engineering, and in Linux, for
example, is used by gdb, the system call tracer (strace) and the library call tracer (ltrace).

Although ptrace(2) is available on XNU and its prototype is the same as in other systems, its
functionality is greatly reduced, not to say crippled. <sys/ptrace.h> defi nes the standard request
codes (which are slightly different from those you may know from Linux), but XNU only supports
those you see in Table 13-5, which are used for debugger program tracing.

c13.indd 525c13.indd 525 10/5/2012 4:19:14 PM10/5/2012 4:19:14 PM

526 x CHAPTER 13 BS”D — THE BSD LAYER

TABLE 13-5: ptrace request codes supported by XNU

PTRACE REQUEST

(LINUX EQUIVALENT)

USED FOR

PT_TRACE_TRACEME

(TRACEME)

Declaring tracing by the process’s parent.

PT_CONTINUE

(CONT)
Continuing on next (addr == 1) or other (specify addr) instruction.

Also, optionally deliver signal specifi ed by data.

PT_KILL

(KILL)
Killing the target process.

Equivalent to PT_CONTINUE(…., SIG_KILL).

PT_STEP

(SINGLESTEP)
Single-stepping the target process.

PT_ATTACH

(ATTACH)
Specifying the target PID to attach to in order to start tracing. Must be

process owner (same UID) or root.

PT_DETACH

(DETACH)
Specifying target PID to detach from in order to stop tracing. Traced pro-

cess is freed to continue on its own.

PT_DENY_ATTACH

(N/A)

Apple proprietary: Specifi ed by a process that does not want to be med-

dled with (all arguments are ignored). iTunes and other Apple processes

use this.

Unlike Linux, wherein the true power of ptrace lies in being able to read (and write) a foreign
process memory, XNU’s ptrace implementation (in bsd/kern/mach_process.c) silently ignores
these options. Thanks to the Mach APIs, however, achieving comparable functionality is possible, as
shown in Table 13-6.

TABLE 13-6: ptrace request codes that are unavailable, but can be emulated using Mach APIs

PTRACE REQUEST

(LINUX EQUIVALENT)

USED FOR EMULATED BY

PT_READ_I

(PEEKTEXT)
Reading an integer from the process I

(instruction) space.

PT_READ_D

(PEEKDATA)

Reading an integer from the process D

(data) space.

vm_map_read()

PT_READ_U

(PEEKUSER)

Reading from the process U (user) space

(registers).

c13.indd 526c13.indd 526 10/5/2012 4:19:15 PM10/5/2012 4:19:15 PM

Process Control and Tracing x 527

PTRACE REQUEST

(LINUX EQUIVALENT)

USED FOR EMULATED BY

PT_WRITE_I

(POKETEXT)

Writing an integer from the process I

(instruction) space.

PT_WRITE_D

(POKEDATA)

Writing an integer from the process D

(instruction) space.

vm_map_write()

PT_WRITE_U

(POKEREG)

Writing to the process U (user) space.

PT_GETREGS

(GETREGS)

Obtaining thread register state. thread_get_state()

PT_SETREGS

(SETREGS)

Modifying thread register state . thread_set_state()

proc_info (#336)
The undocumented proc_info system call was described in Chapter 5, and is mentioned here
again for the random access reader. The system call, well deserving of its own fi le (bsd/kern/
proc_info.c), is a wonderfully useful one, providing an amalgam of many diagnostic and control
functions. Most of these functions indeed relate to process and thread information, yet it seems that
Apple’s developers decided to throw in some additional functionality. One such example is call num-
ber 4, proc_kernmsgbuf (available from user mode’s libproc as proc_kmsgbuf), which displays
the kernel’s message buffer, thereby having little to do with processes and threads. User mode’s lib-
proc exports most, but not all of proc_info’s functionality. Nifty features like setting process and
thread names (akin to Linux’s prctl(2) PR_SET_NAME), remain virtually undocumented (though
available via LibC’s pthread_setname_np).

Policies
OS X and iOS support the notion of I/O and execution policies. This is somewhat of a diffi cult
choice of word, however, since the main use of policies is in the context of the Mandatory Access
Control Framework (MACF), discussed previously in Chapter 3, and re-examined in the Chapter
14. In the context of this discussion, however, a policy is a set of execution rules relating primarily
to performance, and not to security.

iopolicysys (#322)
The proprietary iopolicysys system call has been available since Leopard, but remains hidden
among the many system calls of XNU. It is used by LibSystem’s (technically, libC’s) get/set_
iopolicy_np(3), and the manual page provides ample documentation.

c13.indd 527c13.indd 527 10/5/2012 4:19:15 PM10/5/2012 4:19:15 PM

528 x CHAPTER 13 BS”D — THE BSD LAYER

The only I/O policy Apple provides at this time is IOPOL_TYPE_DISK, for local device I/O, and the
scope a policy can be applied on is either that of the thread, or the entire process. The policy can
have values of NORMAL (best-effort), THROTTLE (bandwidth-restricted), or PASSIVE (on behalf of
other processes).

process_policy (#323)
Another virtually undocumented system call is process_policy. This is a new addition in Lion
and iOS that allows the enforcement of execution policies on processes. The currently defi ned poli-
cies, from bsd/sys/process_policy.h, are shown in Table 13-7, but the implementation in Lion
is partial. Unlike other header fi les in bsd/sys, this header is not exported to user mode. The main
client of the system call is (as with proc_info) libproc. The various functions, however, are not
publicly declared in <libproc.h> which concentrates on the proc_info wrappers, and instead
declared in the non-exported libproc_internal.h.

You can get a good idea of the system call’s usage by looking at bsd/kern/process_policy.c,
or downloading Darwin’s LibC and looking at Darwin/libproc.c and the libproc_internal.h
header. Doing so will reveal a discrepancy between LibC and XNU, as Apple has left out some of
the iOS code (#ifdef TARGET_OS_EMBEDDED) hinting at features and fl ags not supported in OS X’s
XNU. The open source (and, therefore, OS X) implementation of this system call is woefully incom-
plete (and even includes a typo or two in function names!)

TABLE 13-7: Process policies

PROCESS POLICY SCOPE

PROC_POLICY_BACKGROUND Handles background execution of App. Natu-

rally more applicable in iOS, where SpringBoard

uses this for applications when the home button

is pressed.

PROC_POLICY_HARDWARE_ACCESS Controls access to disk, GPU, network, and

CPU. Inert on OS X.

PROC_POLICY_RESOURCE_STARVATION Controls process behavior when the system is

extremely low on resources (e.g. VM Pressure).

PROC_POLICY_RESOURCE_USAGE Sets limits on resource usage. The code hints

at resources like wired and virtual memory, net-

work, disk, and even power, but in practice the

only resource enabled is CPU utilization.

PROC_POLICY_APP_LIFECYCLE Sets various attributes of the lifecycle, such

as PID binding, device state, and others.

 Non-existent in OS X’s XNU.

PROC_POLICY_APPTYPE Type of app — Active, Inactive, background,

non-UI.

c13.indd 528c13.indd 528 10/5/2012 4:19:16 PM10/5/2012 4:19:16 PM

Signals x 529

Process Suspension/Resumption
Mac OS and iOS occasionally depart from the POSIX APIs to offer specifi c systems calls. Process sus-
pension and resumption are excellent (system calls #433 and 434) examples of this (The system calls
have been renumbered from #430, #431 in Snow Leopard to their present numbers in Lion and iOS).

The idea of suspending a process, effectively stopping it for an indefi nite amount of time during
its execution until resumed, is not new to UNIX users, who are likely familiar with the STOP and
TSTP signals (the former more commonly known to users as Ctrl-Z). This, however, is not what
suspension is about in OS X and iOS: As early as Snow Leopard, XNU offered — in addition to the
signals — the custom system calls to enable this feature.

Initially, these system calls were no more than simple wrappers over the Mach APIs of task_
suspend() and task_resume(). In iOS 5, however, they were integrated with the Mach default_
freezer (discussed in the Mach VM chapter) and the process hibernation mechanism (discussed in
Chapter 14). This enables a process to be selectively frozen and thawed by means of the system calls,
which is a decision usually left up to iOS’s launcher, SpringBoard. In Lion the integration is still
#ifdef’ed out, as it requires the CONFIG_FREEZE option. Disassembly of iOS 5 and later shows this
feature is very much enabled in it.

SIGNALS

Mach already provides low-level handling of traps by means of the exception mechanism, which was
previously discussed in Chapter 11. The BSD layer builds its signal handling on top of the excep-
tion primitives. Hardware-generated signals are caught by the Mach layer and translated into their
corresponding UNIX signals. In order to maintain a unifi ed mechanism, operating system and user-
generated signals are actually converted into Mach exceptions fi rst, and then into signals.

The UNIX Exception Handler
When the fi rst BSD (and user mode process) is started (by bsdinit_task() in bsd/kern/bsd_
init.c) the function also sets up a special Mach kernel thread called ux_handler by calling ux_
handler_init from bsd/uxkern/ux_exception.c, as shown in Listing 13-12.

LISTING 13-12: ux_handler_init in bsd/uxkern/ux_exception.c

void
ux_handler_init(void)
{
 thread_t thread = THREAD_NULL;
 ux_exception_port = MACH_PORT_NULL; // global, defined ibid.

 // spin off ux_handler in a new Mach thread
 (void) kernel_thread_start((thread_continue_t)ux_handler, NULL, &thread);
 thread_deallocate(thread);

 // Lock the process list (not allowing any processes to be created,

continues

c13.indd 529c13.indd 529 10/5/2012 4:19:16 PM10/5/2012 4:19:16 PM

530 x CHAPTER 13 BS”D — THE BSD LAYER

 // including bsdinit_task(), which called us) until ux_exception_port
 //is registered by ux_handler
 proc_list_lock();
 if (ux_exception_port == MACH_PORT_NULL) {
 (void)msleep(&ux_exception_port, proc_list_mlock, 0, "ux_handler_wait", 0);
 }

 proc_list_unlock();

}

Only after ux_handler_init returns does bsdinit_task() go on to register the ux_exception_
port, as shown in Listing 13-13.

LISTING 13-13: bsdinit_task() exception handling

void bsdinit_task(void)
{
 proc_t p = current_proc();
 struct uthread *ut;
 thread_t thread;

 process_name("init", p); // set our process name to "init" (this gets changed later
// in load_init_program() to launchd)

 ux_handler_init(); // spin off Unix exception handler thread

 thread = current_thread();

 // when ux_handler_init() returns, ux_handler() is executing in a separate thread
 // and registers the ux_exception_port.

 (void) host_set_exception_ports(host_priv_self(),
 EXC_MASK_ALL & ~(EXC_MASK_RPC_ALERT),
 (mach_port_t) ux_exception_port,
 EXCEPTION_DEFAULT| MACH_EXCEPTION_CODES,
 0);

 ut = (uthread_t)get_bsdthread_info(thread);

 bsd_init_task = get_threadtask(thread);
 init_task_failure_data[0] = 0;

#if CONFIG_MACF
 mac_cred_label_associate_user(p->p_ucred);
 mac_task_label_update_cred (p->p_ucred, (struct task *) p->task);
#endif

// go on to load the init program, launchD.
 load_init_program(p);

}

LISTING 13-12 (continued)

c13.indd 530c13.indd 530 10/5/2012 4:19:16 PM10/5/2012 4:19:16 PM

Signals x 531

By calling host_set_exception_ports, the bsdinit_task() redirects all Mach exception mes-
sages to ux_exception_port, which is held by the ux_handler() thread. True to the Mach para-
digm, exception handling for PID 1 will be handled out of process by ux_handler(). Because all
subsequent user mode processes are descendants of PID 1, they will automatically inherit the excep-
tion port, thereby assigning ux_handler() responsibility for every Mach exception that occurs in a
UNIX process on the system.

ux_handler() is a fairly simple function, which makes sense given the amount of exceptions it
needs to process. As one would expect, it sets up the ux_handler_port on entry, and then enters an
endless Mach message loop. The message loop receives the Mach exception messages, and then calls
mach_exc_server() to handle the exception, as shown in Listing 13-14.

LISTING 13-14: ux_handler(), in bsd/uxkern/ux_exception.c

void
ux_handler(void)
{
 task_t self = current_task();
 mach_port_name_t exc_port_name;
 mach_port_name_t exc_set_name;

 /* self->kernel_vm_space = TRUE; */
 ux_handler_self = self;

 /*
 * Allocate a port set that we will receive on.
 */
 if (mach_port_allocate(get_task_ipcspace(ux_handler_self),
 MACH_PORT_RIGHT_PORT_SET,
 &exc_set_name) != MACH_MSG_SUCCESS)
 panic("ux_handler: port_set_allocate failed");

 /*
 * Allocate an exception port and use object_copyin to
 * translate it to the global name. Put it into the set.
 */
 if (mach_port_allocate(get_task_ipcspace(ux_handler_self),
 MACH_PORT_RIGHT_RECEIVE,
 &exc_port_name) != MACH_MSG_SUCCESS)
 panic("ux_handler: port_allocate failed");
 if (mach_port_move_member(get_task_ipcspace(ux_handler_self),
 exc_port_name, exc_set_name) != MACH_MSG_SUCCESS)
 panic("ux_handler: port_set_add failed");
 if (ipc_object_copyin(get_task_ipcspace(self), exc_port_name,
 MACH_MSG_TYPE_MAKE_SEND,
 (void *) &ux_exception_port) != MACH_MSG_SUCCESS)
 panic("ux_handler: object_copyin(ux_exception_port) failed");

 proc_list_lock();
 thread_wakeup(&ux_exception_port);
 proc_list_unlock();

 /* Message handling loop. */
continues

c13.indd 531c13.indd 531 10/5/2012 4:19:16 PM10/5/2012 4:19:16 PM

532 x CHAPTER 13 BS”D — THE BSD LAYER

 // No problem with getting into an endless loop here, since ux_handler() runs in its
 // own thread, and the mach_msg_receive() function blocks anyway.
 for (;;) {
 // inline structure definitions make for great readability.. This
 // is likely a vestige of MIG's automatic code generation
 struct rep_msg {
 mach_msg_header_t Head;
 NDR_record_t NDR;
 kern_return_t RetCode;
 } rep_msg;
 struct exc_msg {
 mach_msg_header_t Head;
 /* start of the kernel processed data */
 mach_msg_body_t msgh_body;
 mach_msg_port_descriptor_t thread;
 mach_msg_port_descriptor_t task;
 /* end of the kernel processed data */
 NDR_record_t NDR;
 exception_type_t exception;
 mach_msg_type_number_t codeCnt;
 mach_exception_data_t code;
 /* some times RCV_TO_LARGE probs */
 char pad[512];
 } exc_msg;
 mach_port_name_t reply_port;
 kern_return_t result;

 exc_msg.Head.msgh_local_port = CAST_MACH_NAME_TO_PORT(exc_set_name);
 exc_msg.Head.msgh_size = sizeof (exc_msg);

 result = mach_msg_receive(&exc_msg.Head, MACH_RCV_MSG,
 sizeof (exc_msg), exc_set_name,
 MACH_MSG_TIMEOUT_NONE, MACH_PORT_NULL,
 0);

 if (result == MACH_MSG_SUCCESS) {
 reply_port = CAST_MACH_PORT_TO_NAME(exc_msg.Head.msgh_remote_port);

// mach_exc_server will call mach_exception_raise(), which will be caught
 // by mach_catch_exception_raise() – where the signal handling logic is.
 if (mach_exc_server(&exc_msg.Head, &rep_msg.Head)) {
 result = mach_msg_send(&rep_msg.Head, MACH_SEND_MSG,
 sizeof (rep_msg),MACH_MSG_TIMEOUT_NONE,MACH_PORT_NULL);
 if (reply_port != 0 && result != MACH_MSG_SUCCESS)
 mach_port_deallocate(get_task_ipcspace(ux_handler_self), reply_port);
 }

 }
 else if (result == MACH_RCV_TOO_LARGE)
 /* ignore oversized messages */;
 else // any other result is unexpected, and thereby constitutes a panic
 panic("exception_handler");
 } // end message loop
} // end ux_handler()

LISTING 13-14 (continued)

c13.indd 532c13.indd 532 10/5/2012 4:19:17 PM10/5/2012 4:19:17 PM

Signals x 533

The messages are caught by catch_mach_exception_raise(), defi ned in the same fi le as shown in
Listing 13-15

LISTING 13-15: catch_mach_exception_raise, in bsd/uxkern/ux_exception.c

kern_return_t
catch_mach_exception_raise(
 __unused mach_port_t exception_port,
 mach_port_t thread,
 mach_port_t task,
 exception_type_t exception,
 mach_exception_data_t code,
 __unused mach_msg_type_number_t codeCnt
)
{
 mach_port_name_t thread_name = CAST_MACH_PORT_TO_NAME(thread);
 mach_port_name_t task_name = CAST_MACH_PORT_TO_NAME(task);
 ..
if (th_act != THREAD_NULL) {

 /*
 * Convert exception to unix signal and code.
 */
 ux_exception(exception, code[0], code[1], &ux_signal, &ucode);

 ut = get_bsdthread_info(th_act);
 sig_task = get_threadtask(th_act);
 p = (struct proc *) get_bsdtask_info(sig_task);

 /* Can't deliver a signal without a bsd process */
 if (p == NULL) {
 ux_signal = 0;
 result = KERN_FAILURE;
 }
 if (code[0] == KERN_PROTECTION_FAILURE &&
 ux_signal == SIGBUS) {
 // handle specifically stack overflow
 …
 }
/*
 * Send signal.
 */
 if (ux_signal != 0) {
 ut->uu_exception = exception;
 //ut->uu_code = code[0]; // filled in by threadsignal
 ut->uu_subcode = code[1];
 threadsignal(th_act, ux_signal, code[0]);
 }

 thread_deallocate(th_act);
 ..
 /*
 * Delete our send rights to the task port.
 */
 (void)mach_port_deallocate(get_task_ipcspace(ux_handler_self), task_name);
..
}

c13.indd 533c13.indd 533 10/5/2012 4:19:17 PM10/5/2012 4:19:17 PM

534 x CHAPTER 13 BS”D — THE BSD LAYER

At a higher level, the fl ow can be pictured roughly as shown in Figure 13-8.

Hardware-Generated Signals
Hardware-generated signals begin their life as processor traps. These are, naturally, platform spe-
cifi c. ux_exception (bsd/uxkern/ux_exception.c) is responsible for translating traps into signals.
To handle the machine-specifi c cases, it tries machine_exception (bsd/dev/i386/unix_signal.c).
If the function cannot convert the signal, ux_exception handles generic cases.

mach_msg_receive

mach_exc_server

mach_msg_sendmach_exc_raise

exception_deliver()

ux_exception()

threadsignal()..

catch_mach_exception_raise

Hardware fault

act_set_astbsd();

Faulting thread Exception handler

MIG msg
kernel trap handler

FIGURE 13-8: Mach Exception handling and conversion to UNIX signals

The Mach exceptions previously discussed in Chapter 11 are mapped to UNIX signals as shown in
Table 13-8:

TABLE 13-8: Mapping Mach exceptions to UNIX S

MACH EXCEPTION UNIX SIGNAL

EXC_BAD_INSTRUCTION ILL

EXC_EMULATION EMT

EXC_BREAKPOINT TRAP

EXC_ARITHMETIC FPE

KERN_BAD_ACCESS SEGV(KERN_INVALID_ADDRESS)

BUS (else)

EXC_SOFTWARE SYS (EXC_UNIX_BAD_SYSCALL)

PIPE (EXC_UNIX_BAD_PIPE)

ABRT (EXC_UNIX_ABORT)

KILL (EXC_SOFT_SIGNAL)

c13.indd 534c13.indd 534 10/5/2012 4:19:17 PM10/5/2012 4:19:17 PM

Signals x 535

Software-Generated Signals
When the signal is not generated by hardware, it actually begins its life as a signal generated
by one of two APIs: kill(2) or pthread_kill(2). These functions send a signal to a process
or a thread, respectively. kill(2) accepts a PID argument, which is interpreted as shown in
Table 13-9:

TABLE 13-9 Kill arguments and their meanings

KILL ARGUMENT MEANING

Greater than 0 Process identifi er. Kill invokes psignal(p,signum)

0 Current process group. Kill invokes killpg1() with pgid = 0

-1 All processes (broadcast). Kill invokes killpg1() with pgid = 0 and

all = 1

Less than -1 Process group. Kill invokes killpg1() with pgid = -(pid) (i.e., value

fl ipped to positive)

killpg1() uses the process list iteration functions (described previously in this chapter) to walk
either the global process list, or the one associated with the pgrp. The fi lter function employed is
killpg1_pgrpfilt, which fi lters out PIDs less than 2 (thus making the init process, launchd,
unsignalable) , any zombie processes or processes marked as system. The callout function used is
killpg1_callback(), which calls cansignal() to check kill permissions, and then goes on to
call psignal() if cansignal() returns TRUE on the process in question. This fl ow is depicted in
Figure 13-9:

pthread_kill()

psignal_uthread()

psignal_internal()

kill()

killpg1()

psignal(p, signum)

proc_iterate()

killpg1_callback

psignal_internal(p, NULL, NULL, 0, signum)

psignal_internal(PROC_NULL,

TASK_NULL, thread, PSIG_THREAD,

signum)

Signaled thread wakes up
with a UNIX exception

uap->pid <= 0 uap->pid > 0

act_set_astbsd();

FIGURE 13-9: Handling signals from user mode

c13.indd 535c13.indd 535 10/5/2012 4:19:17 PM10/5/2012 4:19:17 PM

536 x CHAPTER 13 BS”D — THE BSD LAYER

Signal Handling by the Victim
Whether it’s a hardware-generated or other signal, both execution paths end in act_set_bsdast().
This causes the process being signaled to wake up (more accurately, one of its threads does) with its
execution redirected to ast_taken() (see Chapter 11), which in turn calls the bsd_ast(). The fl ow
of bsd_ast is shown in Figure 13-10.

bsd_ast(thread_t)

Handle SIGVTALRM

Handle SIGXCPU

while (signum = issignal(p))

postsig(signum);

Get signal from ut->uu_siglist, ignoring SIG_IGN

proc lock(p);

sig_try_locked(p);

proc_signalstart(p,1);

If catcher == SIG_DFL

If sigprop of this signal marks SA_CORE

coredump();

Release locks, and call exit1():

exit1 (p, W_EXITCODE(0, signum), (int *)NULL);

Default action
sendsig (p,

catcher,

signum,

returnmask,

code)

exit1()…

proc_signalend(p,1);

proc unlock(p);

proc_signalend(p,1)

proc_unlock(p);

FIGURE 13-10: Signal handling by the signaled process/thread, from bsd_ast()

SUMMARY

This chapter described in depth the BSD layer, which serves as XNU’s primary interface to user
mode. This layer presents a standardized POSIX-compliant interface, and a developer can expect to
fi nd everything present in other UNIX SUSv3 systems. Although OS X implements BSD on top of
Mach, the developer remains blissfully unaware of the Mach internals, and instead deals with the
higher-level abstractions of processes and threads, rather than the low-level primitives. The next
chapter will further discuss signals, IPC objects, and devices.

c13.indd 536c13.indd 536 10/5/2012 4:19:19 PM10/5/2012 4:19:19 PM

References x 537

REFERENCES

1. McKusick, Marshall Kirk, Keith Bostic, Michael J. Karels, and John S. Quarterman, Design
& Implementation of the 4.3BSD UNIX Operating System (old, but still very comprehen-
sive). AW UNIX and Open Systems Series. ISBN: 978-0132317924

2. UNIX03 specifi cation, http://www.unix.org/unix03.html

c13.indd 537c13.indd 537 10/5/2012 4:19:20 PM10/5/2012 4:19:20 PM

http://www.unix.org/unix03.html

c13.indd 538c13.indd 538 10/5/2012 4:19:20 PM10/5/2012 4:19:20 PM

Book Title <Chapter No> V1 - MM/DD/2010 Page 539

14
Something Old, Something New:
Advanced BSD Aspects

XNU inherits much more than process and threads objects from BSD. The user mode POSIX
APIs for shared memory and memory management, as well as signals, all wrap the underlying
Mach abstractions covered in the previous chapters.

Apple has made signifi cant improvements to BSD in certain areas, most notably TrustedBSD’s
Mandatory Access Control framework, which (as discussed in Chapter 3) serves as the sub-
strate for Apple’s sandbox and policy control modules.

This chapter picks up where its predecessor left off. We examine fi rst BSD’s memory
management, as well as Apple’s unique Memorystatus mechanism (known as Jetsam). We then
focus on the kernel perspective of those features previously touched on in Chapter 3: Sysctl,
work queues, and the Mandatory Access Control Framework. The chapter explains what
happens behind the scenes in all these OS X and iOS specifi c technologies that are used from
user mode.

MEMORY MANAGEMENT

As you saw in Chapter 12, virtual memory management is carried out by the Mach layer,
which controls the pagers and exports the various vm_ and mach_vm_ messages to user mode.
User mode developers, however, mostly know the standard POSIX calls, so the Mach calls
need to be encapsulated. Likewise, the BSD layer itself uses its own memory management
functions.

c14.indd 539c14.indd 539 10/1/2012 6:19:02 PM10/1/2012 6:19:02 PM

Book Title <Chapter No> V1 - MM/DD/2010 Page 540

540 x CHAPTER 14 SOMETHING OLD, SOMETHING NEW: ADVANCED BSD ASPECTS

POSIX Memory and Page Management System Calls
POSIX offers the programmer several APIs for managing and maintaining tighter control over vir-
tual memory pages. XNU implements the calls shown in Table 14-1, which are all implemented in
bsd/kern/kern_mman.c (corresponding to <sys/mman.h>).

TABLE 14-1: Page Management System Calls in POSIX

SYSTEM CALL USE

197 void * mmap(void *addr,

size_t len,

int prot,

int flags,

int fd,

off_t offset);

Maps a region of memory

Calls vm_map_enter_mem_object() for

anonymous (flags |= MAP_ANON) or

 vm_map_enter_mem_object_con-

trol() for fi le (flags |= MAP_FILE)

mapping

73 int munmap(void *addr, size_t len); Calls mach_vm_deallocate()

75 int madvise(void *addr,

size_t len,

int advice);

(also: posix_madvise)

Provides non-obligating advice to OS as

to how the memory pages from addr to

addr+len will be accessed:

Invokes mach_vm_behavior_set and

translates advice.

The POSIX MADV_* constants are

changed to corresponding VM_

BEHAVIOR_* constants.

78 int mincore

(caddr_t addr,

 size_t len,

 char *vec);

Returns vector vec specifying residency

fl ags of pages containing addr to addr+len.

Flags are:

MINCORE_INCORE — resident

MINCORE_REFERENCED — referenced by

process

MINCORE_MODIFIED — modifi ed by

process

MINCORE_REFERENCED_OTHER — refer-

enced externally

MINCORE_MODIFIED_OTHER — modifi ed

externally

Calls mach_vm_page_query()

250 int minherit

(caddr_t addr,

size_t len,

int inherit);

Sets inheritance of pages containing

addr to addr+len to VM_INHERIT_

NONE, _COPY, or _SHARE

Calls mach_vm_inherit()

c14.indd 540c14.indd 540 10/1/2012 6:19:07 PM10/1/2012 6:19:07 PM

Book Title <Chapter No> V1 - MM/DD/2010 Page 541

Memory Management x 541

SYSTEM CALL USE

203

204

int mlock

(const void *addr,

 size_t len);

int munlock

(const void *addr,

 size_t len);

Locks/unlocks virtual pages contain-

ing addr to addr+len in physical

memory — that is, makes them resident

(wired)

Invokes vm_map_wire()

324

325

int mlockall(void);

int munlockall(void);

Locks/unlocks all virtual pages of

process. Not supported by OS X

(- ENOSYS)

74 int mprotect

(void *addr,

size_t len,

int prot);

Sets prot fl ags on virtual pages contain-

ing addr to addr+len. Flags can be:

PROT_NONE: ---

PROT_READ: r--

PROT_WRITE: -w-

PROT_EXEC: --x

Invokes mach_vm_protect()

65 int msync(void *addr,

 size_t len,

 int flags);

Flush/sync pages containing addr to

addr+len according to fl ags:

MS_ASYNC: asynchronously

MS_SYNC: synchronously (block)

MS_INVALIDATE: invalidating caches

Invokes mach_vm_msync()

As shown in the table, all these functions are really wrappers over the Mach VM primitives
discussed in Chapter 12, which deals with Mach Virtual Memory. The functions all perform basic
sanity checks, and then go on to obtain the current Mach memory map (by a simple call to
current_map()) and invoke the underlying Mach function.

BSD Internal Memory Functions
The BSD layer requires its own memory management functions, which are naturally layered over
those of Mach. These functions used extensively in the BSD portion of XNU, but not exported to
user mode.

BSD’s MALLOC and Zones
BSD code uses functions which closely resemble user mode’s malloc() and friends. (See
Listing 14-1.)

c14.indd 541c14.indd 541 10/1/2012 6:19:07 PM10/1/2012 6:19:07 PM

Book Title <Chapter No> V1 - MM/DD/2010 Page 542

542 x CHAPTER 14 SOMETHING OLD, SOMETHING NEW: ADVANCED BSD ASPECTS

LISTING 14-1: BSD malloc functions, from bsd/sys/malloc.h

extern void *_MALLOC(size_t size,
 int type,
 int flags); // M_NOWAIT or M_ZERO

extern void _FREE(void *addr,
 int type);

extern void *_REALLOC(void *addr,
 size_t size,
 int type,
 int flags);

extern void *_MALLOC_ZONE(size_t size,
 int type,
 int flags);

extern void _FREE_ZONE(void *elem,
 size_t size,
 int type);

Figure 12-4, which discussed the various memory allocation techniques in XNU, showed (among
other things) the mappings between the BSD layer allocations and the underlying low-level
functions.

The BSD zones built on top of Mach zones (see Chapter 12), defi ned in a kmzones[] array of
struct kmzones. Lion has around 114 zones, defi ned in sys/malloc.h as shown in Listing 14-2:

LISTING 14-2: BSD kmzones defi ned in bsd/sys/malloc.h

/*
 * Types of memory to be allocated (not all are used by us)
 */
#define M_FREE 0 /* should be on free list */
#define M_MBUF 1 /* mbuf */
#define M_DEVBUF 2 /* device driver memory */
#define M_SOCKET 3 /* socket structure */
#define M_PCB 4 /* protocol control block */
#define M_RTABLE 5 /* routing tables */
#define M_HTABLE 6 /* IMP host tables */
#define M_FTABLE 7 /* fragment reassembly header */
#define M_ZOMBIE 8 /* zombie proc status */
#define M_IFADDR 9 /* interface address */
#define M_SOOPTS 10 /* socket options */
#define M_SONAME 11 /* socket name */
#define M_NAMEI 12 /* namei path name buffer */
#define M_GPROF 13 /* kernel profiling buffer */
#define M_IOCTLOPS 14 /* ioctl data buffer */
#define M_MAPMEM 15 /* mapped memory descriptors */
#define M_CRED 16 /* credentials */
#define M_PGRP 17 /* process group header */

c14.indd 542c14.indd 542 10/1/2012 6:19:08 PM10/1/2012 6:19:08 PM

Book Title <Chapter No> V1 - MM/DD/2010 Page 543

Memory Management x 543

#define M_SESSION 18 /* session header */
#define M_IOV32 19 /* large iov's for 32 bit process */
#define M_MOUNT 20 /* vfs mount struct */
#define M_FHANDLE 21 /* network file handle */
#define M_NFSREQ 22 /* NFS request header */
#define M_NFSMNT 23 /* NFS mount structure */
#define M_NFSNODE 24 /* NFS vnode private part */
#define M_VNODE 25 /* Dynamically allocated vnodes */
#define M_CACHE 26 /* Dynamically allocated cache entries */
#define M_DQUOT 27 /* UFS quota entries */
#define M_UFSMNT 28 /* UFS mount structure */
#define M_SHM 29 /* SVID compatible shared memory segments */
#define M_PLIMIT 30 /* plimit structures */
#define M_SIGACTS 31 /* sigacts structures */
#define M_VMOBJ 32 /* VM object structure */
#define M_VMOBJHASH 33 /* VM object hash structure */
#define M_VMPMAP 34 /* VM pmap */
#define M_VMPVENT 35 /* VM phys-virt mapping entry */
#define M_VMPAGER 36 /* XXX: VM pager struct */
#define M_VMPGDATA 37 /* XXX: VM pager private data */
#define M_FILEPROC 38 /* Open file structure */
#define M_FILEDESC 39 /* Open file descriptor table */
#define M_LOCKF 40 /* Byte-range locking structures */
#define M_PROC 41 /* Proc structures */
#define M_PSTATS 42 /* pstats proc sub-structures */
#define M_SEGMENT 43 /* Segment for LFS */
#define M_LFSNODE 44 /* LFS vnode private part */
#define M_FFSNODE 45 /* FFS vnode private part */
#define M_MFSNODE 46 /* MFS vnode private part */
#define M_NQLEASE 47 /* XXX: Nqnfs lease */
#define M_NQMHOST 48 /* XXX: Nqnfs host address table */
#define M_NETADDR 49 /* Export host address structure */
#define M_NFSSVC 50 /* NFS server structure */
#define M_NFSUID 51 /* XXX: NFS uid mapping structure */
#define M_NFSD 52 /* NFS server daemon structure */
#define M_IPMOPTS 53 /* internet multicast options */
#define M_IPMADDR 54 /* internet multicast address */
#define M_IFMADDR 55 /* link-level multicast address */
#define M_MRTABLE 56 /* multicast routing tables */
#define M_ISOFSMNT 57 /* ISOFS mount structure */
#define M_ISOFSNODE 58 /* ISOFS vnode private part */
#define M_NFSRVDESC 59 /* NFS server socket descriptor */
#define M_NFSDIROFF 60 /* NFS directory offset data */
#define M_NFSBIGFH 61 /* NFS version 3 file handle */
#define M_MSDOSFSMNT 62 /* MSDOS FS mount structure */
#define M_MSDOSFSFAT 63 /* MSDOS FS fat table */
#define M_MSDOSFSNODE 64 /* MSDOS FS vnode private part */
#define M_TTYS 65 /* allocated tty structures */
#define M_EXEC 66 /* argument lists & other mem used by exec */
#define M_MISCFSMNT 67 /* miscfs mount structures */
#define M_MISCFSNODE 68 /* miscfs vnode private part */
#define M_ADOSFSMNT 69 /* adosfs mount structures */
#define M_ADOSFSNODE 70 /* adosfs vnode private part */
#define M_ANODE 71 /* adosfs anode structures and tables. */
#define M_BUFHDR 72 /* File buffer cache headers */

continues

c14.indd 543c14.indd 543 10/1/2012 6:19:08 PM10/1/2012 6:19:08 PM

Book Title <Chapter No> V1 - MM/DD/2010 Page 544

544 x CHAPTER 14 SOMETHING OLD, SOMETHING NEW: ADVANCED BSD ASPECTS

#define M_OFILETABL 73 /* Open file descriptor table */
#define M_MCLUST 74 /* mbuf cluster buffers */
#define M_HFSMNT 75 /* HFS mount structure */
#define M_HFSNODE 76 /* HFS catalog node */
#define M_HFSFORK 77 /* HFS file fork */
#define M_ZFSMNT 78 /* ZFS mount data */
#define M_ZFSNODE 79 /* ZFS inode */
#define M_TEMP 80 /* misc temporary data buffers */
#define M_SECA 81 /* security associations, key management */
#define M_DEVFS 82
#define M_IPFW 83 /* IP Forwarding/NAT */
#define M_UDFNODE 84 /* UDF inodes */
#define M_UDFMNT 85 /* UDF mount structures */
#define M_IP6NDP 86 /* IPv6 Neighbour Discovery*/
#define M_IP6OPT 87 /* IPv6 options management */
#define M_IP6MISC 88 /* IPv6 misc. memory */
#define M_TSEGQ 89 /* TCP segment queue entry, unused */
#define M_IGMP 90
#define M_JNL_JNL 91 /* Journaling: "struct journal" */
#define M_JNL_TR 92 /* Journaling: "struct transaction" */
#define M_SPECINFO 93 /* special file node */
#define M_KQUEUE 94 /* kqueue */
#define M_HFSDIRHINT 95 /* HFS directory hint */
#define M_CLRDAHEAD 96 /* storage for cluster read-ahead state */
#define M_CLWRBEHIND 97 /* storage for cluster write-behind state */
#define M_IOV64 98 /* large iov's for 64 bit process */
#define M_FILEGLOB 99 /* fileglobal */
#define M_KAUTH 100 /* kauth subsystem */
#define M_DUMMYNET 101 /* dummynet */
#ifndef __LP64__
#define M_UNSAFEFS 102 /* storage for vnode lock state for unsafe FS */
#endif /* __LP64__ */
#define M_MACPIPELABEL 103 /* MAC pipe labels */
#define M_MACTEMP 104 /* MAC framework */
#define M_SBUF 105 /* string buffers */
#define M_EXTATTR 106 /* extended attribute */
#define M_LCTX 107 /* process login context */
/* M_TRAFFIC_MGT 108 */
#if HFS_COMPRESSION
#define M_DECMPFS_CNODE 109 /* decmpfs cnode structures */
#endif /* HFS_COMPRESSION */
#define M_INMFILTER 110 /* IPv4 multicast PCB-layer source filter */
#define M_IPMSOURCE 111 /* IPv4 multicast IGMP-layer source filter */
#define M_IN6MFILTER 112 /* IPv6 multicast PCB-layer source filter */
#define M_IP6MOPTS 113 /* IPv6 multicast options */
#define M_IP6MSOURCE 114 /* IPv6 multicast MLD-layer source filter */
#define M_LAST 115 /* Must be last type + 1 */

The zones are set by kmeminit() (from bsd_init() during boot). For each zone, kmeminit() calls
the underlying Mach zinit() and sets a 1 MB zone accountable to the caller (i.e. Z_CALLERACCT).
_MALLOC_ZONE then calls zalloc_noblock (if the element size requested is exactly that of the zone’s)
or zalloc(). Likewise, FREE_ZONE calls through to zfree() or kfree().

LISTING 14-2 (continued)

c14.indd 544c14.indd 544 10/1/2012 6:19:08 PM10/1/2012 6:19:08 PM

Book Title <Chapter No> V1 - MM/DD/2010 Page 545

Memory Management x 545

Mcache and Slab Allocators
BSD offers another very effi cient method of memory allocation, based on caches. This mechanism
is known as mcache, and its implementation is in bsd/kern/mcache.c. The default implementation
is built on top Mach zones providing the pre-allocated cache memory, but it is extensible for use
with any back end slab allocator. The main advantage of using the mcache mechanism is its speed:
The memory is allocated and maintained in a per-CPU cache, which enables mapping to the CPU’s
physical cache, greatly speeding up access.

The main client of this allocation system is the mbuf logic in the kernel. The mbufs (or memory buf-
fers, in their full name), are often-reusable buffers of virtual memory, which represent network data
(i.e. packets). The logic and structures behind mbufs are explored in Chapter 17.

Memory Pressure
As noted in Chapter 12 in the discussion of the PageOut daemon, the Mach VM layer supports the
notion of VM pressure, which is defi ned as the condition wherein the system is dangerously low on
available RAM. The handling of VM pressure is delegated to the BSD layer, and the layer also offers
a system call (vm_pressure_monitor (#296) in bsd/vm/vm_unix.c), which directly wraps that of
Mach. The fi le also contains several vm namespace MIBs, including the pressure indicator (vm
.memory_pressure) and the PageOut daemon’s targets.

When consider_pressure_events is called (by the PageOut daemon’s garbage collection
thread), the BSD layer takes over, and calls on vm_try_pressure_candidates (also in bsd/kern/
vm_pressure.c). Candidates are those processes that have requested pressure notifi cations, by
specifying an EVFILT_VM/NOTE_VM_PRESSURE combination in a call to kevent, or have had that
done for them (iOS Objective-C apps, for example, which do so in the low level initialization of
libdispatch).

For each candidate on the list, the system queries the resident page count (using task_info), and
sends a NOTE_VM_PRESSURE knote (which triggers a kevent on its kqueue, as discussed later in this
chapter) to a process whose resident page count is the highest (and exceeds the minimum of VM_
PRESSURE_MINIMUM_RSIZE, set at 10 MB).

A candidate process is expected to respond to the pressure notifi cation, which iOS Objective-C apps
also do. Objective-C’s garbage collection makes use of libauto, which calls on libdispatch to
create a VM pressure dispatch source. The handler for this source calls malloc_zone_pressure_
relief (as discussed in Chapter 4 under “Heap Allocations”). The Objective-C runtime also calls
the app’s didReceiveMemoryWarning callback, allowing the application to purge caches (as lib-
cache does) and other unnecessary, but nice-to-have RAM.

Sometimes, alas, all this is not enough. Processes can’t always fi nd memory to discard. When
the cooperative approach fails, desperate times call for desperate measures. This is when Jetsam
kicks in.

Jetsam and Hibernation are both moving targets: undocumented and internal
Apple APIs, which are constantly undergoing modifi cation by Apple.

c14.indd 545c14.indd 545 10/1/2012 6:19:08 PM10/1/2012 6:19:08 PM

Book Title <Chapter No> V1 - MM/DD/2010 Page 546

546 x CHAPTER 14 SOMETHING OLD, SOMETHING NEW: ADVANCED BSD ASPECTS

Jetsam (iOS)
OS X and iOS implement a low-memory condition handler called Jetsam, or by another name
Memorystatus (in bsd/kern/kern_memorystatus.c). This mechanism, somewhat similar in
concept to Linux’s “Out-Of-Memory” killer (known as oom), was originally used to kill pro-
cesses consuming too much memory. The Jetsam name refers to the act of killing top memory
consuming processes and jettisoning their memory pages. It seems Apple is moving towards the
“Memorystatus” nomenclature, so this section will adopt it, as well.

XNU exports Memorystatus to user mode apps through <sys/kern_memorystatus.h>, and it’s
interesting to see this header evolve through subsequent versions of OS X. Most iOS developers
remain oblivious to its presence, but are still indirectly affected by it, as their apps as their apps may
be subject to sudden termination.

Memorystatus is implemented in bsd/kern/kern_memorystatus.c, and offers the functions shown
in Table 14-2. Note that, in the Lion sources, these are still named jetsam_*, but this might change
in future releases.

TABLE 14-2: Memorystatus Functions, from bsd/kern/kern_memorystatus.c

FUNCTION USAGE

jetsam_task_page_count

(task_t task)

Helper function used to compute a count of pages

used by task (calls task_info and returns

resident_size divided by PAGE_SIZE)

jetsam_flags_for_pid

(pid_t pid)

Returns fl ags for specifi ed pid from the

jetsam_priority_list

jetsam_snapshot_procs(void) Records all vm page counters and traverses all pro-

cesses (allproc) to record a snapshot, with a count

of pages (using jetsam_task_page_count) and

fl ags (using jetsam_flags_for_pid)

jetsam_kill_hiwat_proc(void) Kills (or suspends) processes whose page count

exceeds the high-water mark

jetsam_kill_top_proc(void) Kills (or suspends) top memory-consuming processes

Memorystatus maintains two lists: a snapshot list, which captures the state of all processes in the
system and how many pages they consume, and a priority list, which holds the candidate pro-
cesses to be killed. The lists can be queried (in iOS) from user mode via sysctl(2)1, and the latter
list can even be set from user mode. launchd(1) is one such process which uses this mechanism:
jobs may contain a <JetsamPriorities> key, which can specify the JetsamMemoryLimit and
JetsamPriority (this is apparently used at present only for syslogd).

1 If XNU is compiled with DEVELOPMENT or DEBUG settings, a third exported sysctl enables jetsam
diagnostic mode.

c14.indd 546c14.indd 546 10/1/2012 6:19:09 PM10/1/2012 6:19:09 PM

Book Title <Chapter No> V1 - MM/DD/2010 Page 547

Memory Management x 547

By any name you call it, Memorystatus/Jetsam is more critical for iOS, and iOS seems to be a few
steps ahead in its implementation. It is likely that the next version of iOS will also improve on it,
possibly adding more user mode control mechanisms, or improving on sysctl(2).

Process Hibernation (iOS)
In iOS 5 (and Lion, but only #if CONFIG_FREEZE), Jetsam/Memorystatus is integrated with the
default freezer, which enables it to freeze, rather than kill the process. This provides for a much bet-
ter user experience, because no data is lost and the process may be safely resumed when memory
conditions improve. If CONFIG_FREEZE is defi ned, it enables the compilation of the following func-
tions, shown in Table 14-3.

TABLE 14-3: Freezer-related Function (iOS only)

FUNCTIONS LOCATED IN USED FOR

default_freezer_* osfmk/vm/

default_freezer.c
The default freezer

implementation.

vm_object_pack

vm_object_pack_pages

vm_object_unpack

vm_object_pagein

vm_object_pageout

osfmk/vm/vm_object.c Packing or unpacking indi-

vidual pages, which involves

calling the default_freezer

pack/unpack functions.

vm_map_freeze

vm_map_thaw

vm_map_freeze_walk

osfmk/vm/vm_map.c Freezing or thawing the mem-

ory pages of a given VM map.

Walking just iterates over the

pages and checks which ones

can be frozen.

task_freeze

task_thaw

osfmk/kern/task.c Freezing and thawing a task

(calling vm_map_freeze

or vm_map_thaw on the

task->map).

jetsam_send_

hibernation_note

jetsam_hibernate_top_

proc

bsd/kern/

kern_memorystatus.c
Enables jetsam to freeze,

rather than kill processes that

match a given criteria. The

hibernation note is a kernel

event notifying of the pending

hibernation of a PID.

The CONFIG_FREEZE setting also enables a new thread, the kernel_hibernation_thread. Note
that, in this context, hibernation refers to per-process hibernation, and not to system hibernation.
This thread wakes up when signaled (by kern_hibernation_wakeup), and checks if it needs to per-
form hibernation for processes. Memorystatus checks are performed on most vm_page_* operations

c14.indd 547c14.indd 547 10/1/2012 6:19:09 PM10/1/2012 6:19:09 PM

Book Title <Chapter No> V1 - MM/DD/2010 Page 548

548 x CHAPTER 14 SOMETHING OLD, SOMETHING NEW: ADVANCED BSD ASPECTS

(in osfmk/vm/vm_resident.c), by calls to the VM_CHECK_MEMORYSTATUS, which is defi ned in bsd/
sys/kern_memorystatus.h to be a no-op on OS X, and a call to vm_check_memorystatus
(osfmk/vm/vm_resident.c) in iOS (i.e. #if CONFIG_EMBEDDED). This function body is also only
defi ned for iOS, as can be seen in Listing 14-3:

LISTING 14-3: VM Memorystatus checks conducted on page operations

void vm_check_memorystatus()
{
#if CONFIG_EMBEDDED
 static boolean_t in_critical = FALSE;
 static unsigned int last_memorystatus = 0;
 unsigned int pages_avail;

 if (!kern_memorystatus_delta) {
 return;
 }

 pages_avail = (vm_page_active_count +
 vm_page_inactive_count +
 vm_page_speculative_count +
 vm_page_free_count +
 (VM_DYNAMIC_PAGING_ENABLED(memory_manager_default) ? 0 :
 vm_page_purgeable_count));
 if ((!in_critical && (pages_avail < kern_memorystatus_delta)) ||
 (pages_avail >= (last_memorystatus + kern_memorystatus_delta)) ||
 (last_memorystatus >= (pages_avail + kern_memorystatus_delta))) {
 kern_memorystatus_level = pages_avail * 100 / atop_64(max_mem);
 last_memorystatus = pages_avail;

 // This wakes up the memorystatus thread (as does pid_hibernate)
 thread_wakeup((event_t)&kern_memorystatus_wakeup);

 in_critical = (pages_avail < kern_memorystatus_delta) ? TRUE : FALSE;
 }
#endif
}

Actual process hibernation is carried out by calling jetsam_hibernate_top_proc, which freezes
the underlying task (by calling task_freeze). Freezing involves walking the vm_map of the task,
and passing it to the default freezer. User mode can also control hibernation by calling pid_sus-
pend() and/or pid_resume (both in bsd/vm/vm_unix.c). iOS also defi nes pid_hibernate,
which currently ignores its argument, and only wakes up the hibernation thread (i.e. signals
kern_hibernation_wakeup).

Kernel Address Space Layout Randomization
Mountain Lion contains a new feature that is likely to go unnoticed by most of its users: Kernel address
space layout randomization. While irrelevant for most applications, it has some paramount conse-
quences. If and when it is introduced into iOS (iOS 6, most likely), it might spell the end of jailbreaking.

c14.indd 548c14.indd 548 10/1/2012 6:19:09 PM10/1/2012 6:19:09 PM

Book Title <Chapter No> V1 - MM/DD/2010 Page 549

Memory Management x 549

The concept of user mode ASLR was described in detail in Chapter 4. Once unheard of, ASLR has
become a prerequisite for any operating system attempting to defeat hackers and stop malware try-
ing to perform code injection. This, by now almost trite, technique involves an attacker embedding
readily executable binary code in the input of some unsuspecting program, then overwriting a func-
tion pointer (often, a function’s return address), to divert the program fl ow into the injected code.

The leading defense against code injection was Data Execution Prevention (DEP, also referred to as
W^X, XD in Intel, and XN in ARM), which has made code injection signifi cantly more diffi cult,
though not impossible, for hackers. As the bar for entry was raised, hackers adapted by revamping
an old technique. As described in Shacham’s Black Hat 2008 presentation[1], return oriented pro-
gramming is now a de facto standard technique for malicious code execution, but on reusing exist-
ing program code (commonly, LibC), by emulating the stack layout of valid program calls. The term
stems from the fact that, as far as the program is concerned, the injected code is a sequence of func-
tion calls, which return from one function into the other. The overwritable stack segment is used
for directing this sequence of calls, but does not contain any code that gets executed. This method,
therefore, effectively defeats DEP.

If the address space is properly randomized, it becomes next to impossible to fi nd any code to return
to. It also becomes unlikely the attacker can guess any specifi c kernel address to overwrite, even if
an overfl ow or other vulnerability does enable such an overwrite. This is especially important in the
kernel, where code injection can lead to total system compromise and, in iOS, to device jailbreaking.
ASLR Mountain Lion is therefore the fi rst operating system to introduce kernel mode ASLR, and it
seems a sure bet that iOS 6 will follow.

The implications for the kernel code are minimal: Instead of using fi xed addresses, the code can
shift to relative addresses, which are based on the current location of the program, held in Intel’s IP
or ARM’s PC. The kernel is loaded by EFI or iBoot with a vm_kernel_slide value, like dyld’s slide
(described in Chapter 4), and everything proceeds normally. (Prelinked modules (kexts) are also
subjected to the slide.)

The implications for malware or jailbreaking, however, are far reaching and more severe. At the
time of writing, there is no clever workaround for proper ASLR. As a bonus, reverse engineering
becomes somewhat harder (as the IP relative addresses can be set in several ways, instead of leaving
fi xed offsets for strings and function names).

Mountain Lion exports a new system call, kas_info (#439), which can be used to query the value of
the kernel slide. This system call might not remain for too long, (especially in iOS) because leaking
the value of the slide defeats the entire purpose of randomization.

Even with KASLR, pre-A5 devices will still be fully jailbreakable. This is
because the vulnerability allowing the jailbreak is in iBoot itself, allowing the
direct patching of the kernel. In this case, run-time addresses matter little, as
jailbreakers can prepare a custom IPSW of a patched kernel. That said, it’s only
a matter of time before Apple removes support for those devices, the way it no
longer supports the very fi rst generation of the iPhone.

c14.indd 549c14.indd 549 10/1/2012 6:19:10 PM10/1/2012 6:19:10 PM

Book Title <Chapter No> V1 - MM/DD/2010 Page 550

550 x CHAPTER 14 SOMETHING OLD, SOMETHING NEW: ADVANCED BSD ASPECTS

WORK QUEUES

Work queues are a mechanism developed in OS X to facilitate multithread support for applications
and scale to multiple CPUs. This mechanism is not exported directly to user mode (and hence was
not mentioned in Chapter 3), but is nonetheless important, as it provides the foundation for Apple’s
Grand Central Dispatch (GCD). This section does not discuss how to use GCD (though a good
reference exists in Apple Developer[2] and in a book devoted to multithreading[3]). Rather, it focuses
on how GCD itself uses XNU’s services2. Work queues are provided through two undocumented
system calls: workq_open (#367) and workq_kernreturn (#368), both implemented (along with all
other work queue functions) in bsd/kern/pthread_synch.c. The workq_open system call is used
to create a work queue and is wrapped by LibC’s pthread_workqueue_create_np (and further by
GCD and libdispatch’s dispatch_get_global_queue). It doesn’t take any arguments. The workq_
kernreturn system call is used for pretty much everything else, and can control the work queue, by
specifying one of three currently defi ned options:

 ‰ WQOPS_QUEUE_ADD — The caller may specify an item (as the second argument) to be
executed by the work queue. This item corresponds to the block or function to be executed
(or dispatched, in GCD parlance). The caller may also request affinity (currently ignored),
and specify a prio between up to WORKQUEUE_NUMPRIOS (currently 4), as well as an
overcommit bit. These queues are listed in bsd/sys/pthread_internal.h as shown in
Listing 14-3:

LISTING 14-3: Global work queues in XNU

#define WORKQUEUE_HIGH_PRIOQUEUE 0 /* high priority queue */
#define WORKQUEUE_DEFAULT_PRIOQUEUE 1 /* default priority queue */
#define WORKQUEUE_LOW_PRIOQUEUE 2 /* low priority queue */
#define WORKQUEUE_BG_PRIOQUEUE 3 /* background priority queue */

If these seem somewhat familiar, it’s for a good reason: They are the same global work
queues offered by GCD (though with different DISPATCH_QUEUE_PRIORITY_* constants).
Libdispatch actually creates two copies of each queue, with the additional copy set to over-
commit, though these are not exported to callers directly. In this way, the application’s main
queue is really just a reference to the default queue, with overcommit set. The overcommit
bit (which is also accessible via the undocumented pthread_workqueue_attr_[get/set]
overcommit_np) denotes that new threads may be created for this queue. This strategy is
generally discouraged, as more threads than the CPUs can handle slow down the program.
GCD supports the idea of overcommit through the only valid fl ag for dispatch_get_
global_queue (DISPATCH_QUEUE_OVERCOMMIT), but Apple’s documentation hides that fact
and claims the fl ag must be zero.

 ‰ WQOPS_THREAD_SETCONC: This controls work queue concurrency and is wrapped by
pthread_workqueue_requestconcurrency_np().

2 GCD and libdispatch can also operate in the absence (or disablement) of work queues, in which case they
fall to a thread pool model. This can be forced by setting the LIBDISPATCH_DISABLE_KWQ variable.

c14.indd 550c14.indd 550 10/1/2012 6:19:10 PM10/1/2012 6:19:10 PM

Book Title <Chapter No> V1 - MM/DD/2010 Page 551

Work Queues x 551

 ‰ WQOPS_THREAD_RETURN: This detaches from the work queue and terminates thread. It is
wrapped by pthread’s workqueue_exit(), in a call to the internal _pthread_workq_return.

The work queue set up logic (triggered as the result of item addition) is quite unique in XNU. The
main work is performed by wq_runitem, which calls on setup_wqthread to manually construct the
work queue thread’s state, register by register. This is followed by waking up the thread in its new
persona. The state setup is shown in Listing 14-4:

LISTING 14-4: Setting a work queue thread’s state

int setup_wqthread(proc_t p, thread_t th, user_addr_t item, int reuse_thread,
 struct threadlist *tl)
{
#if defined(__i386__) || defined(__x86_64__)
 int isLP64 = 0;

 isLP64 = IS_64BIT_PROCESS(p);
 /*
 * Set up i386 registers & function call.
 */
 // very similar to x86_64 case, so omitted

} else {
 x86_thread_state64_t state64;
 x86_thread_state64_t *ts64 = &state64;

 ts64->rip = (uint64_t)p->p_wqthread; // Thread will resume from this point
 ts64->rdi = (uint64_t)(tl->th_stackaddr + PTH_DEFAULT_STACKSIZE +
 PTH_DEFAULT_GUARDSIZE);
 ts64->rsi = (uint64_t)(tl->th_thport);
 ts64->rdx = (uint64_t)(tl->th_stackaddr + PTH_DEFAULT_GUARDSIZE);
 ts64->rcx = (uint64_t)item;
 ts64->r8 = (uint64_t)reuse_thread;
 ts64->r9 = (uint64_t)0;

 /*
 * set stack pointer aligned to 16 byte boundary
 */
 ts64->rsp = (uint64_t)((tl->th_stackaddr + PTH_DEFAULT_STACKSIZE +
 PTH_DEFAULT_GUARDSIZE) - C_64_REDZONE_LEN);

 // This had better work, or else..
 if ((reuse_thread != 0) && (ts64->rdi == (uint64_t)0))
 panic("setup_wqthread: setting reuse thread with null pthread\n");

 // Call architecture specific thread state setting (osfmk/i386/pcb_native.c)
 thread_set_wq_state64(th, (thread_state_t)ts64);
 }
#else
#error setup_wqthread not defined for this architecture //unless you have iOS sources.
#endif
 return(0);
}

c14.indd 551c14.indd 551 10/1/2012 6:19:11 PM10/1/2012 6:19:11 PM

Book Title <Chapter No> V1 - MM/DD/2010 Page 552

552 x CHAPTER 14 SOMETHING OLD, SOMETHING NEW: ADVANCED BSD ASPECTS

The proc_info system call (described in detail in Chapter 5 and in the previous chapter)
provides the PROC_PIDWORKQUEUEINFO fl avor, which displays work queues in a given process.
This is also available through libproc’s proc_pidinfo(), and returns information as shown in
Listing 14-5:

LISTING 14-5: The structure returned for PROC_PIDWORKQUEUEINFO

struct proc_workqueueinfo {
 uint32_t pwq_nthreads; /* total number of workqueue threads */
 uint32_t pwq_runthreads; /* total number of running workqueue threads */
 uint32_t pwq_blockedthreads; /* total number of blocked workqueue threads */
 uint32_t pwq_state; // new in Lion and later
};

/*
 * workqueue state (pwq_state field)
 */
#define WQ_EXCEEDED_CONSTRAINED_THREAD_LIMIT 0x1
#define WQ_EXCEEDED_TOTAL_THREAD_LIMIT 0x2

BSD HEIRLOOMS REVISITED

Chapter 3 discussed the many technologies in OS X and iOS derived from and inspired by BSD,
albeit from the user mode and administrator perspective. The rest of this chapter revisits these same
technologies, but explores their kernel-level implementation in XNU.

Sysctl
BSD, like many other UNIX systems, offers a uniform interface for getting and setting kernel vari-
ables, called sysctl(8). Unlike systems such as Linux, however, this is the only way to get access to
the variables, for lack of a user-visible fi le representation in a /proc fi le system. The sysctl command
was discussed in Chapter 3; this section discusses its implementation. As a reminder, the sysctl
parameters are divided into the namespaces shown in the Table 14-4. With the exception of security,
they are all defi ned in bsd/sys/sysctl.h, which is made available to user space as <sys/sysctl.h>:

TABLE 14-4: The sysctl Top-level Namespaces

SYSCTL NAMESPACE USED FOR

CTL_KERN Kernel variables and settings, such as the version string, process limits, and

so on.

CTL_VM Virtual memory manager settings and statistics.

CTL_VFS Virtual fi le system switch settings. Discussed in Chapter 15, which deals with

fi le systems.

c14.indd 552c14.indd 552 10/1/2012 6:19:11 PM10/1/2012 6:19:11 PM

Book Title <Chapter No> V1 - MM/DD/2010 Page 553

BSD Heirlooms Revisited x 553

SYSCTL NAMESPACE USED FOR

CTL_NET Network settings. Subdivided into net.link.*, net.inet.*, net.inet6.*,

and further into transport layer protocols. Discussed in Chapter 17, which

deals with networking.

CTL_DEBUG Debug settings.

CTL_HW Hardware settings: physmem, cpufrequency, and so on. Naturally, these are

read-only.

CTL_MACHDEP Machine-dependent settings. These diff er greatly from OS X to iOS, and are

further subdivided into cpu, pmap, memmap, and others.

CTL_USER User-level identifi ers.

_security

(security/

mac_internal.h)

Security settings. Currently only contains one sub-namespace, mac, which

confi gures the MAC layer. Discussed in detail in this chapter.

XNU has two main fi les for dealing with sysctl(), bsd/kern/kern_newsysctl.c, which is the
implementation of the architecture generic sysctls, and bsd/dev/<arch>/sysctl.c, which contains
machine-specifi c ones (i.e. the machdep.* sysctls). Pre-SL kernels contained a ppc/ arch directory,
and iOS likely contains an arm/ one, but the only one present in the open source version is i386/.

The sysctls are maintained in sysctl_oid structures, defi ned in bsd/sys/sysctl.h as shown in
Listing 14-5.

LISTING 14-5: sysctl oid implementation

struct sysctl_oid {
 struct sysctl_oid_list *oid_parent;
 SLIST_ENTRY(sysctl_oid) oid_link;
 int oid_number;
 int oid_kind;
 void *oid_arg1;
 int oid_arg2;
 const char *oid_name;
 int (*oid_handler) SYSCTL_HANDLER_ARGS;
 const char *oid_fmt;
 const char *oid_descr; /* offsetof() field / long description */
 int oid_version;
 int oid_refcnt;
};

New sysctls may be constructed by calling a specialized macro, SYSCTL_OID, which defi nes the
sysctl, initializes its fi elds, and informs the linker of it. Using one of the macros built on top of it,
however, is easier (see Table 14-5):

c14.indd 553c14.indd 553 10/1/2012 6:19:11 PM10/1/2012 6:19:11 PM

Book Title <Chapter No> V1 - MM/DD/2010 Page 554

554 x CHAPTER 14 SOMETHING OLD, SOMETHING NEW: ADVANCED BSD ASPECTS

TABLE 14-5: sysctl Type Declaration Macros

SYSCTL MACRO USED FOR

SYSCTL_DECL Declaring a top-level entry. XNU uses it for the types defi ned Table 13-sysc.

Kernel extensions (for example, VMWare) use it for private namespaces.

SYSCTL_OID Raw OIDs. Seldom used directly. May specify type as “N,” “A,” “I,” “IU,” “L,”

or “Q,” corresponding to the SYSCTL_* constants shown in this table.

SYSCTL_NODE Container nodes.

SYSCTL_STRING Leaf nodes, containing char * data. sysctl_handle_string() is called.

SYSCTL_COMPAT_INT

SYSCTL_INT

Leaf nodes, compatibility (old API) or preferred API for signed integer data

SYSCTL_COMPAT_

UINT

SYSCTL_UINT

Leaf nodes, compatibility (old API) or preferred API for unsigned integer

data.

SYSCTL_LONG Leaf nodes, with long integer data. sysctl_handle_long() called as

handler.

SYSCTL_QUAD Leaf nodes, with quad word data — i.e. 64-bit integers. sysctl_handle_

quad() is called as handler.

SYSCTL_OPAQUE Leaf nodes, with unspecifi ed data. Some void * with given length.

sysctl_handle_opaque() is called as handler.

SYSCTL_STRUCT Leaf nodes, with structure data. sysctl_handle_opaque() is called as

handler.

SYSCTL_PROC Leaf nodes, but caller specifi es own handler function.

An additional macro, SYSCTL_PROC, is used to declare leaf handlers, which are the callback func-
tions that the kernel invokes when user space issues a sysctl. Defi ning your own handler thus
becomes a fairly straightforward matter, involving two steps:

1. Defi ne the SYSCTL_NODE by which your handler will be called:

SYSCTL_NODE(parent, // _kern, _debug, or your own top level namespace..
 OID_AUTO, // request OID assignment by kernel
 myname, // your name
 flags, // access: CTLFLAG_*, bitwise OR'ed
 0, // handler
 "sysctl description"); // some description

Optionally, you may want to defi ne a SYSCTL_DECL top-level namespace, as well:

SYSCTL_DECL(myname);

You may skip this step altogether if you are only adding a leaf to an already-existing
sysctl node.

2. Defi ne the actual sysctl leaf your handle is supposed to implement. Here, you have two
options:

c14.indd 554c14.indd 554 10/1/2012 6:19:11 PM10/1/2012 6:19:11 PM

Book Title <Chapter No> V1 - MM/DD/2010 Page 555

BSD Heirlooms Revisited x 555

a. Use one of the types from Table 14-5. This installs a default handler for you, and all you
need to specify is the variable that holds the sysctl data. You lose, however, the ability
to get a callback notifi cation on value read or change. Almost all these macros are highly
similar. For example, if you wanted an integer, you would specify the following:

SYSCTL_INT (parent, // node created or used in step 1.
 nbr, // OID_AUTO: so as not to worry about numbers
 name, // name of leaf
 access, //CTL_* flags: _RW, _ANYBODY… etc
 ptr, // address of variable holding this data
 val, // Used if ptr is NULL. Leaf is then read-only
 descr); // textual description

b. Defi ne the leaf as a SYSCTL_PROC, specifying the handler implementation. You then
need to implement the handler as follows:

SYSCTL_PROC(parent, // node created or used in step 1
 nbr, // OID_AUTO, as usual
 name, // name of leaf
 access, // CTL_* flags, as above
 ptr, // pointer to variable data
 arg, // argument to handler
 handler, // pointer to your own handler
 fmt, // "A", "I", "IU", … as above
 descr);

The advantage of the latter approach is in getting the notifi cation whenever some operation is
attempted on the sysctl. This is somewhat like Linux, in which /proc and /sys fi le system handlers
can listen in on access or changes to the exported data, and execute some operation when they occur.

Kqueues
Kqueues have been introduced into BSD, as an alternative to the poll(2)/select(2) model, which
is deemed insuffi ciently scalable. Devised by Jonathan Lemon of the FreeBSD project[4], they are
described as a “generic event delivery mechanism, which allows an application to select from a
wide range of event sources, and be notifi ed of activity on these sources in a scalable and effi cient
manner.” An emphasis is placed on the extensibility of the interface, allowing the addition of any
number of future event sources, without changes to the programming interface.

XNU exports two system calls for kqueues: The fi rst, kqueue (#362) creates the kqueue, which is
basically a fi le descriptor. The second, kevent/kevent64 (#363 or #369, respectively) is used for set-
ting event fi lters and reading from the kqueue. An example of their usage was presented in Listing 3-1.

The kernel implementation of kqueues is self-contained in a single fi le, bsd/sys/kern_event.c. The
kqueue, as a fi le descriptor, is defi ned by its fi leops, which are tied to the fi le descriptor when the
kqueue is created. This is shown in the implementation of kqueue(2) in Listing 14-6.

LISTING 14-6: The implementation of kqueue(2), from bsd/sys/kern_event.c

int kqueue(struct proc *p, __unused struct kqueue_args *uap, int32_t *retval)
{
 struct kqueue *kq;
 struct fileproc *fp;

continues

c14.indd 555c14.indd 555 10/1/2012 6:19:12 PM10/1/2012 6:19:12 PM

Book Title <Chapter No> V1 - MM/DD/2010 Page 556

556 x CHAPTER 14 SOMETHING OLD, SOMETHING NEW: ADVANCED BSD ASPECTS

 int fd, error;

 // allocate file structure fp as file descriptor fd
 error = falloc(p, &fp, &fd, vfs_context_current());
 if (error) {
 return (error);
 }
 // allocate actual kqueue
 kq = kqueue_alloc(p);
 if (kq == NULL) {
 fp_free(p, fd, fp);
 return (ENOMEM);
 }

 fp->f_flag = FREAD | FWRITE; // make descriptor readable/writable
 fp->f_type = DTYPE_KQUEUE; // mark descriptor type as a queue
 fp->f_ops = &kqueueops; // tie kqueue operations to file operations
 fp->f_data = (caddr_t)kq; // tie kqueue to file structure

 // kqueue is not really backed by a file, so release unnecessary parts
 proc_fdlock(p);
 procfdtbl_releasefd(p, fd, NULL);
 fp_drop(p, fd, fp, 1);
 proc_fdunlock(p);

 *retval = fd; // return fd to user
 return (error);
}

Both the kevent(2) and kevent64(2) calls end up using the same function, kevent_internal,
which either sets the event fi lter (if supplied), or uses Mach continuations to block until an event
arrives. The kernel event notifi cations themselves are known as knotes, and in that respect a kqueue
can be seen as a linked list of knotes. A knote may belong to several kqueues, and the kqueues are
the mechanism by means of which the user fi ltering is performed.

If XNU is compiled with socket support (which it is, by default), the bsd/kern/kern_event.c fi le
also contains the implementation of kernel event sockets. These are referred to as kevs, but are actu-
ally part of a different mechanism, called system sockets (discussed in greater detail in Chapter 17).
The corresponding user mode header fi le, <sys/kern_event.h>, refers to system sockets, and it is
<sys/event.h>, which contains the exports for kevents.

Auditing (OS X)
Recall the discussion of auditing in Chapter 3, from the administrator’s perspective. The chapter
introduced the user commands of praudit(1) and the special audit device, /dev/auditpipe.
From the kernel perspective, auditing is simply a matter of lacing the system call invocation logic
(Listing 14-7) with several macros:

LISTING 14-6 (continued)

c14.indd 556c14.indd 556 10/1/2012 6:19:12 PM10/1/2012 6:19:12 PM

Book Title <Chapter No> V1 - MM/DD/2010 Page 557

BSD Heirlooms Revisited x 557

 ‰ AUDIT_SYSCALL_ENTER: Called right before the invocation of AUNIX system call from the
sysent table. The macro takes three arguments: the system call code (number), the BSD pro-
cess, and thread objects responsible for the call.

 ‰ AUDIT_ARG: Called inside the system call implementation. This takes the operation
(argument typedef), and a variable number of arguments, corresponding to those of the
system call.

 ‰ AUDIT_SYSCALL_EXIT: Called right after the system call implementation. Arguments are the
same as those of ENTER, along with the return value of the system call.

LISTING 14-7: Auditing support in unix_syscall (bsd/dev/i386/systemcalls.c)

void unix_syscall(x86_saved_state_t *state)
{
 // ...
 AUDIT_SYSCALL_ENTER(code, p, uthread);
 error = (*(callp->sy_call))((void *) p, (void *) vt, &(uthread->uu_rval[0]));
 AUDIT_SYSCALL_EXIT(code, p, uthread, error);
 // ...
}

Additional macros exist for auditing Mach traps, but those are only used when a BSD call results in
a Mach call and, even then, for only select Mach traps.

The auditing macros are defi ned in bsd/security/audit/audit.h. The macros check the value of
the audit_enabled global variable, so as to avoid the need for any overhead if auditing is disabled.
The administrator can toggle the value of this variable using the auditon(2) system call with the
A_SETCOND command.

If auditing is indeed enabled, the macros either create a new kaudit_record (eventually calling
audit_new), or use an existing audit record, if one can be found on the BSD thread’s uu_ar fi eld. An
audit record is fi nalized by a call to audit_commit, which moves the audit record to an audit_q.
Once the record is on the queue, the thread’s uu_ar is reset.

In addition to placing the record in the audit_q, audit_commit also signals a condition variable,
audit_worker_cv. Doing so wakes up the dedicated audit worker thread by continuation, and it
processes the record (in audit_worker_process_record) by calling kaudit_to_bsm, which con-
verts it into an OpenBSM-compatible format. The record can then be directly written (from the
kernel) to the audit fi le, submitted to any audit pipes, and, as of Lion, to the audit session devices (by
audit_sdev_submit, in audit_session.c). It is then freed. This is shown in Listing 14-8.

LISTING 14-8: Audit worker thread record processing

/*
 * Given a kernel audit record, process as required. Kernel audit records
 * are converted to one, or possibly two, BSM records, depending on whether
 * there is a user audit record present also. Kernel records need be
 * converted to BSM before they can be written out. Both types will be
 * written to disk, and audit pipes.
 */

continues

c14.indd 557c14.indd 557 10/1/2012 6:19:12 PM10/1/2012 6:19:12 PM

Book Title <Chapter No> V1 - MM/DD/2010 Page 558

558 x CHAPTER 14 SOMETHING OLD, SOMETHING NEW: ADVANCED BSD ASPECTS

static void audit_worker_process_record(struct kaudit_record *ar)
{
 // …

// Convert to BSM record format
 error = kaudit_to_bsm(ar, &bsm);
 switch (error) {
 /// error handling on all codes is basically a goto out
 }

 //
 // Write directly to the file. The audit_vp is the vnode of the audit file
 //
 if (ar->k_ar_commit & AR_PRESELECT_TRAIL) {
 AUDIT_WORKER_SX_ASSERT();
 audit_record_write(audit_vp, &audit_ctx, bsm->data, bsm->len);
 }

//
 // Send to any /dev/auditpipe instances
 //
 if (ar->k_ar_commit & AR_PRESELECT_PIPE)
 audit_pipe_submit(auid, event, class, sorf,
 ar->k_ar_commit & AR_PRESELECT_TRAIL, bsm->data,
 bsm->len);

//
 // Send to any /dev/auditsessions device instances (new in Lion)
 //
 if (ar->k_ar_commit & AR_PRESELECT_FILTER) {
 /*
 * XXXss - This needs to be generalized so new filters can
 * be easily plugged in.
 */
 audit_sdev_submit(auid, ar->k_ar.ar_subj_asid, bsm->data,
 bsm->len);
 }

 kau_free(bsm);
out:
 if (trail_locked)
 AUDIT_WORKER_SX_XUNLOCK();
}

The audit_vp is an interesting example of kernel code writing directly to fi les, without user mode
intervention. This is a necessary shortcut, due to the security sensitive nature of auditing.

Mandatory Access Control
Chapter 3 introduced the user mode view of the Mandatory Access Control (MAC), a powerful
security feature Apple imported from TrustedBSD. That view, however, is extremely limited, as

LISTING 14-7 (continued)

c14.indd 558c14.indd 558 10/1/2012 6:19:12 PM10/1/2012 6:19:12 PM

Book Title <Chapter No> V1 - MM/DD/2010 Page 559

BSD Heirlooms Revisited x 559

enforcement can be reliably carried out only by the kernel. This section discusses the implementation
of MAC, delving deeper into its two main implementations: OS X’s sandbox and iOS’s entitlements.

MAC Policies
A MAC policy is visible to the user only as an opaque object. In the kernel, however, the policy is a
mac_policy_conf structure, defi ned in security/mac_policy.h. A policy module is expected to
register this structure on entry using mac_policy_register, and deregister (using mac_policy_
unregister) on exit. A MAC_POLICY_SET macro is available to emit all this code automatically, as
shown in Listing 14-9:

LISTING 14-9: the MAC_POLICY_SET macro from security/mac_policy.h

#define MAC_POLICY_SET(handle, mpops, mpname, mpfullname, lnames, lcount, slot, lfl
ags, rflags) \
 static struct mac_policy_conf mpname##_mac_policy_conf = { \
 .mpc_name = #mpname, /* Policy name */ \
 .mpc_fullname = mpfullname, /* Policy official name */ \
 .mpc_labelnames = lnames, /* Label names (char **) */ \
 .mpc_labelname_count = lcount, /* Count of label names */ \
 .mpc_ops = mpops, /* Policy operations (see below) */ \
 .mpc_loadtime_flags = lflags, /* MPC_LOADTIME_FLAG_* constants */ \
 .mpc_field_off = slot, /* int * holding policy slot, or NULL */ \
 .mpc_runtime_flags = rflags /* only MPC_RUNTIME_FLAG_REGISTERED defined */ \
 }; \
 \
 static kern_return_t \
 kmod_start(kmod_info_t *ki, void *xd) \
 { \
 return mac_policy_register(&mpname##_mac_policy_conf, \
 &handle, xd); \
 } \
 \
 static kern_return_t \
 kmod_stop(kmod_info_t *ki, void *xd) \
 { \
 return mac_policy_unregister(handle); \
 } \
 extern kern_return_t _start(kmod_info_t *ki, void *data); \
 extern kern_return_t _stop(kmod_info_t *ki, void *data); \
 \
 KMOD_EXPLICIT_DECL(security.mpname, POLICY_VER, _start, _stop) \
 kmod_start_func_t *_realmain = kmod_start; \
 kmod_stop_func_t *_antimain = kmod_stop; \
 int _kext_apple_cc = __APPLE_CC__

The key fi eld in the mac_policy_conf structure is mpc_ops, which is a pointer the mac_policy_
ops structure. This is a gargantuan struct of well over 300 function pointers, which each policy
module is expected to either implement, or leave NULL. The function pointers cover virtually every
operation in the system, following a naming convention of mpo_object_operation_call, where:

c14.indd 559c14.indd 559 10/1/2012 6:19:12 PM10/1/2012 6:19:12 PM

Book Title <Chapter No> V1 - MM/DD/2010 Page 560

560 x CHAPTER 14 SOMETHING OLD, SOMETHING NEW: ADVANCED BSD ASPECTS

 ‰ object is the object type: fi le (really, descriptor), port, socket, sysvsem, proc, vnode (fi le)

 ‰ operation is either “label” or “check.” The “label” operation corresponds to a label related
operation. The “check” operation corresponds to authorizing a system call or trap.

 ‰ call is, for a check, usually the name of the system call (or Mach trap) the access check
relates to. For label, one of the stages of the label lifecycle, usually init, associate and
destroy, and sometimes other specifi c verbs.

When XNU calls on the MAC layer to validate an operation, the MAC layer calls on the policy
modules, in turn, for validation. All MAC checks follow roughly the same template. As an example,
consider a highly useful mac_vnode_check_signature, which is responsible for the enforcement of
code signing. This is shown in listing 14-10:

LISTING 14-10: mac_vnode_check_signature, from security/mac_vfs.h

int
mac_vnode_check_signature(struct vnode *vp, unsigned char *sha1,
 void * signature, size_t size)
{
 int error;

 // if either security.mac.vnode_enforce or security.mac.proc_enforce sysctls
 // are 0 (false), we just return 0 as well, never getting to the check.

 if (!mac_vnode_enforce || !mac_proc_enforce)
 return (0);

 // Otherwise, walk policy module list,execute mpo_vnode_check_signature for each
 MAC_CHECK(vnode_check_signature, vp, vp->v_label, sha1, signature, size);
 return (error);
}

The MAC_CHECK macro (defi ned in security/mac_internal.h) walks through the policy list to vali-
date the operation by each of the registered modules. This walk, however, will be performed only
if the global mac_xxx_enforce checks are true. Setting any of the security.mac.xxx_enforce
variables (shown in Output 3-3) to 0 causes the resulting mac_xxx_enforce variable in the kernel to
be false, and thus all the related checks of the subsystem to return 0 (i.e. a “go ahead”), rather than
actually performing the check, which may result in an error.

Recall from Chapter 3, that the MAC layer exports sysctl(2) MIB variables, which allow the
administrator to selectively disable enforcement. Looking back at the listing, it is easy to see how
this is performed: If either mac_vnode_enforce or mac_proc_enforce are false, then the check is
short circuited and returns 0 (“go ahead”) on the operation.

APPLE’S POLICY MODULES

Even though the MAC framework is reasonably well documented and used by third-party software
in FreeBSD, in OS X and iOS it mostly caters to Apple itself, due to the relative dearth of anti-mal-
ware and security software (a situation which is starting to change). MAC’s primary use in OS X is

c14.indd 560c14.indd 560 10/1/2012 6:19:13 PM10/1/2012 6:19:13 PM

Book Title <Chapter No> V1 - MM/DD/2010 Page 561

Apple’s Policy Modules x 561

for the sandbox mechanism (formerly seatbelt), and in iOS MAC enables the rigid code signing and
entitlements which enable Apple to protect their precious from the horrors of third party code.

Sandbox.kext
The sandbox kernel extension for OS X has been reversed by Dionysus Blazakis, who has thor-
oughly documented his fi ndings in a paper presented at BlackHat DC 2011[5]. His analysis, however,
is for Snow Leopard’s version (34.1), as Lion was not yet released at the time. Lion’s version is con-
siderably newer (177.3), and Mountain Lion’s newer still, at 189. The iOS 5.1 version seems to be an
almost direct port of the OS X one, with several differences:

 ‰ The iOS sandbox reports a slightly older version (154.9) than Lion’s (177.3).

 ‰ The iOS Sandbox is tightly coupled with AppleMobileFileIntegrity (discussed next).

 ‰ iOS has no qtn-* keys (required for the quarantine feature of OS X), as the system does not
support this notion. There are also no user-preference* keys.

 ‰ By default, the sandbox restricts all third-party applications (from /private/var/mobile/
Applications) to their directory. This is the well known “jail” that jailbreakers break out
of, by patching the sandbox evaluation logic.

 ‰ In the OS X version, applications can be unsandboxed. This is not the case with iOS.

The sandbox kernel extension sometimes requests the services of /usr/libexec/sandboxd.
This daemon, which is started by launchd(1), claims host special port #14 (still #defined at
HOST_SEATBELT_PORT).

As mentioned in Chapter 3, Sandbox.kext implements a tinySCHEME-like dialect for defi n-
ing authorization and operation permissions. This textual format is compiled in user mode on-
the-fl y, and then submitted to the kernel for later policy approvals. It is the role of a second kext,
AppleMatch.kext, to perform the policy and regular expression matching.

The Sandbox policy is a static defi nition, and can be found easily thanks to the hardcoded strings
“sandbox” and “Seatbelt sandbox policy.” Apple has graciously left these in plain text (along
with all too many other strings!). Locating the reference to the policy name leads you to the
policy structure, and locating the policy structure leads you straight to the sandbox initialization
function.

The book’s companion jtool, introduced in Chapter 4, has a powerful search
feature in Mach-O objects. This feature is exceptionally useful if you’re trying
to fi nd strings, which can lead you to the more “interesting” parts of a binary.
Using the –f switch, jtool can be asked to perform a fast search for a string, and
reveal its location not only in the fi le, but also in the resulting memory segment.
Using the -fr switch will also reveal where the string is referenced, which is usu-
ally in or around the function that uses it.

c14.indd 561c14.indd 561 10/1/2012 6:19:13 PM10/1/2012 6:19:13 PM

Book Title <Chapter No> V1 - MM/DD/2010 Page 562

562 x CHAPTER 14 SOMETHING OLD, SOMETHING NEW: ADVANCED BSD ASPECTS

AppleMobileFileIntegrity.kext
iOS has a far more stringent security mechanism than its older sister. Unlike OS X, wherein
code signing is optional, iOS will blatantly kill -9 any process that is not properly code signed.
XNU is not to be blamed for this; it’s just following orders. The role of “bad cop” is played by
AppleMobileFileIntegrity.kext. Like Sandbox.kext, AFMI has a henchman in user mode:
/usr/libexec/amfid. This daemon is started from launchd, which also registers for it host special
port #18 (HOST_AMFID_PORT). The daemon accepts messages from AMFI, and assists it with tasks
tasks are best implemented in user mode.

Reverse engineering initializeAppleMobileFileIntegrity (which is called from the kext’s
_Start function, and does all its work) reveals that it calls mac_policy_register, as all policy
modules must. The policy it is mostly NULL, but contains callbacks for the following:

 ‰ mpo_vnode_check_exec: AMFI’s callback returns 1 (allowing execution for the vnode) but
not before setting the code signing fl ags (CS_HARD and CS_KILL). This ensures that all pro-
cesses will have to go code signature checks, and can always die another later if the need arises.

 ‰ mpo_vnode_check_signature: This is the main logic of AMFI, which uses the amfid and its
own in-kernel signature cache to validate the code signature of a fi le. If this function returns
true, then Listing 14-10 returns true as well, and the binary is allowed. This is also why this
check (specifi cally, the in-kernel cache check) is a favorite target for patching.

 ‰ mpo_proc_check_get_task: This protects task_for_pid calls, which as described earlier
in this book enable obtaining the task’s port (and complete control over it). The hook checks
two entitlements (get-task-allow and task_for_pid-allow, as well as a call to check if
unrestricted debugging is enabled (using the amfid), and returns true if any of the above is
affi rmative.

 ‰ mpo_proc_check_run_cs_invalid: This checks if the get-task-allow, run-invalid-
allow, or run-unsigned-code entitlements are set, or if unrestricted debugging is enabled.
If this check returns true, cs_allow_invalid (from bsd/sys/kern_proc.c) clears the CS_
KILL, CS_HARD, and CS_VALID bits, and returns true as well, allowing unsigned code.

AMFI recognizes several boot arguments, which it parses (using PE_parse_boot_argn), that can
disable some checks. These are listed in Table 14-6. Bear in mind, however, that there is no known
way to pass boot-args to XNU on A5-devices and later.

TABLE 14-6: AMFI Boot Arguments

AMFI BOOT ARGUMENT USAGE

PE_i_can_has_debugger Global boot argument used throughout XNU to denote

debugger attachment is permitted. Disables most checks.

cs_debug Disables code signing.

cs_enforcement_disable Disables enforcement of code singing; check is still per-

formed, but neutered.

c14.indd 562c14.indd 562 10/1/2012 6:19:14 PM10/1/2012 6:19:14 PM

Book Title <Chapter No> V1 - MM/DD/2010 Page 563

References x 563

amfi_allow_any_signature Allow any signature on code, not just Apple’s.

amfi_unrestrict_task_for_pid Allow task_for_pid regardless of whether the process

has the get-task-allow and task_for_pid-allow

entitlements.

amfi_get_out_of_my_way Just disable AMFI altogether. Apparently Apple’s own devel-

opers get tired of AMFI’s meddling every now and then.

Other policy modules may be dynamic, but AppleMobileFileIntegrity is certainly not. Although
the kext has a stop function, any attempt to unload it will result in a kernel panic (“Cannot unload
AMFI — policy is not dynamic”). Likewise, if for some reason it cannot initialize, it panics the ker-
nel, complaining that “AMFI failed to initialize. This would compromise system security.”

You can locate AMFI in a manner similar to the one described for the Sandbox: Searching for
references to “Apple Mobile File Integrity” will lead you right to initializeAppleMobileFile
Integrity, as shown in Output 14-1:

OUTPUT 14-1: Locating AMFI in the iOS 5 kernelcache using jtool

morpheus@Ergo (/)$ jtool -fr "Apple Mobile File Integrity" ~/iOS/iOS.5.0.0.kernelcache
Searching for string "Apple Mobile File Integrity" and all references to it:
 - Found at file offset: 0x5ae5ba, Memory: 0x805f15ba (Segment: __PRELINK_TEXT)
References to 0x805f15ba:
 - Reference found at file offset: 0x5a1144, Memory: 0x805e4144(Segment: __PRELINK_TEXT)

SUMMARY

This chapter discussed advanced aspects of XNU’s BSD layer. It began by reviewing BSD memory
management, both the POSIX exported calls and the internal functions used. It further covered
dealing with memory pressure, and touched on kernel address space layout randomization (KASLR),
a feature soon to appear in Mountain Lion, and very likely iOS 6.

We continued with a review of the kernel perspective of several BSD features, such as sysctl(2),
kqueues and auditing. Finally, the spotlight moved to the kernel implementation of the Mandatory
Access Control Framework (MAC), and the implementation of two important policy modules: the
Sandbox and iOS’s AMFI.

Our discussion of the BSD layer is only beginning, as we turn our gaze towards two important sub-
systems: File Systems (Chapter 15), and Networking (Chapter 17).

REFERENCES

1. Hovav Shacham, et al, “Return-Oriented Programming: Exploits Without Code Injection,”
http://cseweb.ucsd.edu/~hovav/talks/blackhat08.html

c14.indd 563c14.indd 563 10/1/2012 6:19:14 PM10/1/2012 6:19:14 PM

http://cseweb.ucsd.edu/~hovav/talks/blackhat08.html

Book Title <Chapter No> V1 - MM/DD/2010 Page 564

564 x CHAPTER 14 SOMETHING OLD, SOMETHING NEW: ADVANCED BSD ASPECTS

2. Apple Developer. “Concurrency Programming Guide,” http://developer.apple.com
/library/mac/#documentation/General/Conceptual/ConcurrencyProgrammingGuide

3. Sakamoto, Kazuki and Tomohiko Furumoto, Pro Multithreading and Memory Management
for iOS and OSX. Apress; 2012

4. Kqueues, http://people.freebsd.org/~jlemon/papers/kqueuepdf

5. Blazakis, Dionysus “The Apple Sandbox,” http://www.semantiscope.com/research/
BHDC2011/

c14.indd 564c14.indd 564 10/1/2012 6:19:14 PM10/1/2012 6:19:14 PM

http://developer.apple.com/library/mac/#documentation/General/Conceptual/ConcurrencyProgrammingGuide
http://people.freebsd.org/~jlemon/papers/kqueuepdf
http://www.semantiscope.com/research/BHDC2011/
http://developer.apple.com/library/mac/#documentation/General/Conceptual/ConcurrencyProgrammingGuide
http://www.semantiscope.com/research/BHDC2011/

15
Fee, FI-FO, File: File Systems
and the VFS

One of the kernel’s major responsibilities is handling data, both the user's and of the system's.
To this end, data is organized into fi les and directories, which reside on fi le systems of various
types.

XNU’s BSD layer is responsible for implementing fi le systems and does so using a framework
known as the Virtual File System Switch, or VFS. This framework, which has its origins with
(the now deceased) Sun’s Solaris operating system, has become a standard interface used in
UNIX between the kernel and various fi le system implementations, both local and remote.

PRELUDE: DISK DEVICES AND PARTITIONS

OS X and iOS follow the BSD convention of treating the hard disks as device nodes. Each disk
can be accessed as a block device (/dev/disk#) or a character (raw) device (/dev/rdisk#).
Likewise, partitions — or “slices” in UNIX-speak — can be accessed in a similar manner,
both block and character, as /dev/[r]disk#s#.

Normally, disks and partitions are block devices. It is over the block device representation that
the system can then mount(2) a fi le system. The raw mode is used primarily by low-level pro-
grams such as fsck(8) and pdisk(8), which need to seek and write directly to blocks.

Disk drivers also offer a standard ioctl(2) interface, defi ned in <sys/disk.h>, to allow for
various query operations. The header is pretty well documented and defi nes the codes shown
in Listing 15-1.

c15.indd 565c15.indd 565 10/1/2012 2:37:40 PM10/1/2012 2:37:40 PM

566 x CHAPTER 15 FEE, FI-FO, FILE: FILE SYSTEMS AND THE VFS

LISTING 15-1: The standard disk ioctl codes from <sys/disk.h>

 /* Definitions
 /*
 /* ioctl description
 /* ------------------------------------- ---------------------------------------
 /* DKIOCEJECT eject media
 /* DKIOCSYNCHRONIZECACHE flush media
 /*
 /* DKIOCFORMAT format media
 /* DKIOCGETFORMATCAPACITIES get media's formattable capacities
 /*
 /* DKIOCGETBLOCKSIZE get media's block size
 /* DKIOCGETBLOCKCOUNT get media's block count
 /* DKIOCGETFIRMWAREPATH get media's firmware path
 /*
 /* DKIOCISFORMATTED is media formatted?
 /* DKIOCISWRITABLE is media writable?
 /*
 /* DKIOCREQUESTIDLE idle media
 /* DKIOCDISCARD delete unused data
 /*
 /* DKIOCGETMAXBLOCKCOUNTREAD get maximum block count for reads
 /* DKIOCGETMAXBLOCKCOUNTWRITE get maximum block count for writes
 /* DKIOCGETMAXSEGMENTCOUNTREAD get maximum segment count for reads
 /* DKIOCGETMAXSEGMENTCOUNTWRITE get maximum segment count for writes
 /* DKIOCGETMAXSEGMENTBYTECOUNTREAD // get max segment byte count, reads
 /* DKIOCGETMAXSEGMENTBYTECOUNTWRITE // get max segment byte count, writes
 /*
 /* DKIOCGETMINSEGMENTALIGNMENTBYTECOUNT get minimum segment alignment in bytes
 /* DKIOCGETMAXSEGMENTADDRESSABLEBITCOUNT get maximum segment width in bits
 /*
 /* DKIOCGETPHYSICALBLOCKSIZE get device's block size
 /* DKIOCGETCOMMANDPOOLSIZE get device's queue depth
 /*/

Using these is straightforward, as demonstrated by Listing 15-2:

LISTING 15-2: Using <sys/disk.h> ioctls to query information on a disk

#include <sys/disk.h> // disk ioctls are here..
#include <errno.h> // errno!
#include <stdio.h> // printf, etc..
#include <string.h> // strncpy..
#include <fcntl.h> // O_RDONLY
#include <stdlib.h> // exit(), etc..

#define BUFSIZE 1024

// Simple program to demonstrate use of DKIO* ioctls:
// Usage: ... /dev/disk1 or ... disk1

void main (int argc, char **argv)
{

c15.indd 566c15.indd 566 10/1/2012 2:37:46 PM10/1/2012 2:37:46 PM

Prelude: Disk Devices and Partitions x 567

 uint64_t bs, bc,rc;
 char fp[BUFSIZE];
 char p[BUFSIZE];

 strncpy (p, argv[1], BUFSIZE);
 if(p[0] != '/') {
 snprintf(p, BUFSIZE -10, "/dev/%s", p);
 }

 int fd = open(p, O_RDONLY);
 if(fd == -1) {
 fprintf(stderr, "%s: unable to open %s\n", argv[0], p);
 perror ("open");
 exit (1);
 }

 rc = ioctl(fd, DKIOCGETBLOCKSIZE, &bs);
 if (rc < 0)
 {
 fprintf (stderr, "DKIOCGETBLOCKSIZE failed\n"); exit(2);
 }
 else {
 fprintf (stderr, "Block size:\t%d\n",bs);
 }

 rc = ioctl(fd, DKIOCGETBLOCKCOUNT, &bc);
 fprintf (stderr, "Block count:\t%ld\n", bc);

 rc = ioctl(fd, DKIOCGETFIRMWAREPATH, &fp);
 fprintf (stderr, "Fw Path:\t%s\nTotal size:\t%ldM\n", fp, (bs * bc) / (1024 * 1024));

}

Note that obtaining the disk device for ioctl() requires read permission, which is normally not
granted to non-root (or non-group operator) users.

Partitioning Schemes
File systems do not exist on their own. They reside in partitions on the disk. Every disk has at least
one partition, and partitions can be individually formatted to contain fi le systems. In some cases, it
is possible to have a fi le system span multiple partitions. A partitioning scheme defi nes the disk lay-
out, logically segmenting the disk into one or more areas (hence, partitions) of contiguous sectors.
Usually, this involves reserving the fi rst several sectors of a disk for the partition table, which lists
the areas (starting sector and sector count) and the fi le system type of each partition.

OS X traditionally supported three partitioning schemes:

 ‰ Master Boot Record (MBR) partitioning: MBR is a legacy of the old days of the PC XT and
AT and is still widely used today. This partitioning scheme relies on a BIOS, is very limited
(up to four partitions), and is 32-bit (for a maximum of 4 billion sectors), but it is supported
across the board by all operating systems.

c15.indd 567c15.indd 567 10/1/2012 2:37:46 PM10/1/2012 2:37:46 PM

568 x CHAPTER 15 FEE, FI-FO, FILE: FILE SYSTEMS AND THE VFS

 ‰ Apple Partition Map: A custom, Apple-only scheme. Originally widespread in PPC-based
Macs, it is also a 32-bit scheme and is Apple proprietary. It is now largely deprecated
in favor of the next scheme, GPT, but still used for formatting Classic and Nano iPod
devices.

 ‰ GUID Partition Table (GPT): A 64-bit scheme, which allows it to be used for disk sizes well
into the exabyte range and beyond. It also effectively relieves any maximum partition restric-
tions. This is especially important: Both MBR and APT, being 32-bit schemes, allow for a
maximum addressable 232 sectors. Given the standard sector size is 512 bytes, this allows
for disk sizes of up to 2 TB. Apple’s default partitioning scheme has thus moved to a 64-bit
architecture. GPT is also part of the EFI standard, which works well because Apple’s Intel
hardware is EFI-based.

Some 32-bit systems, however (most notably Windows XP), still cannot support GPT. OS
X on Intel, being EFI, supports it natively. As of 10.4, and as detailed in Apple Tech Note
TN2166[4] (“Secrets of the GPT”), GPT has been favored by Apple as the default partition-
ing scheme.

 ‰ Lightweight Volume Manager (LwVM): An Apple-proprietary partition scheme, used in iOS
5 and later (as well as some older Apple TVs). Although it is proprietary and undocumented,
it is fairly simple and has been reverse-engineered.

Kernel extensions can implement additional or custom partition schemes, by inheriting from IOKit’s
IOPartitionScheme class (itself a subclass of IOStorage, which contains it).

The MBR Partitioning Scheme
The Master Boot Record scheme, the last relic of the 16-bit days, is fast losing ground yet remains
the default partitioning scheme in all other operating systems save OS X and 64-bit Windows. It
is, without a doubt, the simplest partitioning scheme available. It reserves the fi rst sector of the
disk — the boot sector — for up to 440 bytes of bootstrap code that the BIOS uses to start up
the machine. The 440 bytes typically read through the partition table, located at offset 446, and
jump to the beginning of the partition, the Partition Boot Record, wherein operating system–spe-
cifi c code resides. The partition table is a fi xed size — 64 bytes. This leaves only two more usable
bytes — which are fi xed to 0x55AA — the MBR signature.

The MBR table is kept very simple. Because it is always 64 bytes, it allows for no more than four
“primary” partition entries. Each entry is exactly 16 bytes long and describes the partition type,
size, and address. The entries in the table provide the partition start and end address in one of
two formats: Cylinder/Head/Sector (C/H/S) coordinates, or — more commonly — in Large Block
Address (LBA) offsets. The latter is more often used, as the C/H/S scheme is limited to what, by
today’s standards, are fairly small drives.

If you have a portable hard drive, chances are it is MBR-formatted, and you can try the following in
a terminal on the raw disk device (note that you will need to be root for read access). If not, you can
always use OS X hdiutil to create an MBR-based image, as shown in Output 15-1. (Disk images,
or .dmg fi les, are discussed later in this chapter.)

c15.indd 568c15.indd 568 10/1/2012 2:37:46 PM10/1/2012 2:37:46 PM

Prelude: Disk Devices and Partitions x 569

OUTPUT 15-1: Creating an MBR disk image with hdiutil

root@Ergo (/)# hdiutil create -layout MBRSPUD -megabytes 64 /tmp/testMBR.dmg
...
created: /tmp/testMBR.dmg

root@Ergo (/)# ls -l /tmp/testMBR.dmg
-rw-r--r--@ 1 root wheel 67108864 Jun 19 10:53 /tmp/testMBR.dmg

Using the od command, we can dump the fi le system; we care only about the fi rst block, (up to offset
0x200):

root@Ergo (/)# od -A x -t x1 /tmp/testMBR.dmg | more
0000000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
*
00001b0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 fe
00001c0 ff ff af fe ff ff 01 00 00 00 ff ff 01 00 00 00
00001d0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
*
00001f0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 55 aa

Seeing as the image we created isn’t bootable, the fi rst 440 (0x1b8) bytes are all zero. Following
them is an optional 32-bit disk signature (none in our case) and another reserved 2 bytes. At the
unusual offset of 0x1be is the partition table — unusual, because it is aligned on a 16, not a 32-bit
boundary. Each entry is 16 bytes, and in the preceding example we have only one. Examining the
previous output, and the record format below in Figure 15-1, you should quickly reach the conclu-
sion that the partition is an HFS+ partition (0xAF), which is not bootable (0x00), starts at LBA block
1, and spans 131,071 blocks (64 MB).

offset

Type Filesystem

0x00

0x07

0x83

0x0B

0xAF

Bootable flag (0×80)

Partition Type

.. ...

.. ...

Cylinder

Head of last sector

Sector

LBA address of first sector

Number of sectors

NTFS/ex Fat

Fat 32

Linux Ext

HFS+

Cylinder (10 bits)
Head (6 bits) of first sector
Sector (8 bits)

0x01

0x04

0x05

0x06

0x07

0x08

0x0C

Purpose

FIGURE 15-1: MBR partition format.

From the simple example provided, it should be obvious why MBR is a dying breed. It is not 32-bit
optimized, it is limited to four primary partitions, extracting the C/H/S is not straightforward
(requires multiple bit shifts), and the addressing and it is limited to 1023 cylinders, 63 heads, and
254 sectors. The only thing that permits MBR’s survival so far is using LBA (Large Block Access)
addresses of blocks, rather than C/H/S, as LBA can address up to 2 TB — but that, too, is fast

c15.indd 569c15.indd 569 10/1/2012 2:37:46 PM10/1/2012 2:37:46 PM

570 x CHAPTER 15 FEE, FI-FO, FILE: FILE SYSTEMS AND THE VFS

becoming an obstacle as disk space grows ever more abundant by the day. Apple ran into these and
other limitations fairly early on, which is why it adopted its own partitioning scheme — the Apple
Partition Scheme.

The Apple Partitioning Scheme
The Apple Partitioning Scheme (APM) was designed by Apple as an alternative to MBR, meant to
address the limitation of the four primary partitions and allow for LBA. Nowadays, you’re gen-
erally less likely to run into any disks formatted with the Apple Partitioning Scheme, unless you
have a PPC-based Mac or an iPod Classic or Nano. However, it is possible here, too, to use OS X’s
hdiutil tool to create a DMG fi le that is APM-formatted. You can then follow along on your device
using the commands shown here in Output 15-2:

OUTPUT 15-2: Creating and attaching an Apple Partition Map formatted disk image

root@Minion (/)# hdiutil create -layout SPUD -megabytes 256 /tmp/testAPM.dmg
...
created: /tmp/xx.dmg

root@Minion (/)# ls -l /tmp/testAPM.dmg
-rw-r--r--@ 1 root wheel 268435456 Jun 19 07:13 /tmp/testAPM.dmg

root@Minion (/)# hdid –nomount /tmp/testAPM.dmg
/dev/disk4 Apple_partition_scheme
/dev/disk4s1 Apple_partition_map
/dev/disk4s2 Apple_HFS

root@Minion (/)# diskutil partitionDisk disk4 APM HFS+ "Test HFS+" 25% hfsx \
 "Test HFSX" 25% jhfs+ "Journaled+" 25% free "ignored" 25%
Started partitioning on disk4
Unmounting disk
[\ \ \ \ \ \ \ \ \ \ \ \ \ \]
[\ \ \ \ \ \ \ \ \ \ \ \ \ \]
Creating partition map
Waiting for disks to reappear
Formatting disk4s2 as Mac OS Extended with name Test HFS+
Formatting disk4s3 as Mac OS Extended (Case-sensitive) with name Test HFSX
Formatting disk4s4 as Mac OS Extended (Journaled) with name Journaled+
[/ 0%..10%..20%..30%..40%..50%..60%..70%..80%...........]
Finished partitioning on disk4
/dev/disk4
 #: TYPE NAME SIZE IDENTIFIER
 0: Apple_partition_scheme *268.4 MB disk4
 1: Apple_partition_map 32.3 KB disk4s1
 2: Apple_HFS Test HFS+ 67.1 MB disk4s2
 3: Apple_HFSX Test HFSX 67.1 MB disk4s3
 4: Apple_HFS Journaled+ 67.1 MB disk4s4

c15.indd 570c15.indd 570 10/1/2012 2:37:47 PM10/1/2012 2:37:47 PM

Prelude: Disk Devices and Partitions x 571

root@Minion (/)# hdid -nomount /tmp/testAPM.dmg/dev/disk4
 Apple_partition_scheme
/dev/disk4s1 Apple_partition_map
/dev/disk4s2 Apple_HFS /Volumes/Test HFS+
/dev/disk4s3 Apple_HFSX /Volumes/Test HFSX
/dev/disk4s4 Apple_HFS /Volumes/Journaled+

You might also want to take a look at IOApplePartitionScheme.h in the
IOStorageFamily driver (http://www.opensource.apple.com/source/
IOStorageFamily/IOStorageFamily-24/IOApplePartitionScheme.h).

In the example, we created a 256 MB disk image, initially with one partition, and then repartitioned
it to three — each containing a separate fi le system type. Because the partition map itself uses up a
partition (in the preceding example, /dev/disk4s1), we end up with four partitions, the usable ones
being /dev/disk4s2 through /dev/disk4s4. Technically, there is one more partition — to hold the
free space, as there is a requirement in APM that all blocks on the disk be covered by a partition.
The free space, however, is not accessible as a device node (that is, there is no /dev/disk4s5 in the
preceding example).

At the disk level, APM reserves the fi rst block of the disk, block 0, for a special Driver Descriptor
Map. This block 0, as defi ned in <IOStorage/IOApplePartitionScheme.h>, is identifi able by a
fi xed signature of ER (0x4552). The block is left largely unused, with the structure occupying only
82 out of the 512 of the block bytes. Typically, most of the structure fi elds are left as zero as well,
with the only two important ones being the signature, blocksize, and block count, as you can see in
Figure 15-2.

typedef struct Block0 {

UInt16 sbSig; /* (unique value for block zero, 'ER')*/

UInt16 sbBlkSize; /* (block size for this device) */

UInt32 sbBlkCount /* (block count for this device) */

UInt16 sbDevType; /* (device type) */

UInt16 sbDevId; /* (device id) */

UInt32 sbDrvrData; /* (driver data) */

UInt16 sbDrvrCount; /* (driver descriptor count) */

DDMap sbDrvrMap[8]; /* (driver descriptor table) */

root@Ergo (/)# od -A x -t x1 /dev/disk4 | head -3
0000000 45 52 02 00 00 08 00 00 00 00 00 00 00 00 00 00
0000010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
* (rest is all zeroed out)

FIGURE 15-2: APM’s Block 0

c15.indd 571c15.indd 571 10/1/2012 2:37:47 PM10/1/2012 2:37:47 PM

http://www.opensource.apple.com/source/IOStorageFamily/IOStorageFamily-24/IOApplePartitionScheme.h
http://www.opensource.apple.com/source/IOStorageFamily/IOStorageFamily-24/IOApplePartitionScheme.h

572 x CHAPTER 15 FEE, FI-FO, FILE: FILE SYSTEMS AND THE VFS

As you can see from the previous example, our disk block size is 512 bytes (0x0200), and the disk
contains 524,288 (0x80000) blocks — which is right on the mark, for a total of 256 MB.

The partition map can be found in the fi rst block (offset 0x200 for a 512-byte block size). Each entry
in it occupies one block. If you count one entry for the map itself, and another for the free space
(Apple_Free), there will always be two more entries than usable partitions for example, fi ve entries
for the three in our example. (See Figure 15-3.)

bash-3.2# od -A x -t xl /dev/disk4
00000000 45 52 02 00 00 08 00 00 00 00 00 00 00 00 00 00
00000010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
...
0000200 50 4d 00 00 00 00 00 05 00 00 00 01 00 00 00 3f
0000210 41 70 70 6c 65 00 00 00 00 00 00 00 00 00 00 00
0000220 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0000230 41 70 70 6c 65 5f 70 61 72 74 69 74 69 6f 6e 5f
0000240 6d 61 70 00 00 00 00 00 00 00 00 00 00 00 00 00
0000250 00 00 00 00 00 00 00 3f 00 00 00 03 00 00 00 00
0000260 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
*

0000400 50 4d 00 00 00 00 00 05 00 00 00 04 00 02 00 00
0000410 54 65 73 74 20 48 46 53 2b 00 00 00 00 00 00 00
0000420 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0000430 41 70 70 6c 65 5f 48 46 53 00 00 00 00 00 00 00
0000440 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0000450 00 00 00 00 00 02 00 00 40 00 00 33 00 00 00 00
0000460 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
*

Physical block start: 64 blocks

5 Map Entries:
Partition Map (1)
Partitions (3)
Free space (1)

Physical block start: 1 block (0×200)

Type: Apple_ HFS Size: 0×20000 blocks (64MB) Flags:
Valid, Allocated (0×03)
Readable Writeable (0×30)
Reserved (0×40000000)

Name: Test HFS+

Signature: PM

Size: 0×0000003F (31.5K)

Name: Apple

Type:
Apple_Partition_Map

Flags:
Valid, Allocated (0×03)

FIGURE 15-3: Apple Partition Map

The GPT Partitioning Scheme
The Globally Unique Identifi er Partition Table (GUID PT, or GPT, for short), was developed as
part of the Extensible Firmware Interface specifi cation. When Apple moved to an Intel-based
architecture, it made sense to adopt GPT rather than modify APM for larger disks. Indeed, Apple’s
Tech Note TN2166 effectively deprecated APM, stating that Apple could imagine disks with 2 TB
becoming standard. While still ahead of its time, GPT is now used in OS X and in iOS alike.

GPT is fully specifi ed as part of the Extensible Firmware Interface standard. EFI has already been
discussed in detail in Chapter 6. The full specifi cation of EFI also provides comprehensive detail of
GPT. The system administration command gpt(8) can be used to manipulate GPT tables (although
only to add/remove/label partitions, not resize them). (See Output 15-3.)

c15.indd 572c15.indd 572 10/1/2012 2:37:48 PM10/1/2012 2:37:48 PM

Prelude: Disk Devices and Partitions x 573

OUTPUT 15-3: The output of gpt(8). –v prints the fi rst line, with device details

root@ergo (/)# gpt -v show -l /dev/disk0s1
gpt show: /dev/disk0s1: mediasize=209715200; sectorsize=512; blocks=409600
 start size index contents
 0 1 MBR
409599

To provide some backward compatibility with MBR, the fi rst sector (LBA 0) of any GPT-
formatted disk contains a “protective MBR.” This defi nes for legacy operating systems
the entire disk as an unknown partition (type 0xEE), thus preventing misclassifi cation as an
unformatted disk.

The actual GPT resides in the second sector (LBA 1). This sector contains the GPT header,
which begins with the GPT magic string EFI PART (0x45 0x46 0x49 0x20 0x50 0x41 0x52
0x54) and contains the partition map details. Following the header is the partition map, which
is simply an array of entries. These structures are defi ned in the IOKit framework’s storage/
IOGUIDPartitionScheme.h, as illustrated in Listing 15-3.

LISTING 15-3: The GPT header, from the IOKit framework’s storage/IOGUIDPartitionScheme.h

struct gpt_hdr
{
 uint8_t hdr_sig[8];
 uint32_t hdr_revision;
 uint32_t hdr_size;
 uint32_t hdr_crc_self;
 uint32_t __reserved;
 uint64_t hdr_lba_self;
 uint64_t hdr_lba_alt;
 uint64_t hdr_lba_start;
 uint64_t hdr_lba_end;
 uuid_t hdr_uuid;
 uint64_t hdr_lba_table;
 uint32_t hdr_entries;
 uint32_t hdr_entsz;
 uint32_t hdr_crc_table;
 uint32_t padding;
};

struct gpt_ent
{
 uuid_t ent_type;
 uuid_t ent_uuid;
 uint64_t ent_lba_start;
 uint64_t ent_lba_end;
 uint64_t ent_attr;
 uint16_t ent_name[36];
};

c15.indd 573c15.indd 573 10/1/2012 2:37:48 PM10/1/2012 2:37:48 PM

574 x CHAPTER 15 FEE, FI-FO, FILE: FILE SYSTEMS AND THE VFS

GPT partitions can be named (or “labeled”), which allows for more fl exibility when defi ning boot
partitions. This avoids unbootable system scenarios that may result from rearranging the partitions
or adding/removing disks.

Lightweight Volume Manager
The Lightweight Volume Manager (LwVM) is an Apple-proprietary partitioning scheme, which has
inherited GPT as the default in iOS 5. It is conceptually somewhat similar to GPT but allows for
partition encryption as well.

The proprietary format has been reverse-engineered by the developers of OpeniBoot and is known
to be somewhat similar to Listing 15-4:

LISTING 15-4: The LwVM header

#define MAX_PARTITIONS 12

struct LwVM_MBR
{
 guid_t magic; // One of two LwVM Magic "types"
 guid_t guid; // 128-bit GUID for this device
 uint64_t mediaSize; // Media size
 uint32_t numPartitions; // Number of partitions defined (<= MAX_PARTITIONS)
 uint32_t crc32; // CRC-32, if specified by a CRC-32 type.
 uint8_t padding[464]; // Padding to 512-byte block
} ;

// First block is followed by up to MAX_PARTITIONS records (of which
// numPartitions are actually defined)

struct LwVMPartitionRecord {
 guid_t magic; // Magic of partition, as per GPT
 guid_t guid; // GUID of partition, generated per device
 uint64_t startSector;
 uint64_t endSector;
 uint64_t attributes;
 char partitionName[64];
} ;

// The two types defined in iOS 5.0 iPod4,1: (0x80887910, 0x80887920)

#define LWVM_MAGIC { 0x6A, 0x90, 0x88, 0xCF, 0x8A, 0xFD, 0x63, 0x0A, 0xE3, 0x51,
0xE2, 0x48, 0x87, 0xE0, 0xB9, 0x8B }

#define LWVM_NO_CRC_MAGIC { 0xB1, 0x89, 0xA5, 0x19, 0x4F, 0x59, 0x4B, 0x1D, 0xAD,
0x44, 0x1E, 0x12, 0x7A, 0xAF, 0x45, 0x39 }

The only known attribute is encrypted, which specifi es that the partition is encrypted and needs to be
decrypted by the kernel.

For example, consider the output of od(1) in Output 15-4 on an iOS 5 system from a 64 GB device
(the author’s iPod Touch 64GB), with two partitions.

c15.indd 574c15.indd 574 10/1/2012 2:37:48 PM10/1/2012 2:37:48 PM

Prelude: Disk Devices and Partitions x 575

OUTPUT 15-4: The output of od(1) from an iOS 5 64 GB iPod, with LwVM fi elds highlighted and
explained

root@Podicum (/)# od –A x -t x1 /dev/rdisk0 | more

0000000 6a 90 88 cf 8a fd 63 0a e3 51 e2 48 87 e0 b9 8b
0000010 a8 e9 b0 f0 ba 20 bf cc d5 bd f8 46 d5 b1 76 58
0000020 00 80 34 09 0f 00 00 00 02 00 00 00 ad ab 86 28
0000030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

*

0000200 48 46 53 00 00 00 11 aa aa 11 00 30 65 43 ec ac
0000210 8f 52 e0 a1 a1 1f 4a 88 e1 1a fc e7 8c b0 60 6a
0000220 00 80 00 00 00 00 00 00 00 e0 04 67 00 00 00 00
0000230 00 00 00 00 00 00 00 00 53 00 79 00 73 00 74 00
0000240 65 00 6d 00 00 00 00 00 00 00 00 00 00 00 00 00
0000250 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
*
0000280 48 46 53 00 00 00 11 aa aa 11 00 30 65 43 ec ac
0000290 f0 ab dd 89 55 24 33 6f 24 d8 51 7b 11 af db f4
0000300 00 e0 04 67 00 00 00 00 00 80 00 e8 0e 00 00 00
0000310 00 00 00 00 00 00 01 00 44 00 61 00 74 00 61 00
0000320 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 Attributes (first partition - none, second partition encrypted)

LwVM is handled in iOS by a dedicated kernel extension, LightweightVolumeManager.kext (com
.apple.driver.LightweightVolumeManager), which, like all kexts in iOS, is prelinked into the
kernel.

CoreStorage
CoreStorage is a new partition type, introduced in Lion, which brings to OS X the much-needed
support for logical volume management. CoreStorage partitions are logical volumes that can be
dynamically extended or shrunk, allowing them to span several partitions. CoreStorage also enables
full disk encryption (commonly referred to as FDE), and is required if FileVault 2’s features are to
be used. CoreStorage volumes may be created on GPT drives only, and HFS+ partitions must be
journaled.

At present, the CoreStorage volume format is undocumented, though supported as of Lion.
Partitions may be created with diskutil(8), which has a new “corestorage” sub-command,
wherein the commands shown in Output 15-5 may be used:

OUTPUT 15-5: CoreStorage verbs supported in Mountain Lion

root@simulacrum (/)# diskutil corestorage
Usage: diskutil [quiet] coreStorage|CS <verb> <options>,
 where <verb> is as follows:

 list (Show status of CoreStorage volumes)
 info[rmation] (Get CoreStorage information by UUID or disk)

LWVM Magic 128-bit

Device GUID
CRC-32

of partitions
Media Size (61,587MB, for a 64G iPod)

HFSX Magic GUID
Partition GUID

"System"

HFSX Magic GUID

Partition GUID

"Data"

continues

c15.indd 575c15.indd 575 10/1/2012 2:37:49 PM10/1/2012 2:37:49 PM

576 x CHAPTER 15 FEE, FI-FO, FILE: FILE SYSTEMS AND THE VFS

 convert (Convert a volume into a CoreStorage volume)
 revert (Revert a CoreStorage volume to its native type)
 create (Create a new CoreStorage logical volume group)
 delete (Delete a CoreStorage logical volume group)
 createVolume (Create a new CoreStorage logical volume)
 deleteVolume (Delete a volume from a logical volume group)
 encryptVolume (Encrypt a CoreStorage logical volume)
 decryptVolume (Decrypt a CoreStorage logical volume)
 unlockVolume (Attach/mount a locked CoreStorage logical volume)
 changeVolumePassphrase (Change a CoreStorage logical volume's passphrase)
diskutil coreStorage <verb> with no options will provide help on that verb

The encryptVolume and decryptVolume verbs are new in Mountain Lion. The deleteVolume com-
mand was present in Lion, though undocumented. Additionally, addDisk, resizeDisk, resizeVol-
ume, resizeStack, and removeDisk — undoubtedly all very useful, remain undocumented in both.
If you try them, however, help on their usage will be displayed.

Conversion of a volume to CoreStorage is reversible (and may be undone using the revert verb), so
long as encryption isn’t involved.

In addition to diskutil, the fsck_cs(8) command is also provided as of Lion to check and
repair CoreStorage partitions. The actual partition handling logic is provided by a kernel exten-
sion CoreStorage.kext, (also known as com.apple.driver.CoreStorage), with an addition
CoreStorageFsck plug-in kext.

Using the gpt(1) command on a CoreStorage disk can display the partition structure. Output 15-6
shows the result of this command (on Snow Leopard, which does not support CoreStorage) on a
CoreStorage formatted disk:

OUTPUT 15-6: Running gpt on a CoreStorage formatted disk

root@Ergo (/)# gpt show /dev/disk3
 start size index contents
 0 1 PMBR
 1 1 Pri GPT header
 2 32 Pri GPT table
 34 6
 40 409600 1 GPT part - C12A7328-F81F-11D2-BA4B-00A0C93EC93B # EFI System
 409640 3847656 2 GPT part - 53746F72-6167-11AA-AA11-00306543ECAC # CoreStorage
 4257296 262144 3 GPT part - 426F6F74-0000-11AA-AA11-00306543ECAC # Apple Boot
 4519440 27183567 # Free Space
 31703007 32 Sec GPT table
 31703039 1 Sec GPT header

Inspecting partitions directly through their raw device reveals the structures associated with
CoreStorage:

 ‰ The GPT GUID associated with CoreStorage is 53746F72-6167-11AA-AA11-00306543ECAC.
Viewed through the lens of od –x, this would appear as 6f72 5374 6167 11aa 11aa 3000
4365 acec.

OUTPUT 15-5 (continued)

c15.indd 576c15.indd 576 10/1/2012 2:37:49 PM10/1/2012 2:37:49 PM

Generic File System Concepts x 577

 ‰ The CoreStorage volume GUIDs also appear in the CoreStorage partition header. The GUIDs
of the logical volume and the volume group are located at offset 304 and 320, respectively.

 ‰ The CoreStorage partition is actually an HFS+ fi le system implementation (HFS+ is covered
in great detail in Chapter 16). It is not directly mountable, however, and mostly contains fi les
intended for use by Spotlight. The hfsleuth tool on the book’s companion website, which is
specifi cally suited for debugging and showing HFS+ fi le system structures, can also be used to
display CoreStorage partitions.

Reverse engineering CoreStorage, for the purposes of extending it outside OS X, is an ongoing proj-
ect. You are welcome to check the book’s companion website for the latest status and information.

GENERIC FILE SYSTEM CONCEPTS

Although different fi le systems take totally different approaches to managing fi les on the disk, all
generally work with the same primitives. The kernel interface to fi les, called the Virtual FileSystem
Switch (VFS) builds on these concepts.

Files
It should come as no surprise that the most fundamental concept in a fi le system is that of the fi le
itself. A fi le, from the fi le system’s point of view, is one or more arrays of blocks on the underlying
media (disk, CD-ROM, or other). In the optimal case, a fi le would be a single, contiguous sequence
of blocks. More often than not, however, fi les span multiple block ranges. These are generally
referred to as extents. HFS+ also defi nes clumps, which are the default allocation blocks provided to
a fi le when it is allocated or expanded.

Regardless of fragmentation, the fi le system must present the appearance of a fi le as a contigu-
ous, freely seekable (random access) area. The requestor need not know anything of the underlying
implementation. Indeed, some fi le systems are entirely virtual (such as Linux’s /proc) while others
can be mapped over the network (such as NFS or AFS). The requestor therefore obtains only a fi le
descriptor (the int fd returned from open(2) or the FILE * returned from fopen(3)), but treats
this is an opaque handle. The kernel, when serving the fi le requests, translates the handle into an
identifi er in the fi le system.

Extended Attributes
In addition to the normal fi le attributes, XNU’s VFS supports the notion of extended attributes.
These are user (or system) defi ned attributes, which can contain information used by applica-
tions, or — in many cases — the system itself. Extended attributes are used in Darwin to support
advanced features, such as transparent compression and forks (both discussed in the next chapter),
as well as Access Control Lists (discussed next).

Permissions
Not all fi les are created equal. Some fi les contain potentially sensitive information, and every self-
respecting fi le system (with the exception of the FAT family) must support permissions. UNIX fi le
systems, which Mac’s native HFS+ is one of, support the traditional user/group/other read/write/
execute model. This is a fairly primitive model, as it only allows you to set permissions for a single
user and a single group — casting everybody else into the “other” category.

c15.indd 577c15.indd 577 10/1/2012 2:37:49 PM10/1/2012 2:37:49 PM

578 x CHAPTER 15 FEE, FI-FO, FILE: FILE SYSTEMS AND THE VFS

As of OS X 10.4, however, VFS, adds support for fi ner-grained permissions, similar to the well-
known NTFS permissions, but complying with the POSIX 1.e security standard. These are com-
monly referred to as Access Control Lists, or ACLs. OS X allows the setting and modifi cation of
ACLs using chmod(1). The access control lists can be displayed using ls(1) –e. Files with ACLs
appear in the output of ls(1) –l with a plus (+) sign. VFS relies on extended attributes to support
ACLs, and their enforcement is performed by a separate mechanism called KAUTH (bsd/kern/
kern_authorization.c).

Timestamps
A fi le system needs to record timestamps for the various fi les it contains. UNIX calls for three time-
stamps to be maintained: Creation, Modifi cation, and Access. These are the familiar -acm switches
from the touch(1) command and can be displayed with ls(1) when using –u (access), -U (creation),
or neither (modifi cation).

Shortcuts and Links
Most UNIX users are familiar with links, both soft (also called “symbolic”) and hard. Soft links are
created with ln(1) –s, whereas their hard siblings are created without the switch. From the VFS
perspective, a soft link is a different fi le (i.e. another inode), of type l, containing the name of the fi le
pointed to. Hard links, on the other hand, are another directory entry, pointing to the same underlying
fi le (or, as you will see from the VFS perspective, the same inode). Another way of looking at it is that
hard links exist at the directory level, whereas soft links exist at the fi le level. (See Figure 15-4.)

Filej Inodej

HL to Filej

SL to Filej

Inodej’s data blocks

Inodej

Inodek

Inodek’s data blocks

(name of Filej)

Directory diri

Type:l

The directory is, conceptually, a table of directory
entries, mapping file names to file identifiers (inode #s)

The contents of any given file are
accessed through their inode

A soft link is a separate file (and thus, inode) of type ‘l’,
whose contents point to the file name (i.e. directory entry)

A hard link is merely another directory
entry, which points to the same inode

FIGURE 15-4: Visualizing hard and soft (symbolic) links

Hard links provide a mechanism, as soft links do, for setting up shortcuts to fi les. Unlike soft links,
however, hard links prevent the accidental deletion of a fi le, as a fi le will only be removed from

c15.indd 578c15.indd 578 10/1/2012 2:37:49 PM10/1/2012 2:37:49 PM

File Systems in the Apple Ecosystem x 579

the fi le system when the very last link to it has been removed. Table 15-1 illustrates the differences
between the link types:

TABLE 15-1: Hard and Soft Links Compared

SOFT HARD

Inode Diff erent directory entry (dentry) to

diff erent inode, containing name

Diff erent dentry to same inode

Scope Across fi le systems Same fi le system

Directories Linkable Offi cially, no (only “.” and ”..“).

In practice, implementations diff er

On target rm/mv Soft link breaks Hard link persists

On target recreation Soft link “heals” Hard link points to “old” fi le.

Find with find –L -samefile <target> find –samefile <target>

find –inum <targetinodenum>

A detailed discussion on symbolic and hard links can be found in the manual page for symlink(7).

FILE SYSTEMS IN THE APPLE ECOSYSTEM

OS X and iOS both support myriad fi le systems. Essentially, any number of fi le systems can be sup-
ported, thanks to the kernel’s modularity, as long as they all adhere to the standard kernel of VFS
(which is described next). In this section, we detail those fi le system types.

Unless otherwise stated, fi le systems can be loaded with a mount_xxx command (with xxx being
the name of the fi le system in question). The actual fi le system support is provided by a kernel
extension (from /System/Library/Extensions, usually named xxxfs.kext). An additional direc-
tory, /System/Library/Filesystems, holds subdirectories for the specifi c fi le systems, in which
corresponding “util” binaries are provided for fi le system maintenance.

Native Apple File Systems
Apple has traditionally used its own fi le systems as far back as the earliest days of the Mac. Support
for these fi le systems is still present in OS X.

Hierarchical File System (HFS)
The Hierarchical File System (HFS) was the native fi le system structure developed by Apple to use
in the early days of Mac OS, before the present age of OS X. Nowadays, it's an obsolete fi le system,
having been superseded by HFS+, described next.

Hierarchical File System Plus (HFS+)
As disk storage increased exponentially, HFS proved to be a very limited fi le system. This called
on Apple to develop quite a few extensions to overcome the limitations, and provide for better, full
32-bit and potentially 64-bit functionality. The result of these improvements is Hierarchical File
System Plus (HFS+).

c15.indd 579c15.indd 579 10/1/2012 2:37:50 PM10/1/2012 2:37:50 PM

580 x CHAPTER 15 FEE, FI-FO, FILE: FILE SYSTEMS AND THE VFS

HFS+ has been, and at the time of writing still is, the native fi le system on Apple’s products. From
the lowly iPod Nanos through the iPads and Macs, HFS+ (or its case-sensitive variant, HFSX) is
widely used. Because it is so ubiquitous, this book dedicates the entire next chapter to unraveling its
inner workings.

Outside Apple’s products, the adoption of HFS+ is low, not to say virtually non-existent. There
are various implementations of HFS+, most notably for Linux and Windows (including one
written by the author, but remaining closed source), but as a whole the fi le system has very limited
adoption.

HFS+ and its variant, HFSX, are both supported in OS X natively, as part of the kernel. The imple-
mentation is in XNU’s bsd/hfs directory.

DOS/Windows File Systems
The non-Apple world has always been dominated by Microsoft — and likewise its fi le systems
were the de facto standard. Apple had little choice but to support these systems in Mac, and still
does, to the present day.

File Allocation Table (FAT)
The File Allocation Table (FAT) is one of the simplest and oldest fi le systems in use. Because of its
relatively low overhead in small volumes, it was the fi le system of choice back in the days of fl oppy
disks, and — as a result of its simple implementation — is still widely used in mobile media, such as
SD cards and most USB fl ash drives.

The most recognizable trait of FAT is its short fi le names — what became to be known as
“8.3” — wherein the fi le name is limited to eight characters, and an optional extension, up to
three characters. Another limitation of the basic FAT is that it is limited to 2 GB, and — even if
stretched — cannot go past 4 GB volumes, which are paltry by today’s standards.

Over the years, Microsoft, the chief developer of FAT, found itself bogged down in the quagmire
of backward compatibility. This led to FAT being modifi ed into various variants. From the original
FAT-12 (a 12-bit fi le system suited for use in the 1980s era of 640 k), through FAT-16, or simply,
“FAT,” which was the native fi le system in most incarnations of DOS. Windows 95 brought along
VFAT (to accommodate long fi le names), followed by FAT-32 (to overcome the measly 2–4 GB
volume size, and raise the bar to 2 TB).

FAT, in all of its basic variants discussed so far, is supported in OS X by means of the msdosfs
kernel extension.

Since FAT-32, the most popular FAT type, is still limited to 2 TB volumes — and larger hard drives
are presently available — it is being phased out in favor of ExFAT, a new system with a theoretical
limit of 64 ZetaBytes. Because 1 ZetaByte is 270 bytes (or one Giga-TeraByte), ExFAT should last for
a while. ExFAT has been especially designed for Flash drives, taking into consideration the limita-
tions of the Flash medium.

Mac OS X supports ExFAT as of later releases of Snow Leopard and Lion, with the exfat kernel
extension and the mount_exfat(8) command.

c15.indd 580c15.indd 580 10/1/2012 2:37:50 PM10/1/2012 2:37:50 PM

File Systems in the Apple Ecosystem x 581

NT File System (NTFS)
Windows NT was Microsoft's fi rst multiuser operating system, and FAT (back then, in its 16-bit incar-
nation) proved vastly inadequate for its needs. The main features missing from FAT were permissions
and quotas. Permissions were required to allow discretionary access control to fi les. Quotas are a
mechanism to restrict users from abusing a shared fi le system and cluttering it up with too many fi les.

To meet both ends, Microsoft introduced the NT File System, which has become the native fi le sys-
tem in all its operating systems as of Windows 2000.

Apple provides a driver for NTFS — ntfs.kext — but it only supports read-only operations. (Snow
Leopard had experimental write, but Lion seems to have disabled it.) Both commercial and freeware
drivers for NTFS exist, offering the much needed full read-write capability.

CD/DVD File Systems
CDs and DVDs have used their own proprietary fi le systems, depending on media type and usage.

The CD-Audio File System (CDDAFS)
Audio CDs can be mounted just like CD-ROMs. The audio tracks themselves appear as fi les, in
AIFF format. A “cat” on the AIFF fi les provides the raw CD data (which is how iTunes can rip, or
“import” CD tracks into its library).

If the iTunes database can be consulted, the fi les actually have the same names as the audio track
they correspond to, and the volume is named like the CD (a wicked cool feature for command line
users, in one writer’s humble opinion). Otherwise, the generic “Audio CD” is used for the volume
name, and “# Audio Track” for the tracks (with # being the track number). The track name resolu-
tion is done in user mode (as one would expect), and the names are passed to the mount_cddafs(8)
utility as arguments.

The mounted CD fi le system has an additional, hidden fi le, .TOC.plist, which is generated by the
kext (CreateNewXMLFile() in AppleCDDAFileSystemUtils.c). The fi le is an XML .plist con-
taining the CD sessions (usually only one) and track listing. Output 15-7 shows such a CD listing:

OUTPUT 15-7: A CDDA FS

morpheus@Ergo (/)$ ls -a /Volumes/Favorite\ Piano\ Concertos/
. .TOC.plist 2 Saint-Saëns Op. 29.aiff
.. 1 LVB Op. 61a.aiff 3 Bruch Op. 88b.aiff
morpheus@Ergo (..ertos/)$ file 1\ LVB\ Op.\ 61a.aiff
LVB Op. 61a.aiff: IFF data, AIFF-C compressed audio
morpheus@Ergo (/)$ head .TOC.plist
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/
DTDs/PropertyList-1.0.dtd">
 <plist version="1.0">
 <dict>
 <key>Format 0x02 TOC Data</key>
 <data>
 AGUBAQEAKAAAA.. // Base 64 encoded data, followed by track "map"

c15.indd 581c15.indd 581 10/1/2012 2:37:50 PM10/1/2012 2:37:50 PM

http://www.apple.com/DTDs/PropertyList-1.0.dtd
http://www.apple.com/DTDs/PropertyList-1.0.dtd

582 x CHAPTER 15 FEE, FI-FO, FILE: FILE SYSTEMS AND THE VFS

CD-ROM File System (CDFS/ISO-9660)
The CD-ROM File System is supported in the cd9660.kext kernel extension. It is loaded by the
mount_cd9660 program. “9660” refers to the ISO standard of the same number, which defi nes the
format used by CD-ROMs (or, at least when CD-ROMs were still widely used).

Universal Disk Format (UDF)
UDF is a fi le system format developed for DVDs. UDF exists in several versions. Mac OS X supports
all of them — up to and including the latest, 2.60, as of Tiger.

Network-Based File Systems
Network fi le systems are used to extend storage to reach beyond the local host, and onto remote
hosts, which may be on the local area network or on the far side of the Internet.

Up until Snow Leopard, OS X used the private frameworks of URLMount and URLAccess, but
have since shifted to a public NetFS framework. (Snow Leopard still contains the private frame-
works, but Lion drops them.)

Apple Filing Protocol
Apple’s own Apple Filing Protocol (AFP) was the default network fi le system in Mac OS 8 and 9,
where it was known as AppleShare. This is an application protocol, originally carried over Apple’s
proprietary AppleTalk protocol (before Apple joined the rest of humanity in embracing TCP/IP). It
currently uses TCP ports 427 or 528.

AFP has undergone several revisions, with version 3.0 being released along with the fi rst versions of
OS X server. Since then, it has been further revised to work in conjunction with HFS+’s extended
attributes, and, more recently, Apple’s Time Machine for backups.

AFP URLs adopt the form afp://. In the mount(8) and df(1) commands, AFP fi le systems appear
as afp_xxx in Output 15-8

OUTPUT 15-8: AFP fi le system mount

morpheus@Ergo (/)$ df
File system 512-blocks Used Available Capacity Mounted on
/dev/disk0s2 489562928 471302120 17748808 97% /
..
afp_0W9DWS1qQM2m00kG0H0Pyetl-1.300 1949330784 1556003544 393327240 80% /Volumes/Nexus

Network File System
Network File System (NFS) is a veteran application level protocol that was developed back in the
day by Sun Microsystems (now a division of Oracle). NFS, which started life as RFC 1094, under-
went several revisions before becoming the de facto standard network fi le system of choice in UNIX
with NFSv3 (RFC 1813), and later with NFSv4 (RFC 3010). It has rather recently received improve-
ments for clusters, with NFSv4.1 (RFC 5661).

c15.indd 582c15.indd 582 10/1/2012 2:37:50 PM10/1/2012 2:37:50 PM

File Systems in the Apple Ecosystem x 583

Mac OS supports NFSv3 natively, as part of XNU in the bsd/nfs/ directory. Snow Leopard pro-
vided partial support for NFSv4, and Lion claims full support.

Server Message Block (SMB/CIFS/SMB2)
Microsoft’s network fi le system implementation is built on top of the Server Message Block proto-
col, or SMB. This protocol, which originated in the good old days of LAN Manager and NetBIOS
(i.e., the 1980s!) is still backward compatible, and relies on NetBIOS (an even more archaic proto-
col, RFC1001-1002, which predates DNS for naming services).

Microsoft rebranded SMB as the rather ambitious Common Internet File System (CIFS), which is by
no means common on the Internet but defi nitely makes for a more catchy acronym. The differences
between the two are minor, with the major difference being the ability to run natively over TCP
(port 445) and do without NetBIOS.

Even reincarnated as CIFS, SMB is still woefully ineffi cient, primarily due to many messages associ-
ated with each transaction. With Vista, the protocol has been further modifi ed, and — back to its
origin — is now known as SMB2.

SMB and CIFS are both supported with smbfs.kext, which handles all the SMB client requests.

For server features, prior to Lion, Apple has relied on SAMBA, an open source package, to allow OS
X to emulate Windows in serving shares. This support has been discontinued with Lion, primarily
due to licensing issues associated with the GNU Public License (GPLv3). Lion now supports SMB
using an Apple proprietary implementation, called SMBX. The binary (/usr/sbin/smbd) has been
completely rewritten.

File Transfer Protocol
FTP (RFC959), is one of the Internet’s oldest protocols. In the 1980s and early 1990, it accounted
for the most traffi c, but has since been pushed back by HTTP and SMTP. OS X still offers support
for it and even abstracts it so that instead of the usual get and put of an FTP client, FTP server fi les
can be made visible as regular fi les on an FTP fi le system.

Web Distributed Authoring and Versioning
Web Distributed Authoring and Versioning (WebDAV) is a proposed extension to HTTP, which
adds to the latter various methods that can be used to upload fi les (via PUT), create folders (MKCOL),
and search (PROPFIND). Originally defi ned in RFC2518, WebDAV was criticized for security issues,
but has become increasingly more popular with the advent of the Cloud computing infrastructures.
Slightly modifi ed in RFC4918, it serves as the basis for many web-borne fi le systems, most notably
Microsoft’s Web Folders, Amazon’s S3 services, and Apple’s (now defunct) MobileMe.

Pseudo File Systems
Pseudo fi le systems aren’t fi le systems at all. Rather, they can be seen as one of two types:

 ‰ A fi le-based interface to kernel data structures and devices: Linux-savvy readers are no
doubt familiar with Linux’s /proc and /sys, which provide a plethora of diagnostic data

c15.indd 583c15.indd 583 10/1/2012 2:37:50 PM10/1/2012 2:37:50 PM

584 x CHAPTER 15 FEE, FI-FO, FILE: FILE SYSTEMS AND THE VFS

and kernel parameters. Other UNIX-philes likely know /dev, by means of which the kernel
exposes its various device drivers.

 ‰ File system components: These are not fi le systems at all, but they provide mechanisms for
handling special fi le types or special mount options. BSD’s (and XNU’s) deadfs, specfs,
FIFOfs, and unionfs fall into this category.

XNU compiles-in support for several pseudo fi le systems. These can be found in the bsd/miscfs
directory and are discussed next.

The devfs File System
The device fi le system is used to host the various BSD device fi les — character and block. These
fi les are necessary for user-mode representation of hardware devices, allowing utilities to access
hardware — primarily the disk (/dev/disk## or /dev/rdisk##) and the terminal (/dev/tty##).
The device fi le system is also home to the fdesc fi lesystem, which lets processes access their own fi le
descriptors using /dev/fd/## (see mount_fdesc(8) command).

Typically, the kernel creates devices automatically (responding to plug-and-play events), but the user may
also create device nodes with the mknod(1) utility or the mknod(2) system call. The block and character
devices are represented by bdevsw and cdevsw structures (respectively) defi ned in bsd/sys/conf.h.

devfs exports four functions, as shown in Table 15-2.

TABLE 15-2: devfs Exported Functions

DEVFS FUNCTION USED FOR

devfs_make_node Creating a device node (DEVFS_CHAR or DEVFS_BLOCK).

The function returns an opaque handle, which must be kept

until the device is removed.

devfs_make_node_clone As devfs_make_node, but with a “clone” function used to

update the device minor on creation.

devfs_remove Remove a previously created device, specifi ed by the handle

returned by the make function.

devfs_make_link Link to an already existing device. This function is BSD_

KERNEL_PRIVATE, and unused in XNU.

The FIFOfs vnode Type
FIFOs are the UNIX implementation of “named pipes.” Anonymous pipes can be created with the
pipe(2) system call, but cannot be shared across unrelated processes. Instead, mkfifo(2) can be
used to create a pipe special fi le. The special fi le exists only to ensure global uniqueness — that is,
that unrelated processes can access the pipe by some name, which is available system-wide, with no
naming confl icts.

The FIFOfs implementation is simply a set of vnode operations (in bsd/miscfs/fifofs/fifo_
vnops.c). These operations (discussed in detail later, under VFS) are the callbacks that are executed

c15.indd 584c15.indd 584 10/1/2012 2:37:50 PM10/1/2012 2:37:50 PM

File Systems in the Apple Ecosystem x 585

by the kernel when a corresponding system call is executed on the fi le in question. In the case of
FIFOfs, these vnode operations override the default vnode operations by nullifying some, void-
ing others, and providing default implementations for the rest. These are declared in bsd/miscfs/
fifofs/fifo.h. This is shown in Output 15-9:

OUTPUT 15-9: The FIFOfs implementation

/*
 * This structure is associated with the FIFO vnode and stores
 * the state associated with the FIFO.
 */
struct fifoinfo {
 unsigned int fi_flags;
 struct socket *fi_readsock;
 struct socket *fi_writesock;
 long fi_readers;
 long fi_writers;
 unsigned int fi_count;
};
...
/*
 * Prototypes for fifo operations on vnodes.
 */
// Note that each of these operations correspondds to a system call,
// or system call with flags:

// e.g. fifo_create for open (..., O_CREAT), fifo_mmap for mmap(2), etc..
int fifo_ebadf(void *);

#define fifo_create (int (*) (struct vnop_create_args *))err_create
#define fifo_mknod (int (*) (struct vnop_mknod_args *))err_mknod
#define fifo_access (int (*) (struct vnop_access_args *))fifo_ebadf
#define fifo_getattr (int (*) (struct vnop_getattr_args *))fifo_ebadf
#define fifo_setattr (int (*) (struct vnop_setattr_args *))fifo_ebadf
#define fifo_revoke nop_revoke
#define fifo_mmap (int (*) (struct vnop_mmap_args *))err_mmap
#define fifo_fsync (int (*) (struct vnop_fsync_args *))nullop
#define fifo_remove (int (*) (struct vnop_remove_args *))err_remove
#define fifo_link (int (*) (struct vnop_link_args *))err_link
#define fifo_rename (int (*) (struct vnop_rename_args *))err_rename
#define fifo_mkdir (int (*) (struct vnop_mkdir_args *))err_mkdir
#define fifo_rmdir (int (*) (struct vnop_rmdir_args *))err_rmdir
#define fifo_symlink (int (*) (struct vnop_symlink_args *))err_symlink
#define fifo_readdir (int (*) (struct vnop_readdir_args *))err_readdir
#define fifo_readlink (int (*) (struct vnop_readlink_args *))err_readlink
#define fifo_reclaim (int (*) (struct vnop_reclaim_args *))nullop
#define fifo_strategy (int (*) (struct vnop_strategy_args *))err_strategy
#define fifo_valloc (int (*) (struct vnop_valloc_args *))err_valloc
#define fifo_vfree (int (*) (struct vnop_vfree_args *))err_vfree
#define fifo_bwrite (int (*) (struct vnop_bwrite_args *))nullop
#define fifo_blktooff (int (*) (struct vnop_blktooff_args *))err_blktooff

continues

c15.indd 585c15.indd 585 10/1/2012 2:37:51 PM10/1/2012 2:37:51 PM

586 x CHAPTER 15 FEE, FI-FO, FILE: FILE SYSTEMS AND THE VFS

// the following operations are provided for fifos:
int fifo_lookup (struct vnop_lookup_args *);
int fifo_open (struct vnop_open_args *);
int fifo_close (struct vnop_close_args *);
int fifo_read (struct vnop_read_args *);
int fifo_write (struct vnop_write_args *);
int fifo_ioctl (struct vnop_ioctl_args *);
int fifo_select (struct vnop_select_args *);
int fifo_inactive (struct vnop_inactive_args *);
int fifo_pathconf (struct vnop_pathconf_args *);
int fifo_advlock (struct vnop_advlock_args *);

The specfs vnode Type
Similar to FIFOs, device special fi les (VBLK and VCHR) are given their “personality” and vnode
operations by the custom specfs. In much the same way, most of the vnode operations defi ned in
bsd/miscfs/specfs/specdev.h are nullifi ed or voided, with the rest given default implementa-
tions. This is shown in Output 15-10:

OUTPUT 15-10: Implementations of the specfs

morpheus@Ergo (...xnu/1699.26.8)$ cat bsd/miscfs/specfs/specdev.h | grep ^int
 // the following are BSD_KERNEL_PRIVATE
int spec_blktooff (struct vnop_blktooff_args *);
int spec_offtoblk (struct vnop_offtoblk_args *);
int spec_fsync_internal (vnode_t, int, vfs_context_t);
int spec_blockmap (struct vnop_blockmap_args *);
int spec_kqfilter (vnode_t vp, struct knote *kn);
 // and the rest are visible kernel-wide
int spec_ebadf(void *);
int spec_lookup (struct vnop_lookup_args *);
int spec_open (struct vnop_open_args *);
int spec_close (struct vnop_close_args *);
int spec_read (struct vnop_read_args *);
int spec_write (struct vnop_write_args *);
int spec_ioctl (struct vnop_ioctl_args *);
int spec_select (struct vnop_select_args *);
int spec_fsync (struct vnop_fsync_args *);
int spec_strategy (struct vnop_strategy_args *);
int spec_pathconf (struct vnop_pathconf_args *);

The deadfs vnode Type
deadfs is used primarily in the implementation of the revoke(2) system call. This system call,
which is supported only on devices, invalidates all existing open fi le handles on the given device fi le.
To do so, the kernel maps the vnode operations of the corresponding vnode to the dead_vnodeop_
entries, defi ned in bsd/miscfs/deadfs/dead_vnops.c. Subsequent read/write operations on the
vnode then fail.

OUTPUT 15-9 (continued)

c15.indd 586c15.indd 586 10/1/2012 2:37:51 PM10/1/2012 2:37:51 PM

Mounting File Systems (OS X only) x 587

The main use of revocation is to instantiate a terminal for login. Because most terminals are pseudo
terminals, they are created and released frequently, and the system must ensure that a new terminal
instance has no previous owner.

The unionfs Layering Mechanism
unionfs is a special mechanism for layering: It allows the mounting of more than one fi le system on
the very same mount point, overlaying one on top of the other, so that both fi le systems’ fi les are
visible. In the event of confl icting fi les with the same name, the fi le from the top-most mounted fi le
system in the union hides the one beneath it. Any fi le system can be union-mounted by specifying
the -o union option to mount.

The union fi le system is not an Apple-specifi c system and exists in Linux as well as BSD. It has none-
theless played a pivotal role in facilitating the jailbreaking of iOS. Comex (who has since defected,
to work for Apple) used the union technique to speed up the jailbreak time of JailBreakMe 3.0 and
avoid the need to reboot the device.

MOUNTING FILE SYSTEMS (OS X ONLY)

OS X supports the dynamic mounting and unmounting of fi le systems, using two mechanisms — the
UNIX standard automount, and the OS X–specifi c diskarbitrationd. OS X also supports the UN*X
mechanism of /etc/fstab, but it not present unless manually created, and is deprecated.

Automount
OS X’s automount is a direct port of the UNIX automount that can be found in Solaris, BSD, and
Linux.

The kernel component of automounting is carried out by the autofs.kext kernel extension, which
registers the autofs fi le system with VFS. It exposes /dev/autofs to user mode.

In user mode, several daemons have to cooperate for the automounting operation to succeed:

 ‰ autofsd: Starts from launchd, is responsible for listening on network confi guration change
notifi cations and calling automount.

 ‰ autmount: Consults the /etc/auto_master fi le to request particular mounting operations
and automountd to perform the actual mount.

Disk Arbitration
Even on Macs without network access, automounting is commonplace: The nearly magical auto-
mounting functionality triggered by the addition or removal of a USB device is well known. Simply
plug in the device, wait for a few seconds, and it appears in the Finder, as well as in /Volumes.

The dirty work behind the plug and play magic is performed by the Disk Arbitration Daemon, the
aptly named diskarbitrationd. This daemon, started by launchd(8), is responsible for listening
in on notifi cations from multiple sources, including the kernel — specifi cally I/O Kit. The notifi ca-
tions are primarily for matches on IOMedia class devices, which are devices that represent underly-
ing media, such as USB drives, hard disks, and the like.

c15.indd 587c15.indd 587 10/1/2012 2:37:51 PM10/1/2012 2:37:51 PM

588 x CHAPTER 15 FEE, FI-FO, FILE: FILE SYSTEMS AND THE VFS

When a notifi cation is received, the diskarbitrationd queries the fi le system of the device in
question, and — if it is recognized — proceeds and attempts to mount it, using the correspond-
ing fi le system’s handler. Third parties can also register with diskarbitrationd using the
DiskArbitration.framework miscellaneous DARegister* functions, to receive notifi cation of
disk-related events. These events include disk Appeared, Disappeared, Mount, Unmount, Eject, and
Peek. The Peek enables its caller to potentially exclusively lock the device (by calling DADiskClaim).

A good way to peek into diskarbitrationd is to start it with the –d command line. This can easily
be done by editing launchd’s com.apple.diskarbitrationd.plist. Messages are logged to /var/
log/diskarbitrationd.log. A sample log is shown in Output 15-11.

OUTPUT 15-11: Sample log output from diskarbitrationd

14:36:34 server has been started.
14:36:34 console user = none
14:36:34
14:36:34 filesystems have been refreshed.
14:36:34 created filesystem, id = /System/Library/Filesystems/afpfs.fs/.
14:36:34 created filesystem, id = /System/Library/Filesystems/cd9660.fs/.
14:36:34 created filesystem, id = /System/Library/Filesystems/cddafs.fs/.
14:36:34 created filesystem, id = /System/Library/Filesystems/exfat.fs/.
14:36:34 created filesystem, id = /System/Library/Filesystems/ftp.fs/.
14:36:34 created filesystem, id = /System/Library/Filesystems/hfs.fs/.
14:36:34 created filesystem, id = /System/Library/Filesystems/msdos.fs/.
14:36:34 created filesystem, id = /System/Library/Filesystems/nfs.fs/.
14:36:34 created filesystem, id = /System/Library/Filesystems/nofs.fs/.
14:36:34 created filesystem, id = /System/Library/Filesystems/ntfs-3g.fs/.
14:36:34 created filesystem, id = /System/Library/Filesystems/ntfs.fs/.
14:36:34 created filesystem, id = /System/Library/Filesystems/smbfs.fs/.
14:36:34 created filesystem, id = /System/Library/Filesystems/udf.fs/.
14:36:34 created filesystem, id = /System/Library/Filesystems/ufs.fs/.
14:36:34 created filesystem, id = /System/Library/Filesystems/webdav.fs/.
14:36:34
14:36:34 iokit [0] -> diskarbitrationd [13]
14:36:34 created disk, id = /dev/disk0s2.
14:36:34 created disk, id = /dev/disk0s1.
14:36:34 created disk, id = /dev/disk0.
14:36:34
14:36:34 diskarbitrationd [13] -> diskarbitrationd [13]
14:36:34 probed disk, id = /dev/disk0s2, with hfs, ongoing.
14:36:34 probed disk, id = /dev/disk0s2, with hfs, success.
14:36:34
14:36:35 kextd [10]:13827 -> diskarbitrationd [13]
14:36:35 created session, id = kextd [10]:13827.
14:36:35 registered callback, id = 000000010000638F:0000000000000000, kind =
disk unmount approval.
14:36:35 set client port, id = kextd [10]:13827.
14:36:35
14:36:35 kextd [10]:14339 -> diskarbitrationd [13]
14:36:35 created session, id = kextd [10]:14339.
14:36:35 registered callback, id = 0000000100005B62:0000000000000000, kind =
disk appeared.
14:36:35 registered callback, id = 00000001000060E1:0000000000000000, kind =

c15.indd 588c15.indd 588 10/1/2012 2:37:51 PM10/1/2012 2:37:51 PM

Disk Image Files x 589

disk description changed.
14:36:35 registered callback, id = 0000000100005A6C:0000000000000000, kind =
disk disappeared.
14:36:35 set client port, id = kextd [10]:14339.

diskarbitrationd also allows user clients to participate in mount decisions, potentially blocking
any disk mount attempts. Calling DARegisterDiskMountApprovalCallback allows a programmer
to not only be notifi ed of a disk mount/unmounts operation but also potentially block it. Blocking is
a simple matter of creating a dissenter object (using DADissenterCreate), and returning it from the
approval callback.

The Disk Arbitration framework hides the underlying notifi cation from the kernel driver layer, I/O
Kit. Rather than using disk arbitration, it is possible to register for notifi cations directly from I/O kit.
This is discussed in Chapter 19.

DISK IMAGE FILES

OS X makes use of disk images, which typically have a .dmg extension. These fi les are, in essence,
complete fi le systems — usually HFS+ — in a single fi le. The fi le format is called UDIF — Universal
Disk Image Format — but, surprisingly, remains undocumented and proprietary to Apple. DMG
fi les may be internally compressed (usually with bzip2 compression), and can contain internal
license fi les which Apple’s utilities will display on opening. The format has been reverse-engineered
suffi ciently, however, to allow for third-party tools such as Catacombae.org’s dmgextractor to offer
support for most of the DMG fi le format idiosyncrasies.

OS X’s fi nder can automatically attach DMGs when double-clicked (by calling CoreServices’
DiskImageMounter.app), as can the hdiutil(1) command, using the attach verb. (The hdiutil
command can also create DMG fi les, as shown earlier in this chapter.) The attachment is carried out
by DiskImages.framework, which is a private framework.

The BSD layer offers native support for disk images in its vnode disk driver, which is accessible
through the user mode /usr/libexec/vndevice command. This command allows attaching a disk
image to one of the BSD /dev/vn* devices.

Despite the native support, Apple prefers to support DMG fi les through a custom, proprietary kernel
extension. This extension, IOHDIXController.kext, which registers itself as com.apple.driver
.DiskImages, remains closed source. The advantage of using the external kext is that, unlike the
vnode disk driver, it can handle compressed and/or encrypted images. While IOHDIXController is
intentionally undocumented by Apple, it has been suffi ciently reverse engineered to allow — via I/O
Kit — attaching DMGs, including on iOS.

Raw DMG Files
The DMG extension is a misleading one. Most DMGs are in proprietary format (sometimes incorrectly
identifi ed by file(1) as “VAX COFF executable.” Others are raw fi le system images — verbatim
copies of the fi le system blocks, as output of dd(1), and may be further compressed. Double clicking
these DMGs (or using the equivalent command, open(1)) will fail to attach them. Using hdiutil(1),
however, you can force attachment by adding -imagekey diskimage-class=CRawDiskImage to the
command line. This is especially useful in the case of iOS DMGs, which (when decrypted) can be
mounted in this way, as shown in Output 15-12:

c15.indd 589c15.indd 589 10/1/2012 2:37:51 PM10/1/2012 2:37:51 PM

590 x CHAPTER 15 FEE, FI-FO, FILE: FILE SYSTEMS AND THE VFS

OUTPUT 15-12: Attaching the raw ramdisk image of an unencrypted iOS 5.1 restore disk

root@Ergo (/)# file ~/iOS/5.1.restore.ramdisk.dmg
/Users/morpheus/iOS/5.1.restore.ramdisk.dmg: Macintosh HFS Extended version 4 data
(mounted) last mounted by: '10.0', created: Wed Feb 15 05:26:23 2012,
last modified: Tue Apr 3 11:16:04 2012, last checked: Wed Feb 15 08:26:23 2012,
block size: 4096, number of blocks: 4218, free blocks: 0

root@Ergo (/)# hdiutil attach ~/iOS/5.1.restore.ramdisk.dmg
hdiutil: attach failed - not recognized

root@Ergo (/)# hdiutil attach ~/iOS/5.1.restore.ramdisk.dmg
-imagekey diskimage-class=CRawDiskImage
/dev/disk3 /Volumes/ramdisk

root@Ergo (/)# hdiutil info
image-path : /Users/morpheus/iOS/5.1.restore.ramdisk.dmg
image-alias : /Users/morpheus/iOS/5.1.restore.ramdisk.dmg
shadow-path : <none>
icon-path : /System/Library/PrivateFrameworks/DiskImages.framework/Resources
 /CDiskImage.icns
image-type : read/write
system-image : false
blockcount : 33748
blocksize : 512
writeable : TRUE
autodiskmount : TRUE
removable : TRUE
image-encrypted : false
mounting user : root
mounting mode : <unknown>
process ID : 15912
/dev/disk3 /Volumes/ramdisk

Booting from a Disk Image (Lion)
With Lion, OS X offers new boot arguments that allow the user to specify the names of DMG fi les
to be used as the root fi le system. imageboot_needed() (in bsd/kern/imageboot.c) checks for the
presence of the boot arguments, and, if found, calls imageboot_setup(). These boot arguments are
shown in Table 15-3:

TABLE 15-3: Lion Boot Arguments Used in DMG Processing

BOOT ARGUMENT CONTAINS

rp or rp0 or root-dmg Name of DMG fi le to use as root fi le system. In Lion’s install, this is

BaseSystem.dmg.

rp1 or container-dmg Name of DMG containing the root-dmg. In Lion’s installation, this

is usually InstallESD.img.

The imageboot_setup() proceeds to call imageboot_mount_image(). The actual loading of
the DMG is done by di_root_image()(from iokit/bsddev/DINetBootHook.cpp), which loads the

hdiutil displays fear of attachment..

..unless coerced with -imagekey

c15.indd 590c15.indd 590 10/1/2012 2:37:52 PM10/1/2012 2:37:52 PM

The Virtual File System Switch x 591

IOHDIXController extension by calling di_load_controller. The function returns a BSD device
node, the root device, which vfs_mountroot() then mounts as the root fi le system.

THE VIRTUAL FILE SYSTEM SWITCH

As with most UN*X, OS X uses the virtual fi le system switch as its layer of abstraction for all fi le
systems. The idea behind VFS is to defi ne a common interface for all fi le systems, irrespective of
their implementations. This interface reduces the fi le system into fundamental structures: the fi le
system entry, mount entry, and vnode (abstracted inode). Any known fi le system can then be imple-
mented, while maintaining conformance with this interface. This enables the kernel to present the
very same interface to the various POSIX fi le I/O calls — and, by extension, the user — resulting in
a seamless integration of multiple fi le systems into the same tree.

It’s interesting to see that, while the VFS is a widely adopted standard across
many fl avors of UN*X, the implementation can vary greatly. Linux, for exam-
ple, exposes the inode, fi le, directory entry (dentry), and superblock. XNU’s
VFS is naturally very closely related to BSD’s, but is still with some signifi cant
differences.

VFS does not care about the underlying implementation of the fi le system. It may be table-based (such
as FAT) or B-Tree–based (such as NTFS or HFS+). All it requires is that the fi le system implementation
conform to the set interface and allow the mount operation (linking the fi le system to the UNIX tree)
and the retrieval of a fi le or directory. The fi le systems may be local or remote, native or foreign — yet
the user can access them in the exact same way, which is provided by the familiar UNIX utilities
(ls(1), chmod(1), and friends) as well as the POSIX API (open, readdir, etc.). An implementation
can always choose to return bogus or default information for features it does not support, a good
example being NTFS and UDF — neither of which support the UNIX model of permissions. The fi le
system drivers therefore allow default permissions, which usually allow anyone to read on any fi le.

The File System Entry
File systems are maintained in the kernel in an array of vfs_fsentry structures. Listing 15-5
defi nes this structure.

LISTING 15-5: The vfs_fsentry structure, as defi ned in bsd/sys/mount.h

struct vfs_fsentry {
 struct vfsops *vfe_vfsops; /* vfs operations */
 int vfe_vopcnt;
 /* # of vnodeopv_desc being registered (reg, spec, fifo...)*/
 vnodeopv_desc **vfe_opvdescs; /* null terminated; */
 int vfe_fstypenum; /* historic file system type number */
 char vfe_fsname[MFSNAMELEN]; /* file system type name */
 uint32_t vfe_flags; /* defines the FS capabilities */
 void * vfe_reserv[2]; /* reserved for future use; set this to zero*/
 };

c15.indd 591c15.indd 591 10/1/2012 2:37:52 PM10/1/2012 2:37:52 PM

592 x CHAPTER 15 FEE, FI-FO, FILE: FILE SYSTEMS AND THE VFS

File systems are added or removed to the kernel by a call to vfs_fsadd or vfs_fsremove, respec-
tively, similar to Linux’s (un)register_file system(). (See Listing 15-6.)

LISTING 15-6: vfs_fsadd and vfs_fsremove, as defi ned in bsd/sys/mount.h

// Add a File system to VFS — provide vfs_fsentry, get vfs_table_t handle
int vfs_fsadd(_in_ struct vfs_fsentry *, _out_ vfstable_t *);
// Remove a File system from VFS, given the vfstable_t handle
int vfs_fsremove(_in_ vfstable_t);

The Mount Entry
The mount entry is a struct mount (defi ned in bsd/sys/mount_internal.h, and exposed to user
mode only as an opaque type), which represents a mounted fi le system instance. This corresponds,
somewhat roughly, to the fi le system’s superblock, which is the descriptor holding global fi le system
attributes. The mount entry also holds the fi le system operations (the struct vfsops, discussed
later). The structure is shown in Listing 15-7:

LISTING 15-7: A partial detail of the struct mount, from bsd/sys/mount_internal.h

struct mount {
 TAILQ_ENTRY(mount) mnt_list; /* mount list */
 int32_t mnt_count; /* reference on the mount */
 lck_mtx_t mnt_mlock; // mutex protecting mount point
 struct vfsops *mnt_op; /* operations on fs */
 struct vfstable *mnt_vtable; /* configuration info */
 struct vnode *mnt_vnodecovered; /* vnode we mounted on */
 struct vnodelst mnt_vnodelist; /* list of vnodes this mount */
 struct vnodelst mnt_workerqueue; /* list of vnodes this mount */
 struct vnodelst mnt_newvnodes; /* list of vnodes this mount */
 uint32_t mnt_flag; /* flags */
 uint32_t mnt_kern_flag; /* kernel only flags */
 uint32_t mnt_compound_ops; // Available compound ops
 uint32_t mnt_lflag; /* mount life cycle flags */
 uint32_t mnt_maxsymlinklen; /* max size of short symlink */
 struct vfsstatfs mnt_vfsstat; /* cache of file system stats */
 qaddr_t mnt_data; /* private data */

 /* Cached values of the IO constraints for the device */
 // ...
 // ...

#if CONFIG_TRIGGERS

 // TRIGGERS is a compile time option which allows the setting of
 // callbacks on mount operations and specific vnodes

c15.indd 592c15.indd 592 10/1/2012 2:37:53 PM10/1/2012 2:37:53 PM

The Virtual File System Switch x 593

 int32_t mnt_numtriggers; /* num of trigger vnodes for this mount */
 vfs_trigger_callback_t *mnt_triggercallback;
 void *mnt_triggerdata;
#endif
 /* XXX 3762912 hack to support HFS file system 'owner' */
 uid_t mnt_fsowner;
 gid_t mnt_fsgroup;

 struct label *mnt_mntlabel; /* MAC mount label */
 struct label *mnt_fslabel; /* MAC default fs label */

 // Other various cached elements ..

}

Note that a fi le system may be registered (using vfs_fsadd() as previously demonstrated), but not
necessarily be mounted. Additionally, the same fi le system type may be mounted multiple times (for
example, if several partitions have the same format type).

Key in both the mount and vfs_fsentry structures are the vfsops (in mount, mnt_op, and in vfs_
fsentry, vfe_vfsops). These are the standard abstracted operations expected of any fi le system.
They are defi ned (and rather neatly javadoc’ed) in bsd/sys/mount.h, and shown in Table 15-4.

TABLE 15-4: The vfs operation callbacks

VFS OPERATION USED FOR

int (*vfs_init)

 (struct vfsconf *);

Called once, when VFS initializes support for the

fi le system.

int (*vfs_mount)

 (struct mount *mp,

 vnode_t devvp,

 user_addr_t data,

 vfs_context_t context);

Mounts a fi le system of this type.

int (*vfs_start)

 (struct mount *mp,

 int flags,

 vfs_context_t context);

Makes fi le system active.

int (*vfs_unmount)

 (struct mount *mp,

 int mntflags,

 vfs_context_t context);

Called when the user performs and umount(8)

on the fi le system.

(Continues)

c15.indd 593c15.indd 593 10/1/2012 2:37:53 PM10/1/2012 2:37:53 PM

594 x CHAPTER 15 FEE, FI-FO, FILE: FILE SYSTEMS AND THE VFS

VFS OPERATION USED FOR

int (*vfs_root)

 (struct mount *mp,

 struct vnode **vpp,

 vfs_context_t context);

Retrieves a pointer (in vpp) to the root of the fi le

system mounted on mp.

int (*vfs_quotactl)

 (struct mount *mp,

 int cmds,

 uid_t uid,

 caddr_t arg,

 vfs_context_t context);

Called when the user calls quotactl(2).

int (*vfs_getattr)

 (struct mount *mp,

 struct vfs_attr *attr,

 vfs_context_t context);

Gets attributes of fi le system mounted at mp into

attr.

int (*vfs_setattr)

 (struct mount *mp,

 struct vfs_attr *attr,

 vfs_context_t context);

Sets attribute attr for fi le system mounted

at mp.

int (*vfs_sync)

 (struct mount *mp,

 int waitfor,

 vfs_context_t context);

Syncs fi le system at mp, when sync(2) is called.

If waitfor, return only after sync complete.

Otherwise, start sync but return immediately.

int (*vfs_vget)

 (struct mount *mp,

 ino64_t ino,

 struct vnode **vpp,

 vfs_context_t context);

Retrieves a fi le’s vnode (in vpp) by the inode

number ino.

int (*vfs_fhtovp)

(struct mount *mp,

 int fhlen,

 unsigned char *fhp,

 struct vnode **vpp,

 vfs_context_t context);

Retrieves the vnode (in vpp) corresponding to

the fi le handle fhp, of fhlen bytes.

Inverse of vfs_vptofh().

TABLE 15-4 (continued)

c15.indd 594c15.indd 594 10/1/2012 2:37:53 PM10/1/2012 2:37:53 PM

The Virtual File System Switch x 595

VFS OPERATION USED FOR

int (*vfs_vptofh)

 (struct vnode *vp,

 int *fhlen,

 unsigned char *fhp,

 vfs_context_t context);

Copies into fhp, which is a buff er of fhlen

bytes, the fi le handle bytes, corresponding to

the vnode vp. Inverse of vfs_fhtovp().

int (*vfs_sysctl)

 (int *,

 u_int,

 user_addr_t,

 size_t *,

 user_addr_t,

 size_t,

 vfs_context_t context);

Implementation of a VFS space sysctl(2)

request.

The vnode object
The vnode object is built on top of the traditional UNIX inode (from the legacy UFS). This is a
“virtual inode,” containing the information required for retrieving a fi le or directory from the disk.
The struct vnode is defi ned in bsd/sys/vnode_internal.h, which — like struct mount — is not
exposed to user mode. This is shown in Listing 15-8:

LISTING 15-8: The vnode object, from bsd/sys/vnode_internal.h

struct vnode {
 lck_mtx_t v_lock; /* vnode mutex */
 TAILQ_ENTRY(vnode) v_freelist; /* vnode freelist */
 TAILQ_ENTRY(vnode) v_mntvnodes; /* vnodes for mount point */
 LIST_HEAD(, namecache) v_nclinks; // names (hard links) of vnode
 LIST_HEAD(, namecache) v_ncchildren; // cache of named children
 ..
 uint32_t v_listflag; // flags,(protected by list_lock)
 uint32_t v_flag; // flags (unprotected)
 uint16_t v_lflag; // and more flags (local flags)
 uint8_t v_iterblkflags; /* buf iterator flags */
 uint8_t v_references; // reference of io_count
 int32_t v_kusecount; /* count of in-kernel refs */
 int32_t v_usecount; /* reference count of users */
 int32_t v_iocount; /* iocounters */
 void * v_owner; /* act that owns the vnode */
 uint16_t v_type; /* vnode type */
 uint16_t v_tag; /* type of underlying data */
 uint32_t v_id; /* identity of vnode contents */

continues

c15.indd 595c15.indd 595 10/1/2012 2:37:54 PM10/1/2012 2:37:54 PM

596 x CHAPTER 15 FEE, FI-FO, FILE: FILE SYSTEMS AND THE VFS

 union {
 struct mount *vu_mountedhere;/* ptr to mounted vfs (VDIR) */
 struct socket *vu_socket; /* unix ipc (VSOCK) */
 struct specinfo *vu_specinfo; /* device (VCHR, VBLK) */
 struct fifoinfo *vu_fifoinfo; /* fifo (VFIFO) */
 struct ubc_info *vu_ubcinfo; /* valid for (VREG) */
 } v_un;
 struct buflists v_cleanblkhd; /* clean blocklist head */
 struct buflists v_dirtyblkhd; /* dirty blocklist head */
 struct klist v_knotes; // knotes attached to vnode
 /*
 * the following 4 fields are protected
 * by the name_cache_lock held in
 * excluive mode
 */

 kauth_cred_t v_cred; /* last authorized credential */
 kauth_action_t v_authorized_actions; // current authorized actions */
 int v_cred_timestamp; //
 int v_nc_generation; //

 /*
 * back to the vnode lock for protection
 */
 int32_t v_numoutput; /* num of writes in progress */
 int32_t v_writecount; /* reference count of writers */
 const char *v_name; /* name component of the vnode */
 vnode_t v_parent; /* pointer to parent vnode */
 struct lockf *v_lockf; /* advisory lock list head */
#ifndef __LP64__
 struct unsafe_fsnode *v_unsafefs; /* pointer to struct used to lock */
#else
 int32_t v_reserved1;
 int32_t v_reserved2;
#endif /* __LP64__ */
 int (**v_op)(void *); /* vnode operations vector */
 mount_t v_mount; /* ptr to vfs we are in */
 void * v_data; /* private data for fs */
#if CONFIG_MACF
 struct label *v_label; /* MAC security label */
#endif
#if CONFIG_TRIGGERS
 vnode_resolve_t v_resolve; /* trigger vnode resolve info (VDIR only) */
#endif /* CONFIG_TRIGGERS */
};

A key element in the vnode structure is the struct ubc_info: It can be used to fi nd information on
this vnode’s objects in the unifi ed buffer cache. The unifi ed buffer cache (implemented in bsd/kern/
ubc_subr.c) is the BSD mechanism for storing cached vnode data, of fi les fetched from disks and
devices (akin to Linux’s buffer and page caches). The ubc_info links the vnode to a Mach memory_
object_t, the likes of which were discussed in the previous chapter.

LISTING 15-8 (continued)

c15.indd 596c15.indd 596 10/1/2012 2:37:54 PM10/1/2012 2:37:54 PM

FUSE — File Systems in USEr Space x 597

Each fi le system can defi ne its own internal node representation but should support the basic rep-
resentation of the vnode, as well as the set of operations defi ned on a vnode — creating, reading,
writing, deleting. The various vnode operations are maintained in the well-documented bsd/sys/
vnode_if.h, as shown in Listing 15-9.

LISTING 15-9: VNOP_LOOKUP (lookup a vnode in a directory), from bsd/sys/vnode_if.h

__BEGIN_DECLS

struct vnop_lookup_args {
 struct vnodeop_desc *a_desc;
 vnode_t a_dvp;
 vnode_t *a_vpp;
 struct componentname *a_cnp; vfs_context_t a_context;
};

/*!
 @function VNOP_LOOKUP
 @abstract Call down to a file system to look for a directory entry by name.
 @discussion VNOP_LOOKUP is the key pathway through which VFS asks a
 file system to find a file. The vnode should be returned with an iocount
 to be dropped by the caller. A VNOP_LOOKUP() calldown can come without
 preceding VNOP_OPEN().
 @param dvp Directory in which to look up file.
 @param vpp Destination for found vnode.
 @param cnp Structure describing filename to find, reason for lookup,
 and various other data.
 @param ctx Context against which to authenticate lookup request.
 @return 0 for success or a file system-specific error.
 */
#ifdef XNU_KERNEL_PRIVATE
extern errno_t VNOP_LOOKUP(vnode_t, vnode_t *, struct componentname *, vfs_context_t);
#endif /* XNU_KERNEL_PRIVATE */

The actual I/O operations on the vnodes themselves are defi ned in a struct fileops, as shown in
Listing 15-10:

LISTING 15-10: VNode operations

// in bsd/vfs/vfs_vnops.
struct fileops vnops =
 { vn_read, vn_write, vn_ioctl, vn_select, vn_closefile, vn_kqfilt_add, NULL };

FUSE — File Systems in USEr Space

One of the main challenges encountered by fi le system developers is that, traditionally, fi le systems
live in kernel space. This is understandable, as fi le services are part of the kernel’s responsibilities,
but it does impose the tight constraints of kernel space, which are exacerbated given the usually
complicated logic and data structures needed by fi le system implementations.

c15.indd 597c15.indd 597 10/1/2012 2:37:54 PM10/1/2012 2:37:54 PM

598 x CHAPTER 15 FEE, FI-FO, FILE: FILE SYSTEMS AND THE VFS

To alleviate this problem, an open source solution porting fi le system logic into user space has been
developed. Known as FUSE (File systems in USEr space), it has been implemented on various UNIX
systems and ported into Mac OS X by Amit Singh (who, among other things, has authored the pre-
vious reference on OS X internals1). Singh’s port became known as MacFUSE2, but was discontin-
ued in 2009 and became incompatible with Lion. A more recent endeavor to pick up where it left off
is known as OSXFUSE3, and has been modifi ed to work with Lion.

The basic idea in FUSE is that the interaction with the kernel is kept to a bare minimum — by
means of registering a stub fi le system, whose callbacks are all bridged back into a user mode pro-
cess. It is the user mode process that handles all the fi le system logic and data structures, impacting
performance somewhat, but benefi tting greatly from nearly boundless virtual memory and the other
fringe benefi ts in user mode, most notably the decoupling from the OS-idiosyncratic kernel inter-
faces. The user mode process can implement the fi le system in memory, manage it on disk, or even
call a remote server through FTP, SSH, or other protocols. Because all of this can be done using
standard POSIX calls, code for FUSE can be relatively straightforward to port in between UNIX
systems. FUSE links with a portable runtime library, called libfuse.

Table 15-5 shows some of the supported fi le systems in user mode.

TABLE 15-5: File systems supported by OS X FUSE

FILE SYSTEM DESCRIPTION

GrabFS Also known as the WindowFS, this is a read-only fi le system automatically popu-

lated with folders corresponding to all processes that have active Windows. Each

folder contains .tif fi les. Each fi le, if read, provides an updated screenshot of the

window it corresponds to. This is an OS X–specifi c fi le system, as it uses Cocoa’s

CGWindowListCreateImage() to create the capture images.

LoopbackFS Allowing the mounting of any local directory as a separate fi le system under a diff er-

ent mount point.

Procfs A fi le system similar to Linux’s /proc. This is an OS X–specifi c fi le system (Linux’s

own /proc is kernel-based).

SpotlightFS A fi le system linked to OS X’s spotlight, allowing spotlight searches by simply creat-

ing a folder in the fi le system. The folder is populated on-the-fl y with results from

Spotlight, much like a Smart Folder. This is an OS X–specifi c fi le system because it

uses Spotlight.

SSHfs An SSH-based fi le system allowing the mounting of remote fi le systems, with all the

NFS operations actually being carried over SFTP requests.

The kernel component of FUSE is fairly simple: It registers a VFS (using vfs_fsadd) and exports a
set of /dev/fuseXX character devices. Operations on this fi le system instance are intercepted by the
kernel extension and serialized in a message, which is then dispatched to the user mode fi le system.

The user mode fi le systems, on their part, populate a struct fuse_operations with their fi le opera-
tion callbacks, and then call fuse_main() to do the rest of the work. This is shown in Listing 15-11:

c15.indd 598c15.indd 598 10/1/2012 2:37:54 PM10/1/2012 2:37:54 PM

FUSE — File Systems in USEr Space x 599

LISTING 15-11: An example fuse_main()

int main (int argc, char **argv)
{
 struct fuse_operations fuseOps;
 // handle any arguments..
 fuseOps.init = // pointer to initializer
 fuseOps.destroy = // pointer to destructor
 fuseOps.statfs = // pointer to statfs(2) handler
 fuseOps.open = // pointer to file open(2) handler
 fuseOps.release = // pointer to file close(2) handler
 fuseOps.opendir = // pointer to opendir(3) handler
 fuseOps.releasedir = // pointer to closedir(3) handler
 fuseOps.getattr = // pointer to getattrlist(2) handler
 fuseOps.read = // pointer to file read(2) handler
 fuseOps.readdir = // pointer to readdir(3) handler
 fuseOps.readlink = // pointer to readlink(2) handler
.. // other handlers // ...
 return fuse_main(argc, new_argv, &fuseOps, NULL);
}

The fuse_operations (defi ned in LibFUSE’s fuse.h) contains handlers for all the well-known
POSIX fi le system calls. These are registered and passed to libFUSE’s own dispatcher, which receives
the callbacks bridged from the kernel and passes them to the fi le system–specifi c implementation. A
fi le system may implement only some of the handlers, choosing to leave handlers NULL, in which
case libFUSE will simply return an error. Listing 15-12 demonstrates this, with the do_write han-
dler. Other handlers are defi ned in a similar manner.

LISTING 15-12: libFuse’s do_write (from fuse’s lib/fuse_lowlevel.c)

static void do_write(fuse_req_t req, fuse_ino_t nodeid, const void *inarg)
{
 struct fuse_write_in *arg = (struct fuse_write_in *) inarg;
 struct fuse_file_info fi;

 memset(&fi, 0, sizeof(fi));
 fi.fh = arg->fh;
 fi.fh_old = fi.fh;
 fi.writepage = arg->write_flags & 1;

 // If there is a registered write handler, execute it
 if (req->f->op.write)
 req->f->op.write(req, nodeid, PARAM(arg),
 arg->size, arg->offset, &fi);
 else // no handler – deny system call
 fuse_reply_err(req, ENOSYS);
}

...

... // This is LibFUSE's handler for "low level" operations:
static struct {
void (*func)(fuse_req_t, fuse_ino_t, const void *);

continues

c15.indd 599c15.indd 599 10/1/2012 2:37:54 PM10/1/2012 2:37:54 PM

600 x CHAPTER 15 FEE, FI-FO, FILE: FILE SYSTEMS AND THE VFS

const char *name;
} fuse_ll_ops[] = {
[FUSE_LOOKUP] = { do_lookup, "LOOKUP" },
[FUSE_FORGET] = { do_forget, "FORGET" },
[FUSE_GETATTR] = { do_getattr, "GETATTR" },
[FUSE_SETATTR] = { do_setattr, "SETATTR" },
[FUSE_READLINK] = { do_readlink, "READLINK" },
[FUSE_SYMLINK] = { do_symlink, "SYMLINK" },
[FUSE_MKNOD] = { do_mknod, "MKNOD" },
[FUSE_MKDIR] = { do_mkdir, "MKDIR" },
[FUSE_UNLINK] = { do_unlink, "UNLINK" },
[FUSE_RMDIR] = { do_rmdir, "RMDIR" },
[FUSE_RENAME] = { do_rename, "RENAME" },
[FUSE_LINK] = { do_link, "LINK" },
[FUSE_OPEN] = { do_open, "OPEN" },
[FUSE_READ] = { do_read, "READ" },
[FUSE_WRITE] = { do_write, "WRITE" },
[FUSE_STATFS] = { do_statfs, "STATFS" },
[FUSE_RELEASE] = { do_release, "RELEASE" },
... // many other operations
}

Once the user mode fi le system has handled the request, the reply is serialized again into a message,
which returns to the kernel — and is returned to the requester, which remains blissfully unaware of
the whole bridging process.

FILE I/O FROM PROCESSES

So far, this book has covered the BSD layer’s implementation of processes (in the previous chapter),
and vnodes (in this one). But one important aspect has yet to be discussed — how user mode pro-
cesses access fi les and perform operations on them.

Recall from Chapter 13 that the BSD proc_t structure contains, among its many fi elds, a struct
filedesc *p_fd; this is the structure holding all the process’s open fi les in the fi elds shown in
Listing 15-13.

LISTING 15-13: The fi ledesc structure, from bsd/sys/fi ledesc.h

struct filedesc {
 struct fileproc **fd_ofiles; /* file structures for open files */
 char *fd_ofileflags; /* per-process open file flags */
 struct vnode *fd_cdir; /* current directory */
 struct vnode *fd_rdir; /* root directory */
 int fd_nfiles; /* number of open files allocated */
 int fd_lastfile; /* high-water mark of fd_ofiles */
 int fd_freefile; /* approx. next free file */
 u_short fd_cmask; /* mask for file creation */
 uint32_t fd_refcnt; /* reference count */

LISTING 15-12 (continued)

c15.indd 600c15.indd 600 10/1/2012 2:37:54 PM10/1/2012 2:37:54 PM

File I/O from Processes x 601

 int fd_knlistsize; /* size of knlist */
 struct klist *fd_knlist; /* list of attached knotes */
 u_long fd_knhashmask; /* size of knhash */
 struct klist *fd_knhash; /* hash table for attached knotes */
 int fd_flags;
};

The key fi elds in this structure are fd_ofiles and fd_ofileflags. Both are arrays, and the familiar
integer fi le descriptors from user mode (0 — stdin; 1 — stdout, 2 — stderr) are indices into those
arrays. The fi rst array holds the fi le “object” corresponding to the descriptor, whereas the second
one is used for the open fl ags (i.e. the fl ags specifi ed by the process in the open(2) system call). fp_
lookup can be used to fi nd the fileproc corresponding to a given fi le descriptor. (See Listing 15-14).

LISTING 15-14: fp_lookup (from bsd/kern/kern_descrip.c)

/*
 * fp_lookup
 *
 * Description: Get fileproc pointer for a given fd from the per process
 * open file table of the specified process and if successful,
 * increment the f_iocount
 *
 * Parameters: p Process in which fd lives
 * fd fd to get information for
 * resultfp Pointer to result fileproc
 * pointer area, or 0 if none
 * locked !0 if the caller holds the
 * proc_fdlock, 0 otherwise
 *
 * Returns: 0 Success
 * EBADF Bad file descriptor
 *
 * Implicit returns:
 * *resultfp (modified) Fileproc pointer
 *
 * Locks: If the argument 'locked' is non-zero, then the caller is
 * expected to have taken and held the proc_fdlock; if it is
 * zero, than this routine internally takes and drops this lock.
 */
int fp_lookup(proc_t p, int fd, struct fileproc **resultfp, int locked)
{
 struct filedesc *fdp = p->p_fd;
 struct fileproc *fp;

 if (!locked) // take lock to prevent race conditions
 proc_fdlock_spin(p);

 // A negative file descriptor, one that is larger than the count of open files,
 // one that has no fileproc * entry, or one that is reserved — all return EBADF

 if (fd < 0 || fdp == NULL || fd >= fdp->fd_nfiles ||
 (fp = fdp->fd_ofiles[fd]) == NULL ||
 (fdp->fd_ofileflags[fd] & UF_RESERVED)) {

continues

c15.indd 601c15.indd 601 10/1/2012 2:37:55 PM10/1/2012 2:37:55 PM

602 x CHAPTER 15 FEE, FI-FO, FILE: FILE SYSTEMS AND THE VFS

 if (!locked) // failure. Drop lock first
 proc_fdunlock(p);
 // and return error..

 return (EBADF);
 }
 fp->f_iocount++;

 // If we found an entry, fp points to it. This is also what we return to caller.
 if (resultfp)
 *resultfp = fp;

 // can safely let go of the lock
 if (!locked)
 proc_fdunlock(p);

 return (0); // success
}

The fileproc structures in fd_ofiles are surprisingly small structures:

struct fileproc {
 unsigned int f_flags;
 int32_t f_iocount;
 struct fileglob * f_fglob;
 void * f_waddr;
};

The reason for this is that all the fi le data is held globally in the kernel and is merely pointed to by
the f_fglob fi eld. This means that if the same fi le is opened by two processes, each may refer to it
by means of a different fi le descriptor (and, hence, a different fileproc, private to each process), but
the underlying fi le data, which is pointed to by the f_fglob pointers, resides at the same address in
kernel memory. This is shown in Listing 15-15:

LISTING 15-15: the fi leglob pointer, from bsd/sys/fi le_internal

/* file types */ // these are the types allowable for fg_type
typedef enum {
 DTYPE_VNODE = 1, /* file */
 DTYPE_SOCKET, /* communications endpoint */
 DTYPE_PSXSHM, /* POSIX Shared memory */
 DTYPE_PSXSEM, /* POSIX Semaphores */
 DTYPE_KQUEUE, /* kqueue */
 DTYPE_PIPE, /* pipe */
 DTYPE_FSEVENTS /* fsevents */
} file_type_t;

struct fileglob {
 LIST_ENTRY(fileglob) f_list;/* list of active files */
 LIST_ENTRY(fileglob) f_msglist;/* list of active files */
 int32_t fg_flag; /* see fcntl.h */
 file_type_t fg_type; /* descriptor type */

LISTING 15-14 (continued)

c15.indd 602c15.indd 602 10/1/2012 2:37:55 PM10/1/2012 2:37:55 PM

File I/O from Processes x 603

 int32_t fg_count; /* reference count */
 int32_t fg_msgcount; /* references from message queue */
 kauth_cred_t fg_cred; /* credentials associated with descriptor */
 struct fileops { // generic file operations
 int (*fo_read) (struct fileproc *fp, struct uio *uio,
 int flags, vfs_context_t ctx);
 int (*fo_write) (struct fileproc *fp, struct uio *uio,
 int flags, vfs_context_t ctx);
#define FOF_OFFSET 0x00000001 /* offset supplied to vn_write */
#define FOF_PCRED 0x00000002 /* cred from proc, not current thread */
 int (*fo_ioctl) (struct fileproc *fp, u_long com,
 caddr_t data, vfs_context_t ctx);
 int (*fo_select) (struct fileproc *fp, int which,
 void *wql, vfs_context_t ctx);
 int (*fo_close) (struct fileglob *fg, vfs_context_t ctx);
 int (*fo_kqfilter) (struct fileproc *fp, struct knote *kn,
 vfs_context_t ctx);
 int (*fo_drain) (struct fileproc *fp, vfs_context_t ctx);
 } *fg_ops;
 off_t fg_offset;
 void *fg_data; /* vnode or socket or SHM or semaphore */
 lck_mtx_t fg_lock;
 int32_t fg_lflags; /* file global flags */
#if CONFIG_MACF
 struct label *fg_label; /* JMM - use the one in the cred? */
#endif
};

The fg_data fi eld in the fileglob structure is a pointer to an object, whose contents depend on
fg_type. File handling system calls usually switch on the fg_data fi eld. A good example can be
seen in the implementation of fstat1()in Listing 15-16, which is the common implementation of
the fstat() family of system calls.

LISTING 15-16: fstat1(), the implementation of fstat, from bsd/kern/kern_descrip.c

#define f_type f_fglob->fg_type
#define f_data f_fglob->fg_data
..

static int
fstat1(proc_t p, int fd, user_addr_t ub, user_addr_t xsecurity,
 user_addr_t xsecurity_size, int isstat64)
{
 struct fileproc *fp;
...
 // use fp_lookup to first get the fileproc
if ((error = fp_lookup(p, fd, &fp, 0)) != 0) {
 return(error);
 }
 type = fp->f_type; // remember this is really fp->f_glob->f_type;
 data = fp->f_data; // .. and ditto for fp->f_glob->f_data;
..
switch (type) {
 case DTYPE_VNODE: // data cast to a vnode_t continues

c15.indd 603c15.indd 603 10/1/2012 2:37:55 PM10/1/2012 2:37:55 PM

604 x CHAPTER 15 FEE, FI-FO, FILE: FILE SYSTEMS AND THE VFS

 if ((error = vnode_getwithref((vnode_t)data)) == 0) {
 /*
 * If the caller has the file open, and is not
 * requesting extended security information, we are
 * going to let them get the basic stat information.
 */
 if (xsecurity == USER_ADDR_NULL) {
 error = vn_stat_noauth((vnode_t)data, sbptr, NULL, isstat64, ctx);
 } else {
 error = vn_stat((vnode_t)data, sbptr, &fsec, isstat64, ctx);
 }

 AUDIT_ARG(vnpath, (struct vnode *)data, ARG_VNODE1);
 (void)vnode_put((vnode_t)data);
 }
 break;

#if SOCKETS
 case DTYPE_SOCKET: // data cast to a struct socket *
 error = soo_stat((struct socket *)data, sbptr, isstat64);
 break;
#endif /* SOCKETS */
 case DTYPE_PIPE: // data will be cast into a struct pipe (inside pipe_stat)
 error = pipe_stat((void *)data, sbptr, isstat64);
 break;

 case DTYPE_PSXSHM: // data will be case into a struct pshmnode (inside pshm_stat)
 error = pshm_stat((void *)data, sbptr, isstat64);
 break;

 case DTYPE_KQUEUE: // data actually ignored for a kqueue
 funnel_state = thread_funnel_set(kernel_flock, TRUE);
 error = kqueue_stat(fp, sbptr, isstat64, p);
 thread_funnel_set(kernel_flock, funnel_state);
 break;
..

Reading and writing becomes a simple matter of passing the arguments around to the underlying fi le
reading/writing implementation. For example, consider fo_read in Listing 15-17 (other functions
implemented similarly):

LISTING 15-17: fo_read from bsd/kern/kern_descript.c

int fo_read(struct fileproc *fp, struct uio *uio, int flags, vfs_context_t ctx)
{
 // simple pass through. Remember that by f_ops we mean f_fglob->f_ops
 return ((*fp->f_ops->fo_read)(fp, uio, flags, ctx));
}

LISTING 15-16 (continued)

c15.indd 604c15.indd 604 10/1/2012 2:37:55 PM10/1/2012 2:37:55 PM

References and Further Reading x 605

The f_ops fi eld on the fileglob structure is set to the default set of fi le operations. Again, this
changes with the fi le type: vnops for vnodes, pipeops for pipes, and so on. In this way, the generic
operations can be adapted to any fi le type.

SUMMARY

This chapter explored XNU’s handling and implementation of fi le systems. Not unlike its BSD ori-
gins, XNU uses the virtual fi lesystem switch to allow any fi le system to plug in to the kernel, given
the right interface. FUSE, which has been ported to OS X, further allows the extension of VFS for
fi le systems that are implemented in user mode.

The chapter concluded by linking the VFS implementation to the process notion of a fi le descriptor.
This will come in handy in Chapter 17, which is dedicated to the implementation of the socket
APIs. The next chapter, however, turns fi rst to a specifi c fi le system implementation — Apple’s
native HFS+.

REFERENCES AND FURTHER READING

1. Singh, Amit, “Mac OS X Internals, A Systems Approach.” (Addison-Wesley; 2006)

2. MacFUSE project page on Google Code: http://code.google.com/p/macfuse/

3. OSXFUSE project page on github:http://osxfuse.github.com/

4. Apple Technical Note 2166 – “Secrets of the GPT” — http:// developer.apple.com/

technotes/tn2006/tn2166.htm

c15.indd 605c15.indd 605 10/1/2012 2:37:55 PM10/1/2012 2:37:55 PM

http://code.google.com/p/macfuse
http://osxfuse.github.com
http://developer.apple.com/technotes/tn2006/tn2166.htm
http://developer.apple.com/technotes/tn2006/tn2166.htm

c15.indd 606c15.indd 606 10/1/2012 2:37:56 PM10/1/2012 2:37:56 PM

16
To B (-Tree) or Not to Be —
The HFS+ File Systems

Although today’s operating systems can support — with the help of drivers — any type of fi le
system, each operating system has a “native” fi le system. In DOS, it was FAT. Windows has
NTFS. Linux has Ext2/3/4. And OS X, being no exception, has HFS+. This chapter dives deep
into the internals of HFS+, and its variant — HFSX — used in iOS. The fi le system internal
structure is described, with actual examples and hands-on exercises you can follow.

A companion tool for this book, hfsleuth, is available for free download from the
book’s website. Since this chapter deals with low-level and on-disk structures,
hfsleuth provides a great way to follow along and look at low-level disk struc-
tures. It does, however, often require read access to the raw disk device, which
you can either supply directly (via chmod(1) on /dev/rdisk##), or simply run
the tool as root. The tool also has a writeable mode, but it is disabled by default
for safety.

HFS+ FILE SYSTEM CONCEPTS

Following the discussion of generic fi le system concepts in the previous chapter, this section
presents these concepts as they pertain to HFS+, as well as a few novel concepts which exist
only in Apple’s favorite fi le system.

Timestamps
HFS+ maintains its dates as a count of seconds from January 1, 1904, GMT, as an unsigned
integer. This choice of start time is rather peculiar, as computers as we know them didn’t exist
back then. Even UNIX dates are relative to the “epoch” (January 1, 1970). As a result, despite

c16.indd 607c16.indd 607 9/29/2012 5:49:51 PM9/29/2012 5:49:51 PM

608 x CHAPTER 16 TO B (-TREE) OR NOT TO BE — THE HFS+ FILE SYSTEMS

using a UInt32, the last possible date is February 6, 2040, 06:28:15 GMT. Conversion between the
two is easy enough, however, as one need only subtract (365.25 × 66 × 86,400) from the HFS+ date
to get to a UNIX date.

Access Control Lists
As noted in the previous chapter, traditional UNIX offers permissions at the inode level. These
permissions, however, are very limited, conforming to the simple model of User/Group/Other. ACLs
enable the meticulous setting of permissions for any number of users and groups on the system, in a
manner similar to Windows permissions.

It’s important to note that ACLs are actually a VFS feature (or, to be more pedantic, KAUTH), and
not an HFS+ one. However, for ACLs to work, the underlying fi le system must support Extended
Attributes (which HFS+ does), as discussed next.

Extended Attributes
Files have, besides the actual blocks containing their data and their permissions, additional attri-
butes. These are commonly referred to as extended attributes, and OS X makes extensive use of
them, both in user mode applications (Spotlight and Finder, to name two), and in the kernel.

OS X added extended attributes in 10.4, and the previously mentioned ACLs are actually imple-
mented as extended attributes, as in per-fi le compression, which was introduced in 10.6, and
described below. OS X provides the xattr(1) command, which enables the listing of extended attri-
butes, as well as a -@ switch to its ls(1).

 ‰ Extended attributes are generally opaque; they can be set by anyone, and OS X follows a
reverse DNS convention, to ensure attribute uniqueness. The exact meaning of the attribute
is left up to the setter to decide. Toggling folder color labels and running xattr(1), for
example, quickly reveals that indicated byte value corresponds to the folder color. Another
interesting attribute is com.apple.quarantine, which is responsible for the familiar “%s
is an application downloaded from the internet.” This attribute is also used by the SandBox
kext to detect which Applications are potentially dangerous.

Table 16-1 lists some of the common extended attributes and their format:

TABLE 16-1: System defi ned extended attributes

EXTENDED ATTRIBUTE

(COM.APPLE)

FORMAT USAGE

decmpfs Decmpfs header Compressed fi le indicator or, for small

fi les, data

FinderInfo Undocumented Finder information, e.g. folder colors

c16.indd 608c16.indd 608 9/29/2012 5:49:56 PM9/29/2012 5:49:56 PM

HFS+ File System Concepts x 609

EXTENDED ATTRIBUTE

(COM.APPLE)

FORMAT USAGE

metadata As per the Spotlight Metadata

attribute format[1]

Spotlight Metadata. Used by Safari, for

example, to catalog where a download

originated (using kMDItemWhereFroms)

quarantine 0000;

32-bit Timestamp;

AppName;

GUID|appID

Quarantine for fi les of dubious origin (i.e.,

only the Internet)

cprotect struct cp_xattr (bsd/

sys/cprotect.h)
Used by iOS 4 and later for fi le content

protection: Provides encrypted key of fi le

system.Security struct kauth_acl

(bsd/sys/kauth.h)

Used by VFS for extended ACLs

Extended attributes form the basis for many features, such as Access Control
Lists (described previously), forks, and transparent compression (both described
later). Theoretically, any fi le system that supports extended attributes could
support the features built on top of them, as in XNU support for extended attri-
butes is implemented at the VFS level, as callouts to the specifi c fi le system logic.

The xattr(1) command is, surprisingly enough, a Python script(!) and not a binary. Why Apple
left it as Python is puzzling, considering that its functionality is provided directly by system calls,
and even more so when due to Python version hell there are no less than four xattrs: The main fi le,
which selects one of the actual scripts by Python version. This is true even in Mountain Lion:

morpheus@Simulacrum (~)$ ls -l /usr/bin/xatt*
-rwxr-xr-x 2 root wheel 925 Mar 23 00:58 /usr/bin/xattr
-rwxr-xr-x 1 root wheel 7786 Mar 23 00:58 /usr/bin/xattr-2.5
-rwxr-xr-x 1 root wheel 9442 Mar 23 00:58 /usr/bin/xattr-2.6
-rwxr-xr-x 1 root wheel 9442 Mar 23 00:58 /usr/bin/xattr-2.7
morpheus@Simulacrum (~)$ file /usr/bin/xattr
/usr/bin/xattr: a /usr/bin/python script text executable

To add insult to injury, xattr(1) fi lters out some important extended attributes, those dealing with
fi le compression. This is shown in the following experiment.

Experiment: Viewing Extended Attributes
Implementing an actually usable version of xattr(1) is as easy as using the listxattr(2) system
call directly, as is shown in the Listing 16-1:

c16.indd 609c16.indd 609 9/29/2012 5:49:56 PM9/29/2012 5:49:56 PM

610 x CHAPTER 16 TO B (-TREE) OR NOT TO BE — THE HFS+ FILE SYSTEMS

LISTING 16-1: Simple, but working code to list extended attributes

#include <sys/xattr.h>
#include <stdlib.h>
#include <stdio.h>
#define BUFSIZE 4096

// Minimal version of xattr, but one that actually presents compressed attributes
// Can be extended to support reading and writing the attribute themselves
// (left as an exercise for the reader)

int main (int argc, char **argv)
{
 char *fileName = argv[1];
 int xattrsLen;
 char *xattrNames;
 char *attr;

 // We could call listxattr with NULL to get the name len, but – quick & dirty
 // I have yet to see a file with more than 4K of extended attribute names..

 xattrNames = malloc (BUFSIZE);
 memset (xattrNames, '\0', BUFSIZE); // or calloc..

 switch (listxattr (fileName,
 xattrNames,
 BUFSIZE,
 XATTR_SHOWCOMPRESSION | XATTR_NOFOLLOW))
 {
 case 0:
 fprintf(stderr, "File %s has no extended attributes\n", fileName); return (0);
 case -1:
 perror("listxattr"); return (1);
 default: // it worked. fall through
 ;
 }
 // rely on attributes being NULL terminated..
 for (attr = xattrNames; attr[0]; attr += strlen(attr) + 1)
 {
 printf ("Attribute: %s\n", attr);
 }

 free(xattrNames); // Be nice. Clean up
 return (0);
}

The listing should compile nearly. After compiling it (or downloading the tool from the book’s com-
panion website), you can use it on any fi le in the system, and view, for example, compression-related
extended attributes (as shown in another experiment, in a few pages).

If you complete the exercise, so as to list the extended attribute values, you can try an extra step of this
experiment: Start Finder in the some directory, and assign a color label to a fi le. Use xattr from the
listing to look at the com.apple.FinderInfo attribute. You should see something like Output 16-1:

c16.indd 610c16.indd 610 9/29/2012 5:49:58 PM9/29/2012 5:49:58 PM

HFS+ File System Concepts x 611

OUTPUT 16-1: The com.apple.FinderInfo attribute changing along with color labels

morpheus@Ergo (/)$ jxattr -p ~/Desktop/test
Attribute: com.apple.FinderInfo (32 bytes)
\x0\x0\x0\x0\x0\x0\x0\x0\x0\xc\x0\x0\x0... # Red

Attribute: com.apple.FinderInfo (32 bytes)
\x0\x0\x0\x0\x0\x0\x0\x0\x0\xe\x0\x0\x0... # Orange

Attribute: com.apple.FinderInfo (32 bytes)
\x0\x0\x0\x0\x0\x0\x0\x0\x0\x2\x0\x0\x0… # Gray

You can view almost all the extended attributes a fi le has using the system calls. If you use the code
from the listing to look for some of the system properties, like content protect or ACLs, you will come
up empty handed. This, however, is not a shortcoming of the code, so much as the fi ltering imposed
at the system call level. These attributes are, in fact, there, but you need to read them directly from
the fi le system and this is exactly what low-level tool like hfsleuth can do, as shown later.

Forks
Forks are a concept fi rst devised by Apple (in the original HFS), and later adopted by Microsoft in
NTFS (wherein it is referred to as alternate data streams). A fork is much like an extended attribute,
in that it can be used for additional metadata, but is more suited for data that can be put in a sepa-
rate, albeit related fi le. Whereas extended attributes have size limitations, forks do not.

While OS X can support virtually any number of forks, most fi les have exactly one fork — the data
fork — which is the where the fi le’s actual data is stored. Some fi les may also maintain a resource
fork, though that, too is rare. To see a resource fork, simply append /..namedfork/rsrc to any fi le
name. One such fi le is /Developer/Icon^M (the ^M being Ctrl+M, which you can type by pressing
Ctrl+V Ctrl+M — otherwise Ctrl+M doubles as the Enter key), or by hitting Tab to auto-complete.
This is demonstrated in Output 16-2:

OUTPUT 16-2: Demonstrating resource forks

morpheus@Ergo (~)$ ls -l@ /Developer/Icon^M
-rw-r--r--@ 1 root admin 0 Nov 14 2011 /Developer/Icon?
 com.apple.FinderInfo 32
 com.apple.ResourceFork 338

morpheus@Ergo (~)$ xattr -l /Developer/Icon^M
com.apple.FinderInfo:
00000000 00 00 00 00 00 00 00 00 40 00 00 00 00 00 00 00 |........@.......|
00000010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00000020
com.apple.ResourceFork:
00000000 00 00 01 00 00 00 01 20 00 00 00 20 00 00 00 32 |.......2|
...
00000110 00 00 00 00 00 00 00 00 64 65 76 66 6D 61 63 73 |........devfmacs|
00000120 00 00 01 00 00 00 01 20 00 00 00 20 00 00 00 32 |.......2|
00000130 00 00 00 00 09 00 00 00 00 1C 00 32 00 00 62 61 |...........2..ba|

ls –l shows the finder extended
attribute, and a 338 byte resource fork

xattr(1) (or jxattr) can be used to dump the
extended attributes, including the resource fork

continues

c16.indd 611c16.indd 611 9/29/2012 5:49:58 PM9/29/2012 5:49:58 PM

612 x CHAPTER 16 TO B (-TREE) OR NOT TO BE — THE HFS+ FILE SYSTEMS

00000140 64 67 00 00 00 0A BF B9 FF FF 00 00 00 00 01 00 |dg..............|
00000150 00 00 |..|
00000152

morpheus@Ergo (~)$ ls -l /Developer/Icon^M/..namedfork/rsrc
-rw-r--r-- 1 root admin 338 Nov 14 2011 /Developer/Icon?/..namedfork/rsrc

morpheus@Ergo (~)$ od -A x -t x1 /Developer/Icon^M/..namedfork/rsrc
0000000 00 00 01 00 00 00 01 20 00 00 00 20 00 00 00 32
0000010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
*
0000100 00 00 00 1c 00 00 00 00 00 00 00 00 00 00 00 00
0000110 00 00 00 00 00 00 00 00 64 65 76 66 6d 61 63 73
0000120 00 00 01 00 00 00 01 20 00 00 00 20 00 00 00 32
0000130 00 00 00 00 09 00 00 00 00 1c 00 32 00 00 62 61
0000140 64 67 00 00 00 0a bf b9 ff ff 00 00 00 00 01 00
0000150 00 00
0000152

One place where resource forks are used extensively is in OS X aliases. Aliases make good use of
their resource forks. When created, and even if it renamed, an Alias has an extended Finder attri-
bute (com.apple.FinderInfo) specifying alisMACS, and a resource fork specifying the coordinates
of the original fi le, as well as the icons. Surprisingly enough, in many cases the aliases take up more
disk space than the fi les they are aliases of.

Compression
 ‰ File compression is one of HFS+’s strongest features, and also the one most easily over-

looked. This is because, as of 10.6, it is provided transparently. Compression is implemented
by leaving the data fork empty, and placing the compressed data in the resource fork. An
additional extended attribute, com.apple.decmpfs, marks the fi le as compressed. OS X
utilities, however, silently perform decompression on the fl y of system fi les, and even the
extended attribute utility, xattr(1), ignores the extended attribute of com.apple.decmpfs,
which is used for compression. The kernel supports on-the-fl y compression using the special-
ized AppleFSCompressionTypeZlib.kext.

If you are using Lion or later, ls(1) has been adapted to detect and display compressed fi les if the
-O switch is used on a compressed fi le. Doing so will not display compression details. However, one
of the few ways to see compression in action is using du. This is shown in Output 16-3:

OUTPUT 16-3: Demonstrating the actual size of a fi le using du

morpheus@Minion (~)$ ls -lO@ /bin/ls
-r-xr-xr-x 1 root wheel compressed 80752 Feb 6 10:49 /bin/ls
morpheus@Minion (~)$ du -h !$
du -h /bin/ls
32K /bin/ls

..and the fork may be accessed as a normal file,
by appending ..namedfork/rsrc

Note: No extended attributes for ls

Yet size used is significantly
smaller than

OUTPUT 16-2 (continued)

c16.indd 612c16.indd 612 9/29/2012 5:49:58 PM9/29/2012 5:49:58 PM

HFS+ File System Concepts x 613

The ditto(1) utility supports compression with a --hfsCompression switch. The compression is
implemented by a private framework, Bom, which — in turn — compresses using the private frame-
work AppleFSCompression, libz (gzip style Lempel-Ziv 77 compression), and libbz2 (Bunzip2,
or Burroughs-Wheeler). (You can see this for yourself by using otool –l on these fi les).

The hfsleuth companion tool can be used to display compression details when used on a normal fi le,
as shown in Output 16-4.

OUTPUT 16-4: Using hfsleuth on a compressed fi le

morpheus@Minion (~)$ ls -lO@ /bin/ls
-r-xr-xr-x 1 root wheel compressed 80752 Feb 6 10:49 /bin/ls
morpheus@Minion (~)$ hfsleuth -v /bin/ls
/bin/ls: File size is 80752 bytes, compressed (actual size is 31047 bytes)
No extended attributes (aside from compression)

A little known fact is that when Apple integrated compression into HFS+, they did so in a highly
modular way, with most of the logic actually decoupled from HFS+. This means that compression
support could very well be implemented by other fi le systems, so long as they support extended
attributes.

Detecting File Compression
The kernel can detect if a given fi le (more accurately, a vnode) is compressed by calling decmpfs_
file_is_compressed (bsd/kern/decmpfs.c). This function checks the value of the com.apple
.decmpfs extended attribute. Client fi le systems (in our case, HFS+), can wrap this with their own
logic, as HFS+ does with hfs_file_is_compressed (bsd/hfs/hfs_vnops.c). This function fi rst
checks a cached value stored in a decmpfs_cnode or compression node, which decmpfs maintains
for compressed data. If this is a fi rst time the fi le is opened, no cached value exists, and so a call is
made to the generic function, which also sets up the cnode.

File Decompression
As noted earlier, HFS+ compression in the kernel is implemented in a highly modular fashion.
Rather than commit to a particular type of algorithm, the HFS+ code in the kernel’s bsd/hfs direc-
tory calls out to decompression logic in bsd/kern/decmpfs.c. To further enable modularity, the
decompression is performed by one of potentially several (up to CMP_MAX) decompressors, which
can be registered externally (i.e., from kexts), using the register_decmps_decompressor function.
This is shown in Listing 16-2:

LISTING 16-2: Decompression logic exported in bsd/sys/decmpfs.h

#define DECMPFS_REGISTRATION_VERSION 1
typedef struct {
 int decmpfs_registration; // "1"
 decmpfs_validate_compressed_file_func validate;
 decmpfs_adjust_fetch_region_func adjust_fetch;
 decmpfs_fetch_uncompressed_data_func fetch;

continues

c16.indd 613c16.indd 613 9/29/2012 5:49:58 PM9/29/2012 5:49:58 PM

614 x CHAPTER 16 TO B (-TREE) OR NOT TO BE — THE HFS+ FILE SYSTEMS

 decmpfs_free_compressed_data_func free_data;
} decmpfs_registration;

/* hooks for kexts to call */
errno_t register_decmpfs_decompressor
 (uint32_t compression_type,
 decmpfs_registration *registration);
errno_t unregister_decmpfs_decompressor
 (uint32_t compression_type,
 decmpfs_registration *registration);

The decmpfs mechanism registers the Type1 compressor, which is used in cases where the data is
already too small to be effectively compressed and can fi t in the extended attribute itself, in plain-
text. Other registrations can be performed by external kexts. The AppleFSCompressionTypeZlib
.kext registers Type3 and Type4 compressors, and the AppleFSCompressionTypeDataless.kext
(in OS X, as of Lion) registers Type5.

If a kernel extension has not yet registered the appropriate decompressor, the process works in
reverse: decmpfs uses I/O Kit to query the driver catalogue for the driver which purports to sup-
port the required type. Calls to the actual decompressor functions use _decmp_get_func, shown in
Listing 16-3.

LISTING 16-3: _decmp_get_func, used to obtain decompressor functions

_decmp_get_func(uint32_t type, int offset)
{
 /*
 this function should be called while holding a shared lock to decompressorsLock,
 and will return with the lock held
 */

 if (type >= CMP_MAX) // only up to CMP_MAX decompressors
 return NULL;

 if (decompressors[type] != NULL) {
 // already have a registered decompressor at this offset, return its function
 return _func_from_offset(type, offset);
 }

 // does IOKit know about a kext that is supposed to provide this type?
 char providesName[80];
 snprintf(providesName, sizeof(providesName),
 "com.apple.AppleFSCompression.providesType%u", type);

// I/O Kit and its "Catalogue" are both discussed in detail in Chapter 19
 if (IOCatalogueMatchingDriversPresent(providesName)) {
 // there is a kext that says it will register for this type, so let's wait for
it
 char resourceName[80];
 uint64_t delay = 10000000ULL; // 10 milliseconds.

LISTING 16-2 (continued)

c16.indd 614c16.indd 614 9/29/2012 5:49:59 PM9/29/2012 5:49:59 PM

HFS+ File System Concepts x 615

 snprintf(resourceName, sizeof(resourceName),
 "com.apple.AppleFSCompression.Type%u", type);
 printf("waiting for %s\n", resourceName);
 while(decompressors[type] == NULL) {
 lck_rw_done(decompressorsLock);

 if (IOServiceWaitForMatchingResource(resourceName, delay)) {
 break;
 }
 if (!IOCatalogueMatchingDriversPresent(providesName)) {

 printf("the kext with %s is no longer present\n", providesName);
 break;
 }
 printf("still waiting for %s\n", resourceName);
 delay *= 2;
 lck_rw_lock_shared(decompressorsLock);
 }
 // IOKit says the kext is loaded, so it should be registered too!
 if (decompressors[type] == NULL) {
 ErrorLog("we found %s, but the type still isn't registered\n",
providesName);
 return NULL;
 }
 // it's now registered, so let's return the function
 return _func_from_offset(type, offset);
 }

 // the compressor hasn't registered, so it never will unless someone
 // manually kextloads it
 ErrorLog("tried to access a compressed file of unregistered type %d\n", type);
 return NULL;
}

I/O Kit is described in more detail in Chapter 19, but the code should still be clear: decmp_get_func
fi rst checks if it has a registered decompressor (in which case it can just return its function). If it
does not, it calls on I/O Kit to look up a driver and load it and waits (with exponentially increasing
delays) until that driver is registered. The driver is expected to have registered itself by then at the
appropriate offset, and its function can be returned.

Note, that with all this talk about decompression, we have not mentioned compression. This is
because the kernel cannot perform the compression, and has no support for external compressors,
either: Only the decompression is supported at the kernel level. Apple provides pre-compressed fi les
during the installation process. For compression any time thereafter, you need to use the ditto(1)
command, with its --hfsCompression switch. As stated, the command (part of the BomCmds pack-
age) is closed source, but the HFS+ compression process can generally be described as follows:

 ‰ The fi le is treated as an array of 64 K blocks.

 ‰ Small fi les are compressed with Type1, with their data stored in the extended attribute,
uncompressed.

 ‰ Larger fi les that can still fi t inside the com.apple.decmpfs extended attribute in one block
are stored in the extended attributes.

c16.indd 615c16.indd 615 9/29/2012 5:49:59 PM9/29/2012 5:49:59 PM

616 x CHAPTER 16 TO B (-TREE) OR NOT TO BE — THE HFS+ FILE SYSTEMS

 ‰ All other larger fi les are compressed using the fi le’s resource fork. Note that, in this case, the
fi le may not have its own resource fork.

 ‰ The extended attribute and the resource fork are added to the fi le.

 ‰ The actual fi le size is recoded as 0, and chflags(2) marks the fi le as compressed.

The following experiment demonstrates how fi le system compression is implemented.

Experiment: Viewing File Compression
Using the program created in Listing 16-1, you can easily see compression-related extended attri-
butes, even though the normal xattr will not. To try this out, create a small fi le, and then copy it to
your directory using ditto(1), applying compression in the process. This will look something like
Output 16-5:

OUTPUT 16-5: Compressing a fi le with ditto(1)

morpheus@minion (~)$ echo "This is a test of compression" > file
morpheus@minion (~)$ ditto –hfsCompression file fileComp
morpheus@minion (~)$ ls -lO file*
-rw-r--r-- 1 morpheus staff - 30 Apr 29 16:39 file
-rw-r--r-- 1 morpheus staff compressed 30 Apr 29 16:39 fileComp

Now use the xattr from Listing 16-1 on the fi le. You should be able to see your fi le has the com
.apple.decmpfs attribute, but not the resource fork, since its compressed data is small enough.
Trying this again on a larger fi le (usually over 20 K) will create the resource fork. This is shown in
Output 16-6:

OUTPUT 16-6: Who’s the real xattr?

morpheus@Minion (~)$ /usr/bin/xattr -p com.apple.decmpfs fileComp
xattr: fileComp: No such xattr: com.apple.decmpfs # Liar!

morpheus@Minion (~)$ xattr /bin/ls # no attrs on /bin/ls, either

morpheus@Minion (~)$ ls -l /bin/ls # It's a conspiracy!
-r-xr-xr-x 1 root wheel 80752 Feb 6 10:49 /bin/ls

by comparison, running our version, from Listing 16-xat
#
morpheus@Minion (~)$./xattr fileComp
Attribute: com.apple.decmpfs # our version tells the truth
morpheus@Minion (~)$./xattr /bin/ls # And /bin/ls has a resource fork
Attribute: com.apple.ResourceFork
Attribute: com.apple.decmpfs

Completing the exercise and also printing the extended attribute values, will reveal that, interestingly
enough, even though the fi le is technically compressed (with its data in the extended attribute), it is
not actually. This is because, for very small fi les, the overhead of compression headers might actually
be larger than the fi le data that is being compressed. The same does not hold for /bin/ls, which has
been compressed from 80,752 bytes to a mere 31,047 — a signifi cant savings of about 62%!

c16.indd 616c16.indd 616 9/29/2012 5:49:59 PM9/29/2012 5:49:59 PM

HFS+ File System Concepts x 617

Printing out the extended attribute (left as an exercise)
Note our file is not really compressed, but its content is in the attribute
#
morpheus@Minion (~)$./xattr -v fileComp
Attribute: com.apple.decmpfs (47 bytes)
fpmc\x3\x0\x0\x0\x1e\x0\x0\x0\x0\x0\x0\x0\xffThis is a test of compression\xa

In /bin/ls, the resource fork holds the data, and the extended attribute
only holds the fpmc ('cmpf', in reverse) header.
morpheus@Minion (~)$./xattr -v /bin/ls
Attribute: com.apple.decmpfs (16 bytes)
fpmc\x4\x0\x0\x0p;\x1\x0\x0\x0\x0\x0
Attribute: com.apple.ResourceFork (31047 bytes)
\x0\x0\x1\x0\x0\x0y\x15\x0\x0x\x15\x0...
 //output truncated for brevity, but note file is significantly smaller

Now perform any subtle modifi cation you wish on the fi le. For example, add a character. You will
see the fi le has lost its compression. (See Output 16-7.)

OUTPUT 16-7: Compression is lost on fi le modifi cation

morpheus@Minion (~)$ echo "." >> fileComp
morpheus@Minion (~)$ ls -lO file*
-rw-r--r-- 1 morpheus staff - 30 Apr 29 16:39 file
-rw-r--r-- 1 morpheus staff - 32 Apr 29 16:44 fileComp
morpheus@Minion (~)$./xattr fileComp
File fileComp has no extended attributes

Unicode Support
Gone are the days of 8-bit ASCII. Nowadays, as users download more content from the Internet,
there is a need for Internationalization — I18n — at the fi le system level. This means that fi le names
in different languages and character sets must be supported by the fi le system.

HFS+ solves internationalization problems by simply using Unicode. Of the many Unicode variants,
the one used in UTF-16 — double byte Unicode, and fi lenames can be up to 255 characters (i.e., 510
bytes) in length. The data structure used internally by HFS+ is an HFSUniStr255, defi ned here:

struct HFSUniStr255 {
 UInt16 length;
 UniChar unicode[255];
};
typedef struct HFSUniStr255 HFSUniStr255;

The Unicode is in big-endian order, meaning that on Intel architecture every byte has to be swapped
(using be16_to_cpu or some other macro).

Finder integration
HFS+ is tightly integrated with the OS X Finder (discussed in Chapter 7). Both the volume header,
as well as the individual catalog entries have a special Finder Information fi eld, which contains fl ags
for use by Finder. The exact information depends on whether it is for a fi le or a folder. This is shown
in Listing 16-4.

c16.indd 617c16.indd 617 9/29/2012 5:49:59 PM9/29/2012 5:49:59 PM

618 x CHAPTER 16 TO B (-TREE) OR NOT TO BE — THE HFS+ FILE SYSTEMS

LISTING 16-4: Finder Information, from bsd/hfs/hfs_format.h

/* Finder information */
struct FndrFileInfo {
 u_int32_t fdType; /* file type */
 u_int32_t fdCreator; /* file creator */
 u_int16_t fdFlags; /* Finder flags */
 struct {
 int16_t v; /* file's location */
 int16_t h;
 } fdLocation;
 int16_t opaque;
} __attribute__((aligned(2), packed));
typedef struct FndrFileInfo FndrFileInfo;

struct FndrDirInfo {
 struct { /* folder's window rectangle */
 int16_t top;
 int16_t left;
 int16_t bottom;
 int16_t right;
 } frRect;
 unsigned short frFlags; /* Finder flags */
 struct {
 u_int16_t v; /* folder's location */
 u_int16_t h;
 } frLocation;
 int16_t opaque;
} __attribute__((aligned(2), packed));
typedef struct FndrDirInfo FndrDirInfo;

The “fl ags” are listed in bsd/hfs/hfs_macos_defs.h, and shown in Listing 16-5.

LISTING 16-5: Finder Flags, from bsd/hfs/hfs_macos_defs.h

enum {
 /* Finder Flags */
 kHasBeenInited = 0x0100,
 kHasCustomIcon = 0x0400,
 kIsStationery = 0x0800,
 kNameLocked = 0x1000,
 kHasBundle = 0x2000,
 kIsInvisible = 0x4000,
 kIsAlias = 0x8000
};

The fl ags and fi nder information are defi ned as Apple internal. If you compare the previous listings
to TN1150, you will see that fl ags have been removed and the structure fi elds and names changed.
Also, as noted previously, Finder makes use of the com.apple.FinderInfo extended attribute to
store such information as fi le color labels (which were once also supported by fi nder fl ag, kColor).

c16.indd 618c16.indd 618 9/29/2012 5:50:00 PM9/29/2012 5:50:00 PM

HFS+ File System Concepts x 619

Case Sensitivity (HFSX)
File systems are defi ned as case-insensitive or case-sensitive, depending on whether they consider
letter uppercase/lowercase when comparing fi lenames. Additionally, while a fi le system may be case-
insensitive, it may still opt to be case-preserving — i.e., create fi les in the exact case passed to it, and
maintain that case in all further operations on that fi le.

HFS+ is case-insensitive, but case-preserving. OS X supports a newer variant, HFSX, which can be
made case-sensitive, as well. Originally, HFSX was devised as a forward-looking fi le system that,
one day, would replace HFS+. The idea was to enable many more features, updating the version
number as more features are added, but so far (since version 10.3 to the present day), the only fea-
ture is case-sensitivity, and it, too, is optional.

OS X uses HFS+ by default. iOS uses HFSX, with case-sensitivity enabled. The decision between
case-preserving (HFS+) and case-sensitive (HFSX) can only be made once, during partitioning (with
Disk Utility or diskutil(8) from the command line), since it affects the ordering of keys in the
catalog tree.

Journaling
File transactions can be quite complicated, and write operations in particular may span multiple
blocks. In the case of a power outage or other crash, this could lead to data corruption, if a transac-
tion is only partially written to the underlying media. Long time UNIX users are all too familiar
with the lost+found directory, set up automatically on each fi le system after running fsck(1).
This directory contains lost, or orphaned inodes, which have been unlinked from their directory by
rm(1) or unlink(2), yet whose storage blocks have not been freed. In extreme cases, the entire fi le
system may be corrupted and rendered unmountable by a crash. This results in the system booting
in single user mode for recovery, and a tedious manual fsck by the administrator.

Journaling is a technique that aims to resolve this. The journal is a special area of the disk, allocated
but invisible to the user, in which the fi le system can record its transactions, prior to actually com-
mitting them to the disk. If the changes can be committed successfully, they are removed from the
journal. But if a crash should occur, the fi le system can quickly be restored to a consistent state — by
either replaying the journal (i.e., committing all its recorded transactions), or rolling it back (in the
case it contains incomplete transactions).

A journal is no panacea against data loss. Some data may still be lost, either as a result of a rollback,
or due to never making it to the journal in the fi rst place (for example, if it stays in the system buffer
cache, and isn’t fl ushed before a crash). It does, however, signifi cantly reduce the chance of a crash
making the fi le system unusable.

Modern fi le systems, like Linux’s Ext3, and Microsoft’s NTFS are journal-based. HFS+ can be
mounted either with or without a journal. Journaling is default, though SSD-based Macs may ben-
efi t from disabling it (due to the number of erase operations in a journal, which could shorten the
underlying fl ash).

Journaling can be toggled on and off as desired, using hfs.util –J or hfs.util –U, respectively,
as shown in Output 16-6. Note the use of the full path name, since hfs.util(8) is not in the path.

c16.indd 619c16.indd 619 9/29/2012 5:50:00 PM9/29/2012 5:50:00 PM

620 x CHAPTER 16 TO B (-TREE) OR NOT TO BE — THE HFS+ FILE SYSTEMS

OUTPUT 16-6: Toggling journaling using hfs.util

root@Minion (/)# /System/Library/Filesystems/hfs.fs/hfs.util -J /
Allocated 24576K for journal file.

root@Minion (/)# /System/Library/Filesystems/hfs.fs/hfs.util -I /
/ : journal size 24576 k at offset 0x15502000

root@Minion (/)# mount
/dev/disk0s2 on / (hfs, local, journaled)
devfs on /dev (devfs, local, nobrowse)
map -hosts on /net (autofs, nosuid, automounted, nobrowse)
map auto_home on /home (autofs, automounted, nobrowse)

root@Minion (/)# /System/Library/Filesystems/hfs.fs/hfs.util -U /
Journaling disabled on /dev/disk0s2 mounted at /.

root@Minion (/)# /System/Library/Filesystems/hfs.fs/hfs.util -I /
Volume / is not journaled.

root@Minion (/)# mount
/dev/disk0s2 on / (hfs, local)
devfs on /dev (devfs, local, nobrowse)
map -hosts on /net (autofs, nosuid, automounted, nobrowse)
map auto_home on /home (autofs, automounted, nobrowse)

Dynamic Resizing
HFS+ volumes can be dynamically resized — shrunk or grown, even when the volumes are
mounted. This is considered advanced functionality, which is not matched by some of its peers
(XFS, for example, can grow but not shrink). HFS+ resizing is handled by hfs_extendfs (bsd/hfs/
hfs_vfsutils.c), and can be performed from user mode by a HFS_RESIZE_VOLUME ioctl(2), an
HFS_EXTEND_FS sysctl(2), using the Disk Utility GUI by simply adjusting the lower-right corner
of an HFS+ partition.

Metadata Zone
The metadata zone, which was introduced in OS X 10.3, follows the system’s volume header, and
contains the fi le system’s internal structures (alongside hot fi les, described next). The zone is inten-
tionally defi ned in the beginning of the volume, to optimize seek times, and is enabled by hfs_
metadatazone_init (bsd/hfs/hfs_vfsutils.c) under the following conditions:

 ‰ Volume size is at least 10 GB

 ‰ Journaling is enabled on the volume

 ‰ The caller did not explicitly ask to disable the zone (via fsctl, as discussed later)

The zone is off limits to regular fi le allocations (unless the system is extremely short on blocks).
The zone contains fi les and structures for the fi le system’s internal use, as discussed later (under
“Components”). The hfs_virutalmetafile (bsd/hfs/hfs_vfsutils.c), shown in Listing 16-6,
is used to fi nd if a fi le belongs in the metazone:

c16.indd 620c16.indd 620 9/29/2012 5:50:00 PM9/29/2012 5:50:00 PM

HFS+ File System Concepts x 621

LISTING 16-6: The hfs_virtualmetafi le() function

int hfs_virtualmetafile(struct cnode *cp)
{
 const char * filename;

 if (cp->c_parentcnid != kHFSRootFolderID)
 return (0);

 filename = (const char *)cp->c_desc.cd_nameptr;
 if (filename == NULL)
 return (0);

 if ((strncmp(filename, ".journal", sizeof(".journal")) == 0) ||
 (strncmp(filename, ".journal_info_block", sizeof(".journal_info_block")) == 0) ||
 (strncmp(filename, ".quota.user", sizeof(".quota.user")) == 0) ||
 (strncmp(filename, ".quota.group", sizeof(".quota.group")) == 0) ||
 (strncmp(filename, ".hotfiles.btree", sizeof(".hotfiles.btree")) == 0))
 return (1);

 return (0);
}

Hot Files
An interesting and quite unique feature of HFS+ is its dynamic adaptation to handle frequently
accessed fi les. HFS+ keeps a temperature measurement on each fi le. The temperature is computed as
the number of bytes divided by the fi le size (as a uint32_t, so it is always rounded down). This cal-
culation is inversely proportional to the fi le size, so it favors small fi les, whose contents are read very
frequently. Those “hot” fi les exceeding a certain HFC_MINIMUM_TEMPERATURE are added to a special
B-Tree in the metadata zone, which maintains up to HFC_MAXIMUM_FILE_COUNT entries, and their
blocks are moved into the metadata zone as well.

The Hot-File B-Tree is a regular fi le, created by hfc_btree_create (in bsd/hfs/hfs_hotfiles.c),
and its FndrFileInfo fl ags are set (kIsInvisible + kNameLocked), so its name cannot be
changed, and it remains invisible to Finder, but you can use ls –laO to see that it is very much
there, as shown in Output 16-7:

OUTPUT 16-7: Locating the hot fi le B-Tree

morpheus@Minion (~)$ ls -laO /.hotfiles.btree
-rw------- 1 root wheel hidden 131072 May 11 16:42 /.hotfiles.btree

The hot fi le B-Tree is kept small and contains entries corresponding to the hottest (i.e., most fre-
quently read from) fi les on the system. The system records fi le activity and periodically evaluates
candidates. Simmering hot fi les are moved into the metadata zone in a process known as adoption,
(assuming there is room for them) in place of fi les which have cooled off, (in what is known as an
eviction). The eviction precedes the adoption, since it reclaims precious blocks in the limited meta-
data zone.

c16.indd 621c16.indd 621 9/29/2012 5:50:00 PM9/29/2012 5:50:00 PM

622 x CHAPTER 16 TO B (-TREE) OR NOT TO BE — THE HFS+ FILE SYSTEMS

Apple intentionally does not document the algorithms, and TN1150 warns they are subject to
change. The B-Tree structure of the hot fi le B-Tree in Lion is presented later in this Chapter, under
“Components.” The bsd/hfs/hfs_hotfiles.h lists the various settings defi ned for this mechanism
(as HFC_* constants).

Dynamic Defragmentation
File fragmentation is a bane for all fi le systems: As the system creates, modifi es, and deletes fi les,
“holes” start to appear where fi les were deleted, and fragments are created when a fi le needs to
expand but has no immediate contiguous space. There may be plenty of fi le system real estate avail-
able, but it’s not particularly effective if it’s all in studio and one bedroom apartments.

HFS+ is capable of defragmenting fi les on the fl y. The hfs_relocate (bsd/sys/hfs_
readwrite.c) function handles these cases. It is called from hfs_vnop_open (in the same fi le), and
attempts to relocate fi les that are deemed suffi ciently fragmented. This is shown in Listing 16-7:

LISTING 16-7: Handling fragmented fi les, from hfs_vnop_open

int hfs_vnop_open(struct vnop_open_args *ap)
 /*
 * On the first (non-busy) open of a fragmented
 * file attempt to de-frag it (if its less than 20MB).
 */
 fp = VTOF(vp);
 if (fp->ff_blocks &&
 fp->ff_extents[7].blockCount != 0 &&
 fp->ff_size <= (20 * 1024 * 1024)) {
 int no_mods = 0;
 struct timeval now;
 /*
 * Wait until system bootup is done (3 min).
 * And don't relocate a file that's been modified
 * within the past minute -- this can lead to
 * system thrashing.
 */
 if (!past_bootup) {
 microuptime(&tv);
 if (tv.tv_sec > (60*3)) {
 past_bootup = 1;
 }
 }

 microtime(&now);
 if ((now.tv_sec - cp->c_mtime) > 60) {
 no_mods = 1;
 }

 if (past_bootup && no_mods) {
 // relocate past volume next allocation hint, which is
 // very likely to be contiguous space

c16.indd 622c16.indd 622 9/29/2012 5:50:00 PM9/29/2012 5:50:00 PM

HFS+ File System Concepts x 623

(void) hfs_relocate(vp, hfsmp->nextAllocation + 4096,
 vfs_context_ucred(ap->a_context),
 vfs_context_proc(ap->a_context));
 }
 }

 hfs_unlock(cp);

 return (0);
}

Moving hot fi les in and out of the metadata zone also helps in defragmentation, as the fi les are
moved by calls to hfs_relocate(). The function itself is clearly documented with nice ASCII art,
as shown in Listing 16-8:

LISTING 16-8: hfs_relocate(), from hfs_readwrite.c

/*
 * Relocate a file to a new location on disk
 * cnode must be locked on entry
 *
 * Relocation occurs by cloning the file's data from its
 * current set of blocks to a new set of blocks. During
 * the relocation all of the blocks (old and new) are
 * owned by the file.
 *
 * -----------------
 * |///////////////|
 * -----------------
 * 0 N (file offset)
 *
 * ----------------- -----------------
 * |///////////////| | | STEP 1 (acquire new blocks)
 * ----------------- -----------------
 * 0 N N+1 2N
 *
 * ----------------- -----------------
 * |///////////////| |///////////////| STEP 2 (clone data)
 * ----------------- -----------------
 * 0 N N+1 2N
 *
 * -----------------
 * |///////////////| STEP 3 (head truncate blocks)
 * -----------------
 * 0 N
 *
 * During steps 2 and 3 page-outs to file offsets less
 * than or equal to N are suspended.
 * During step 3 page-ins to the file get suspended.
 */

c16.indd 623c16.indd 623 9/29/2012 5:50:01 PM9/29/2012 5:50:01 PM

624 x CHAPTER 16 TO B (-TREE) OR NOT TO BE — THE HFS+ FILE SYSTEMS

HFS+ DESIGN CONCEPTS

The “+” in HFS+ implies it is an enhancement of its predecessor — The Hierarchical File System,
or HFS. Apple introduced the latter back in the late ‘80s, to replace the incumbent Macintosh File
System (MFS), which was severely limited and incapable of nested folders. HFS proved to have a
very solid design, but met its match with fi les over 2 GB, fi lenames over 31 characters, and a rela-
tively low number of allocation blocks — only 16-bits worth.

The design of HFS, therefore, wasn’t drastically altered in HFS+. The two fi le systems share the
same underlying concepts, which are described next. HFS+ primarily increases fi eld and record
sizes, to allow for far more fi les, and of larger sizes. Where new features in HFS+ were added, they
will be pointed out. Apple has gradually begun to phase out support for HFS, retaining only HFS+.
Snow Leopard no longer offers HFS fi le system format, and provides read-only support of HFS-
formatted DMG (Disk Image) fi les. Apple provides a wonderfully detailed explanation of HFS+,
including the differences from its precursor, in Technical Note TN1150[2]. TN1150 has grown to be
the defi nitive reference on HFS+, and — while the discussion here is in depth — you are encouraged
to take a look at it, as well.

B-Trees: The Basics
B-Trees are fundamental building blocks of fi le systems, such as NTFS (Windows), Ext4
(Linux) — and Apple’s HFS and HFS+. While they are covered in detail in many a textbook, they
provide three out of the fi ve supporting data structures in HFS+. This section aims to quickly refresh
some concepts, as they are implemented in the fi le system.

Motivation for B-Trees
The most fundamental concept in any fi le system is the mechanism used to store and retrieve the
fi les. A fi le system needs a mechanism that answers several run-time needs:

 ‰ Searches: Since the primary goal of a fi le system is to locate fi les, it must be able to retrieve
fi les in the most effi cient manner possible. Since the number of fi les tends to be very large,
this calls for sub-linear time — O(n) simply isn’t scalable for millions of fi les. Searches are
often hierarchical, as fi les are put into folders, and folders are put into subfolders still.

 ‰ Insertions: Though relatively less frequent than locating fi les, from time to time fi les are
added to the fi le system. This translates into an insertion of a fi le entry.

 ‰ Updates: As fi les are renamed, moved, and deleted, the mechanism must be fl exible enough
not to become fragmented. This type of fragmentation, referred to as index fragmentation,
occurs in cases where fi le indices, commonly sequential, become sparse as a result of fi les
being moved to some other location, or deleted.

 ‰ Random access: Though most fi les are read sequentially, from start to fi nish, a user or process
can always ask to jump around in a fi le, out of order, commonly by using the lseek(2) sys-
tem call. A fi le system is fully fl exible if, once a fi le is located, its blocks on disk can be freely
accessed, and can be sought through effi ciently. Every fi le system favors writing fi les contigu-
ously, but this is not always a simple matter. When contents are frequently added or removed
from a fi le, it is only a matter of time before block fragmentation ensues, as the fi le allocation
on disk simply cannot be kept contiguous, and the fi le has to extend to other blocks.

c16.indd 624c16.indd 624 9/29/2012 5:50:01 PM9/29/2012 5:50:01 PM

HFS+ Design Concepts x 625

While some fi le systems remain allocation table based (most notably, FAT, FAT32, and, recently,
ExFat — all based on a “File Allocation Table”), most adopt a tree-based solution. Trees, by design,
offer all of the above, and provide a hierarchical structure a fl at table cannot, “for free.” Trees are
not without limitations, however. Binary trees only allow for dichotomies at each node. And, as is
well known to any computer science major, worst-case operations on trees that involve rebalancing
them can be very costly.

Enter B-Trees. These can be thought of as an extension to binary trees, in that they maintain a tree
structure, but a node can have any number of children — call it m — and not just two. This helps
to limit their depth, from log2(n) (as would be a classic binary tree), to logm(n) in the best case, and
logm/2(n) in the worst. Searching, therefore, and most other operations, can be provided at logarith-
mic time, though in fairness it should be pointed out this is amortized. Worst case insertions and
deletions are far more costly, although very rare.

The HFS+ logic uses B-Tree operations in bsd/hfs/hfscommon/BTree.

B-Tree Nodes
Like all trees, B-Trees are comprised of nodes, but unlike other trees, B-tree nodes can be of specifi c
subtypes, or kinds. Different node kinds may hold different data, but all kinds of nodes are derived
from a basic type (think, a parent class). They therefore all share the same typical structure: A Node
descriptor, followed by 0 or more records. The node descriptor format is exactly the same for all
node kinds, and is defi ned as a BTNodeDescriptor in <hfs/hfs_format.h>. The structure, along
with its in memory representation, is shown in Figure 16-1.

flink (node ID of next sibling)

blink (node ID of prev sibling)

Kind height numRecords

reserved

0×00

0×04

0×08

0×0C

/* BTNodeDescriptor -- Every B-tree node starts with these fields. */
Struct BTNodeDescriptor {
 u_int32_t flink; /* next node at this level*/
 u_int32_t blink; /* previous node at this level*/
 int8_t kind; /* (leaf, index, header, map)*/
 u_int8_t height; /* zero for header, map; child ++ */
 u_int16_t numRecords; /* number of records in this node*/
 u_int16_t reserved; /* reserved - initialized as zero */
} _attribure_((aligned(2), packed));
typedef struct BTNodeDescriptor BTNodeDescriptor;

FIGURE 16-1: The B-Tree Node Descriptor

With each row in the illustration representing 32-bits, you can see the common descriptor takes a
constant size of 14 bytes. Every node in a B-tree, whether node or internal, also contains 0 or more

c16.indd 625c16.indd 625 9/29/2012 5:50:01 PM9/29/2012 5:50:01 PM

626 x CHAPTER 16 TO B (-TREE) OR NOT TO BE — THE HFS+ FILE SYSTEMS

records. These immediately follow the node descriptor, but may be of variable length. To walk
through them, B-Tree nodes place a pointer to the individual records starting at the end of the node,
and going back, including a dummy record for any free space which might be contained in the node.
This is shown in Figure 16-2.

Node Descriptor

numRecords (n)

Record 0

Record 1, etc…

Record n-1

Record 1 offset

Record 0 offset

record n (free space)

Free space offset

..

0×0A

0×0E

nodeSize – (numRecords *2)

nodeSize -0×04

nodeSize -0×02

FIGURE 16-2: B-Tree node records

While this approach requires all nodes in the B-tree to have the same size, it allows for the quick
traversal of a node’s records, as is shown in the following code:

void walkNodeRecords (UInt8 *rawNodeData, UInt16 nodeSize)
{

 BTNodeDescriptor *currentNodeDesc = (BTNodeDescriptor *) rawNodeData;

 // Find number of records – note this is stored in Big Endian format.
 UInt16 numRecords = be16_to_cpu(currentNodeDesc->numRecords);
 UInt16 currRec, recordOffset, nextRecordOffset;

 // set a record offset pointer, by going to the end of the node, and
 // count back record offset pointers from it. Each offset pointer is a
 // UInt16. We count back (numRecords + 1): This accommodates for the free
 // space record, as well.

 UInt16 *recordOffsetPtr = (UInt16 *)
 (rawNodeData + nodeSize - sizeof(UInt16) * (numRecords + 1));
 for (currRec = 0;
 currRec < numRecords;
 currRec++)
 {
 // we can now treat recordOffsetPtr as an array of UInt16!
 // we can walk it back, by looking at numRecords – recordNumber

 recordOffset = be16_to_cpu(recordOffsetPtr[numRecords - currRec]);
 nextRecordOffset = be16_to_cpu(recordOffsetPtr[numRecords - currRec -1]);

c16.indd 626c16.indd 626 9/29/2012 5:50:01 PM9/29/2012 5:50:01 PM

HFS+ Design Concepts x 627

 // Our record data is therefore at &rawNodeData[recordOffset]

 /* ... Do something with record data ... */
 }

}

The records themselves are dependent on the kind of node containing them. Internal nodes contain
index records, which point to child nodes, whereas leaf nodes contain actual data. Both, however,
are keyed records, and share the same general record format: A key, followed by data.

The keys must be stored in increasing order, and must be unique. I.e., a node cannot contain two
identical keys. The key format is shown in Figure 16-3

KeyLength

Key Data (to
keyLenght bytes)

Data
(variable length)

0×00

0×02

(KeyLength + 0×02) rounded
to 16-bit offset

FIGURE 16-3: A B-tree record key

The B-Tree Header Node
The HFS+ B-Tree begins not with a root node, but a special node called the header node. This node,
of node kind kBTHeaderNode(1), is present even if the tree itself is empty. It contains exactly three
records, which are not keyed records:

The header record contains all the tree metadata. Since it begins immediately after the descriptor, its
fi rst fi eld (treeDepth, indicating the number of levels in the tree) is a 16-bit quantity, which neatly
aligns all other fi elds (but one, the clump size) on a 32 bit boundary. It is exactly 106 bytes long,
which means the next record will start at offset 128 — 32- and 64-bit aligned. The B-Tree header
record is shown in Figure 16-4:

The HFS+ B-Tree always has a fi xed depth. That is, all of its leaf nodes are on the same level. This
depth is defi ned by the treeDepth fi eld. Nodes can be quickly looked up by their ID: As the illus-
tration above shows, the header node contains the ID of the tree root, from which all tree searches
begin. Alternatively, the header node allows for quick access to the leaves themselves. This can be
used for either sequential or reverse order searches, as the header node provides the index of the fi rst
and last leaf, respectively.

Note, that IDs aren’t stored anywhere. Each node is always of a fi xed size (the nodeSize fi eld, in
offset 0x1c), and the nodes are stored in a contiguous node array, enabling the O(1) lookup of a
node by its ID. This is done by a simple calculation of multiplying the node ID by the header node
specifi ed node size.

c16.indd 627c16.indd 627 9/29/2012 5:50:02 PM9/29/2012 5:50:02 PM

628 x CHAPTER 16 TO B (-TREE) OR NOT TO BE — THE HFS+ FILE SYSTEMS

treeDepth

rootNode (ID)

leafRecords - # of leaves

firstLeafNode (ID)

lastLeafNode (ID)

nodeSize maxKeyLength

totalNodes (#)

freeNodes (#)

Reserved 1

bTreeType
keyCompare

Type

kHFSCaseFolding (0×CF)

kHFSBinaryCompare (0×BC)

Case Insensitive

Case sensitive (HFSX)

0×0C

Offset
(from beginning of node)

0×10

0×14

0×18

0×1C

0×20

0×24

0×28

0×2C

0×30

0×34

..

..

0×7C

keyCompareType ComparesclumpSize

clumpSize

reserved3
(padding to record boundary)

FIGURE 16-4: The B-Tree Header record

Following the header record is the User Data Record — also exactly 128 bytes long, which is cur-
rently reserved. The only B-Tree to actively employ it is the Hot File tree, which is described later.

The last record in the header node is the Map Record. It encompasses all the remaining space in
the node. This is a bitmap, specifying which nodes in the B-Tree are used, and which are available.
If the available space in the node does not suffi ce, then additional node usage is recorded in one or
more special Map Nodes, which are single-record nodes that continue the bitmap to cover all nodes
in the tree, up to totalNodes.

The companion tool for this book, hfsleuth, can be used to dump the header node of any of the
four B-Trees that are described in this chapter. The example here shows a dump of the main catalog:

root@minion (/)# hfsleuth /dev/rdisk0s2 –b catalog
Processing Catalog tree
Catalog B-Tree dump:

c16.indd 628c16.indd 628 9/29/2012 5:50:02 PM9/29/2012 5:50:02 PM

HFS+ Design Concepts x 629

 Tree type: 0
 Tree depth: 4
 Root node: 32088
 First leaf: 14751
 Last leaf: 20273
 Leaf records 1990354
 Total nodes: 77312
 Free nodes: 18305
 Node size: 8192
 Map node: 63104
 Compare: CF

Searching the B-Tree
Irrespective of which of the four B-trees is searched, the search logic is always the same. The follow-
ing pseudo code describes the procedure:

void *searchKeyInBTree (void *Key, char *BTreeRawData)
{

 BTHeaderRec *bTreeHeaderRec = (BTHeaderRec *) (BTreeRawData +
 sizeof(BTNodeDescriptor)); // i.e. + 14

// ASSERT (bTreeHeaderRec->btreeType == kHFSBTreeType); // == 0

 UInt16 nodeSize = be16_to_cpu(treeHeaderRecord->nodeSize);
 UInt16 maxDepth = be16_to_cpu(treeHeaderRecord->treeDepth);

 UInt32 rootNodeID = be32_to_cpu(bTreeHeaderRec->rootNode);

 return (searchKeyInBtreeNode(Key, rootNodeID, BTreeRawData, nodeSize, maxDepth));

} // end searchKeyInBTree

recordData *searchKeyInBTreeNode (key *Key,
 UInt32 currentNodeID,
 char *BTreeRawData,
 UInt16 nodeSize,
 UInt16 maxDepth)
{

 ASSERT (maxDepth > 0); // sanity check

 char * rawNodeData = (BTreeRawData + nodeSize * currentNodeID);
 BTNodeDescriptor *currentNodeDesc = (BTNodeDescriptor *)(rawNodeData);

 // Loop over records in current node
 // q.v. record walking example: we find number of records in this node
 UInt16 numRecords = be16_to_cpu(currentNodeDesc->numRecords);

 // set a record offset pointer, from end of node
 UInt16 *recordOffsetPtr = (UInt16 *) (rawNodeData + nodeSize
 - sizeof(UInt16) * (numRecords + 1)];
 for (UInt16 currRec = 0;

c16.indd 629c16.indd 629 9/29/2012 5:50:02 PM9/29/2012 5:50:02 PM

630 x CHAPTER 16 TO B (-TREE) OR NOT TO BE — THE HFS+ FILE SYSTEMS

 currRec < numRecords;
 currRec++)
 {
 UInt16 recordOffset = be16_to_cpu(recordOffsetPtr[numRecords - currRec]);
 UInt16 nextRecordOffset = be16_to_cpu(recordOffsetPtr[numRecords – currRec -1]);
 // Our record data is therefore at &rawNodeData[recordOffset]
 key *recordKey = (key *) (&rawNodeData[recordOffset]);
 recordData *data = (&rawNodeData[recordOffset + (keyLenRoundedToEven(recordKey)]

// Assume availability of some comparison function, which returns
// -1 if a < b, +1 if a > b, and 0 on equality
switch(compareKeys (Key, recordKey))
 {
 case -1: break; // less than – continue

 case 0: // equal – found, or fall through to recurse
 if (currentNodeDesc->kind == kBTLeafNode)

 return (recordData); // found – return record..

 case 1: // greater than, or equal and not leaf
 if (currentNodeDesc->kind == kBTLeafNode) return NULL;

 // if NOT a leaf, this HAS to be an index node.
 ASSERT (currentNodeDesc->kind == kBTIndexNode);
 // and if our key is greater, we have to recurse – the data
 // in an index node is the next node ID.
 return (searchKeyInBtreeNode(Key,
 (UInt32) recordData,
 BTreeRawData,
 nodeSize,
 --maxDepth));
 } // end switch
 } // end for ..
} // end searchKeyInBTreeNode

COMPONENTS

As mentioned before, HFS+ uses six special fi les for its own maintenance. Four of them are actually
B-Trees:

 ‰ The Catalog B-Tree: Which contains all the fi les in the fi le system.

 ‰ The Attributes B-Tree: Which was added in HFS+, supports extended fi le attributes

 ‰ The Extent Overfl ow B-Tree: For fi les with more than eight fragments, or extents.

 ‰ The Hot-File B-Tree: For small fi les that are frequently accessed, as discussed previously
under “Hot Files.”

And two are fi les:

 ‰ The Allocation File: Containing a bitmap records of all the blocks in the fi le system, to track
which are in use and which are free.

c16.indd 630c16.indd 630 9/29/2012 5:50:02 PM9/29/2012 5:50:02 PM

Components x 631

 ‰ The Startup File: This is a simple executable fi le, which can be used for booting the operating
system. This is largely ignored by OS X, but can be used by foreign operating systems.

When HFS+ is mounted with journaling, a third fi le, the Journal, is also used. All these components
(including the journal, but excluding the Startup fi le) are stored in the metadata zone, as well as the
quota support fi les, if quotas are enabled on the volume.

This section describes these components, in detail.

The HFS+ Volume Header
Before the system can start rummaging through miscellaneous B-Trees, it has to be able to fi nd
where they are, and identify the HFS+ fi le system as such. For this purpose, there exists at a fi xed
location — 1024 bytes from the beginning of the partition (or “Volume”). This is a massive struc-
ture — 512 bytes — but it contains all the necessary details required to initiate the fi le system load-
ing operation. The volume header is shown in Figure 16-5.

The volume header is also, at present, the only cardinal difference between HFS+ and HFSX: The
two are identical in nearly every way, with three exceptions:

 ‰ HFSX uses the signature HX as opposed to HFS+, which uses H+.

 ‰ HFSX sets the version to 5, rather than HFS+ setting 4.

 ‰ In HFSX B-Trees have an option to perform key comparison by binary compare, or by fold-
ing the case.

Most of the fi elds shown in the fi gure are self-explanatory, but one that needs some elaboration is
FinderInfo: As noted previously, HFS+ is a rather unusual fi le system in that it is tightly integrated
with the Finder GUI. The FinderInfo fi elds are used by OS X during a boot operation from the vol-
ume, and by Finder, upon volume mount. There are eight fi elds, defi ned in Table 16-2.

TABLE 16-2: FinderInfo fi elds in the HFS+ volume header

FIELD USED FOR

0 Holding the folder Catalog Node Identifi er of /System/

Library/CoreServices, on a bootable volume

1 Holding the folder ID of Finder (or another startup application) on

a bootable volume

2 The folder ID of a folder to auto-open on mount

3 Deprecated; previously used to OS 8 or 9 boot folder

4 Reserved

5 Same as [1], for OS X systems

6-7 Unique volume identifi er, as 64-bits

c16.indd 631c16.indd 631 9/29/2012 5:50:03 PM9/29/2012 5:50:03 PM

632 x CHAPTER 16 TO B (-TREE) OR NOT TO BE — THE HFS+ FILE SYSTEMS

The HFS+ volume catalog, as the crucial data which it is, is backed up by an Alternate Volume
Header, located at the end of the volume — just 1024 bytes before its end. As it occupies exactly 512
bytes, the last 512 bytes of a volume are unused, and reserved.

signature version

Volume control bits – see below

Journal info block number, if any

Creation, modification, backup and last

fsck timestamps, as HFS+ dates

Number of files and folders in this volume

Volume block size

Total number of blocks in this volume

Number of free blocks remaining

Next available block for allocations

Resource fork default clump size — actually ignored

Data fork default clump size

Next available catalog B-Tree CNID.

Incremental write count

Bitmap for non-Unicode enabled applications,
which require code pages to display characters

Used by OS X Finder

HFSPlusDataFork structures describing
the location and sizes of the special
HFS+ files

‘10.0’ for non-journal, ‘HFSJ’ for journal

attributes

lastMountedVersion

journalInfoBlock

CreateDate

modifyDate

backupDate

checkedDate

fileCount

folderCount

blockSize

totalBlocks

freeBlocks

nextAllocation

rsrcClumpSize

dataClumpSize

nextCatalogID

writeCount

encodingsBitmap

finderInfo[0]

finderInfo[8]

allocationFile

extentsFile

catalogFile

attributesFile

startupFile

..

0×00

‘H+’ or ‘HX’ (HFSX) 4 or 5 (HFSX)

0×04

0×08

0×0C

0×10

0×14

0×18

0×1C

0×20

0×24

0×28

0×2C

0×30

0×34

0×38

0×4C

0×40

0×44

0×48

0×50

0×6C

0×70

0×C0

0×110

0×160

0×170

0×200

FIGURE 16-5: The HFS+ Volume header

c16.indd 632c16.indd 632 9/29/2012 5:50:03 PM9/29/2012 5:50:03 PM

Components x 633

The Catalog File
The main B-Tree of the HFS+ fi le system is the catalog. The catalog contains entries for all the fi les
and the folders in the system, i.e., the fileCount fi les and folderCount folders mentioned in the
volume header. The system uses this in all fi le operations: listing, searching, reading, writing and
deleting. So it is only fi tting that it be the primary focus for this section.

As a B-Tree, the catalog inherits the structure and all the properties previously discussed for generic
HFS+ B-Trees. The catalog introduces several new properties:

 ‰ The Catalog Node ID or CNID is a unique 32-bit identifi er of a fi le or folder. Apple reserves
the fi rst 16 CNIDs, but the rest of the namespace is readily allocated by the fi le system.
CNIDs are generally allocated in a monotonically increasing order — by taking the
nextCatalogID value from the volume header, and incrementing it as each new fi le or
folder is created. At some point, however, they may run out (i.e., after some 4-billion
or so fi les are created). In that case, they wrap around, and the volume header
kHFSCatalogNodeIDsReusedBit attribute bit is set. At that point, the fi le system must check
the Map record(s) to fi nd the next available CNID.

 ‰ Catalog fi le Keys are defi ned to be a structure, as shown in Listing 16-9:

LISTING 16-9: The HFSPlusCatalogKey

struct HFSPlusCatalogKey {
 UInt16 keyLength;
 HFSCatalogNodeID parentID;
 HFSUniStr255 nodeName;
};
typedef struct HFSPlusCatalogKey HFSPlusCatalogKey;

Where parentID is the CNID of the parent folder, and the nodeName is a Unicode string of the
type described in “Unicode Support.” To bootstrap the process, the CNIDs reserved by Apple may
be used. Specifi cally, kHFSRootParentID (1) — the (fake) parent of the root folder, i.e., the partition
itself, is used to obtain the partition name, and kHFSRootFolderID (2) is used for the root folder.

 ‰ Catalogs may contain one of four distinct record types:

 ‰ kHFSPlusFolderRecord types (1) store folder data as an HFSPlusCatalogFolder.
Likewise, kHFSPlusFileRecord types (2) store fi le data as an HFSPlusCatalogFile.

 ‰ kHFSPlusFolderThreadRecord (3) and kHFSPlusFileThreadRecord store
“threads.” A thread, in both cases, is an HFSPlusCatalogThread, defi ned as shown
in Listing 16-10:

LISTING 16-10: The HFSPlusCatalogThread

struct HFSPlusCatalogThread {
 SInt16 recordType;
 SInt16 reserved;
 HFSCatalogNodeID parentID;
 HFSUniStr255 nodeName;
};

c16.indd 633c16.indd 633 9/29/2012 5:50:03 PM9/29/2012 5:50:03 PM

634 x CHAPTER 16 TO B (-TREE) OR NOT TO BE — THE HFS+ FILE SYSTEMS

Thread records are used when looking up a fi le or folder by its CNID, as is described next.

Catalog Lookups
There are two types of catalog lookups:

 ‰ Lookup by fi le or folder name

 ‰ Lookup by CNID

Looking up a path name is performed by breaking the pathname into its constituents, and iteratively
looking up each, in turn, beginning with the root folder. As an example, consider the pathname /
private/etc/passwd:

The fi rst lookup will be for /private. To fi nd it, we treat private as a name under the root folder.
The root folder CNID is well known — kHFSRootFolderID(2) — so we prepare its catalog key.
(See Figure 16-6.)

nodeName.length

0

0

0 0

0 7

2 p r i v a t e

11

nodeName.unicodeparentID

keylength

FIGURE 16-6: The catalog key for /private

This will yield a folder, i.e., an HFSPlusCatalogFolderRecord. Of its many fi elds, we care only
about one — FolderID. This is the CNID of the /private folder. In our example, it is 24. The next
lookup is shown in Figure 16-7.

nodeName.length

0

0

0 0

0 3

18 e t c

7

nodeName.unicodeparentID

keylength

FIGURE 16-7: The catalog key for /etc, as a subfolder of /private (CNID 24=0x18)

As before, this is expected to yield an HFSCatalogFolderRecord — yielding the folder ID 1075.
This would give us the key shown in Figure 16-8 for our fi le.

nodeName.length

0

0

0 4

0 6

33 p a s s w d

A

nodeName.unicodeparentID

keylength

FIGURE 16-8: The Catalog key for passwd, in the folder /private/etc (CNID 1075=0x433)

c16.indd 634c16.indd 634 9/29/2012 5:50:03 PM9/29/2012 5:50:03 PM

Components x 635

Giving us the much sought after HFSCatalogFileRecord we want. The following pseudo-code in
Listing 16-11 demonstrates the breakdown process:

LISTING 16-11: Walking the B-Tree in search of a fi le

#define PATH_SEPARATOR L'/'
//
// pseudo code only – this destroys the inputted PathName..
//
key * fileNameToCatalogKey (char *PathName)
{
 key *returned = malloc (..);
 UInt32 parentCNID = kHFSPlusRootFolderID; // start at the root folder
 char *sep = strchr (PathName, PATH_SEPARATOR)

 while (sep)
 {
 *sep = 0; // Replace '/' with NULL, so pathname is now parent dir
 parentCNID = getFileCNID (parentCNID, PathName);
 PathName= ++sep; // PathName is now whatever follows the parent
 sep = strchr(PathName, PATH_SEPARATOR);
 }

 // if we are here, what's left of the pathname is a file/folder name
 // and parentCNID holds our containing folder
 returned.parentID = parentCNID;
 returned.nodeName.length = cpu_to_be16(strlen(PathName));
 copyAndFlipUnicode(&returned.nodeName.unicode, PathName);
}

If the CNID of the object is known, it can be searched using a thread record. For this, we set up a
key where in the node name is empty, and set the parentID to the CNID we are seeking. i.e, to look
up CNID 1075, we would set up a key as shown in Figure 16-9:

nodeName.length

0

0

0 4

0 0

33

4

nodeName.unicodeparentID

keylength

FIGURE 16-9: A thread catalog key for an object with CNID 1075 (=0x433)

This would yield a thread record, containing the data in (ii), i.e., the fi le name. From there, we can
look up its corresponding fi le or folder record, as before.

The hfsleuth tool can perform either lookups, and — using the –v(erbose) feature — can also
detail the stages along the way:

root@minion (/)# ~/hfsleuth /dev/rdisk0s2 –v –s /System/Library/Extensions
Processing Catalog tree
<Record node="191" num="3" offset="430">

c16.indd 635c16.indd 635 9/29/2012 5:50:04 PM9/29/2012 5:50:04 PM

636 x CHAPTER 16 TO B (-TREE) OR NOT TO BE — THE HFS+ FILE SYSTEMS

 <Key len="6"><CNID>38</CNID>
 <Data type="folderThread">
 <parentCNID>37</parentCNID>
 <Name>Library</Name>
 </Data>
 <Path>/System </Path>
 </Record>
<Record node="5" num="26" offset="3024">
 <Key len="6"><CNID>41</CNID><Name/>
 <Data type="folderThread">
 <parentCNID>38</parentCNID><Name>Extensions</Name>
 </Data>
 <Path>/System/Library</Path>
</Record>
..
<Record node="14751" num="1" offset="134">
 <Key len="6"><CNID>2</CNID><Name/>
 <Data type="folderThread">
 <parentCNID>1</parentCNID>
 <Name>Macintosh HD</Name>
 </Data>
 <Path>/</Path>
 </Record>

..

Catalog Insertions
When fi les are created, records need to be inserted into the Catalog tree. This is a straightforward
method over the normal B-Tree insert, shown here:

insertNameIntoCatalog (char *PathName, char *BtreeRawData)
{
 BTHeaderRec *bTreeHeaderRec = (BTHeader *) (BTreeRawData +
 sizeof(BTNodeDescriptor)); // i.e. + 14

 ASSERT (bTreeHeaderRec->btreeType == kHFSBTreeType); // == 0

 UInt16 nodeSize = be16_to_cpu(treeHeaderRecord->nodeSize);
 UInt16 maxDepth = be16_to_cpu(treeHeaderRecord->treeDepth);

 UInt32 rootNodeID = be32_to_cpu(bTreeHeaderRecord->rootNode);

 key *fileKey = *fileNameToKey (PathName);
 return (insertKeyIntoBtree(fileKey, rootNodeID, BTreeRawData, nodeSize,
 maxDepth));

}

Catalog Deletions
Likewise, fi le deletion is a direct override of the B-Tree deletion method:

DeleteNameIntoCatalog (char *PathName, char *BtreeRawData)

c16.indd 636c16.indd 636 9/29/2012 5:50:04 PM9/29/2012 5:50:04 PM

Components x 637

{
 BTHeaderRec *bTreeHeaderRec = (BTHeader *) (BTreeRawData +
 sizeof(BTNodeDescriptor)); // i.e. + 14

 ASSERT (bTreeHeaderRec->btreeType == kHFSBTreeType); // == 0

 UInt16 nodeSize = be16_to_cpu(treeHeaderRecord->nodeSize);
 UInt16 maxDepth = be16_to_cpu(treeHeaderRecord->treeDepth);

 UInt32 rootNodeID = be32_to_cpu(bTreeHeaderRecord->rootNode);

 key *fileKey = *fileNameToKey (PathName);
 return (deleteKeyFromBtree(fileKey, rootNodeID, BTreeRawData, nodeSize,
 maxDepth));

}

File and Folder Record Data
HFS+ stores similar data for fi les and folders. The following illustration compares the
HFSCatalogFolderRecord and HFSCatalogFileRecord. (See Figure 16-10.)

As can be seen, the two structures are designed to be compatible. Most of the fi elds overlap, and
those that have specifi c meaning for directories (i.e., valence and folderCount) are reserved in the
fi le record. Likewise, fi le specifi c information — i.e., the forks — are implemented after the end of
the common information block.

Permissions
Both catalog record formats contain the bsdInfo member, which is struct HFSPlusBSDInfo:

struct HFSPlusBSDInfo {
 u_int32_t ownerID; /* user-id of owner or hard link chain previous
link */
 u_int32_t groupID; /* group-id of owner or hard link chain next
link */
 u_int8_t adminFlags; /* super-user changeable flags */
 u_int8_t ownerFlags; /* owner changeable flags */
 u_int16_t fileMode; /* file type and permission bits */
 union {
 u_int32_t iNodeNum; /* indirect node number (hard links only) */
 u_int32_t linkCount; /* links that refer to this indirect node */
 u_int32_t rawDevice; /* special file device (FBLK and FCHR only) */
 } special;
} __attribute__((aligned(2), packed));
typedef struct HFSPlusBSDInfo HFSPlusBSDInfo;

This structure is the one to implement the back end of the chown(1), chmod(2), chgrp(2),
and chflags(1) commands. Figure 16-11 shows the mapping of those commands to the
structure’s fi elds.

c16.indd 637c16.indd 637 9/29/2012 5:50:04 PM9/29/2012 5:50:04 PM

638 x CHAPTER 16 TO B (-TREE) OR NOT TO BE — THE HFS+ FILE SYSTEMS

recordType (2)

valence # of children in folder

recordType (3)

reserved1

Reserved2

fileIDObject CNID

finderDirInfo

finderFileInfo

Count of subfolders

folderID

createDate createDate

contentModDate contentModDate

attributeModDate attributeModDate

accessDate accessDate

flags flags

backupDate backupDate

ownerID ownerID

bsdInfo bsdInfo

userInfo userInfo

aF oF fileMode aF oF fileMode

special special

top

bottom

fdFlags fdFlags

fdType

fdCreator

opaque opaque

fndrOpaqueInfo fndrOpaqueInfo

textEncoding

textEncoding

clumpSize

totalBlocks

extents

resourceFork

dataFork

textEncoding

folderCount

v v

h h

right

left

groupID groupID

0×00

0×04

0×08

0×0C

0×10

0×14

0×18

0×1c

0×20

0×30

0×40

0×50

0×54

0×58 0×58

0×A8

FIGURE 16-10: Comparing HFSCatalogFolderRecord and HFSCatalogFileRecord

c16.indd 638c16.indd 638 9/29/2012 5:50:05 PM9/29/2012 5:50:05 PM

Components x 639

ownerID chown(1)

chgrp(1)

chmod(1)chattr(1)

groupID

special

fileMode
owner
Flags

admin
Flags

FIGURE 16-11: The UNIX permissions, encoded in HFS+ fi le and folder records

Hard and Soft Links
HFS+, as any other UNIX fi le system, supports both hard and soft links. The underlying mecha-
nism, however, is very particular.

Both hard and soft links are distinguished by the fileType fi eld of the userInfo catalog record.
For hard links, this fi eld is a magic value of 0x686c6E6b (hlnk) and — similarly 0x736c6e6b (slnk)
for soft links. In both cases, the creator code is hfs+.

For soft links, the special handling ends there: Soft links are otherwise regular fi les, whose contents
contain the name of another fi le on the fi le system.

Hard links, however, receive special handling by the system. As soon as a hard link is created, the
underlying fi le’s forks are relocated — not to say, stashed — in a private and secluded part of the
fi le system — The \0\0\0\0HFS+ Private Data directory. HFS+ goes to great lengths to keep this
directory hidden and inaccessible. It is invisible to both the UNIX utilities (as it begins with NULL
bytes, which terminate C-Strings), and to the Finder (which, additionally, obeys the kIsInvisible
and kNameLocked fl ags).

The dentries for the hard links exist in their respective locations just as normal fi les, but their
resource forks (and thus, sizes) are set to 0. Instead, the “special” fi eld of BSD Info is set to the
inode Number of the fi le, which can be retrieved from \0\0\0\0HFS+ Private Data.

Fork Allocation
File records offer two HFSPlusForkData structures — one for the resource fork and one for the
data fork. As stated before, HFS+ can support any number of named forks (via the Attribute tree,
described next), though if forks are at all used, only the data fork is commonly used.

The fi le’s block list is kept in the dataFork member. This member is also a struct, whose
 members specify the fork’s logical size, as well as clump size. A third member specifi es the extents,
and is an array of up to eight HFSPlusExtentDescriptor structures, each containing an extent
startblock and blockCount. This is shown in Figure 16-12.

Most fi les don’t need more than 8 extent descriptors. In fact, most do quite well with one, if they
are allocated once, and take up exactly one extent. But as a fi le shrinks and grows, it might become
fragmented, and require more extents. If the sum of the (extents[i].blockCount) is exactly the
same as specifi ed in totalBlocks, the fi le can be accessed in its entirety from its record. Otherwise,

c16.indd 639c16.indd 639 9/29/2012 5:50:05 PM9/29/2012 5:50:05 PM

640 x CHAPTER 16 TO B (-TREE) OR NOT TO BE — THE HFS+ FILE SYSTEMS

if it is less (think — it cannot be more!), this indicates some extents spilled over — in which case we
need to look them up in the extent B-tree, described later.

clumpSize

totalBlocks

startBlock

startBlock

startBlock

blockCount

blockCount

blockCount

extents

FIGURE 16-12: The fork data structure

The Extent Overfl ow
As we saw while reviewing the Catalog records, most fi les fi t snugly in eight extents or less. Files
with more than eight are considered heavily fragmented, but should obviously still be serviced by the
fi le system. For this, the fi le system maintains another B-Tree, called the extent overfl ow B-Tree.

The extent overfl ow B-Tree is a far simpler B-Tree than the catalog fi le. Unlike the catalog fi le, it
does not contain multiple index records — only leaves.

The Attribute B-Tree
Another B-Tree used by HFS+ is the Attribute B-Tree. This is used by HFS+ to store various
extended attributes. The B-Tree format is defi ned in bsd/hfs/hfs_format.h under the __APPLE_
API_UNSTABLE warning, but has actually been solid enough to merit inclusion in this book. The rel-
evant defi nitions are shown in Listing 16-12:

LISTING 16-12: Attribute B-Tree data structures

/*
 * Atrributes B-tree Data Record
 *
 * For small attributes, whose entire value is stored
 * within a single B-tree record.
 */
struct HFSPlusAttrData {
 u_int32_t recordType; /* == kHFSPlusAttrInlineData */
 u_int32_t reserved[2];
 u_int32_t attrSize; /* size of attribute data in bytes */

c16.indd 640c16.indd 640 9/29/2012 5:50:05 PM9/29/2012 5:50:05 PM

Components x 641

 u_int8_t attrData[2]; /* variable length */
} __attribute__((aligned(2), packed));
typedef struct HFSPlusAttrData HFSPlusAttrData;

/* A generic Attribute Record*/
union HFSPlusAttrRecord {
 u_int32_t recordType;
 HFSPlusAttrInlineData inlineData; /* NOT USED */
 HFSPlusAttrData attrData;
 HFSPlusAttrForkData forkData;
 HFSPlusAttrExtents overflowExtents;
};

typedef union HFSPlusAttrRecord HFSPlusAttrRecord;

/* Attribute key */
enum { kHFSMaxAttrNameLen = 127 };
struct HFSPlusAttrKey {
 u_int16_t keyLength; /* key length (in bytes) */
 u_int16_t pad; /* set to zero */
 u_int32_t fileID; /* file associated with attribute */
 u_int32_t startBlock; /* first allocation block number for extents */
 u_int16_t attrNameLen; /* number of unicode characters */
 u_int16_t attrName[kHFSMaxAttrNameLen]; /* attribute name (Unicode) */
} __attribute__((aligned(2), packed));
typedef struct HFSPlusAttrKey HFSPlusAttrKey;

For most intents and purposes, user mode applications need not care about this B-Tree, because the
attributes can be listed, obtained and set with the listxattr(2), getxattr(2), and setxattr(2)
system calls, respectively. There are, however, extended attributes which will not be visible by means
of these system calls. Those include the com.apple.cprotect and com.apple.system.security
shown in Table 16-1. Fortunately, the hfsleuth tool can display the attributes by reading them directly
from the Attributes B-Tree.

The Hot File B-Tree
The last B-Tree used by HFS+ is the hot fi le B-Tree. The tree header is defi ned (along with all other
related defi nitions) in bsd/hfs/hfs_hotfiles.h, as shown in Listing 16-13:

LISTING 16-13: The Hot-File B-Tree header

/*
 * B-tree header node user info (on-disk). // (hasn't changed from TN1150)
 */
struct HotFilesInfo {
 u_int32_t magic; // HFC_MAGIC, 0xFF28FF26
 u_int32_t version; // HFC_VERSION, 1
 u_int32_t duration; /* duration of sample period (secs) */
 u_int32_t timebase; /* start of recording period (GMT time in secs) */
 u_int32_t timeleft; /* time remaining in recording period (secs) */
 u_int32_t threshold;
 u_int32_t maxfileblks;
 u_int32_t maxfilecnt;
 u_int8_t tag[32]; // hfc_tag = "CLUSTERED HOT FILES B-TREE "
};

c16.indd 641c16.indd 641 9/29/2012 5:50:06 PM9/29/2012 5:50:06 PM

642 x CHAPTER 16 TO B (-TREE) OR NOT TO BE — THE HFS+ FILE SYSTEMS

The B-Tree key is keyed by temperature and fileID (which is the CNID of the hot fi le in question),
as shown in Listing 16-14. Because the temperature is what the system needs to look up most fre-
quently, it can set the key to HFC_LOOKUPTAG for lookup purposes:

LISTING 16-14: The Hot-File B-Tree key format

struct HotFileKey {
 u_int16_t keyLength; /* length of key, excluding this field */
 u_int8_t forkType; /* 0 = data fork, FF = resource fork */
 u_int8_t pad; /* make the other fields align on 32-bit boundary */
 u_int32_t temperature; /* temperature recorded - set to HFC_LOOKUPTAG */
 u_int32_t fileID; /* file ID */
};

The actual hot fi le data structures are implemented in hfs_hotfiles.c, no doubt to keep them as
private as possible.

The Allocation File
The allocation fi le is a rather large, yet inaccessible fi le that keeps track of all the blocks in the vol-
ume. It is designed as a simple bitmap, wherein each bit corresponds to a block, and is lit if the block
is in use (or, potentially, a bad block). Its size is a direct function of the volume size and block size,
and can be calculated directly as (Volume size / block Size) / 8, as the volume contains
(volume size / block size) blocks, and each block occupies a single bit.

Because the allocation fi le is a fi le in itself, it may be fragmented. This makes it a very extensible
scheme, if the volume is enlarged — the allocation fi le can simply grow. It is, however, usually
contiguous — and contained in a single extent — because it is created as part of the mkfs
program. This also makes it relatively easy to dynamically change the allocation block size in
the fi le system.

The recent version of HFS (in Lion) has introduced the notion of a red-black tree-based allocator
(#ifdef CONFIG_HFS_ALLOC_RBTREE). This is somewhat similar to XFS’s method of allocating
blocks, providing the more effi cient R-B tree as an allocation mechanism that can quickly fi nd con-
tiguous blocks as the disk becomes more and more fragmented. A separate kernel thread is created
and starts hfs_initialize_allocator() to create two R-B trees from the volume bitmap (for
the metadata zone and for the rest of the volume). Note, that these trees are created in-memory,
and have no on-disk representation, and, therefore, there is no need to change the fi le system disk
structure.

HFS Journaling
Recall the previous discussion of journaling. In HFS+, journaling is a feature that can be freely
toggled, though the stated default is enabled. When mounting a fi le system, HFS+ checks the value
of the lastMountedVersion fi eld in the volume header. This fi eld can take on one of several values,
as shown in Table 16-4.

c16.indd 642c16.indd 642 9/29/2012 5:50:06 PM9/29/2012 5:50:06 PM

Components x 643

TABLE 16-4: lastMountedVersion

VALUE HEX MEANING

10.0 31 30 2e 30 File system was last mounted by an OS X implementation,

yet journaling was not enabled.

HFSJ 48 46 53 4a File system was last mounted by an operating system (OS

X or other) which did enable the journal

fsck 66 73 63 6b File system was last mounted by fsck(1) — meaning it is

likely some type of fi le system recovery was performed

This fi eld is especially important during the mount operation, because it tells the system if there is a
need to consult the journal, or it can be ignored. If the fi le system was indeed mounted with journal-
ing, and no fsck pass was conducted, it is quite plausible that there would be some transactions in
the journal, and it is, therefore, deserving of an inspection. Otherwise, if the last mount was with
no journal, consulting the journal would actually be risky, potentially leading to the replay of stale
transaction data. Likewise, the HFS+ driver is expected to update lastMountedVersion according
to the journal option selected for mounting (or toggled during the fi le system lifetime).

Locating the Journal
To access the journal, the system needs to fi rst read the journalInfoBlock, from the volume header
(offset 0x0C). This is an actual LBA offset in the volume, so the next step is to load the block into
memory. Its format is as shown in Figure 16-13.

flags

magic (0×4A4E4C78 = JNLx)

Flag

kJIJournalInFSMask

kJIJournalOnOtherDeviceMask

kJIJournalNeedInitMask

Meaning
Journal is internal
to volume

Journal is external:
device_signature

Journal
uninitialized, or invalid

endian (0×12345678)

offset (of first transaction)

size

blhdr_size

checksum (of header)

jhdr_size (size of one media sector)

device_signature[0]

device_signature[7]

size

.... Reserved ...

offset
(in volume, or on external device)

(used for external journals)

FIGURE 16-13: The Journal info block

c16.indd 643c16.indd 643 9/29/2012 5:50:06 PM9/29/2012 5:50:06 PM

644 x CHAPTER 16 TO B (-TREE) OR NOT TO BE — THE HFS+ FILE SYSTEMS

The journal info block is used to fi nd the journal, which is usually somewhere inside the fi le system
(i.e., internal to the volume), but could actually also be on a separate device. The fi rst fi eld, fl ags,
defi nes either kJIJournalInFsMask (0x01) or kJIJournalOnOtherDeviceMask (0x02). If the jour-
nal is internal, we proceed normally, by checking the offset fi eld. If the journal is on another device,
however, the device_signature fi eld reserved 32 (=8*sizeof(UInt32)) bytes for providing a hint
as to where the device is, and offset pertains to somewhere on that device.

The next step is to load the journal header from the specifi ed offset. The journal header is checked
and double checked:

First, the system verifi es the block read begins with the “magic” fi eld (JOURNAL_HEADER_MAGIC,
or JNLx).

Next, the system verifi es ENDIAN_MAGIC (0x12345678), to make sure the journal is in the right
endian-ness (little or big).

Then, the system verifi es the journal size in the header matches the size reported in the journal
info block.

Finally, the journal header checksum is computed.

The checksum is a simple checksum, not unlike an IP header checksum, or other. TN1150 shows the
following code from Listing 16-15, which is straightforward:

LISTING 16-15: Journal checksum calculation

static int calc_checksum(unsigned char *ptr, int len)
{
 int i, cksum=0;

 for(i=0; i < len; i++, ptr++) {
 cksum = (cksum << 8) ^ (cksum + *ptr);
 }

 return (~cksum);
}

This same checksum logic is applied all over the journal, as journal data blocks must also be check-
summed. The rationale behind it is that this way, it is easy to detect an incomplete transaction in the
journal itself (i.e., one wherein the checksum on the block is invalid).

Reading through Journal Transactions
If the header is intact, its start and end pointers point to the transactions in the journal. Two
pointers are necessary because the transactions are stored in a circular (ring) buffer on the disk. The
buffer is of size (size – jhdr_size), and starts immediately at the end of the header (but on a sec-
tor boundary, hence jhdr_size is always rounded to the size of a sector).

There are several possible scenarios for start and end:

 ‰ start == end — This means the journal is intact, and empty. The journal can never be full.

c16.indd 644c16.indd 644 9/29/2012 5:50:06 PM9/29/2012 5:50:06 PM

VFS and Kernel Integration x 645

 ‰ start < end — The journal has transactions, which are stored in a contiguous range
between the two pointers. All other blocks are stale, and must be ignored.

 ‰ start > end — The journal has transactions, but wraps. Therefore, start reading normally
(at start), but when the journal read operation gets to the end of the buffer (which can
easily be found by &header + size), it must wrap as well, and continue from (&header +
jhdr_size) until end.

Journal Transaction Format
The journal transactions are recorded as an array of block_list_header structures. These are
structures of size blhdr_size (as specifi ed in the journal header). This structure is as shown in
Figure 16-14.

max_blocks

bytes_used

checksum Checksum of block_list_header struct

0.. num_blocks transaction blocks:

First is a dummy used for chaining

(in which case “next” is valid)

pad (reserved)

bnum

bsize

next

block_info

num_blocks

FIGURE 16-14: The Journal block_list_header

A transaction normally spans (num_blocks -1) blocks. The fi rst block_info fi eld (which is the only
one defi ned in the block_list_header struct) is actually a dummy block, which is used if trans-
actions range over more than one block list. In such cases, where the number of blocks in a transac-
tion is more than the number of blocks, transactions can chain block lists together. The fi le system
driver can quickly deduce if that is the case by looking at the “next” fi eld — if it is non-zero, the
next block list is at the offset it points to.

The block_info is basically a directive indicating that the bsize bytes which follow need to be
written at block number bnum on this volume.

VFS AND KERNEL INTEGRATION

HFS+ has several advanced features, stemming from both its design and its integration with OS X’s
VFS mechanisms. I describe them here.

fsctl(2) integration
The HFS+ code exposes registers hfs_ioctl (bsd/hfs/hfs_readwrite.c) as its fsctl handler. If
VFS’s fsctl_internal(bsd/vfs/vfs_syscalls.c) receives a control code it does not recognize, it
passes it to hfs_ioctl, which can recognize and act on the codes listed in Table 16-5:

c16.indd 645c16.indd 645 9/29/2012 5:50:07 PM9/29/2012 5:50:07 PM

646 x CHAPTER 16 TO B (-TREE) OR NOT TO BE — THE HFS+ FILE SYSTEMS

TABLE 16-5: HFS+ fsctl codes, defi ned in bsd/sys/hfs/hfs_ioctl.h

CODE USAGE

HFS_GETPATH Retrieve path name corresponding to CNID

HFS_PREV_LINK

HFS_NEXT_LINK

Retrieve the next or previous link

HFS_RESIZE_VOLUME Dynamically resize an HFS+ volume. Calls hfs_

extendfs() or hfs_truncatefs() internally

HFS_RESIZE_PROGRESS Report HFS+ resize progress

HFS_CHANGE_NEXT_ALLOCATION Manually set next allocation

HFS_SETBACKINGSTOREINFO

HFS_CLRBACKINGSTOREINFO

Supports sparse devices, for example in disk

images, whose space on disk may be signifi cantly

lower than the space reported to the fi le system

#if HFS_SPARSEDEV, but enabled by default

HFS_BULKACCESS_FSCTL Access multiple fi les in bulk

HFS_SET_XATTREXTENTS_STATE Extent-based extended attribute support (Default

as of Lion). Settable by root only

HFS_FSCTL_SET_LOW_DISK

HFS_FSCTL_SET_VERY_LOW_DISK

HFS_FSCTL_SET_DESIRED_DISK

Set low disk space notifi cation conditions (see

“File System Status Notifi cations,” later)

HFS_VOLUME_STATUS Get volume status information

HFS_GET_BOOT_INFO HFS_SET_BOOT_INFO Get or set boot information (the FinderInfo).

The SET code is root only

HFS_MARK_BOOT_CORRUPT Force fsck on next mount (sets

 kHFSVolumeInconsistentBit in volume

header)

HFS_FSCTL_GET_JOURNAL_INFO Get Journal information

HFS_SET_ALWAYS_ZEROFILL Fill new fi les with zeros

HFS_DISABLE_METAZONE Disable the metadata zone (root only)

In addition to the HFS+ specifi c codes, hfs_ioctl can also handle some generic codes (F_*
constants), such as F_FREEZE_FS and F_THAW_FS, F_[READ|WRITE]_BOOTSTRAP, and others.

sysctl(2) integration
The HFS+ code exposes the vfs.hfs MIB, with an instance for each mountd HFS+ fi le system.
Using the sysctl(8) command line utility yields little, as it will simply report the number of

c16.indd 646c16.indd 646 9/29/2012 5:50:07 PM9/29/2012 5:50:07 PM

Summary x 647

mounted instances. Programmatically, however, this mechanism can be used to set HFS+ param-
eters on the mounted fi le systems. Some of this functionality is also accessibly via fsctl(2), as well.
These parameters are shown in Table 16-6.

TABLE 16-6: sysctl(2) MIBs exported by HFS+ (all are leaves)

SYSCTL MIB PURPOSE

HFS_ENCODINGBIAS

HFS_ENCODINGHINT

Set cjk encoding — one of the kTextEncodingMac

HFS_EXTEND_FS Same as HFS_RESIZE_VOLUME fsctl, but only allows

hfs_extendfs()

HFS_ENABLE_JOURNALING

HFS_DISABLE_JOURNALING

Toggle journaling on/off

HFS_GET_JOURNAL_INFO Only supported for 32-bit processes, but otherwise

same as HFS_FSCTL_GET_JOURNAL_INFO

HFS_SET_PKG_EXTENSIONS Used by LaunchServices

VFS_CTL_QUERY Query fi le system

HFS_ENABLE_RESIZE_DEBUG Debugging for volume resizing

File System Status Notifi cations
The HFS+ code in the kernel can generate kernel events when several threshold conditions are
met. The thresholds are low disk or dangerously low disk space, defi ned in bsd/sys/hfs/hfs.h
to be 98% or 99% utilization (respectively) for a regular volume, and 90% or 95% for a root
volume. The thresholds may also be set by means of the HFS_FSCTL_SET_[VERY_]LOW_DISK
control codes.

The notifi cation are generated by the hfs_generate_volume_notifications function, which is the
sole denizen of bsd/vfs/hfs_notification.c. The function checks for low disk space conditions
(such as calls on vfs_event_signal (bsd/vfs/vfs_subr.c), which generates a knote, which can be
read the EVFILT_FS fi lter.

Disabling or enabling the journal will also generate a notifi cation, by directly calling vfs_event_
signal directly from the hfs_sysctl handler.

SUMMARY

This chapter described HFS+ and its variant, HFSX, the native fi le system format for OS X and
iOS. First, following an explanation of HFS+ features (mostly inherited from XNU's VFS layer), we
described HFS+ in detail.

c16.indd 647c16.indd 647 9/29/2012 5:50:07 PM9/29/2012 5:50:07 PM

648 x CHAPTER 16 TO B (-TREE) OR NOT TO BE — THE HFS+ FILE SYSTEMS

The underlying data structure of HFS+ is a B-Tree, and the fi le system uses several of them — for its
main catalog, to store fi le extents, fi le attributes and metadata. HFS+ has been built in and around
OS X, with features added on the go as OS X evolved. This is also part of its shortcomings: Hard
link support is crude, the native data format is still big-endian (forcing byte swaps frequently) and
16/32-bit optimized (limited to 232 blocks). HFS+ also lacks advanced features such as sparse fi le
support and snapshots). Apple has hinted, but so far resisted calls for supporting a newer standard,
such as ZFS.

REFERENCES

1. Spotlight MetaData Attribute Reference, https://developer.apple.com/library/
mac/#documentation/Carbon/Reference/MetadataAttributesRef/Reference/

CommonAttrs.html

2. Technical Note TN1150 — HFS Plus Volume Format, http://developer.apple.com/
legacy/mac/library/#technotes/tn/tn1150.html

c16.indd 648c16.indd 648 9/29/2012 5:50:07 PM9/29/2012 5:50:07 PM

https://developer.apple.com/library/mac/#documentation/Carbon/Reference/MetadataAttributesRef/Reference/CommonAttrs.html
http://developer.apple.com/legacy/mac/library/#technotes/tn/tn1150.html
https://developer.apple.com/library/mac/#documentation/Carbon/Reference/MetadataAttributesRef/Reference/CommonAttrs.html
https://developer.apple.com/library/mac/#documentation/Carbon/Reference/MetadataAttributesRef/Reference/CommonAttrs.html
http://developer.apple.com/legacy/mac/library/#technotes/tn/tn1150.html

17
Adhere to Protocol: The
Networking Stack

A fundamental portion of the kernel in contemporary operating systems is devoted to
 networking, and the same holds true for OS X and iOS. In both, the networking system is a
near-exact copy of the BSD networking logic, implementing the classic POSIX model of BSD
sockets, which is common to all UN*X. Like BSD, both systems support specifi c extensions,
such as the Berkeley Packet Filter (BPF) and fi rewalling. Socket support in XNU is actually
optional, depending on the CONFIG_SOCKETS option, though needless to say it is enabled by
default in both OS X and iOS.

This chapter sets as its focus the implementation of the network stack. Following a brief
 overview of the user mode perspective, which lists the available protocols and various statistics
in XNU, we dive into the network stack architecture, layer by layer. (See Figure 17-1.) As
in most systems, XNU is responsible for layers II through V. We therefore proceed from the
application layer downwards: Starting with sockets, which make up layer V, through the
transport protocols of layer IV (TCP/UDP), and the network protocols of layer III (IPv4/IPv6),
and fi nally discussing the network interfaces, which make up layer II. Additional topics, such
as packet fi ltering and QoS are also discussed.

VII: Application

VI: Presentation

V: Session

IV: Transport

III: Network

II: Data Link

I: Physical

Application

Presentation

sockets

protosw

proto

ifnet/dlil (+kexts)

Physical

User mode

Kernel mode

Hardware

FIGURE 17-1: The OSI (7 layer) model and its relation to the network stack

c17.indd 649c17.indd 649 9/29/2012 5:51:02 PM9/29/2012 5:51:02 PM

650 x CHAPTER 17 ADHERE TO PROTOCOL: THE NETWORKING STACK

Throughout the chapter it is assumed that the reader is already familiar with the basic concepts of
sockets and the API, whether from the common Windows port (Winsock) or from POSIX. You can
fi nd a comprehensive reference for socket programming in Stevens’ books, by which UN*X devel-
opers swear[1, 2]. Likewise, because the socket code is so close to that of BSD’s, this chapter focuses
more on the Apple extensions (which are, at times, contained in an #if __APPLE__ block), and less
on the code common to BSD. Several great books whose sole focus is the BSD kernel are available[3],
and the avid reader is encouraged to check them out, as well.

Note that the average Cocoa developer doesn’t need to know anything about sockets. This is
because of the Core Foundation classes, which abstract sockets by CFSocket and CFStream, and
the further protocol-aware abstractions of CFFTP, CFHTTP, and the like, offered by CFNetwork.
Nonetheless, BSD sockets lie at the root of all networking on XNU (and practically all modern
operating systems, including (to an extent) Windows). That, by itself, merits a dedicated chapter.

USER MODE REVISITED

The BSD socket model was designed with multiple protocol support in mind. The most basic
operation, creating a socket, calls for three parameters: the address (or protocol) family, the socket
type, and the protocol.

The “family,” often referred to as an Address Family (AF) or Protocol Family (PF), denotes the
socket addressing mode corresponding to the layer 2 or layer 3 addresses. Many such modes exist,
and the most widely used one, IP, is but one; for example, PF_INET (or AF_INET).

There are numerous PF_/ AF_ constants and they are all defi ned in <sys/socket.h>. Though
technically the PF_ constants should be used, traditionally the AF_ ones have been. The
PF_ constants are just #defined over the AF_ ones, so they may be used interchangeably. Both OS X
and iOS support only a very limited subset of families, namely the ones shown in Table 17-1:

TABLE 17-1: Supported Address Families on OS X and iOS

FAMILY USED FOR

1 PF_LOCAL UNIX domain sockets. Also available as AF_/PF_UNIX.

2 PF_INET IPv4 sockets.

14 PF_LAT Local area transport sockets. Only on Snow Leopard.

17 PF_ROUTE Routing sockets.

27 PF_NDRV Network driver. Raw access to network device. Apple extension.

29 PF_KEY IPSec Key Management (RFC2367). #if IPSEC.

30 PF_INET6 IPv6 sockets. #If INET6

Can also be used for IPv4 when IPv4 mapped addresses

(::FFFF:a.b.c.d) are used.

32 PF_SYSTEM System/kernel local communication.

c17.indd 650c17.indd 650 9/29/2012 5:51:08 PM9/29/2012 5:51:08 PM

User Mode Revisited x 651

Unless otherwise stated, both OS X (Snow Leopard and Lion) and iOS support these families.

Note, that while these are very close to the address families in BSD, there are some deviations (most
notably PF_NDRV and PF_SYSTEM, which are idiosyncratic to Apple). Address families may also be
registered on demand, by kernel extensions. A good example is PF_PPP, for Point-to-Point Protocol
support. Unlike Linux, protocols such as BlueTooth are not supported over sockets (i.e. there is no
PF_BLUETOOTH), but over IOKit.

The socket API is designed to be as agnostic as possible to family idiosyncrasies, and therefore deals
with the generic struct sockaddr struct, which the programmer is expected to cast back and forth
from the actual struct sockaddr_* specifi c to the family used (e.g. sockaddr_un for AF_UNIX, and
sockaddr_in6 for AF_INET6). These structures all overlap with the fi rst fi eld of struct sockaddr, the
sa_family, by means of which the kernel may direct the address-related operation to the right provider.

UNIX Domain Sockets
UNIX domain sockets were among the fi rst forms of interprocess communication on UNIX, predat-
ing the now ubiquitous IP sockets. They are unique to UNIX-based systems, and they are of local
scope only (i.e. inner-host, rather than inter-host) and are therefore less known or popular than their
IP brethren. Nonetheless, they are still noteworthy, as they remain an important staple of UN*X
systems, OS X and iOS included.

Though restricted to local scope, UNIX domain sockets offer one signifi cant advantage over their
IP brethren — namely, the ability to pass fi le descriptors and credentials over the socket. This makes
them very useful for multi-process programming. Note that, in the case of XNU, Mach ports can
be passed in messages, and the new fi leport system calls can further be used to pass descriptors, but
neither of these capabilities conform to POSIX.

UNIX domain sockets bind to local fi lenames. These, however, are not truly fi les. The fi lesystem
presence is required to help system-wide uniqueness and visibility. Most sockets can be found in
/var/run, and will be displayed by default as part of netstat(8) output (or specifi cally, with
netstat –f unix). A detailed discussion of UNIX domain sockets can be found in Stevens’, and
many other books.

IPv4 Networking
Sockets are nowadays synonymous with IP, and to a large extent the socket APIs owe their wide-
spread adoption to IP’s popularity, and vice versa. As the protocol became more popular, sockets
became the preferred API to it. As socket APIs grew more popular, IP became people’s fi rst choice.

Mac OS, somewhat like Windows, didn’t immediately adopt TCP/IP. Microsoft originally had
hopes for IPX/SPX (which reigned shortly, back when Novell still dominated servers), and Apple
clung for a while to its proprietary AppleTalk protocol suite, which implemented an entire network
stack*. Apple, however, eventually got bored of talking to itself, and so TCP/IP eventually prevailed.
AppleTalk support was gradually phased out in OS X, and fi nally dropped in Snow Leopard, with
its main application layer protocol, The Apple Filing Protocol (AFP), converted to function over IP.

*In fairness, Mac OS was an early adopter of TCP/IP with MacTCP, and TCP/IP coexisted with AppleTalk
for a while. It was only in after the merger with NeXT, though that TCP/IP offi cially prevailed.

c17.indd 651c17.indd 651 9/29/2012 5:51:08 PM9/29/2012 5:51:08 PM

652 x CHAPTER 17 ADHERE TO PROTOCOL: THE NETWORKING STACK

Apple maintains a fairly up-to-date list of TCP and UDP protocols used by Mac operating systems
in TS1629[4]. Most of these protocols are standard (e.g. HTTP, SSH, etc). There are, however, a few
Apple proprietary protocols, most of which are poorly documented (if at all) to this very day. These
include:

 ‰ mDNS (Bonjour, etc): Multicast DNS (or mDNS, for short) is a form of serverless DNS
service meant to assist devices in local name resolution. The packet structure is the same as
that of DNS[5] but instead of a name server, a multicast request is sent out to 224.0.0.251 (or
FF02::FB) on UDP port 5353.

Microsoft uses a very similar, though not fully compatible protocol called LLMNR (Link
Layer Multicast Name Resolution). LLMNR operates on UDP port 5355, and uses the
multicast address of 224.0.0.252 (or FF02::1:3).

Bonjour is the protocol responsible for Macs popping up whenever you fi nd yourself in a
public network, such as an airport lounge (and is a great way to discover other people’s
musical tastes while delayed). It is, in a sense, a legacy of AppleTalk, which provided the
same ad-hoc functionality.

 ‰ EPPC (Apple events): Event Process-to-Process Communication is the protocol that allows
for remote Apple events. It is an intentionally undocumented proprietary protocol that is
disabled by default. OS X supports eppc URLs, which — similarly to FTP URLs — allow the
specifi cation of a user:password@host. The URI component ("/folder") in these URLs is
the name of some application. EPPC is carried over TCP port 3031.

 ‰ DAAP (Airplay, iTunes): The Digital Audio Access Protocol (DAAP) is an Apple proprietary
streaming protocol. It is not part of OS X as much as it is of iTunes, wherein, as the name
implies, it is used to access remote iTunes libraries. DAAP is carried over TCP port 3869.

 ‰ AFP (Time Machine, File Sharing): The Apple Filing Protocol is another legacy of AppleTalk,
which is still actively developed by Apple. It is carried over TCP port 547, and is used when
connecting to fi le servers like the Time Capsule, or when enabling File Sharing from System
Preferences Í Sharing. The protocol bears similarities to Microsoft’s Server Message Block
(SMB) and NFS, in that it allows remote mounting of shares, and is optimized for interoper-
ability with HFS+ fi lesystems. The protocol is somewhat documented by Apple[6], and has
been implemented by third parties.

Routing Sockets
The PF_ROUTE family is a BSD standard to control routing tables from user mode. It is described
in Stevens’ book in great detail, and is largely unused outside routing utilities. A comprehensive
example of its usage can be found in the open source of the route(8) command[7], which is part of
the network-cmds package. It is not supported outside BSD systems, though Linux achieves (and, to
an extent, exceeds) its functionality with NetLink.

Network Driver Sockets
OS X and iOS support PF_NDRV, which is a protocol family intended for use by network drivers.
This is a little known, but quite useful, socket type, which enables the crafting of raw packets — all
the way down to the data link layer — from user mode. This is similar in concept to the standard

c17.indd 652c17.indd 652 9/29/2012 5:51:08 PM9/29/2012 5:51:08 PM

User Mode Revisited x 653

SOCK_RAW of IP, but goes one layer lower, and enables full control over the link layer header (usually,
Ethernet), as well. In that respect, it is the OS X equivalent of Linux’s PF_PACKET. Though powerful,
it is generally unused by the masses: libpcap, for example, prefers BPF (discussed later). Apple does
use this internally, and implements EAPOL[8] (802.11x) over it.

NDRV sockets bind to local interface names (e.g. en0, en1). This binding, however, does require
root privileges. Once the socket is bound, unadulterated access to the interface is at your fi nger-
tips. Because NDRV is so scarcely documented (and so darn useful!), the following experiment
demonstrates its usage by example.

As (unjustly) unpopular as the NDRV mechanism is, it still provided for a cre-
ative use unfathomed by its original developers. An integer overfl ow vulnerabil-
ity in an NDRV ioctl(2) helped liberate iOS 4.3.1. Though this required root
permissions, the resulting overfl ow allowed the “evil” jailbreakers to overwrite
arbitrary kernel memory, and then further exploiting the Mach zone allocator to
untether a jailbreak. A detailed discussion of this can be found in Esser’s Black-
Hat 2011 talk[9]. When it comes to security, more (code) implies less (security).

Experiment: Spoofi ng Packets with PF_NDRV
Crafting packets with NDRV is child’s play. Just as IP’s raw sockets allow the manual crafting of
the network and transport header, so do NDRV’s socket allow this, and further enable any arbitrary
link layer framing. This allows the sending and receiving of packets which aren’t even IP, such as
ARP/RARP, or 802.1x, all of which exist at layer II.

If you’ve used raw IP sockets before, you will fi nd Listing 17-1 familiar, mayhap nostalgic. A raw
NDRV socket is created, and bound to the interface of choice. The bind() call’s sockaddr_ndrv is
a sockaddr-compatible structure, using the interface name as the binding “address.”

LISTING 17-1: A simple program to spoof packets

#include <sys/socket.h>
#include <net/if.h>
#include <net/ndrv.h>

void main(int argc, char **argv) {

 int s;
 int rc;
 struct sockaddr_ndrv sndrv;
 u_int8_t packet[1500];

 if (geteuid() != 0)
 { fprintf (stderr, "You are wasting my time, little man. Come back as root\n");
 exit(1);
 }

continues

c17.indd 653c17.indd 653 9/29/2012 5:51:09 PM9/29/2012 5:51:09 PM

654 x CHAPTER 17 ADHERE TO PROTOCOL: THE NETWORKING STACK

 s = socket(PF_NDRV, SOCK_RAW, 0); // Open socket
 if (s < 0) { perror ("socket"); exit (1);} // Just in case..
 //Bind to interface, say "en0", or "en1"
 strlcpy((char*)ndrv.snd_name, "en0", sizeof(sndrv.snd_name));
 ndrv.snd_family = AF_NDRV;
 ndrv.snd_len = sizeof(sndrv);
 rc = bind(s, (struct sockaddr*)&sndrv, sizeof(sndrv));

 if (rc < 0) { perror("bind"); exit(2);} // Could fail if interface doesn't exist

 // Craft packet!
 memset(&packet, 0, sizeof(packet));

 // Destination MAC goes in packet[0] through packet[5]
 packet[0] = 0xFF; /* ... */; packet[5] = 0xFF;

 // Source MAC address goes in packet[6] through packet[11]
 packet[7] = 0xFF; /* ... */; packet[11] = 0xFF;

 // Ethertype is next two
 packet[12] = ...; packet[13] = ...;

 // And data (Layer III and up) follows

 strcpy((char*) &packet[14], "You can put whatever you want here.. \0");

 rc = sendto(fd, &packet, 1500, 0, (struct sockaddr*)&sndrv, sizeof(sndrv));

}

From that point on, you can verify packets actually get sent by using a packet capture tool
(tcpdump(1) or Ethereal). The program in the listing naturally doesn’t send anything meaningful,
but can be adapted (using structs for the various protocols) to craft specialized packets. This is
highly useful for various network fuzzing tools and (naturally) malicious packet spoofi ng.

IPSec Key Management Sockets
RFC2367[10] details the use of IPSec Key Management sockets. This socket type is used rarely
outside the realm of security software, and the RFC fully explains the usage of these sockets. The
intrigued reader is therefore encouraged to consult this RFC, while this book opts to save a few trees
(or kilobytes), and focus on less documented aspects.

IPv6 Networking
Like all modern operating systems, OS X and iOS have built-in support for IPv6, the successor
to IPv4 that still hangs around the corner. Numerous times it was rumored to fi nally succeed
the aging Internet protocol, yet reports of the demise of the latter seem to have been greatly
exaggerated.

LISTING 17-1 (continued)

c17.indd 654c17.indd 654 9/29/2012 5:51:09 PM9/29/2012 5:51:09 PM

User Mode Revisited x 655

The implementation of IPv6 in XNU, like in Linux or BSD, is in an entirely separate protocol han-
dler. Similar to BSD, it is based on a port of the KAME project[11] (which you can see using sysctl
net.inet6.ip6.kame_version).

The administrator can use the ip6(8) command to enable or disable IPv6 on some or all interfaces.
The ip6config(8) command can likewise be used.

OS X supports the stf(4) interface, to enable 6to4 connectivity. The 6to4 standard, specifi ed in
RFC3056[12], is one of the more common to connect to the fl edgling IPv6 Internet over the aging
IPv4 infrastructure, by using IP-in-IP tunneling. It is a fairly simple matter to establish connectiv-
ity, assuming your origin IP is a real (read: non-NATed or RFC1918) IPv4 address, and your egress
router allows IP-tunneling (protocol number 41). The system’s 6to4 settings are kept in /etc/6to4.
conf (which uses the 6to4 anycast of 192.88.99.1). To start 6to4, a simple ip6config start-stf
will usually do. Microsoft IPv6 tunneling (or, more accurately, burrowing) standard, Teredo[13] is
not supported natively, but the miredo[14] open source package has been ported to OS X.

OS X also supports BSD’s generic tunnel interface, gif(4). This is a more generic tunneling than
stf(4)’s, specifi ed in RFC2893[15]. Unlike the former, it allows any combination of IPv4 and IPv6
tunneling (6 over 4, 6 over 6, 4 over 4, 4 over 6). Output 17-1 shows how to set up and tear down an
IP tunnel:

OUTPUT 17-1: Setting up and tearing down an RFC2893 tunnel using ifconfi g gif:

root@Minion (/)# ifconfig gif0 tunnel <localv4> <remotev4>
root@Minion (/)# ifconfig gif0 inet6 <localv6> <remotev6> prefixlen 128 up

System Sockets
The PF_SYSTEM address family is a method for kernel/user-space communication used. The address
family supports two protocols: The Control Protocol and the Event protocol.

Kernel Control Protocol
PF_SYSTEM sockets aren’t widely used in OS X, and are only a bit more common in iOS, as shown in
Table 17-2. These sockets can be created though ctl_register, which is exported for use by kernel
extensions.

TABLE 17-2: Known PF_SYSTEM Control IDs

FUNCTION REGISTERS CTL

utun_control_register

(bsd/net/if_utun.c)

com.apple.net.utun_control. Used for user

mode tunnels (utun##). This type enables a user

mode process to register an interface, and accepts

all data from sockets binding to that interface. Dis-

cussed later under “Layer II Implementation”

netsrc_init

(bsd/net/netsrc.c)

com.apple.netsrc. Private Apple API in Lion

and iOS.

continues

c17.indd 655c17.indd 655 9/29/2012 5:51:10 PM9/29/2012 5:51:10 PM

656 x CHAPTER 17 ADHERE TO PROTOCOL: THE NETWORKING STACK

FUNCTION REGISTERS CTL

nstat_control_register

(bsd/net/ntstat.c)

com.apple.network.statistics. Private

Apple API used in Lion and iOS for active connec-

tion statistics (discussed later under “Socket and

Protocol Statistics”)

iptap_init

(closed source, iOS, to be made open in

Mountain Lion)

com.apple.net.iptap_control. Private and

undocumented Apple API (in iOS, and starting with

Mountain Lion).

AppleOnBoardSerialBSDClient

(closed source, iOS)

com.apple.uart.*. Private and undocumented

Apple API for serial port access in iOS.

IOUserEthernetController

(en_register, closed source, iOS)

com.apple.userspace_ethernet. Private and

undocumented Apple API for user space Ethernet

To register a kernel control socket, the provider needs to set up a kern_ctl_reg structure,
specifying the control name, some settings and the callback functions which will provide for the
user mode API calls. The provider passes this structure to ctl_register() along with a pointer to
kern_ctl_ref, which will be returned with an opaque handle to use with this socket in the various
callback functions. This structure is shown in Listing 17-2:

LISTING 17-2: The kern_ctl_reg structure, from sys/kern_control.h

struct kern_ctl_reg
{
 /* control information */
 char ctl_name[MAX_KCTL_NAME];
 u_int32_t ctl_id; // ignored, unless CTL_FLAG_REG_ID_UNIT is specified
 u_int32_t ctl_unit;

 /* control settings */
 u_int32_t ctl_flags; // CTL_FLAG_PRIVILEGED - uid 0 processes only
 // CTL_FLAG_REG_SOCK_STREAM – SOCK_STREAM only, not DGRAM
 // CTL_DATA_NOWAKEUP – Don't wake up process on data received
 u_int32_t ctl_sendsize; // override default send size, or leave 0
 u_int32_t ctl_recvsize; // override default recv size, or leave 0

 /* Dispatch functions */
 // all return errno. The kern_ctl_reg argument is returned by ctl_register()
 ctl_connect_func ctl_connect; //(kern_ctl_ref kcr,sockaddr_ctl *sac,void **unit);
 ctl_disconnect_func ctl_disconnect; //(kern_ctl_ref kcr,u_int32_t unit,void *unitinfo);
 ctl_send_func ctl_send; // kern_ctl_ref kcr,u_int32_t unit,void *unitinfo,
 mbuf_t m, int flags);
 // ctl_setopt and ctl_getopt are used for get/setsockopts and share the same prototype:
 // kern_ctl_ref kcr, u_int32_t unit, void *unitinfo, int opt, void *data, size_t len)
 ctl_setopt_func ctl_setopt;
 ctl_getopt_func ctl_getopt;
};

TABLE 17-2 (continued)

c17.indd 656c17.indd 656 9/29/2012 5:51:10 PM9/29/2012 5:51:10 PM

User Mode Revisited x 657

Any of the control registration function in Table 17-2 can provide an example of registration. A
more detailed example of kernel controls is shown later in this chapter, in the case study of utun.

Kernel Event Protocol
The second protocol supported by PF_SYSTEM sockets is the SYSPROTO_EVENT protocol, used for ker-
nel events. Using this protocol, a kernel component can broadcast events to listeners in both kernel
mode and user mode.

Each event contains a vendor code, a class and a subclass, which enables listeners to fi lter only those
events of interest. Apple is the only registered vendor, with a hard-coded vendor code of 1, though
third party kexts can also obtain a runtime vendor code, which can be looked up by the client using
a SIOCGKEVVENDOR ioctl(2). Apple currently defi nes six classes of events, shown in Table 17-3:

TABLE 17-3: Apple Event Classes

EVENT CLASS USED BY

KEV_NETWORK_CLASS (1) Network stack. Subclasses include DL (DataLink),

INET/INET6 (IPv4/IPv6) and LOG (FW Log)

KEV_IOKIT_CLASS (2) IOKit drivers

KEV_SYSTEM_CLASS (3) System events. Currently only used for memory

status notifi cations

KEV_APPLESHARE_CLASS (4) AppleShare (Unused by kernel proper)

KEV_FIREWALL_CLASS (5) IPv4 and IPv6 Firewalls (IPFW/IP6FW subclasses,

respectively)

KEV_IEEE80211_CLASS (6) Wireless Ethernet (IO80211Family drivers)

A simple event listener doesn’t take more than a few lines of code: It merely requires setting up the
socket, optionally setting up a fi lter request, and reading. This is shown in Listing 17-3:

LISTING 17-3: A simple PF_SYSTEM/SYSPROTO_EVENT listener

#include <sys/socket.h> // for socket(2) and friends
#include <sys/kern_event.h> // for kev_* and kern_event_* types

/**
 * A rudimentary PF_SYSTEM event listener, in 50 lines or less. Works on iOS too
 */
void main (int argc, char **argv)
{

 struct kev_request req;
 char buf[1024];

continues

c17.indd 657c17.indd 657 9/29/2012 5:51:10 PM9/29/2012 5:51:10 PM

658 x CHAPTER 17 ADHERE TO PROTOCOL: THE NETWORKING STACK

 int rc;
 struct kern_event_msg *kev;

 // Setup the system socket
 int ss = socket(PF_SYSTEM, SOCK_RAW, SYSPROTO_EVENT);

 // Set filtering parameters. Only interested in Apple, but not filtering on
 // classes for now
 req.vendor_code = KEV_VENDOR_APPLE; // Apple is pretty much the only vendor
 req.kev_class = KEV_ANY_CLASS; // No class filtering (show all)
 req.kev_subclass = KEV_ANY_SUBCLASS; // No subclass filtering (show all)

 // Use ioctl(2) to set the filter on the socket
 if (ioctl(fd, SIOCSKEVFILT, &req)) {
 perror("Unable to set filter\n"); exit(1);
 }

 while (1) {

 // can use if (ioctl(fd, SIOCGKEVID, &id)) to get next ID
 // or simply read and block until an event occurs..

 rc = read (ss, buf, 1024);

 kev = (struct kern_event_msg *)buf;

 // Print event class and class (data is event dependent)
 // A better implementation would convert class, subclass and code to text
 // and is left as an exercise to the reader.
 //
 printf ("Event %d: (%d bytes). Vendor: %d Class: %d/%d\n",
 kev->id, kev->total_size, kev->vendor_code, kev->kev_class, kev->kev_subclass);

 printf ("Code: %d\n",kev->event_code);

 } // end while

}

Perspicacious Linux-philes may notice that this mechanism is also quite similar in functionality to
Linux’s NetLink sockets, in that both of these can be used to send messages (particularly network
confi guration messages) from kernel space. NetLink, however, relies on a form of multicast which is
somewhat crude by comparison, and does not enable fi ltering of messages.

SOCKET AND PROTOCOL STATISTICS

XNU keeps statistics for various sockets and the underlying protocols in read-only sysctl(8) vari-
ables, in the net.* namespace. Address families each hold their own sub-namespace (local, inet,
inet6, key), with sub-protocols in a third level namespace (stream/dgram for local,

LISTING 17-3 (continued)

c17.indd 658c17.indd 658 9/29/2012 5:51:10 PM9/29/2012 5:51:10 PM

Socket and Protocol Statistics x 659

ip/tcp/udp/raw/ipsec for inet, and 6 suffi xes for the respective inet6 protocols. key does not
have sub-protocols).

Output 17-2 shows the variables in the net.inet.udp space, as an example:

OUTPUT 17-2: Variables in the net.inet.udp space, as viewed by sysctl(8)

morpheus@ergo (/)$ sysctl net | grep udp
net.inet.ip.fw.dyn_udp_lifetime: 10
net.inet.udp.checksum: 1
net.inet.udp.maxdgram: 9216
net.inet.udp.recvspace: 42080
net.inet.udp.in_sw_cksum: 3830661
net.inet.udp.in_sw_cksum_bytes: 854082494
net.inet.udp.out_sw_cksum: 4248220
net.inet.udp.out_sw_cksum_bytes: 1189771941
net.inet.udp.log_in_vain: 0
net.inet.udp.blackhole: 0
net.inet.udp.pcbcount: 19
net.inet.udp.randomize_ports: 1

By trying sysctl –a net you can see some of the counters and settings, though the interesting
ones; those seen in netstat –s are hidden. This is because they are opaque structures, and the
sysctl(8) command does not know how to deal with them. Using the -A switch, you can see their
names, though their values remain an obscure hex dump.

Commands like netstat(8), however, can parse these values. In particular, netstat –s parses
the stats keys of the respective protocols, and — in its common usage — netstat(8) obtains
the list of active sockets for each protocols by parsing the pcblist or pcblist64 MIBs. This is
an internal list of struct inpcbs, which correspond to active connections (discussed later). The
netstat(8) command is open source[16], and you are encouraged to check it for a good example
of how these MIBs are parsed. The PF_SYSTEM sockets, discussed previously, can also be used for
network statistics: The com.apple.network.statistics identifi er (available in iOS and Lion),
exposed by nstat_control_register(), offers statistics on network connections, similar to
netstat(1), but with the ability to be actively notifi ed on connection establishment and tear-
down. This constitutes a private API, though bsd/net/ntstat.h offers a fairly good idea of its
inner workings.

In brief, this allows a curious user mode process to obtain a list of all active sockets from
NSTAT_PROVIDER_UDP, NSTAT_PROVIDER_TCP, and routing information NSTAT_PROVIDER_ROUTE.
The statistics include more advanced details than offered by netstat(1), including TCP window
information, and owning process name, which in Linux is available by -p. Unlike netstat(1), an
application can block on the socket to get notifi cations of connection establishment and teardown.
The nstat mechanism exposes the net.statistics MIB, enabling and disabling the statistics
collection through sysctl(8).

The book’s companion website offers the lsock tool, which shows an example of using com.apple
.network.statistics from user mode, and will compile on Lion or iOS 4 and later. A sample
output from iOS 5 is shown in Output 17-3:

c17.indd 659c17.indd 659 9/29/2012 5:51:11 PM9/29/2012 5:51:11 PM

660 x CHAPTER 17 ADHERE TO PROTOCOL: THE NETWORKING STACK

OUTPUT 17-3: lsock on iOS 5, catching apsd red-handed

root@Podicum (/)# lsock –p tcp -a
TCP #1, IPv4, If 2, State 4, Pid: 10109 (sshd) 192.168.1.105:22->192.168.1.103:53784
TCP #2, IPv4, If 2, State 4, Pid: 81 (apsd) 192.168.1.105:50785->17.172.232.119:443
TCP #3, IPv4, If 1, State 1, Pid: 2 () 127.0.0.1:8021 (Listening)
TCP #4, IPv6, If 1, State 1, Pid: 2 () ::1:8021 (Listening)
TCP #5, IPv6, If 0, State 1, Pid: 2 () :::62078 (Listening)
TCP #6, IPv4, If 0, State 1, Pid: 2 () 0.0.0.0:62078 (Listening)
TCP #7, IPv4, If 0, State 1, Pid: 2 () 0.0.0.0:22 (Listening)
TCP #8, IPv4, If 0, State 1, Pid: 2 () 0.0.0.0:22 (Listening)

LAYER V: SOCKETS

Most of the generic socket code in XNU is implemented in several key fi les, all in bsd/kern, shown
in Table 17-4:

TABLE 17-4: XNU Socket Implementation Code

FILE IMPLEMENTS

uipc_domain.c Socket domain (address/protocol family) support

uipc_mbuf.c Support functions for MBUFs

uipc_mbuf2.c More support functions for MBUFs

uipc_proto.c UNIX domain protocol support (SOCK_STREAM

and _DGRAM)

uipc_socket.c Socket support routines

uipc_socket2.c More socket support routines

uipc_syscalls.c Main socket API (socket, send, recv, etc.)

uipc_usrreq.c User request support routines

This section details the implementation of sockets, picking up where user mode leaves off (that is,
from the moment a socket-related system call is invoked).

Socket Descriptors
A socket, which to the user appears to be just another fi le descriptor, is a mammoth structure in
kernel mode, containing the socket type, state data, and much more. This structure, the struct
socket, is defi ned in bsd/sys/socketvar.h. It is obtained by a call to file_socket(), which (like
other fi le descriptors) uses fp_lookup() (shown in Listing 15-17) to obtain the fileproc structure

c17.indd 660c17.indd 660 9/29/2012 5:51:11 PM9/29/2012 5:51:11 PM

Layer V: Sockets x 661

corresponding to the fi le descriptor. The fileproc structures belonging to sockets have their
f_type set to DTYPE_SOCKET, and the f_data member is the struct socket pointer which the
system call operated on.

The struct socket contains many fi elds, and has a messy declaration intermixed with inline struc-
tures and constants. The most important fi elds for our discussion are:

 ‰ so_proto: A pointer to the socket’s protocol. Through this, the socket protocol, type, and
domain can be determined.

 ‰ so_pcb: A pointer to the protocol control block. This is defi ned as a void pointer, because
the underlying protocol can vary (struct in6pcb or struct inpcb).

An abbreviated form of the structure is shown in Listing 17-4:

 LISTING 17-4: An abbreviated socket structure, from bsd/sys/socketvar.h

struct socket {
 int so_zone; /* zone we were allocated from */
 short so_type; /* generic type, see socket.h */
 short so_options; /* from socket call, see socket.h */
 short so_linger; /* time to linger while closing */
 short so_state; /* internal state flags SS_*, below */
 void *so_pcb; /* protocol control block */
 struct protosw *so_proto; /* protocol handle */
..
 struct sockbuf {... } so_rcv, /* Receive queue (incoming) */
 so_snd; /* Send queue (outgoing) */
 //
 // ... Many many more fields ..
 struct label *so_label; /* MAC label for socket */
 struct label *so_peerlabel; /* cached MAC label for socket peer */
 // ….
 // last process to interact with this socket
 u_int64_t last_upid;
 pid_t last_pid;

}

mbufs
Each socket maintains a struct sockbuf, which is used in maintaining its receive and send queues.
The actual data sent and received in sockets, however, is maintained in “memory buffers”, which
are struct mbuf structures. These structures (similar to Linux’s sk_buffs) are defi ned in bsd/sys/
mbuf.h, but are normally left as opaque mbuf_ts, with the preferred method of dealing with them
being the various accessors declared in bsd/sys/kpi_mbuf.h.

An mbuf is composed of a header and a body. The header is a struct m_hdr containing the buf-
fer metadata, as well as a link to the next buffer, and a link to the next packet, if any. In this way,
mbufs are chained, as shown in Figure 17-2.

c17.indd 661c17.indd 661 9/29/2012 5:51:11 PM9/29/2012 5:51:11 PM

662 x CHAPTER 17 ADHERE TO PROTOCOL: THE NETWORKING STACK

mh_next

mh_nextpkt

mh_len

mh_type

mh_flags

mh_data

M_dat

mh_next

mh_nextpkt

mh_next

mh_nextpkt

mh_len

mh_type

…

mh_data

mh_next

mh_nextpkt

mh_next

mh_nextpkt

mh_len

mh_type

mh_flags

mh_data

…

Packet 2

Packet 1

FIGURE 17-2: An mbuf chain

The mbuf header is defi ned in bsd/sys/mbuf.h as shown in Listing 17-5:

LISTING 17-5: The mbuf header

struct m_hdr {
 struct mbuf *mh_next; /* next buffer in chain */
 struct mbuf *mh_nextpkt; /* next chain in queue/record */
 int32_t mh_len; /* amount of data in this mbuf */
 caddr_t mh_data; /* location of data */
 short mh_type; /* type of data in this mbuf */
 short mh_flags; /* flags; see below */
}

struct mbuf {
 struct m_hdr m_hdr;
 union {
 struct {
 struct pkthdr MH_pkthdr; /* M_PKTHDR set */

c17.indd 662c17.indd 662 9/29/2012 5:51:11 PM9/29/2012 5:51:11 PM

Layer V: Sockets x 663

 union {
 struct m_ext MH_ext; /* M_EXT set */
 char MH_databuf[_MHLEN];
 } MH_dat;
 } MH;
 char M_databuf[_MLEN]; /* !M_PKTHDR, !M_EXT */
 } M_dat;
};

Following the m_hdr is an m_dat union that — depending on the settings in m_hdr.m_flags — may
hold one of three things, as shown in Table 17-5.

TABLE 17-5: Flags in an mbuf Header, and the Corresponding Contents of the mbuf

FLAG DENOTES THAT WHAT FOLLOWS IS. . .

M_PKTHDR The packet, split into the header in m_dat.MH.MH_pkthdr, and the payload

— contiguously, in m_dat.MH.MH_dat.MH_databuf.

M_EXT A pointer to the packet, stored externally in m_dat.MH.MH_dat.MH_ext. This

is known as a cluster.

(No fl ag) Packet data in m_dat.M_databuf. This is used for packet data spanning mul-

tiple mbufs. The fi rst mbuf will have M_PKTHDR set.

Using the functions in bsd/sys/kpi_mbuf.h header for allocating and handling mbufs, relieves
the programmer from dealing with the header specifi cs. Functions such as mbuf_allocpacket/
mbuf_alloccluster (used by drivers), and many accessors (e.g. mbuf_data(), mbuf_setdata(),
etc.) all operate on an mbuf_t, which is effectively a void pointer. All of these functions are very well
documented elsewhere. One function worthy of mentioning here, however, is mbuf_tag_allocate.
With it, an mbuf can be assigned a 32-bit integer value, which is considered opaque by the kernel.
A driver, however, may use the tag to hold external data, from bit fl ags, to a buffer ID. This is use-
ful for tracking mbuf ownership. The netstat(8) command can be used to display mbuf utilization
(using the –m switch), which it obtains using sysctl(8).

Once the multiple domains have been registered, and each domain has its associated protocols and
socket types, it becomes a simple matter to provide sockets of the supported types. Each socket has
a pointer to its corresponding protocol, which is assigned during creation. The socket(2) system
call is used to create sockets from user mode, as shown in Listing 17-6:

LISTING 17-6: The implementation of socket(2)

int socket(struct proc *p, struct socket_args *uap, int32_t *retval)
{
 struct socket *so;
 struct fileproc *fp;
 int fd, error;

 // call AUDIT_ARG to record call in audit subsytem

continues

c17.indd 663c17.indd 663 9/29/2012 5:51:12 PM9/29/2012 5:51:12 PM

664 x CHAPTER 17 ADHERE TO PROTOCOL: THE NETWORKING STACK

 AUDIT_ARG(socket, uap->domain, uap->type, uap->protocol);

#if CONFIG_MACF_SOCKET_SUBSET
 // call on MAC subsystem to check if sockets are allowed (q.v. Chapter 13)
 if ((error = mac_socket_check_create(kauth_cred_get(), uap->domain,
 uap->type, uap->protocol)) != 0)
 return (error);
#endif /* MAC_SOCKET_SUBSET */
 // allocate file descriptor
 error = falloc(p, &fp, &fd, vfs_context_current());
 ...
 // Mark as a socket, read writable, with standard socket operations
 fp->f_flag = FREAD|FWRITE;
 fp->f_type = DTYPE_SOCKET;
 fp->f_ops = &socketops;

 // Create domain (family) and type/protocol specific socket
 error = socreate(uap->domain, &so, uap->type, uap->protocol);
 if (error) {
 fp_free(p, fd, fp);
 } else {
 ...
 /* if this is a backgrounded thread then throttle all new sockets */
 ...
 // connect socket data
 fp->f_data = (caddr_t)so;

 proc_fdlock(p);
 procfdtbl_releasefd(p, fd, NULL);

 fp_drop(p, fd, fp, 1);
 proc_fdunlock(p);

 *retval = fd;
 }
 return (error);
}

The main work in the preceding code is performed by socreate, in bsd/kern/uipc_socket.c,
shown as follows:

socreate(int dom, struct socket **aso, int type, int proto)
{
 struct proc *p = current_proc();
 register struct protosw *prp;
 register struct socket *so;
 register int error = 0;

 // ...

 // First find the protocol for this socket domain (family) and type.
 // If one is specified, look it up. Otherwise, get default

LISTING 17-6 (continued)

c17.indd 664c17.indd 664 9/29/2012 5:51:12 PM9/29/2012 5:51:12 PM

Layer V: Sockets x 665

 if (proto)
 prp = pffindproto(dom, proto, type);
 else
 prp = pffindtype(dom, type);

 // Handle protocol lookup error, or protocol with no attach function
 if (prp == 0 || prp->pr_usrreqs->pru_attach == 0) {
 if (pffinddomain(dom) == NULL) {
 return (EAFNOSUPPORT);
 }
 if (proto != 0) {
 if (pffindprotonotype(dom, proto) != NULL) {
 return (EPROTOTYPE);
 }
 }
 return (EPROTONOSUPPORT);
 }

 if (prp->pr_type != type)
 return (EPROTOTYPE);

// If we're still here, all is well. Go ahead and allocate socket
 // TCPv4 sockets are allocated from the Mach socache zone.
 // All other sockets are allocated from BSD's M_SOCKET zone.

 so = soalloc(1, dom, type);

 if (so == 0)
 return (ENOBUFS);

 TAILQ_INIT(&so->so_incomp);
 TAILQ_INIT(&so->so_comp);

 // Allocate various socket fields
 so->so_type = type;

 // Set ownership to uid/gid of current, and mark root owned as SS_PRIV
 so->so_uid = kauth_cred_getuid(kauth_cred_get());
 so->so_gid = kauth_cred_getgid(kauth_cred_get());
 if (!suser(kauth_cred_get(), NULL))
 so->so_state = SS_PRIV;

 // This line is responsible for making everything work:
 so->so_proto = prp; // Link the protocol

#ifdef __APPLE__
 so->so_rcv.sb_flags |= SB_RECV; /* XXX */
 so->so_rcv.sb_so = so->so_snd.sb_so = so;
#endif
 so->next_lock_lr = 0;
 so->next_unlock_lr = 0;

#if CONFIG_MACF_SOCKET
 // If BSD's MAC layer is configured for sockets, associate this
 // socket with a label

continues

c17.indd 665c17.indd 665 9/29/2012 5:51:12 PM9/29/2012 5:51:12 PM

666 x CHAPTER 17 ADHERE TO PROTOCOL: THE NETWORKING STACK

 mac_socket_label_associate(kauth_cred_get(), so);
#endif /* MAC_SOCKET */

//### Attachement will create the per pcb lock if necessary and increase refcount
 /*
 * for creation, make sure it's done before
 * socket is inserted in lists
 */
 so->so_usecount++;

 error = (*prp->pr_usrreqs->pru_attach)(so, proto, p);
 if (error) {
 // abort: decrease so_usecount and free socket,
 }
#ifdef __APPLE__

 // Increase reference to this domain (address family)

 prp->pr_domain->dom_refs++;
 TAILQ_INIT(&so->so_evlist);

 /* Attach socket filters for this protocol */
 sflt_initsock(so);
#if TCPDEBUG
 if (tcpconsdebug == 2)
 so->so_options |= SO_DEBUG;
#endif
#endif
 so_set_default_traffic_class(so);
 /*
 * If this is a background thread/task, mark the socket as such.
 */
#if !CONFIG_EMBEDDED
 if (proc_get_self_isbackground() != 0)
#else /* !CONFIG_EMBEDDED */
 thread = current_thread();
 ut = get_bsdthread_info(thread);
 if (uthread_get_background_state(ut))
#endif /* !CONFIG_EMBEDDED */
{
 socket_set_traffic_mgt_flags(so, TRAFFIC_MGT_SO_BACKGROUND);
 so->so_background_thread = current_thread();
 }

 // special handling of AF_LOCAL sockets and workaround for IPv6
 // socket cases follows here..
 // ...

 // return newly created socket as our out parameter, and report success

LISTING 17-6 (continued)

c17.indd 666c17.indd 666 9/29/2012 5:51:12 PM9/29/2012 5:51:12 PM

Layer V: Sockets x 667

 // The so returned will be latched on to the file descriptor
 *aso = so;
 return (0);
}

The socket structure is attached to the corresponding fi le descriptor’s fp_data fi eld. The
protocol operations are themselves a pointer from the socket structure’s so_proto. Thus,
socket-related system calls basically retrieve the socket from the fi le pointer and perform some
housekeeping, with the bulk of the work done by the corresponding pr_usrreqs entry for the
top-level call.

Sockets in Kernel Mode
As surprising as it sounds, creating a socket in kernel mode is not as straightforward as it should
be. A socket normally needs to be mapped to a fi le descriptor, and failure to properly maintain the
relationship can cause the process to crash, or even the entire kernel to panic.

To work with sockets in kernel mode, XNU offers the kpi_socket interface. This is a set of sock_*
functions whose functionality emulates, or in some cases extends, that of user mode (see Table
17-6). This interface enables the creation and manipulation of sockets in kernel mode, similar to the
“Winsock Kernel” concept in Windows (Vista or later). This can prove useful for a kernel extension
that needs to communicate with a remote server.

TABLE 17-6: KPI Socket Interface Calls, from bsd/kern/kpi_socket.c

KPI SOCKET FUNCTION IN USER MODE USED FOR

errno_t sock_socket

(int domain,

int type,

int protocol,

sock_upcall callback,

void *cookie,

socket_t *new_so);

int socket

(int domain,

int type,

int protocol)

Same as socket, but allows

setting a callback func-

tion that will be invoked

on socket events with the

cookie parameter. Socket is

returned in new_so.

sock_accept(socket_t sock,

struct sockaddr *from,

int fromlen,

int flags,

sock_upcall callback,

void* cookie,

socket_t *new_sock)

int accept

(int socket,

struct sockaddr * addr,

socklen_t *addrlen);

Accepts a connection on

sock, returning a new_sock.

Optionally, set callback and

the argument cookie to be

used on new socket events.

continues

c17.indd 667c17.indd 667 9/29/2012 5:51:13 PM9/29/2012 5:51:13 PM

668 x CHAPTER 17 ADHERE TO PROTOCOL: THE NETWORKING STACK

KPI SOCKET FUNCTION IN USER MODE USED FOR

errno_t sock_bind

(socket_t sock,

const struct sockaddr *to);

int bind(int socket,

struct sockaddr *addr,

socklen_t addrlen);

Binds the sock to the

address specifi ed in to. The

usual type-casting of specifi c

sockaddr subtypes applies.

errno_ t sock_gettype

(socket_t so,

int *domain,

int *type,

int *protocol);

--- Gets the domain, type,

and protocol used in a

socket(2) or sock_socket

call. Any of the parameters

may be left NULL.

int sock_isconnected

(socket_t so);

--- Returns non-zero if socket is

connected

(SS_ISCONNECTED).

int sock_isnonblocking

(socket_t so);

--- Returns non-zero if socket is

nonblocking

(SS_NBIO).

errno_t sock_setpriv

(socket_t so, int on);

-- Toggles the SS_PRIV fl ag on

the socket in question.

errno_t sock_setupcall

(socket_t sock,

sock_upcall callback,

void* context);

-- Sets or unsets an event

callback (“upcall”)

function.

Nonblocking sockets in the kernel make use of callbacks, or what KPI calls “upcall” functions.
These functions accept three arguments — the socket, a “cookie” (a void pointer opaque argument),
and a boolean specifying whether blocking in the function is allowed. When creating a socket (with
sock_socket) or accepting (sock_accept), the caller may set the callback with different cookie
arguments for each socket, allowing the same upcall to be used in handling multiple sockets. An
upcall may be set or unset at any other time using sock_setupcall (specifying NULL removes the
upcall function).

Layer IV: Transport Protocols
The TCP/IP-related protocols are implemented in a separate directory — bsd/netinet for IPv4,
and bsd/netinet6 for IPv6. Each layer III protocol can defi ne its own layer IV ones, as IPv4 does
in its struct inetsw array, (bsd/netinet/in_proto.c) and IPv6 in its struct inet6sw (bsd/
netinet6/in6_proto.c).

The protocols in Table 17-7 are supported (note that ICMP and RAW are not transport protocols in
the classic sense of the word, but are still defi ned with the same structure type).

TABLE 17-6 (continued)

c17.indd 668c17.indd 668 9/29/2012 5:51:13 PM9/29/2012 5:51:13 PM

Layer V: Sockets x 669

TABLE 17-7: Supported Transport Protocols

PROTOCOL STRUCT PR_USRREQS DECLARED IN

ICMPv4 icmp_dgram_usrreqs bsd/netinet/ip_icmp.c

ICMPv6 icmp6_dgram_usrreqs bsd/netinet6/raw_ip6.c

TCPv4 tcp_usrreqs bsd/netinet/tcp_usrreq.c

TCPv6 tcp6_usrreqs bsd/netinet/tcp_usrreq.c

RAW (v4) rip_usrreqs bsd/netinet/raw_ip.c

RAW (v6) rip6_usrreqs bsd/netinet6/raw_ip6.c

UDPv4 udp_usrreqs bsd/netinet/udp_usrreq.c

UDPv6 udp6_usrreqs bsd/netinet6/udp6_usrreq.c

The pr_usrreqs contain the implementation of each protocol’s “user requests,” which correspond
to user mode socket API calls (such as send, recv), discussed later in this chapter. Additional proto-
cols, such as IPSec ones (AH/ESP), are supported but have no usrreqs of their own.

Domains and Protosws
The multiple address families supported by the kernel are referred to as domains (totally unrelated
to the domains of DNS) and are maintained in a global domains list. This list, appropriately called
domains, is a linked list of struct domain, defi ned in bsd/sys/domain.h as shown in Listing 17-7:

LISTING 17-7: The domain structure, from bsd/sys/domain.h

struct domain {
 int dom_family; /* AF_xxx */
 const char *dom_name;
 void (*dom_init)(void); // initialize domain structures
 int (*dom_externalize)(struct mbuf *); /* externalize access rights */
 void (*dom_dispose)(struct mbuf *); /* dispose of internalized rights */
 struct protosw *dom_protosw; /* Chain of protosw's for AF */
 struct domain *dom_next;
 int (*dom_rtattach)(void **, int); /* initialize routing table */
 int dom_rtoffset; /* an arg to rtattach, in bits */
 int dom_maxrtkey; /* for routing layer */
 int dom_protohdrlen; /* Let the protocol tell us */
 int dom_refs; /* # socreates outstanding */
#ifdef _KERN_LOCKS_H_
lck_mtx_t *dom_mtx; /* domain global mutex */
#else
 void *dom_mtx; /* domain global mutex */
#endif
 uint32_t dom_flags;
 uint32_t reserved[2];
};

c17.indd 669c17.indd 669 9/29/2012 5:51:13 PM9/29/2012 5:51:13 PM

670 x CHAPTER 17 ADHERE TO PROTOCOL: THE NETWORKING STACK

Because it’s a global structure, access to the domains list is protected by a domain_proto_mtx
mutex. Each domain also points to an array of one or more protocol structures that are
associated with the domain. The same mutex also protects access to these protocols.
(See Listing 17-8.)

LISTING 17-8: The protosw structure, from bsd/sys/protosw.h

struct protosw {
 short pr_type; /* socket type used for */
 struct domain *pr_domain; /* domain protocol a member of */
 short pr_protocol; /* protocol number */
 unsigned int pr_flags; /* see below */
/* protocol-protocol hooks */
 void (*pr_input)(struct mbuf *, int len);
 /* input to protocol (from below) */
 int (*pr_output)(struct mbuf *m, struct socket *so);
 /* output to protocol (from above) */
 void (*pr_ctlinput)(int, struct sockaddr *, void *);
 /* control input (from below) */
 int (*pr_ctloutput)(struct socket *, struct sockopt *);
 /* control output (from above) */
/* user-protocol hook */
 void *pr_ousrreq; // deprecated
/* utility hooks */
 void (*pr_init)(void); /* initialization hook */
#if __APPLE__
 void (*pr_unused)(void); /* placeholder - fasttimo is removed */
#else
 void (*pr_fasttimo)(void);
 /* fast timeout (200ms) */
#endif
 void (*pr_slowtimo)(void);
 /* slow timeout (500ms) */
 void (*pr_drain)(void);
 /* flush any excess space possible */
#if __APPLE__
 int (*pr_sysctl)(int *, u_int, void *, size_t *, void *, size_t);
 /* sysctl for protocol */
#endif

struct pr_usrreqs *pr_usrreqs; /* supersedes pr_usrreq() */
#if __APPLE__
 int (*pr_lock)(struct socket *so, int locktype, void *debug); /* lock function */
 int (*pr_unlock)(struct socket *so, int locktype, void *debug); /* unlock */
#ifdef _KERN_LOCKS_H_
 lck_mtx_t * (*pr_getlock) (struct socket *so, int locktype);
#else
 void * (*pr_getlock) (struct socket *so, int locktype);
#endif
#endif
#if __APPLE__

c17.indd 670c17.indd 670 9/29/2012 5:51:13 PM9/29/2012 5:51:13 PM

Layer V: Sockets x 671

/* Implant hooks */
 TAILQ_HEAD(, socket_filter) pr_filter_head;
 struct protosw *pr_next; /* Chain for domain */
 u_int32_t reserved[1]; /* Padding for future use */
#endif
};

The fi elds in this structure are basically of two types:

 ‰ Protocol requests: These requests are internal to the protocol and inaccessible from user
space. They are used by the networking stack itself to handle various protocol events (see
Table 17-8).

TABLE 17-8: Protocol Requests

FUNCTION USED FOR

pr_input (struct mbuf *m,

 int len);

Ingress traffi c from network device. Passes a

chain of buff ers, m, of len len. Performs protocol

decapsulation and fi nds socket

pr_output(struct mbuf *m,

 struct socket *so);

Egress traffi c. Mostly NULL.

pr_ctlinput (int,

 struct sockaddr *,

 void *)

Protocol commands, PRC_* constants from bsd/

sys/protosw.h, corresponding to ICMP and

 network events

pr_ctloutput

 (struct socket *,

 struct sockopt *);

Implementing setsockopt(2)

void pr_init(void) Protocol initialization function. This is called when

the protocol is fi rst added — for static protocols,

by domain_init(), and for dynamically added

ones, by init_proto() — from net_add_

proto(). After initialization, this point is set to

NULL to avoid re-calling.

void pr_fasttimo ();

void pr_slowtimo();

Deprecated. Unused (NULL in all protocols). Fast

timeout originally used for 200ms timeout, Slow

timeout used for 500ms.

void pr_drain(); Drain (discard) excess protocol data when system

is low on space

continues

c17.indd 671c17.indd 671 9/29/2012 5:51:13 PM9/29/2012 5:51:13 PM

672 x CHAPTER 17 ADHERE TO PROTOCOL: THE NETWORKING STACK

FUNCTION USED FOR

void pr_sysctl((int *,

 u_int,

 void *,

 size_t *,

 void *,

 size_t);

An extension over the BSD model to support

sysctl(8) over the various protocols.

void pr_lock(struct socket *so,

 int locktype,

 void *debug);

int pr_unlock(struct socket *so,

 int locktype,

 void *debug);

An extension over the BSD model used to enable

a lock of locktype over the protocol.

 ‰ User requests: These are the various system call implementations of the socket API for
the socket of the specified protocol. Originally, a single function, pr_usrreq(), was
used in an ioctl()-like manner for all user requests, with the request specified in a
PRU_ constant. This function has been deprecated (renamed to pr_ousrreq() and left
unused) and replaced by the pr_usrreqs pointer. This is a pointer to a massive struc-
ture on its own, a struct pr_usrreqs, containing the protocol-specific implementa-
tion of functions, or NULL for functions that are not applicable for this protocol. The
structure is defined and somewhat amusingly commented in bsd/sys/protosw.h, as
shown in Listing 17-9:

LISTING 17-9: The struct pr_usrreqs defi nition in bsd/sys/protosw.h

/*
 * If the ordering here looks odd, that's because it's alphabetical.
 * Having this structure separated out from the main protoswitch is allegedly
 * a big (12 cycles per call) lose on high-end CPUs. We will eventually
 * migrate this stuff back into the main structure.
 */
struct pr_usrreqs {
 int (*pru_abort)(struct socket *so);
 int (*pru_accept)(struct socket *so, struct sockaddr **nam);
 int (*pru_attach)(struct socket *so, int proto, struct proc *p);

TABLE 17-8 (continued)

c17.indd 672c17.indd 672 9/29/2012 5:51:14 PM9/29/2012 5:51:14 PM

Layer V: Sockets x 673

 int (*pru_bind)(struct socket *so, struct sockaddr *nam,
 struct proc *p);
 int (*pru_connect)(struct socket *so, struct sockaddr *nam,
 struct proc *p);
 int (*pru_connect2)(struct socket *so1, struct socket *so2);
 int (*pru_control)(struct socket *so, u_long cmd, caddr_t data,
 struct ifnet *ifp, struct proc *p);
 int (*pru_detach)(struct socket *so);
 int (*pru_disconnect)(struct socket *so);
 int (*pru_listen)(struct socket *so, struct proc *p);
 int (*pru_peeraddr)(struct socket *so, struct sockaddr **nam);
 int (*pru_rcvd)(struct socket *so, int flags);
 int (*pru_rcvoob)(struct socket *so, struct mbuf *m, int flags);
 int (*pru_send)(struct socket *so, int flags, struct mbuf *m,
 struct sockaddr *addr, struct mbuf *control,
 struct proc *p);
#define PRUS_OOB 0x1
#define PRUS_EOF 0x2
#define PRUS_MORETOCOME 0x4
 int (*pru_sense)(struct socket void *sb, int isstat64);
 int (*pru_shutdown)(struct socket *so);
 int (*pru_sockaddr)(struct socket *so, struct sockaddr **nam);

 /*
 * These three added later, so they are out of order. They are used
 * for shortcutting (fast path input/output) in some protocols.
 * XXX - that's a lie, they are not implemented yet
 * Rather than calling sosend() etc. directly, calls are made
 * through these entry points. For protocols which still use
 * the generic code, these just point to those routines.
 */
 int (*pru_sosend)(struct socket *so, struct sockaddr *addr,
 struct uio *uio, struct mbuf *top,
 struct mbuf *control, int flags);
 int (*pru_soreceive)(struct socket *so,
 struct sockaddr **paddr,
 struct uio *uio, struct mbuf **mp0,
 struct mbuf **controlp, int *flagsp);
 int (*pru_sopoll)(struct socket *so, int events,
 struct ucred *cred, void *);
};

Initializing Domains
During kernel initialization, domaininit(), in bsd/kern/uipc_domain.c, is called from bsd_
init and is responsible for initializing all the domains from Table 17-1. All these domains (with
the exception of PPP) are hard-coded into the kernel. domaininit() adds them by concatenating

c17.indd 673c17.indd 673 9/29/2012 5:51:14 PM9/29/2012 5:51:14 PM

674 x CHAPTER 17 ADHERE TO PROTOCOL: THE NETWORKING STACK

(before Lion) or prepending (Lion) them, in turn, to the domains list. For each domain, if a dom_
init function exists, it is called. Likewise, for each domain protocol, init_proto(), is called.
This function calls the protocol’s pr_init function, if set, then unsets it (to prevent additional
calls by accident). Domains and protocols can also be modifi ed dynamically (for example, as PPP
is, from the PPP kernel extension), as shown in Table 17-9. Protocol-related functions are defi ned
in bsd/sys/protosw.h and domain-related ones in domain.h. All are implemented in bsd/kern/
uipc_domain.c.

TABLE 17-9: Domain and Protocol Dynamic Manipulation Functions

FUNCTION USAGE

net_add_domain

(struct domain *dp);

Prepends domain dp to the global

domains list and calls init_domain() to

invoke the domain’s dom_init(), if any.

struct domain *pffinddomain

 (int pf);

Looks up a domain whose dom_family

matches pf.

net_del_domain(struct domain *dp); Unlinks domain dp from the domains list.

int net_add_proto(struct protosw *pp,

struct domain *dp);
Adds the protocol specifi ed by pp to the

domain dp, and calls init_proto() to

invoke the protocol’s pr_init (unsetting

it after use).

struct protosw *pffindtype

(int family, int type);

Looks up a protocol in the domain match-

ing family whose pr_type matches

type.

Int net_del_proto(int type, int protocol,

struct domain *dp);
Removes protocol whose pr_type and

pr_protocol fi elds match, in domain dp.

Conceptually, the resulting representation of domains is simple, though large (see Figure
17-3). The domain points to an array of protosw structures, which in turn point to various
functions.

c17.indd 674c17.indd 674 9/29/2012 5:51:14 PM9/29/2012 5:51:14 PM

Layer V: Sockets x 675

AF_LOCAL(1)

dom_name “unix”

dom_protosw

SOCK_STREAM

localsw

dom_next

0

inetsw

inetdomain

inetdomain

…

…

SOCK_DGRAM

inetdomain

IPPROTO_UDP

…

udp_input

NULL

udp_ctlinput

…

…

…

udp_ctloutput

NULL

udp_init

NULL

udp_slowtimo

AF_INET(2)

dom_name “Internet”

Init func

dom_protosw

dom_next

inithead

32

sizeof(tcpiphdr)=40

sizeof(sockaddr_in)=16

NULL

NULL

udp_usrreqs

udp_lock

SOCK_STREAM

inetdomain

IPPROTO_TCP

…

tcp_ctlinput

tcp_ctloutput

NULL

tcp_init

NULL

tcp_drain

tcp_slowtimo

NULL

tcp_usrreqs

localdomain

…

… …tcp_input

NULL…

…

ip_init

…

NULL

NULL

NULL

tcp_usr_abort

tcp_usr_accept

tcp_usr_attach

tcp_usr_bind

tcp_usr_connect

tcp_usrreqs

sosend

pru_sopoll_notsupp

soreceive

tcp_lock

FIGURE 17-3: XNU’s domain structures

c17.indd 675c17.indd 675 9/29/2012 5:51:14 PM9/29/2012 5:51:14 PM

676 x CHAPTER 17 ADHERE TO PROTOCOL: THE NETWORKING STACK

LAYER III: NETWORK PROTOCOLS

Layer III (network level) protocols are somewhat simpler than their transport level counterparts.
These protocols can be registered dynamically, although XNU currently only supports IPv4, IPv6, and
AppleTalk. Network protocols may be registered with proto_register_input(), which initializes a
struct proto_input_entry and inserts it into a private proto_hash hash table. The hash function
used in this case is crude: proto_hash_value() simply returns hard coded numbers (0 through 3) for
each of the four protocols it recognizes, and a different number (4) for all other protocols.

A layer III protocol is implemented as a proto_input_entry defi ned in bsd/net/kpi_protocol.c
as shown in Listing 17-10:

LISTING 17-10: struct proto_input_entry in bsd/net/kpi_protocol.c

struct proto_input_entry {
 struct proto_input_entry *next;
 int detach;
 struct domain *domain;
 int hash;
 int chain;

 protocol_family_t protocol;
 proto_input_handler input;
 proto_input_detached_handler detached;

 mbuf_t inject_first;
 mbuf_t inject_last;

 struct proto_input_entry *input_next;
 mbuf_t input_first;
 mbuf_t input_last;
};

You may have noticed that there is no output function in Listing 17-9. This is because the output
functions of the layer III protocols are actually called directly by those of layer IV. Although the
ip_output_list() function (for IPv4) and ip6_output (for IPv6) have similar prototypes, they are
overall different, and are called by name from TCP, UDP, and RAW’s output functions, rather than
by pointer. Listing 17-11 shows the prototypes of the IP and IPv6 output functions:

LISTING 17-11: The ip6_output and ip_output_list prototypes in XNU

morpheus@ergo (../xnu/1699.26.8/)$./findfunc.sh ip6_output ip_output_list
./bsd/netinet6/ip6_output.c:232:ip6_output(struct mbuf *m0, struct ip6_pktopts *opt,
struct route_in6 *ro, int flags, struct ip6_moptions *im6o, struct ifnet **ifpp,
struct ip6_out_args
 *ip6oa);
./bsd/netinet/ip_output.c:265:ip_output_list(struct mbuf *m0, int packetchain, struct
 mbuf *opt, struct route *ro, int flags, struct ip_moptions *imo, struct
 ip_out_args *ipoa);

c17.indd 676c17.indd 676 9/29/2012 5:51:15 PM9/29/2012 5:51:15 PM

Layer III: Network Protocols x 677

Note, that while this is a deviation from the neatness of the OSI model (in that the transport
has to know its network), this is not a fault of XNU’s or BSD’s, but of the IP model itself: UDP,
for example, includes headers fi elds from IP (the so called “pseudo-header”) in its checksum
calculation.

The bsd/net/kpi_protocol.h header fi le defi nes and documents the KPI interfaces available for
manipulating and implementing protocols. Overall, the following functions in Listing 17-12 are
defi ned:

LISTING 17-12: Protocol KPI functions

typedef void (*proto_input_handler)(protocol_family_t protocol, mbuf_t packet);
typedef void (*proto_input_detached_handler)(protocol_family_t protocol);

// Input handler registration functions
errno_t proto_register_input(protocol_family_t protocol,
 proto_input_handler input, proto_input_detached_handler detached,
 int chains);
void proto_unregister_input(protocol_family_t protocol);
errno_t proto_input(protocol_family_t protocol, mbuf_t packet);
errno_t proto_inject(protocol_family_t protocol, mbuf_t packet);

// Plumbing and unplumbing handlers for attaching protocols to interfaces
typedef errno_t (*proto_plumb_handler)(ifnet_t ifp, protocol_family_t protocol);
typedef void (*proto_unplumb_handler)(ifnet_t ifp, protocol_family_t protocol);

// registration functions for above
errno_t proto_register_plumber(protocol_family_t proto_fam, ifnet_family_t if_fam,
 proto_plumb_handler plumb, proto_unplumb_handler unplumb);
extern void proto_unregister_plumber(protocol_family_t proto_fam,ifnet_family_t if_fam);

// functions for plumbing
errno_t proto_plumb(protocol_family_t protocol_family, ifnet_t ifp);
errno_t proto_unplumb(protocol_family_t protocol_family, ifnet_t ifp);

Attaching Protocols to Interfaces
To enable a network protocol, it must be attached to one or more network interfaces. These are
maintained in the kernel as struct ifnet types (discussed in the next section). The operation
of attaching a protocol to an interface is called plumbing, and the two functions available,
proto_plumb() and proto_unplumb() (declared in bsd/net/kpi_protocol.h) are used for this
purpose on PF_INET and PF_INET6. The interface provides a plumber from its end, which is called
when the protocol is plumbed, and ties the interfaces’s input and output functions to those of the
protocol.

As an example, consider the loopback interface (bsd/net/if_loop.c). The lo_reg_if_mods
function (called at the very beginning of loopattach()) registers the lo_attach_proto() function
for both AF_INET and AF_INET6. As is the case with all plumbers, the function receives the
protocol_family plumbed as one of its parameters. This is shown in Listing 17-13:

c17.indd 677c17.indd 677 9/29/2012 5:51:15 PM9/29/2012 5:51:15 PM

678 x CHAPTER 17 ADHERE TO PROTOCOL: THE NETWORKING STACK

LISTING 17-13: lo_attach_proto() from bsd/net/if_loop.c

static errno_t lo_attach_proto(ifnet_t ifp, protocol_family_t protocol_family)
{
 struct ifnet_attach_proto_param_v2 proto;
 errno_t result = 0;

 bzero(&proto, sizeof(proto));
 proto.input = lo_input; // Calls ifnet's proto_input()
 proto.pre_output = lo_pre_output; // Sets protocol type before output

 result = ifnet_attach_protocol_v2(ifp, protocol_family, &proto);

 if (result && result != EEXIST) {
 printf("lo_attach_proto: ifnet_attach_protocol for %u returned=%d\n",
 protocol_family, result);
 }

 return result;
}

LAYER II: INTERFACES

At the lowest layer, UN*X defi nes the interface. Interfaces are devices, but unlike character or block
devices, they have no /dev representation, and can only be accessed through sockets. User mode
applications can send and receive data through interfaces via sockets, or confi gure interfaces using
ioctl(2) calls. An administrator can make use of the ifconfig(8) command (which itself
uses ioctl(2) calls) for various confi guration tasks.

Interfaces in OS X and iOS
XNU supports the interfaces shown in Table 17-10 natively:

TABLE 17-10: Interfaces Natively Supported by XNU

NAME DEFINED IN TYPE

bond bsd/net/if_bond.c Bonding two or more interfaces

bridge bsd/net/if_bridge.c Layer II bridging (new in Lion)

gif bsd/net/if_gif.c Generic IP-in-IP tunneling (RFC2893)

lo bsd/net/if_loop.c Loopback interface

pfl og bsd/net/if_pflog.c Packet fi ltering (new in Lion): receives copies of all

packets logged by PF.

stf bsd/net/if_stf.c 6to4 (RFC3056) connectivity. Discussed previously in

this chapter, under “IPv6 Networking.”

c17.indd 678c17.indd 678 9/29/2012 5:51:15 PM9/29/2012 5:51:15 PM

Layer II: Interfaces x 679

NAME DEFINED IN TYPE

utun bsd/net/if_utun.c User tunnels: used by VPN and other processes

to provide a pseudo interface, whose traffi c will be

rerouted through a user-mode process.

vlan bsd/net/if_vlan.c Virtual Local Area Networks

Note that not all interfaces are necessarily active and present on any given system. The lo is the only
interface which is strictly necessary, and is always present (created by a call to loopattach() from
bsd_init, as discussed in Chapter 8). If you have astutely noticed no mention of any “en” interfaces
(used for Ethernet and 802.11), it’s not that they were forgotten; they are just not natively registered.
Even though support for the basic Ethernet logic is built-in to XNU, the kernel still relies on external
kexts to create physical interfaces. Table 17-11 shows those kexts known to create such interfaces.

TABLE 17-11: Interfaces Owned by Kernel Extensions

NAME OWNING KEXT/FAMILY TYPE

en IONetworkingFamily Ethernet or 802.11 interfaces

fw IOFireWireIP IP over FireWire (IEEE-1394). OS X only

pdp_ip AppleBaseBandFamily Cellular data connection (iPhone, iPad 1/2)

ppp PPP Point-to-Point protocol (pppd)

Aside from the loopback interface, XNU supports quite a few interfaces natively, but note they are
all virtual, or pseudo-interfaces. The gif(4) and stf(4) interfaces are enabled along with IPv6.
The poorly documented utun interface can be enabled through a PF_SYSTEM socket by tunneling
utilities. The bond, bridge, and vlan interfaces are usually created manually by a system administra-
tor using ifconfig(8)’s create sub command, as is pflog(4).

Experiment: Manually Creating Interfaces Using ifconfi g(8)
For example, consider Output 17-4, which demonstrates the ease with which a bridge interface can
be created as of Lion:

OUTPUT 17-4: A short lived bridge, erecting using ifconfi g create

root@Minion (/)# ifconfig bridge0 # check existence
ifconfig: interface bridge0 does not exist
root@Minion (/)# ifconfig bridge0 create # Lion and later – create bridge dynamically
root@Minion (/)# ifconfig bridge0
bridge0: flags=8822<BROADCAST,SMART,SIMPLEX,MULTICAST> mtu 1500
 ether ac:de:48:32:5f:a3
 Configuration:
 priority 32768 hellotime 2 fwddelay 15 maxage 20
 ipfilter disabled flags 0x2
 Address cache (max cache: 100, timeout: 1200):
root@Minion (/)# ifconfig bridge0 destroy # easy come, easy go

c17.indd 679c17.indd 679 9/29/2012 5:51:16 PM9/29/2012 5:51:16 PM

680 x CHAPTER 17 ADHERE TO PROTOCOL: THE NETWORKING STACK

The same method can be used to create the vlan0 and bond0 interfaces, which will display different
attributes, and the pflog0 interface (on Lion and later), which can be used to replicate any logged
packets.

The Data Link Interface Layer
XNU contains generic code to handle the various interfaces, irrespective of their actual implementa-
tion. This generic code is collectively known as the Data Link Interface Layer (DLIL), and is largely
self-contained in bsd/net/dlil.c (and exported via dlil.h).

The DLIL code maintains interface independence by treating all interface types as one abstract
type: the struct ifnet. dlil provides various maintenance functions for interfaces (read: ifnet
instances), but does not do any of the actual frame sending and receiving. Specifi c device drivers are
expected to use the ifnet and dlil functions to maintain and export their interfaces, and set call-
backs, which dlil can invoke at various stages of the frame’s lifetime.

The ifnet Structure
Somewhat similar to Linux’s netdev, BSD offers the ifnet structure to represent and manage
network interfaces. OS X uses the same general structure, but with some modifi cations. The
structure is (yet) another one of the massive structures, containing many statistics. Apple’s ifnet
is somewhat different from BSD’s. An abbreviated and annotated version of this structure is pre-
sented in Listing 17-14:

LISTING 17-14: struct ifnet (abridged) from bsd/net/if_var.h

/*
 * Structure defining a network interface.
 *
 * (Would like to call this struct ``if'', but C isn't PL/1.) // and luckily so!
 *
 */
struct ifnet {
 ...
 void *if_softc; /* pointer to driver state */
 const char *if_name; /* name, e.g. ``en'' or ``lo'' */
 TAILQ_ENTRY(ifnet) if_link; /* all struct ifnets are chained */
 ...
 struct ifaddrhead if_addrhead; /* linked list of addresses per if */
 struct ifaddr *if_lladdr; /* link address (first/permanent) */
 int if_pcount; /* number of promiscuous listeners */
 struct bpf_if *if_bpf; /* packet filter structure */
 // ties BPF to ifnet
 u_short if_index; // sprintf()ed with if_name(%s%d),form instance name
 short if_unit; /* sub-unit for lower level driver */
 short if_timer; /* time 'til if_watchdog called */
 short if_flags; /* up/down, broadcast, etc. */
 u_int32_t if_eflags; /* see <net/if.h> */

c17.indd 680c17.indd 680 9/29/2012 5:51:16 PM9/29/2012 5:51:16 PM

Layer II: Interfaces x 681

 int if_capabilities;/* interface features & capabilities */
 int if_capenable; /* enabled features & capabilities */

// ...MIB and internal if data

 ifnet_family_t if_family; /* value assigned by Apple */
 uintptr_t if_family_cookie;
 // Interface handling functions. Note, unlike BSD, no if_input() handler
 ifnet_output_func if_output; // called to send frame through interface
 ifnet_ioctl_func if_ioctl; // set ioctl on interface
 ifnet_set_bpf_tap if_set_bpf_tap;// Required for BPF support (see later)
 ifnet_detached_func if_free; //
 ifnet_demux_func if_demux; // Demux layer III protocol from incoming frame
 ifnet_event_func if_event; // Miscellaneous event handler
 ifnet_framer_func if_framer; // Build layer II frame for outgoing frame
 ifnet_add_proto_func if_add_proto; // Add a layer III protocol binding
 ifnet_del_proto_func if_del_proto; // Remove a layer III protocol binding
 ifnet_check_multi if_check_multi;// Approve multicast address for interface
 struct proto_hash_entry *if_proto_hash;// link to bound layer III protocol hash
 void *if_kpi_storage;// reserved for NKEs

// busy state and number of waiters ...
 struct ifnet_filter_head if_flt_head; // list of interface filters (described later)

// ... Multicast address tables and parameters

// Unlike BSD, every interface has its own dedicated input thread (hence no if_input)
 struct dlil_threading_info *if_input_thread;

// broadcast support

 #if CONFIG_MACF_NET
 struct label *if_label; /* interface MAC label */
 #endif
 u_int32_t if_wake_properties;
 #if PF
 struct thread *if_pf_curthread;
 struct pfi_kif *if_pf_kif;
 #endif /* PF */

// cached source and forward route entries

// link layer reachability tree and bridge glues

// flags, route reference count, if_traffic_class (QoS)

// Extensions for IGMPv3 (IPv4) and MLDv2 (IPv6)
};

The ifnet structures can be manipulated with several KPI functions, as shown in Table 17-12. Like
many other KPIs, they all return errno_t.

c17.indd 681c17.indd 681 9/29/2012 5:51:16 PM9/29/2012 5:51:16 PM

682 x CHAPTER 17 ADHERE TO PROTOCOL: THE NETWORKING STACK

TABLE 17-12: The KPI Functions Used to Handle Interfaces

FUNCTION USAGE

ifnet_allocate

(const struct ifnet_init_params

*init, ifnet_t *interface);

Calls dlil_if_acquire() to create an ifnet, and

initializes the ifnet fi elds which are not deemed

kernel internal only (and specifi ed in init). These are

most of those shown in Listing 17-11. The function

also ensures uniqueness of the interface instance,

and initializes its reference count

ifnet_attach(ifnet_t interface,

 const struct sockaddr_dl *ll_addr);

 ifnet_detach(ifnet_t interface);

Makes interface visible by attaching it to global

interface list (and tying its if_link fi eld). Should

only be called on a previously allocated interface.

Similarly, detach it.

ifnet_reference(ifnet_t interface);

ifnet_release(ifnet_t interface);

Increase or decrease the interface’s reference

count, free if count reaches 0. Because the ifnet_

allocate() function already sets the reference

count to 1, ifnet_release is eff ectively its inverse.

ifnet_attach_protocol[_v2]

 (ifnet_t interface,

 protocol_family_t protocol_family,

 const struct

ifnet_attach_proto_param[_v2]

*proto_details);

Used by the interface when plumbing (attaching)

a transport layer protocol. The ifnet_attach_

proto_param structure contains callbacks for

input and pre_output (required), as well as ioctl

and ARP support. The [v2] variant allows for input

 functions which process packet lists, rather than

individual packets.

In addition to the functions in the table, helper functions (like ifnet_find_by_name()), and quite
a few accessor functions (all taking the struct ifnet * and returning its respective fi elds) can
and should be used, to manipulate the individual ifnet fi elds rather than accessing them directly. A
good example of the APIs in action can be found in the sources of IONetworkingFamily, the parent
class of all networking kexts, wherein these APIs are used (in super methods which are later inher-
ited by specifi c drivers).

Case Study: utun
OS X supports a special class of interfaces, called utuns. These are not real interfaces, or even
kernel-based virtual ones. Rather, they are merely stubs, appearing to the user mode as interfaces,
but in actuality redirecting their traffi c through a specialized user mode process. Any packets sent
through the interface are rerouted to the user mode process, and the same user mode process can
instruct the interface to emit a packet.

The user mode processes usually use this mechanism for VPNs and other forms of tunneling,
hence the name — User TUNnels. Packets arriving at the process are usually encapsulated and sent
through a real network interface. Likewise, replies to those packets can be decapsulated and made
to appear as originating from the utun interface. The send path is shown in Figure 17-4.

c17.indd 682c17.indd 682 9/29/2012 5:51:16 PM9/29/2012 5:51:16 PM

Layer II: Interfaces x 683

Transport

Process utun owner

utun##

Sockets

Network

en##

1. Tunneled process binds
to utun interface

2. Utun interface gets packet,
with layer III + IV headers filled

3. utun_output bounces packet
back to the utun system socket

4. utun owner reads packet
from system socket normally 5. utun owner sends packet, with any

optional headers it chooses to add,
via some other interface (say, en)

FIGURE 17-4: Sending packets through a user tunnel (utun) interface

Any of the pseudo-interfaces in the kernel make for good examples of how to set up and initialize
ifnet instances, but utun in particular also makes for a good example of system sockets. The utuns
are created by the kernel when the user mode tunnel process creates a PF_SYSTEM socket, issues a
CTLIOCGINFO ioctl(2) to bind it to the utun namespace, and then calls connect(2). Sample code
to do so is shown in Listing 17-15:

LISTING 17-15: Sample code to bind a new utun interface

int tun(unsigned int num)
{
 struct sockaddr_ctl sc;
 struct ctl_info ctlInfo;
 int s; // returned socket descriptor

 memset(&ctlInfo, 0, sizeof(ctlInfo));
 strncpy(ctlInfo.ctl_name, UTUN_CONTROL_NAME, sizeof(ctlInfo.ctl_name);

 s = socket(PF_SYSTEM, SOCK_DGRAM, SYSPROTO_CONTROL);
 if (s < 0) { perror ("socket"; return -1; }

 if (ioctl(s, CTLIOCGINFO, &ctlInfo) == -1) {
 perror("CTLIOCGINFO");
 close(s);
 return -1;
 }

 sc.sc_family = PF_SYSTEM;
 sc.ss_sysaddr = AF_SYS_CONTROL;
 sc.sc_id = ctlInfo.ctl_id;

continues

c17.indd 683c17.indd 683 9/29/2012 5:51:17 PM9/29/2012 5:51:17 PM

684 x CHAPTER 17 ADHERE TO PROTOCOL: THE NETWORKING STACK

 sc.sc_len = sizeof(sc);

 sc.sc_unit = num;
 if (connect(s, (struct sockaddr *)&sc, sizeof(sc)) == -1) {
 perror("connect");
 close(s);
 return -1;
 }
 return s;
}

Switching to the kernel perspective, when the user mode process connects, the utun_ctl_connect
(bsd/net/if_utun.c) is called. This function creates and initializes a new utun interface, as shown
in Listing 17-16:

LISTING 17-16: utun_ctl_connect(), demonstrating interface creation

static errno_t
utun_ctl_connect(
 kern_ctl_ref kctlref,
 struct sockaddr_ctl *sac,
 void **unitinfo)
{
 struct ifnet_init_params utun_init;
 struct utun_pcb *pcb;
 errno_t result;
 struct ifnet_stats_param stats;

 /* kernel control allocates, interface frees */
 pcb = utun_alloc(sizeof(*pcb));
 if (pcb == NULL)
 return ENOMEM;

/* Setup the protocol control block */
 bzero(pcb, sizeof(*pcb));
 *unitinfo = pcb;
 pcb->utun_ctlref = kctlref;
 pcb->utun_unit = sac->sc_unit;

 printf("utun_ctl_connect: creating interface utun%d\n", pcb->utun_unit - 1);

/* Create the interface */
 bzero(&utun_init, sizeof(utun_init));
 utun_init.name = "utun";
 utun_init.unit = pcb->utun_unit - 1;
 utun_init.family = utun_family;
 utun_init.type = IFT_OTHER;
 utun_init.output = utun_output;
 utun_init.demux = utun_demux;
 utun_init.framer = utun_framer;

Name + unit will make up visible name (e.g. utun0)

Note setting of utun_init structure,
which is an ifnet_init_params,
setting all the non-private fields
of the soon to be allocated ifnet
structure.

LISTING 17-15 (continued)

c17.indd 684c17.indd 684 9/29/2012 5:51:17 PM9/29/2012 5:51:17 PM

Layer II: Interfaces x 685

 utun_init.add_proto = utun_add_proto;
 utun_init.del_proto = utun_del_proto;
 utun_init.softc = pcb;
 utun_init.ioctl = utun_ioctl;
 utun_init.detach = utun_detached;

 result = ifnet_allocate(&utun_init, &pcb->utun_ifp);
 if (result != 0) {
 printf("utun_ctl_connect - ifnet_allocate failed: %d\n", result);
 utun_free(pcb);
 return result;
 }

 OSIncrementAtomic(&utun_ifcount); // OSIncrementAtomic avoids having to lock

 /* Set flags and additional information.*/ // parameters which init cannot set
 ifnet_set_mtu(pcb->utun_ifp, 1500);

// These flags are visible in ifconfig(8)
 ifnet_set_flags(pcb->utun_ifp,IFF_UP | IFF_MULTICAST | IFF_POINTOPOINT, 0xffff);

 /* The interface must generate its own IPv6 LinkLocal address,
 * if possible following the recommendation of RFC2472 to the 64bit interface ID
 */
 ifnet_set_eflags(pcb->utun_ifp, IFEF_NOAUTOIPV6LL, IFEF_NOAUTOIPV6LL);

/* Reset the stats in case as the interface may have been recycled */
 bzero(&stats, sizeof(struct ifnet_stats_param));
 ifnet_set_stat(pcb->utun_ifp, &stats);

 /* Attach the interface */ // i.e. make it visible
 result = ifnet_attach(pcb->utun_ifp, NULL);
 if (result != 0) {
 printf("utun_ctl_connect - ifnet_allocate failed: %d\n", result);
 ifnet_release(pcb->utun_ifp);
 utun_free(pcb);
 }

 /* Attach to bpf */ // Must call bpfattach() if we want BPF (described later)
 if (result == 0)
 bpfattach(pcb->utun_ifp, DLT_NULL, 4);

/* The interfaces resources allocated, mark it as running */
 if (result == 0)
 ifnet_set_flags(pcb->utun_ifp, IFF_RUNNING, IFF_RUNNING);

 return result;
}

Very similar logic can be seen in other interface creation routines. XNU’s pseudo interface func-
tions (stfattach(), gif_clone_create(), pflog_clone_create() and others), as well as (to an
extent) the IONetworkingFamily's IONetworkInterface::attachToDataLinkLayer() follow
this general fl ow.

c17.indd 685c17.indd 685 9/29/2012 5:51:17 PM9/29/2012 5:51:17 PM

686 x CHAPTER 17 ADHERE TO PROTOCOL: THE NETWORKING STACK

When a packet is sent out through the utun interface, control eventually reaches DLIL, which calls
the interface’s output function, utun_output. This function calls ctl_enqueuembuf(bsd/kern/
kern_control.c), which fi nds the system socket the utun interface is linked with, and appends
the output mbuf to its socket buffer, waking up the user mode process which owns this socket as it
does so. The user mode process can then read from the socket, and obtain as its data the IP or IPv6
packet sent through the interface. This packet can then be encapsulated in whatever way the tunnel
process sees fi t.

When the user mode tunnel wants to inject a packet, it writes to the system socket. This results in a
call to the system socket’s ctl_send handler, set by utun_control_register() (called when utun
is set up, during bsd_init()) to be utun_ctl_send(). This function calls dlil's ifnet_input()
with the same mbuf it was passed, simulating frame arrival, and from there the mbuf fl ows up
the normal interface-to-socket receive path. This path, along with its inverse, the send path, are
described in the next section.

PUTTING IT ALL TOGETHER: THE STACK

Now that we have covered all the separate layers of the stack: the interface (struct ifnet), net-
work protocol (struct proto_input entry), the transport protocol (struct protosw) and the
socket (struct socket), we can put the separate pieces of the puzzle to see how the stack operates
as a whole for its two most important roles: sending and receiving data.

Receiving Data
Packet reception and processing requires the packet to traverse the stack upwards: from the interface
level all the way up to the target socket.

Setup
Before data can be received, each interface must register itself with an input thread, as shown in
Figure 17-5.

kernel_thread_create()

dlil_create_input_thread()

dlil_input_thread_func() (blocks)

ifnet_allocate()/* en%d */

ifnet_attach()

ifnet_allocate() /* ppp0 */

ifnet_attach()

dlil_create_input_thread()

ppp_if_attach

dlil_create_input_thread

dlil_init

bsd/net/dlil.c

IONetworkInterface::attachToDataLinkLayer:

ifnet_attach
IONetworkingFamily.kext

Other kernel extensions

PPP.kext

bsd/net/dlil.c

FIGURE 17-5: Setting up interface input threads

c17.indd 686c17.indd 686 9/29/2012 5:51:17 PM9/29/2012 5:51:17 PM

Putting It All Together: The Stack x 687

The Data Link Layer creates dedicated input threads, using dlil_create_input_thread(). The
fi rst input thread handles the loopback interface (lo_ifp), and is created by dlil_init() during
system startup (as part of bsd_init()). Additional threads are created by calls to ifnet_attach(),
when new interfaces are created (either XNU’s built-in ones, or interfaces created by kexts, such as
IONetworkingFamily).

The input threads all run the dlil_input_thread_func() continuously. This function accepts a
dlil_threading_info structure, shown in Listing 17-17.

LISTING 17-17: The dlil_threading_info, from bsd/net/dlil.h:

struct dlil_threading_info {
 decl_lck_mtx_data(, input_lck);
 lck_grp_t *lck_grp; /* lock group (for lock stats) */
 mbuf_t mbuf_head; /* start of mbuf list from if */
 mbuf_t mbuf_tail; // last mbuf from interface
 u_int32_t mbuf_count; // total number of mbufs (for walking list)
 boolean_t net_affinity; /* affinity set is available */
 u_int32_t input_waiting; /* DLIL condition of thread */
 struct thread *input_thread; /* thread data for this input */
 struct thread *workloop_thread; /* current workloop thread */
 u_int32_t tag; /* current affinity tag */
 char input_name[DLIL_THREADNAME_LEN];
#if IFNET_INPUT_SANITY_CHK
// ...
#endif
};

The dlil_input_thread_func() sleeps on its input_waiting fl ag, waiting for input to become
available.

Receiv ing Input
Figure 17-6 illustrates the process of receiving input. When a packet is received on an interface,
ifnet_input() is called, with a pointer to the interface and a pointer to the head of the packet’s
mbuf chain. The function walks the mbuf chain, and fi nds the dedicated input thread of this inter-
face (or, if none exists, redirects to the loopback thread). It adds the mbuf to the thread — either as
the fi rst packet (the threading info’s mbuf_head member) or the last one (mbuf_tail->m_nextpkt),
raises the DLIL_INPUT_WAITING fl ag on the input_waiting member, and increments the interface
statistics. This causes dlil_input_thread_func() to wake up (as input has become available), and
run its course, as shown in Figure 17-7.

The rest of the processing occurs in the interface’s input thread: dlil_input_thread_func() pro-
ceeds to dequeue the fi rst mbuf (in mbuf_head), and call dlil_input_packet_list() on that mbuf.

The dlil_input_packet_list(), true to its name, walks the mbuf chain, beginning with its argu-
ment. It fi nds which interface it is working for (either by its fi rst argument, if it is the loopback inter-
face, or by the mbuf's m_pkthdr.rcvif fi eld. It then calls the interface’s ifp_demux function to
fi nd which protocol family this mbuf should be handled by. Prior to looking up the actual protocol,
it calls dlil_interface_filters_input(), which is responsible for running any interface fi lters on

c17.indd 687c17.indd 687 9/29/2012 5:51:18 PM9/29/2012 5:51:18 PM

688 x CHAPTER 17 ADHERE TO PROTOCOL: THE NETWORKING STACK

the mbuf. The interface fi lters may claim the mbuf (causing dlil_interface_filters_input() to
return EJUSTRETURN, and dlil_input_packet_list() to skip to the next mbuf).

ppp_if_input

IONetworkInterface::inputPacket

Set the source if and length of frame

Pass to BPF

Pass to BPF

ifnet_input

ifnet_input

Walk mbuf, optional sanity check

IONetworkingFamily.kext

PPP.kext

Other kexts (inputPacket or flushInputQueue)

bsd/net/dlil.c

DLIL_INPUT

decompress packet, set source, len

Assign to interface input thread (or lo)

If net_affinity, set workloop thread

Link mbuf to mbuf_head or mbuf_tail

Raise input_waiting, wakeup thread

Increment interface statistics

dlil_input_thread_func() (wakes up)

Wakeup thread

FIGURE 17-6: Frame reception, from driver to DLIL

dlil_input_thread_func()

Dequeue mbuf_head, clear queue

bsd/net/dlil.c

Check DLIL_INPUT_TERMINATE

Call dlil_input_packet_list

dlil_input_packet_list()

while (m!=NULL)

MBUF_INPUT_CHECK

*ifp->if_demux

dlil_interface_filters_input()

find_attached_proto()

dlil_ifproto_input()Optionally call proto_input_run()

Wakeup thread
(from ifnet_input)

msleep on~INPUT_RUNNING

FIGURE 17 -7: dlil_input_thread_func(), detailed

c17.indd 688c17.indd 688 9/29/2012 5:51:18 PM9/29/2012 5:51:18 PM

Putting It All Together: The Stack x 689

If the interface fi lters did not claim the packet, a call to find_attached_proto() (to look up the pro-
tocols in the aforementioned proto_hash “hash table”), or a cached value of last_ifproto obtains a
call to the correct protocol handler, and a call to dlil_ifproto_input(), with the protocol handler
and the fi rst packet of the list, passes control to the protocol handler. Depending on the protocol han-
dler version, it is expected to process one packet at a time (version 1), or the full packet list (version 2),
by a call to its registered input function, a proto_input function. The IPv4 and IPv6 functions are
somewhat similar, but naturally involve different logic. The IPv4 handler is shown in Figure 17-8.

dlil_ifproto_input

ip_proto_dispatch_in

Run ipv4_filters

Call layer III pr_input

ip_proto_input

Sanity check

If packet is still not ours, either forward

or drop

If packet’s destination matches our IP,

goto ours

Otherwise, might still need to handle

broadcast/multicast

ip_input

MBUF_INPUT_CHECK

#if IPFIREWALL, DUMMYNET

Parse IP header, checksum

Check unicast address

Check broadcast/multicast

ip_forward

Fragmentation, IPSec

#if IPFIREWALL...

ip_proto_dispatch_in()

ours:

Enforce QoS and Firewall rules

Call PF inbound filters pf_af_hook may block the packet

Loop over packet_list

Call ip_input()

Call protocol’s v1 or v2 input

FIGURE 17-8: The ip_proto_input function

The transport protocol handler’s proto_input function calls its input function. This extra level is
necessary to support the legacy design of IPv4’s input function (ip_input), which can handle only
one packet at a time. The ip_proto_input function, therefore, walks the packet list. (IPv6 simply
falls through to ip6_input.) The input functions perform all the necessary header checks, invoke
any fi rewall or PF fi lter checks, check the destination (“forward” or “ours”), and (if “ours”) poten-
tially reassemble the packet, decrypt IPSec, and call the transport protocol’s input handler either
directly (IPv6) or indirectly (through IPv4’s ip_proto_dispatch_in()). In either case, before the
transport protocol can take over, the network protocol’s fi lters (ipv4_filters or ipv6_filters,
respectively) are called. IP fi ltering is discussed later in this chapter).

The transport protocol’s input function performs the necessary adjustments of that layer, before
fi nding the corresponding socket and delivering the packet. This is done by looking up the packet’s

c17.indd 689c17.indd 689 9/29/2012 5:51:19 PM9/29/2012 5:51:19 PM

690 x CHAPTER 17 ADHERE TO PROTOCOL: THE NETWORKING STACK

corresponding PCB, by looping over the inp_list of PCBs. If no PCB can be found, a TCP packet
generates a RST, and a UDP one similarly results in an ICMP unreachable. The mbuf is appended to
the socket’s receive buffers (so_rcv) by calling one of four functions as shown in Table 17-13. All
four return non-zero on success, and are defi ned in bsd/kern/uipc_socket2.c:

TABLE 17-13: Functions Used to Append an mbuf to a Socket’s Buff er

FUNCTION USED FOR

sbappend(struct sockbuf *sb,

 struct mbuf *m);

Appending an mbuf m to the sockbuf sb.

Used by PF_SYSTEM sockets

sbappendrecord(struct sockbuf *sb,

 struct mbuf *m0);

As sbappend(), but opens a new record.

Called by sbappend if no record exists for

the socket

sbappendstream (struct sockbuf*sb,

 struct mbuf *m)

As sbappend(), but optimized for stream

sockets. Used by TCP

sbappendaddr (struct sockbuf *sb,

 struct sockaddr *asa,

 struct mbuf *m0,

 struct mbuf *control,

 int *error_out);

As sbappend(), but also provide the

socket address details in asa. Used by

UDP (for recvfrom() in user mode), and

by raw IP

When data has been delivered, the socket is awakened by sowakeup(). This function wakes up
the threads blocking on the socket (i.e. waiting in its wait queue), causing select(2)/poll(2) or
recv(2) to return. If the socket is asynchronous (so->so_state & SS_ASYNC), the function sends
the process a SIGIO.

Sending Data
When sending data, the data originates from user mode and is passed to a socket using the send(2),
sendto(2), sendmsg(2), or sendfile(2) (#if SENDFILE) system call.

With the exception of the last, all these system calls end up using sendit (bsd/kern/
uipc_syscalls.c). This function looks up the struct socket from the fi le descriptor (using
file_socket()and fp_lookup(), as described earlier). Process the message headers, if any,
and proceeds to send, after consulting the MAC framework (mac_socket_check_send) for
compliance with the current security policy. The send operation itself is performed by accessing
the socket’s registered transport protocol (the protosw), getting its user request structure (pr_
usrreqs), and invoking its pru_sosend member, as discussed previously in this chapter under
“Transport Protocols.” The error code the send operation returns is propagated back to the
caller, unless it is EINTR, EWOULDBLOCK, or ERESTART. EPIPE error codes trigger a SIGPIPE to the
owning process, unless the socket option of NOSIGPIPE was set. This is Shown in Figure 17-9.

c17.indd 690c17.indd 690 9/29/2012 5:51:19 PM9/29/2012 5:51:19 PM

Putting It All Together: The Stack x 691

Call mac_socket_check_send on unconnected sockets to approve send

Converts file descript or s to struct socket so

so->so_proto->pr_usrreqs->pru_sosend will attempt to send

sendit

file_socket(s, so)

Handle msg_name, msg_control

MAC framework callout

error = call protocol’s pru_send

Return error to sender Depending on error, propagate to caller, quench it, or send SIGPIPE

FIGURE 17-9: The fl ow from socket to transport protocol

The various transport protocols naturally have different pru_sosend implementations, depending
on the header they need to construct for the data, and the protocol type (stream or datagram). All
pru_sosend functions, however, share the same prototype: The socket, fl ags, the mbuf containing
the data, a sockaddr to send to, an mbuf containing socket control information, and the current
process pointer. The functions generally follow the same fl ow: convert the socket to a PCB structure
using sotoinpcb(), construct the header, and pass the mbuf to the network protocol (ip_
output_list() or ip6_output()). A simple example is UDP’s send, which does this through a call
to udp_output() shown in Listing 17-18:

LISTING 17-18: udp_send (from bsd/netinet/udp_usrreq.c)

static int
udp_send(struct socket *so, __unused int flags, struct mbuf *m, struct sockaddr *addr,
 struct mbuf *control, struct proc *p)
{
 struct inpcb *inp;

 inp = sotoinpcb(so);
 if (inp == 0) {
 m_freem(m);
 return EINVAL;
 }

 return udp_output(inp, m, addr, control, p);
}

// note retro style function definition of udp_output (if it ain't broken, don't fix it)
static int
udp_output(inp, m, addr, control, p)
 register struct inpcb *inp;
 struct mbuf *m;
 struct sockaddr *addr;

continues

c17.indd 691c17.indd 691 9/29/2012 5:51:19 PM9/29/2012 5:51:19 PM

692 x CHAPTER 17 ADHERE TO PROTOCOL: THE NETWORKING STACK

 struct mbuf *control;
 struct proc *p;
{
 // ...
 int soopts = 0;
 struct mbuf *inpopts;
 struct ip_moptions *mopts;
 struct route ro;
 struct ip_out_args ipoa = { IFSCOPE_NONE, 0 };
 // ...
 inpopts = inp->inp_options;
 soopts |= (inp->inp_socket->so_options & (SO_DONTROUTE | SO_BROADCAST));
 mopts = inp->inp_moptions;
 error = ip_output_list(m, 0, inpopts, &ro, soopts, mopts, &ipoa);
 // ...
}

The network protocol’s output function fi nds a route for the packet, from which the outgoing
interface can be inferred. Before that can happen, IPv4’s ARP or IPv6’s ND need to be used to fi nd
the next hop’s link layer address (unless previously cached). When the address is at hand, a call to
ifnet_output() (which wraps dlil_output()) fi nally passes the packet to the data link interface
layer (See Figure 17-10).

If the packet is not classified as raw, the protocol is looked up
and its pre_output function is called.

If PF is enabled, pf_af_hook may block the packet

Call IPv4 filters, in order, if any.

Process IPSec output (AH/ESP) if needed, and walk IPv4 filter list again

Check with ipfw, if enabled, filtering, forwarding, or enforcing QoS

XNU will refuse to send 127.x.x.x packets on any interface but loopback

If packet length exceeds MTU, call ip_fragment(). Else, just call ifnet_output()

ip_output_list

find_attached_proto

Call protocol’s pre_output

Call PF outbound filter

Walk ipv4_filters

#if IPSEC: IPSec output

#if FIREWALL, DUMMYNET

Ensure 127.x.x.x is looped

Maybe fragment, ifnet_output

FIGURE 17-10: The fl ow of IP’s ip_output_list()

LISTING 17-18 (continued)

c17.indd 692c17.indd 692 9/29/2012 5:51:20 PM9/29/2012 5:51:20 PM

Packet Filtering x 693

The fl ow is not yet done. As shown in Figure 17-11, dlil_output() fi nds the interface’s
attached protocol (so it can call its pre_output function, if any). It then verifi es with the MAC
framework that the packet may be transmitted (by a callout to mac_ifnet_check_transmit),
calls the interface’s “framer” function (to create the link layer header), and calls any interface
fi lters (discussed later) to potentially intercept prior to sending. If all goes well, a call to the inter-
face’s if_output handler (which for a “real” interface is handled by its driver kext) performs the
actual send operation (for IOKit drivers, this calls IONetworkController::outputPacket). For
packets classifi ed as “raw,” the protocol pre_output and framer steps are skipped.

If the packet is not classified as raw, the protocol is looked up
and its pre_output function is called.

A call to mac_ifnet_check_transmit ensures compliance with policy

The interface’s framer, if any, is responsible for setting up
the layer II header on the mbuf

Interface output filters, if any, are run in order

The interface’s if_output function is called to actually send the frame

dlil_output

find_attached_proto

Call protocol’s pre_output

MAC Framework callout

Call interface’s if_framer

m = next packet

do while (m)

dlil_interface_filters_output

Call interface’s if_output

FIGURE 17-11: The fl ow of dlil_output()

PACKET FILTERING

Relatively few developers need to write full network drivers. Filtering packets, however, is com-
monplace. Whether for security or insecurity purposes, being able to inspect a host’s traffi c in real
time offers unprecedented power. The network space is an arena wherein two major forces vie for
supremacy: In the blue corner, the anti-virus and fi rewall providers, who seek to secure the host by
inspecting both ingress and egress traffi c. In the red corner, the malware and spyware “providers”
who establish covert channels in the network, by means of which they can both eavesdrop as well as
usurp control of the host. It is only fi tting, therefore, that a section be devoted to the exciting realm
of packet fi ltering.

BSD has a host of fi ltering mechanisms. Each offers its own abilities, both advantageous and dis-
advantageous. XNU, as an implementation of BSD, supports all these technologies, and they are
detailed next. For certain tasks, picking a particular mechanism over another may be preferable.
Table 17-14 illustrates the different abilities of these mechanisms.

c17.indd 693c17.indd 693 9/29/2012 5:51:20 PM9/29/2012 5:51:20 PM

694 x CHAPTER 17 ADHERE TO PROTOCOL: THE NETWORKING STACK

TABLE 17-14: Comparison of Filter Techniques

ABILITY SOCKET FILTERS IPFW/PF IP FILTERS INTERFACE

FILTERS

BPF

Mode Kernel User Kernel Kernel User

Technique API hook Firewall Firewall Firewall Packet fi lter

OSI layer V (Session) III (Network) III (Network) II (Data Link) II (Data Link)

Packet

Injection

Yes No No Yes Yes

Counterpart Windows: Win-

sock SPI

Linux: Socket

hooking

Linux:

IPTables

Linux: Netfi lter

hooks

Linux:

BRTables

(Ported to

Linux)

The kernel APIs are meant to be accessed from Network Kernel Extensions (NKEs), and Apple
Developer’s NKE Programming Guide[17] documents the fi lters (socket, IP and interface) very well.
Another discussion can be found in Halvorsen & Clarke’s book[18]. Nonetheless, we review them
here briefl y here, alongside the other mechanisms, which are not described in either.

Socket Filters
The highest level in which fi lters can be placed is that of the socket itself. The kernel implementation
of sockets, described previously, allows a kernel extension to associate a socket fi lter using a special
KPI. The KPI has been signifi cantly slimmed down from its earlier incarnations, and covers a subset
of the user mode socket API calls.

A socket fi lter is implemented as a struct sflt_filter. This structure, alongside the KPI functions
exposed for setting, attaching and detaching it from a socket, is defi ned in the well documented
bsd/sys/kpi_socketfilter.h. These functions (all return errno_t) are shown in Table 17-15:

TABLE 17-15: Socket Filter KPIs Exposed in bsd/sys/kpi_socketfi lter.h

SOCKET KPI CALL PURPOSE

sflt_register

(const struct sflt_filter *f,

 int domain,

 int type,

 int protocol);

sflt_unregister

(sflt_handle handle)

Register a socket fi lter for specifi ed domain, type

and protocol. To unregister, use the fi lter’s

handle fi eld.

c17.indd 694c17.indd 694 9/29/2012 5:51:20 PM9/29/2012 5:51:20 PM

Packet Filtering x 695

SOCKET KPI CALL CORRESPONDING API CALL

sflt_attach(socket_t so,

 sflt_handle h);

sflt_detach(socket_t so,

 sflt_handle h);

Attach/Detach socket fi lter specifi ed in handle h

to/from socket so.

sock_inject_data_in

 (socket_t so,

 const struct sockaddr *from,

 mbuf_t data,

 mbuf_t control,

 sflt_data_flag_t flags);

sock_inject_data_out

 (socket_t so,

const struct sockaddr *to,

 mbuf_t data,

 mbuf_t control,

 sflt_data_flag_t flags);

Inject data mbuf into socket so’s input or output

stream. On unconnected (e.g. UPD) sockets, the

caller may specify the fake sockaddr address

(from/to).

The struct sflt_filter itself consists of a handle, fl ags, and a collection of function pointers,
which are callbacks that will be invoked by the socket calls for registered socket fi lters. The anno-
tated structure is shown in Listing 17-19:

LISTING 17-19: The XNU socket fi lter implementation

struct sflt_filter {
 sflt_handle sf_handle; // accessible to apps using SO_NKE setsockopt(2)
 int sf_flags; // SFLT_GLOBAL, SFLT_PROG or SFLT_EXTENDED
 char *sf_name;
 sf_unregistered_func sf_unregistered;
 sf_attach_func sf_attach; // called on successful sflt_attach()
 sf_detach_func sf_detach; // called on successful sflt_detach()

 sf_notify_func sf_notify; // called with an sflt_event_t specifying
// connect/disconnect/bound/buffers full/etc

 sf_getpeername_func sf_getpeername; // called on getpeername(2)
 sf_getsockname_func sf_getsockname; // called on getsockname(2)
 sf_data_in_func sf_data_in; // called before data is delivered to thread
 sf_data_out_func sf_data_out; // called before data is queued for sending
 sf_connect_in_func sf_connect_in; // called for incoming connections - accept
 sf_connect_out_func sf_connect_out; // called for outgoing connections – connect
 sf_bind_func sf_bind; // called on bind(2)
 sf_setoption_func sf_setoption; // called on setsockopt(2)
 sf_getoption_func sf_getoption; // called on getsockopt(2)
 sf_listen_func sf_listen; // called on listen(2)
 sf_ioctl_func sf_ioctl; // called on ioctl(2)

continues

c17.indd 695c17.indd 695 9/29/2012 5:51:20 PM9/29/2012 5:51:20 PM

696 x CHAPTER 17 ADHERE TO PROTOCOL: THE NETWORKING STACK

 /*
 * The following are valid only if SFLT_EXTENDED flag is set.
 * Initialize sf_ext_len to sizeof sflt_filter_ext structure.
 * Filters must also initialize reserved fields with zeroes.
 */
 struct sflt_filter_ext {
 unsigned int sf_ext_len;
 sf_accept_func sf_ext_accept; // called before accept(2) returns
 void *sf_ext_rsvd[5]; /* Reserved */
 } sf_ext;
#define sf_len sf_ext.sf_ext_len
#define sf_accept sf_ext.sf_ext_accept
};

The callbacks specified effectively cover all the socket APIs. Their prototypes match those
of the corresponding user mode calls, with some subtle differences (e.g. the int socket is
replaced by the kernel’s socket_t, and the user mode char * buffers are replaced by the
lower level mbufs).

The socket fi lter can be registered as a global fi lter (using the SFLT_GLOBAL fl ag), which will attach
it to all sockets created from that point onward, or as a programmatic fi lter (SFLT_PROG), which will
be attached only upon a specifi c application request. To request attachment, user mode applications
can use the Apple specifi c SO_NKE setsockopt(2).

Apple Developer has a well documented example in TCPLogNKE[19], which the reader is encouraged
to peruse.

ipfw(8)
BSD-based kernels, like Linux, are not without a built-in fi rewalling functionality. What Linux
refers to it as “iptables” BSD calls “ipfw.” In BSD the mechanism can also be extended to layer II
(for example, “brtables”), but this is not the case in XNU.

ipfw has been deprecated in favor of the more powerful PF mechanism (described
next). It is included here for completeness, and still exists in Lion, but will likely be
removed in an upcoming release.

Controlling Parameters from User Mode
The ipfw mechanism can be controlled in a very fi ne-grained manner using a single command —
ipfw(8) (or ip6fw(8) for IPv6), which enables root to defi ne the rules and their default action. In
addition, the mechanism exports several sysctl(8)-visible parameters, listed in Table 17-16:

LISTING 17-19 (continued)

c17.indd 696c17.indd 696 9/29/2012 5:51:21 PM9/29/2012 5:51:21 PM

Packet Filtering x 697

TABLE 17-16: sysctl Variables for ipfw and heir Defaults in XNU.

NET.INET.IP.FW.*

(NET.INET6.IP.FW.*)

DEFAULT VALUE USED FOR

autoinc_step 100 Auto-increments value when creating dynamic (auto-

matic) rules.

curr_dyn_buckets N/A Shows current number of hash buckets for dynamic

rules.

dyn_buckets 256 Maximum number of buckets for dynamic rules (must be

a power of 2).

dyn_count N/A Current number of dynamic rules. Always less than or

equal to dyn_max, below.

dyn_keepalive 1 Automatically sends keep-alive packets for rules set to

keep-state. These are sent from the kernel, and user

mode remains oblivious to their existence.

dyn_max 4096 Maximum number of dynamic rules.

dyn_ack_lifetime

dyn_syn_lifetime

dyn_fin_lifetime

dyn_rst_lifetime

300

20

1

1

Number of seconds controlling the lifetime of various

stage TCP dynamic rules.

dyn_udp_lifetime 5 Number of seconds controlling the UDP rules.

static_count N/A Number of static rules.

enable* 1 Enables/disables ipfw globally.

debug*

verbose*

verbose_limit*

0

1

0

Generates debug messages, optionally verbose, and

up to verbose_limit messages (note that verbose_

limit 0 eff ectively disables verbose).

Variables with a (*) also exist separately in the net.inet6.ip6.fw namespace.

Note that the ipfw(8) man page, a verbatim copy of BSD’s, is wrong on several of these values. The
man page further mentions the net.link.ether.ipfw and bridge_ipfw variables for layer II fi re-
walling, but they are not supported in XNU.

The PF Packet Filter (Lion and iOS)
With Lion, Apple has integrated another BSD packet fi ltering mechanism, PF, into XNU. PF source
code has actually been part of XNU from earlier Snow Leopard versions, but has been #ifdef’d out,
and enabled only in iOS. PF is a one-stop interface for fi rewalling, and like ipfw(8), offers the

c17.indd 697c17.indd 697 9/29/2012 5:51:22 PM9/29/2012 5:51:22 PM

698 x CHAPTER 17 ADHERE TO PROTOCOL: THE NETWORKING STACK

system administrator a simple utility — pfctl(8) to manage its rulebase. A quick way to see
whether PF is enabled is to check for the existence of a /dev/pf fi le, as follows:

root@Padishah:~ # ls -l /dev/pf
crw------- 1 root wheel 7, 0 Nov 23 06:54 /dev/pf # 8,0 on Lion

pfctl(8) opens the PF device, and manages rules by issuing corresponding ioctl(2) calls — DIO-
CADDRULE, DIOCGETRULE(S), and DIOCCHANGERULE. PF also enables user mode to view logged packets
in an elegant way. Instead of looking at log fi les, an administrator can use ifconfig(8) to cre-
ate the pflog(4) pseudo-interface. A user mode process can then bind to the interface, which will
replicate all logged packets. A common use of this is to use tcpdump(1) or other packet capturing
tools this way (see the manual page for an example).

The PF fi lter callouts (via pf_af_hook()) can be seen in Figures 17-8 (input) and 17-10 (output),
respectively. PF is well documented in the corresponding man page (man pfctl on Lion and later),
and in its own book[20]. Also, because PF is a fairly rigorous and non-extensible mechanism, it is not
elaborated on here.

A classic buffer overfl ow in older versions of PF was used by the jailbreaker
comex in his “spirit” jailbreak. The bug is now classifi ed as CVE-2010-3830[21],
or by its more verbose name, “iOS < 4.2.1 packet fi lter local kernel vulnerabil-
ity,” and a detailed discussion of it can be found at Sogeti’s site[22]. In a nutshell,
this bug allows an arbitrary overwrite (specifi cally, decrement) of kernel space
memory by opening /dev/pf and issuing a DIOCADDRULE ioctl. Even though
/dev/pf requires root privileges to open, comex was able to construct a two-
staged exploit, with the fi rst stage obtaining root via geohot’s boot ROM exploit,
and dropping the second stage to be executed by launchd(8) each time the
iDevice is booted. As with the NDRV exploit discussed earlier in this chapter,
the kernel memory overwrite provides the “untethered” part of the exploit by
disabling code signing checks and memory write protections.

Following the exploit, Apple fi xed the DIOCADDRULE and DIOCGETRULE handlers.
The changes were incorporated into OpenBSD, as well. Nonetheless, this is yet
another example of how Apple’s reliance on third-party code inherits with it
third-party security vulnerabilities.

IP Filters
Whereas fi rewalling allows for a rather limited accept/deny/drop functionality, fi ltering enables
more detailed packet inspection, and even modifi cation. BSD includes an IP fi ltering mechanism not
unlike Linux’s NetFilter (IPTables). The IP fi lters are invoked by the stack as callouts from specifi c
points.

This mechanism is very powerful, and power corrupts. Indeed, IP fi ltering is commonly used in
malware rootkits — Dino Dai Zovi’s “Machiavelli”[23] uses the IPFilter framework in its rootkit
component.

c17.indd 698c17.indd 698 9/29/2012 5:51:22 PM9/29/2012 5:51:22 PM

Packet Filtering x 699

The ipf_fi lter Structure
An IP fi lter, called ipf_filter throughout the kernel, is basically two callback functions: one for
fi ltering inbound traffi c (ipf_input), and one for the outbound traffi c (ipf_output). Additionally,
an ipf_detach function can be used to handle fi lter detachment. A fi lter can also have a free text
name and a “cookie.” This “cookie” is an opaque, void pointer and may be used to pass a structure
or some other argument to the fi lter functions (See Listing 17-20).

LISTING 17-20: The IPFilter and opaque IPFilter from bsd/netinet/kpi_ipfi lter.c

/*!
 @typedef ipf_filter
 @discussion This structure is used to define an IP filter for
 use with the ipf_addv4 or ipf_addv6 function.
 @field cookie A kext defined cookie that will be passed to all
 filter functions.
 @field name A filter name used for debugging purposes.
 @field ipf_input The filter function to handle inbound packets.
 @field ipf_output The filter function to handle outbound packets.
 @field ipf_detach The filter function to notify of a detach.
*/
struct ipf_filter {
 void *cookie; // opaque value, caller defined, passed to functions
 const char *name;
 ipf_input_func ipf_input; // Handles input packets (see below)
 ipf_output_func ipf_output; // Handles output packets (see below)
 ipf_detach_func ipf_detach; // Handles filter detachment (see below)
};

struct opaque_ipfilter;
typedef struct opaque_ipfilter *ipfilter_t;

The kernel maintains two fi lter lists: ipv4_filters and ipv6_filters. An additional fi lter list —
tbr_filters — is used for defunct fi lters are to be removed. All three lists are opaque, however,
and fi lters should only be manually added to the fi rst two lists by a call to ipf_addv4 or ipf_addv6,
respectively.

Implementing Filter Functions
A fi lter can choose to implement either ingress or egress function (or both), and can optionally
specify a detach function. The functions adhere to a set interface, as shown in Listing 17-21.

LISTING 17-21: Interface fi lter function prototypes (from bsd/netinet/kpi_ipfi lter.h)

typedef errno_t(*ipf_input_func)(void *cookie,mbuf_t *data,int offset,u_int8_t
protocol); (*ipf_output_func)(void *cookie,
mbuf_t *data, ipf_pktopts_t options);
typedef void (*ipf_detach_func)(void *cookie);

c17.indd 699c17.indd 699 9/29/2012 5:51:23 PM9/29/2012 5:51:23 PM

700 x CHAPTER 17 ADHERE TO PROTOCOL: THE NETWORKING STACK

The input and output functions get the data to be fi ltered, along with a cookie value, which is the
pointer value specifi ed during fi lter creation. The fi lters can then do whatever processing is required,
returning 0 to signal the packet is ok (normal processing), EJUSTRETURN to instruct the stack to
drop the packet, but not free the mbuf. Any other non-zero value, will instruct the stack to drop the
packet, and free the mbuf as well.

Filter Callout Locations
Once installed, user-specifi ed fi lters are called out from the IP stack at two specifi c locations:

 Packet input: The IP protocol input functions (ip_proto_dispatch_in in bsd/netinet/
ip_input.c for IPv4 and ip6_input in bsd/netinet6/ip6_input.c for IPv6) iterate over
the corresponding fi lter list (ipv[46]_filters) and call the ipf_input member function, if
set.

 ‰ Packet output: The IP protocol output functions (ip_output_list in bsd/netinet/ip_
output.c for IPv4, and ip6_output in bsd/netinet6/ip6_output.c for IPv6) similarly
iterate over the fi lter list and call the ipf_output member function, if set. The IPv4 handler
actually calls the fi lters on two separate occasions, one for multicast and one for normal
packets, but the two cases are mutually exclusive.

Listing 17-22 shows how the fi lter list is walked from ip6_input():

LISTING 17-22: Walking ipv6_fi lters, from ip6_input() (bsd/netinet6/ip6_input.c)

 /*
 * Call IP filter
 */
 if (!TAILQ_EMPTY(&ipv6_filters)) {
 ipf_ref();
 // Walk the v6 filter list (v4 is very similar)
 TAILQ_FOREACH(filter, &ipv6_filters, ipf_link) {
 if (seen == 0) {
 if ((struct ipfilter *)inject_ipfref == filter)
 seen = 1;
 } else if (filter->ipf_filter.ipf_input) {
 // If an input filter exists, execute it on this mbuf
 errno_t result;
 result = filter->ipf_filter.ipf_input(
 filter->ipf_filter.cookie, (mbuf_t*)&m, off, nxt);
 // If filter returns "EJUSTRETURN", packet is intercepted
 if (result == EJUSTRETURN) {
 ipf_unref();
 goto done; // packet dropped, mbuf is not freed
 }
 if (result != 0) {
 ipf_unref();
 goto bad; // packet dropped, mbuf is freed
 }
 }
 }
 ipf_unref();
 }

c17.indd 700c17.indd 700 9/29/2012 5:51:23 PM9/29/2012 5:51:23 PM

Packet Filtering x 701

Interface Filters
The lowest level in which fi lters can be placed is that of the network interface. These fi lters are con-
ceptually similar to socket and IP fi lters, but the lower level allows the fi lter to intercept and manip-
ulate the packets before any further processing by upper layers.

An interface fi lter is a struct iff_filter, defi ned in bsd/net/kpi_interfacefilter.h as shown
in Listing 17-23:

LISTING 17-23: An interface fi lter, annotated

struct iff_filter {
 void *iff_cookie; // argument to filter functions
 const char *iff_name; // filter name (not really useful)
 protocol_family_t iff_protocol; // 0 (all packets) or specific protocol
 iff_input_func iff_input; // optional filter for input packets, or NULL
 iff_output_func iff_output; // optional filter for output packets, or NULL
 iff_event_func iff_event; // optional filter for interface events,or NULL
 iff_ioctl_func iff_ioctl; // optional filter for ioctls on interface
 iff_detached_func iff_detached; // required callback when filter is detached
};

The various fi lters all receive the interface (ifnet_t). The input and output fi lters receive the packet
an mbuf chain. As with IP fi lters, the fi lter functions are expected to return 0 (accept), EJUSTRETURN
(drop), or any non-zero value (drop, free). The fi lters are invoked by DLIL using dlil_interface_
filters_[input|output]() prior to actually receiving or sending the frame (as shown in
Figure 17-7 for the receive path, right before the call to find_attached_proto()).

The Berkeley Packet Filter
Low-level packet fi lters may not require protocol-level packet processing and prefer to work on
the packets themselves, gaining even more effi ciency in the process. McCanne and Van Jacobson
(known for PPP compression and the traceroute algorithm) addressed this need by developing the
BSD Packet Filter (BPF) back in 1993 and presenting it in a UseNIX paper[24]. BPF has since become
a standard, powering many a network monitor (notably, TCPDump and libPCab-related tools).
Because XNU’s networking is based on BSD’s, it has integrated BPF, as well. The code is contained
in bsd/net, as shown in Table 17-17:

TABLE 17-17: BPF Implementation Files in XNU

BSD/NET FILE USED FOR

bpf.c The BPF supporting logic, ioctls, and /dev interface

bpf_filter.c The BPF state machine

bpf.h General defi nitions for structs and ioctl codes

bpf_compat.h Compatibility hacks (#defines) for malloc and free

bpf_desc.h Defi ning descriptors associated with BPF devices: bpf_d and bpf_if

c17.indd 701c17.indd 701 9/29/2012 5:51:23 PM9/29/2012 5:51:23 PM

702 x CHAPTER 17 ADHERE TO PROTOCOL: THE NETWORKING STACK

BPF is structured around the notion of a “fi lter machine.” The machine is a state machine with no
loops or backward branches and limited opcodes. Ensuring no loops is critical, because the code
runs in the kernel whenever a packet is processed and under tight constraints. The fi lter may inspect,
but not modify any packets, though packets may be injected onto an interface.

To get started, a user mode program opens one of the /dev/bpf# devices. Each device can be
attached to an underlying interface† with a given BPF program. There are usually four such fi les —
/dev/bpf0 through /dev/bpf3 — but more fi les can be dynamically created as the need arises, up
to bpf_maxdevices (set to 256, and also exported through sysctl kern.debug). Clients normally
iterate over all devices and grab the fi rst one available.

Controlling BPF is done exclusively through ioctl(2) calls. First, the BPF device has to be attached
to an underlying interface (with a BIOCSETIF ioctl). Next, options may be set on the device, as
shown in Table 17-18.

TABLE 17-18: BPF ioctls Related to Setting Options

BPF IOCTL USED FOR

BIOCSBLEN Sets buff er len. Called prior to attachment with BIOCSETIF. This buff er

size must be adhered to in future read(2) calls.

BIOCSRSIG Rather than block read(2), this sends a signal (default: SIGIO) to pro-

cess on packet availability.

BIOCSSEESENT If set to non-zero, read(2) also returns (SEE) outgoing (SENT) packets

from the underlying device, rather than just returning incoming ones.

BIOCIMMEDIATE Returns immediately on packet availability, rather than blocking until a

timeout or the buff er is full. Setting this overrides BIOCSRTIMEOUT (see

next entry)

BIOC[GS]RTIMEOUT Gets/sets timeout value, after which the read(2) operation will return.

Setting this overrides BIOCIMMEDIATE (see preceding entry).

BIOCPROMISC Sets underlying interface to promiscuous mode. Interface will deliver

all frames, not just those matching its own hardware Address (or broad-

cast/multicast) to the kernel. This is useful for monitoring over hubs, for

example.

To start reading from a device, a BPF program is defi ned by the client and set to execute on the
interface by a BIOCSETF ioctl(2). From that point onward, the client can simply employ standard
read(2) system calls to retrieve packets (according to the options set in Table 17-18. The BPF pro-
gram is thus key in determining which packets will be received on the device. Only packets match-
ing the fi lter will be made available on the fi le descriptor.

†Only interfaces whose initialization code called bpfattach() and provided an ifnet_set_bpf_tap
callback may be attached in this manner, though all common interfaces call bpfattach(), as do the
ones initialized from Apple’s kexts. Because this code is present in IONetworkingFamily, all the subclasses
automatically become BPF-enabled

c17.indd 702c17.indd 702 9/29/2012 5:51:23 PM9/29/2012 5:51:23 PM

Packet Filtering x 703

Building a BPF Program
A BPF program constitutes a program-within-a-program written in a format that can be understood by
the BPF machine. The program is a struct bpf_program, which is constructed as an array of bf_len
bpf_insn structs. Each bpf_insn represents a BPF instruction, defi ned as shown in Listing 17-24.

LISTING 17-24: The BPF instruction structure

/*
 * The instruction data structure.
 */
struct bpf_insn {
 u_short code; // The instruction op code
 u_char jt; // Conditions: Branch on argument eval true
 u_char jf; // Conditions: Branch on argument eval false
 bpf_u_int32 k; // Argument for instructions. Depends on code
};

/*
 * Macros for insn array initializers.
 */
#define BPF_STMT(code, k) { (u_short)(code), 0, 0, k }
#define BPF_JUMP(code, k, jt, jf) { (u_short)(code), jt, jf, k }

Six “opcodes” can be used to inspect the incoming packets. The opcodes are understood by the BPF
machine, which is a simple abstraction containing an instruction pointer, an accumulator register
(for simple arithmetic), an index register, and limited memory. The machine is extremely limited,
but considering its intended usage, is well suited to the task at hand of inspecting packets.

The bpf(3) manual page elaborates on the actual opcodes and patterns; the interested reader is
advised to turn there for a more complete reference. Rather than repeat more of the same, this book
turns to a practical example.

Experiment: Constructing a Sample BPF Program
Listing 17-25 demonstrates a sample generic fi lter for IPv4 packets, matching a specifi c protocol
and port.

LISTING 17-25: A fi lter program to capture frames matching a specifi ed protocol and port

int installFilter(int fd,
 unsigned char Protocol,
 unsigned short Port)
{
 struct bpf_program bpfProgram = {0};

 /* dump IPv4 packets matching Protocol and Port only */
 /* @param: fd - Open /dev/bpfX handle. */

 /* As an exercise, you might want to extend this to IPv6, as well */

continues

c17.indd 703c17.indd 703 9/29/2012 5:51:24 PM9/29/2012 5:51:24 PM

704 x CHAPTER 17 ADHERE TO PROTOCOL: THE NETWORKING STACK

 const int IPHeaderOffset = 14;

 /* Assuming Ethernet II frames, We have:
 *
 * Ethernet header = 14 = 6 (dest) + 6 (src) + 2 (ethertype)
 * Ethertype is 8-bits (BFP_P) at offset 12
 * IP header len is at offset 14 of frame (lower 4 bytes).
 * We use BPF_MSH to isolate field and multiply by 4
 * IP fragment data is 16-bits (BFP_H) at offset 6 of IP header, 20 from frame
 * IP protocol field is 8-bts (BFP_B) at offset 9 of IP header, 23 from frame
 * TCP source port is right after IP header (HLEN*4 bytes from IP header)
 * TCP destination port is two bytes later)
 */

 struct bpf_insn insns[] = {
 BPF_STMT(BPF_LD + BPF_H + BPF_ABS, 6+6), // Load ethertype 16-bits (12 (6+6)
 // bytes from beginning)

 BPF_JUMP(BPF_JMP + BPF_JEQ + BPF_K, ETHERTYPE_IP, 0, 10),
 // Compare to requested Ethertype or jump(10) to reject

 BPF_STMT(BPF_LD + BPF_B + BPF_ABS, 23), // Load protocol(=14+9 (bytes from IP))
 // bytes from beginning

 BPF_JUMP(BPF_JMP + BPF_JEQ + BPF_K , Protocol, 0, 8), // Compare to requested
 // or jump(8) to reject

 BPF_STMT(BPF_LD + BPF_H + BPF_ABS, 20), // Move 20 (=14 + 6) We are
 // now on fragment offset field

 BPF_JUMP(BPF_JMP + BPF_JSET+ BPF_K, 0x1fff, 6, 0), // Bitwise-AND with 0x1FF and
 // jump(6) to reject if true

 BPF_STMT(BPF_LDX + BPF_B + BPF_MSH, IPHeaderOffset), // Load IP Header Len (from
 // offset 14) x 4 , into Index register

 BPF_STMT(BPF_LD + BPF_H + BPF_IND, IPHeaderOffset), // Skip past IP header
 // (off: 14 + hlen, in BPF_IND), load TCP src

 BPF_JUMP(BPF_JMP + BPF_JEQ + BPF_K , Port, 2, 0), // Compare src port to requested
 // Port and jump to "port" if true

 BPF_STMT(BPF_LD + BPF_H + BPF_IND, IPHeaderOffset+2),
 // Skip two more bytes (off: 14 + hlen + 2), to load TCP dest
/* port */

 BPF_JUMP(BPF_JMP + BPF_JEQ + BPF_K , Port, 0, 1), // If port matches, ok.
 // Else reject
/* ok: */

 BPF_STMT(BPF_RET + BPF_K, (u_int)-1), // Return -1 (packet accepted)

LISTING 17-25 (continued)

c17.indd 704c17.indd 704 9/29/2012 5:51:24 PM9/29/2012 5:51:24 PM

Traffi c Shaping and QoS x 705

/* reject: */

 BPF_STMT(BPF_RET + BPF_K, 0) // Return 0 (packet rejected)
 };

 // Load filter into program
 bpfProgram.bf_len = sizeof(insns) / sizeof(struct bpf_insn);
 bpfProgram.bf_insns = &insns[0];

 return(ioctl(fd, BIOCSETF, &bpfProgram));
}

To install this fi lter, write a small “driver” program that opens /dev/bpfX (by either iterating
through the defi ned BPF devices, or arbitrarily choosing X to be one of 0, 1, 2, or 3.). The program
should set the following ioctl()s:

 ‰ BIOCSETIF: The ioctl accepts a struct ifreq, though you only need to set (strncpy) the
ifr_name to be the name of the underlying device (en0, and so on), and pass the struct by
reference.

 ‰ BIOCSEESENT: Set this if you want to see outbound, as well as inbound frames.

 ‰ BIOCIMMEDIATE or BIOCSRTIMEOUT: Set this to get your read(2) loop to return on frame
reception, or immediately.

 ‰ BIOCPROMISC (optional): Sets promiscuous mode. Use this if you are in a shared environment
(hub) or are also using VM guests in your Mac. This enables you to see traffi c not intended
for your host.

After setting the ioctl()s, you can simply start a read loop (remember the buffer size passed must
match the BPF buffer len, so use BIOCGBLEN or BIOCSBLEN). Frames will be delivered as one or more
bpf_hdr structures, up to the amount of bytes read. The structure contains a bh_hdrlen fi eld, which
denotes the BPF header size. Immediately following it will be the frame, of bh_caplen bytes.

Not relying on sizeof(struct bpf_hdr) is important, because of compiler
alignment directives. Advancing to the next frame using BPF_WORDALIGN is also
important, for the same reasons.

If you are feeling adventurous, compile this program for iOS — you might need to copy over some OS
X includes (notably, <net/bpf.h>). The program does, however, compile cleanly, and makes for a nice
TCPdump clone (though you can always get the latter from Cydia). You can download a fully working
tool, which is based on one possible solution to this exercise, from the book’s companion website.

TRAFFIC SHAPING AND QOS

BSD offers, in additional to its built-in fi rewall, a Quality of Service (QoS) traffi c shaper mechanism
known as dummynet(4). This mechanism relies on the ipfw structures described earlier in this chap-
ter, and is in fact controlled from the system command ipfw(8).

c17.indd 705c17.indd 705 9/29/2012 5:51:24 PM9/29/2012 5:51:24 PM

706 x CHAPTER 17 ADHERE TO PROTOCOL: THE NETWORKING STACK

The Integrated Services Model
Defi ned in RFC 1633, Integrated Services (IntSrv) takes a different approach to QoS. Packets are
still differentiated, but are not classifi ed into logical “fl ows.” A “fl ow” consists of a traffi c specifi ca-
tion (TSpec), which like the DiffSrv code point, is defi ned based on packet-specifi c attributes. In
addition, however, a reservation specifi cation (RSpec) defi nes parameters for the fl ow itself, namely
bandwidth reservation, maximum acceptable delay, and acceptable packet loss.

BSD defi nes a “pipe” for integrated services. The pipe parameters can be adjusted with the ipfw(8)
subcommand pipe config by specifying the number and the specifi c parameter — usually bw
(bandwidth) or delay. Note, that this subcommand is not available in ip6fw(8).

The Diff erentiated Services Model
Defi ned in RFC2474, Differentiated Services (DiffSrv) is a packet classifi cation mechanism which
assigns one of 64 “code points” to an IP packet based on properties such as its source, destination,
protocol, or transport layer attributes (commonly, its ports). The 64 code points can then be used
to place egress packets into one of several queues, and then route packets by queue. Each second is
divided into equal shares, but an unequal number of shares is given to each queue. So, although each
queue still maintains its own fi rst-in-fi rst-out (FIFO) ordering, the queue itself may be processed
more or less frequently than others.

This approach is hence called Weighted Fair Queuing (WFQ). The fairness stems from the fact that,
rather than prioritizing packets, this approach guarantees that even lowly-classifi ed packets get
treatment (although somewhat more infrequently). BSD kernels actually extend WFQ by using an
improved algorithm called Worse-Case WFQ.

Differentiated services are provided by the “queue,” which you can confi gure to hold a maxi-
mum number of packets, or overall bytes. The queues can also be set to implement the RED
(Random Early Detection) or gRED (a “gentle” variant), to preemptively drop packets on specifi c
thresholds.

Implementing dummynet
The dummynet mechanism is implemented in a single fi le, bsd/netinet/ip_dummynet.c, and uses
three heaps:

 ‰ ready_heap: Used for fi xed-rate pipes

 ‰ wfq_ready_heap: Used in implementing the worst-case WFQ

 ‰ extract_heap: Used to maintain packets that are intentionally delayed

These heaps are all defi ned in bsd/netinet/ip_dummynet.h (See Listing 17-26).

LISTING 17-26: THE DUMMYNET HEAP IMPLEMENTATION FROM BSD/NETINET/IP_DUMMYNET.H

struct dn_heap_entry {
 dn_key key ; /* sorting key. Topmost element is smallest one */
 void *object ; /* object pointer */
} ;

c17.indd 706c17.indd 706 9/29/2012 5:51:25 PM9/29/2012 5:51:25 PM

Summary x 707

struct dn_heap {
 int size ;
 int elements ;
 int offset ; /* XXX if > 0 this is the offset of direct ptr to obj */
 struct dn_heap_entry *p ; /* really an array of "size" entries */
} ;

Every interval (usually 1 ms), the dummynet() function is called, incrementing ticks.

Controlling Parameters from User Mode
Similar to controlling the ipfw mechanism, in addition to the ipfw(8) command, which is used to
create the pipes or the queues from its rules and confi gure them, several sysctl(8)-visible param-
eters are available, as listed in Table 17-19.

TABLE 17-19: sysctl Parameters Pertaining to dummynet(4) Traffi c Shaping

 NET.INET.IP.DUMMYNET.* DEFAULT VALUE USED FOR

hash_size 64 Default value of buckets in queues and fl ows.

red_avg_pkt_size 512 Average size of a packet.

red_max_pkt_size 1500 Maximum size of a packet (as per MTU).

red_lookup_depth 256 Accuracy of computing the RED algorithm.

debug 0 Enables debug output.

expire 1 Automatically removes dynamic pipes if they

become idle (that is, no traffi c).

max_chain_len 16 Maximum number of pipes or queues per

bucket. They are automatically removed

upon max_chain_len x hash_size.

searches

search_steps

0

0

Number of queue searches and search steps.

ready_heap

extract_heap

N/A Current sizes of ready and extract heaps.

*Parameters in italic are not specifi ed in the manual pages.

SUMMARY

This chapter detailed, in great depth, the inner workings of the XNU network stack. Though closely
resembling that of BSD, the XNU stack has some notable extensions in its implementation. The
stack has a multitude of fi ltering mechanisms at every one of its layers (sockets, IP and interfaces), as
well as support for QoS. Most importantly, it is “pluggable” in the sense that kernel extensions can
register their own callbacks with specifi c protocol implementations, as is in fact done by
IONetworkingFamily and friends.

c17.indd 707c17.indd 707 9/29/2012 5:51:25 PM9/29/2012 5:51:25 PM

708 x CHAPTER 17 ADHERE TO PROTOCOL: THE NETWORKING STACK

The next chapters will discuss how these kernel extensions are created and handled. Chapter 18
explains the basic concepts of structure of all extensions, and Chapter 19 devotes itself to those of a
specifi c type, IOKit.

REFERENCES AND FURTHER READING

1. Stevens, “Sockets and XTI programming,” Vol. 1

2. Stevens, “TCP/IP Illustrated,” Vol. 1–3

3. Kong, Joseph. Designing BSD Rootkits: An Introduction to Kernel Hacking. No Starch
Press, 2007

4. Article TS1629, “Well known TCP and UDP ports used by Apple software products,”
http://support.apple.com/kb/TS1629

5. RFC1035 — “Domain Names – Implementation and Specifi cation”
http://www.ietf.org/rfc/rfc1035.txt

6. Apple Developer. Apple Filing Protocol Reference — https://developer.apple.com/
library/mac/#documentation/Networking/Reference/AFP_Reference/Reference/

reference.html

7. Network-cmds and the route(8) command — http://opensource.apple.com/source/
network_cmds/network_cmds-356.8/route.tproj/route.c

8. Apple’s EAPOL implementation — http://opensource.apple.com/tarballs/eap8021x/

9. Esser, Stefan “iOS Kernel Exploitation,” https://media.blackhat.com/bh-us-11/Esser/
BH_US_11_Esser_Exploiting_The_iOS_Kernel_WP.pdf

10. RFC2367 - Key Management Sockets http://www.ietf.org/rfc/rfc2367.txt

11. The Kame Project — “IPv6 and IPsec stack for use in BSD-based operating systems”
http://www.kame.net

12. RFC3056 — “Connection of IPv6 Domains via IPv4 Clouds” http://www.ietf.org/rfc/
rfc3056.txt

13. RFC4380 — “Teredo” http://www.ietf.org/rfc/rfc4380.txt

14. Miredo for OS X: http://www.remlab.net/miredo/

15. RFCGI — RFC2893 — “Transition Mechanisms for IPv6 Hosts and Routers”
http://www.ietf.org/rfc/rfc2893.txt

16. Network-cmds and the netstat(8) command — http://opensource.apple.com/source/
network_cmds/network_cmds-356.8/netstat.tproj/inet.c

17. Apple Developer, “Network Kernel Extensions Programming Guide,” http://developer
.apple.com/library/mac/documentation/Darwin/Conceptual/NKEConceptual/

NKEConceptual.pdf

c17.indd 708c17.indd 708 9/29/2012 5:51:25 PM9/29/2012 5:51:25 PM

http://support.apple.com/kb/TS1629
http://www.ietf.org/rfc/rfc1035.txt
https://developer.apple.com/library/mac/#documentation/Networking/Reference/AFP_Reference/Reference/reference.html
http://opensource.apple.com/source/network_cmds/network_cmds-356.8/route.tproj/route.c
http://opensource.apple.com/tarballs/eap8021x
https://media.blackhat.com/bh-us-11/Esser/BH_US_11_Esser_Exploiting_The_iOS_Kernel_WP.pdf
http://www.ietf.org/rfc/rfc2367.txt
http://www.kame.net
http://www.ietf.org/rfc/rfc3056.txt
http://www.ietf.org/rfc/rfc4380.txt
http://www.remlab.net/miredo
http://www.ietf.org/rfc/rfc2893.txt
http://opensource.apple.com/source/network_cmds/network_cmds-356.8/netstat.tproj/inet.c
http://developer.apple.com/library/mac/documentation/Darwin/Conceptual/NKEConceptual/NKEConceptual.pdf
https://developer.apple.com/library/mac/#documentation/Networking/Reference/AFP_Reference/Reference/reference.html
https://developer.apple.com/library/mac/#documentation/Networking/Reference/AFP_Reference/Reference/reference.html
http://opensource.apple.com/source/network_cmds/network_cmds-356.8/route.tproj/route.c
https://media.blackhat.com/bh-us-11/Esser/BH_US_11_Esser_Exploiting_The_iOS_Kernel_WP.pdf
http://opensource.apple.com/source/network_cmds/network_cmds-356.8/netstat.tproj/inet.c
http://developer.apple.com/library/mac/documentation/Darwin/Conceptual/NKEConceptual/NKEConceptual.pdf
http://developer.apple.com/library/mac/documentation/Darwin/Conceptual/NKEConceptual/NKEConceptual.pdf
http://www.ietf.org/rfc/rfc3056.txt

References and Further Reading x 709

18. Halvorsen & Clarke “iOS and OS X Kernel Programming” Apress, 2011

19. Apple Developer. TCPLogNKE sample code — https://developer.apple.com/library/
mac/#samplecode/tcplognke/Introduction/Intro.html#//apple_ref/doc/uid/

DTS10003669

20. Hansteen, Peter, The Book of PF: A No-Nonsense Guide to the OpenBSD Firewall, Second
Edition. No Starch Press, 2010

21. CVE-2010-3830, http://cve.mitre.org/

22. Sogeti, ESEC Labs http://esec-lab.sogeti.com/post/2010/12/09/
CVE-2010-3830-iOS-4.2.1-packet-filter-local-kernel-vulnerability

23. Machiavelli — http://www.blackhat.com/presentations/bh-usa-09/DAIZOVI/
BHUSA09-Daizovi-AdvOSXRootkits-SLIDES.pdf

24. McCanne and Van Jacobson, “The BSD Packet Filter: A New Architecture for User-level
Packet Capture,” http://www.tcpdump.org/papers/bpf-usenix93.pdf

c17.indd 709c17.indd 709 9/29/2012 5:51:26 PM9/29/2012 5:51:26 PM

https://developer.apple.com/library/mac/#samplecode/tcplognke/Introduction/Intro.html#//apple_ref/doc/uid/DTS10003669
http://cve.mitre.org
http://esec-lab.sogeti.com/post/2010/12/09/CVE-2010-3830-iOS-4.2.1-packet-filter-local-kernel-vulnerability
http://www.blackhat.com/presentations/bh-usa-09/DAIZOVI/BHUSA09-Daizovi-AdvOSXRootkits-SLIDES.pdf
http://www.tcpdump.org/papers/bpf-usenix93.pdf
https://developer.apple.com/library/mac/#samplecode/tcplognke/Introduction/Intro.html#//apple_ref/doc/uid/DTS10003669
https://developer.apple.com/library/mac/#samplecode/tcplognke/Introduction/Intro.html#//apple_ref/doc/uid/DTS10003669
http://esec-lab.sogeti.com/post/2010/12/09/CVE-2010-3830-iOS-4.2.1-packet-filter-local-kernel-vulnerability
http://www.blackhat.com/presentations/bh-usa-09/DAIZOVI/BHUSA09-Daizovi-AdvOSXRootkits-SLIDES.pdf

c17.indd 710c17.indd 710 9/29/2012 5:51:26 PM9/29/2012 5:51:26 PM

18
Modu(lu)s Operandi — Kernel
Extensions

XNU provides a rich ecosystem of a kernel, having all the necessary services — scheduling,
memory management, I/O, and more. Yet, no kernel can completely accommodate the vast
range of hardware and peripheral devices available. Nor can any kernel, even monolithic ones,
claim to be fully complete.

Enter: kernel extensions. Like shared libraries or DLLs in user mode, these are kernel modules,
which may be dynamically inserted or removed on demand, often from user mode. XNU, in
both OS X and iOS, makes use of modules to load its various device drivers, and to augment
kernel functionality with entirely self-contained subsystems.

This chapter explores the mechanics of kernel extensions. We fi rst discuss the design
perspective, and then delve into intrinsic details of the various APIs. The chapter provides also
provides insight into the undocumented happenings behind the APIs.

EXTENDING THE KERNEL

Virtually every contemporary operating system architecture acknowledges that, although
a kernel is usually self-contained and must be able to provide the full set of APIs expected
by user mode, crafting a kernel that is statically linked is virtually impossible. Such a
kernel would imply a very rigid structure, which would not be extensible in any way:
That, which was compiled in time, would be available, yet no additional functionality
could be added.

With the multitude of devices available and the many offerings of new buses and device
classes, compiling a single kernel that would contain all the necessary device drivers is
unfeasible. Additionally, some operating system designs allow third-party developers
access to extend and enhance their kernels or otherwise allow the insertion of code into
kernel mode.

c18.indd 711c18.indd 711 9/29/2012 5:52:05 PM9/29/2012 5:52:05 PM

712 x CHAPTER 18 MODU(LU)S OPERANDI — KERNEL EXTENSIONS

As necessity is the mother of invention, extensibility is that of modular design. Just as user
mode has DLLs (in Windows) or shared objects (in UNIX), so does kernel mode in the form
of kernel modules, or — in XNU parlance — kernel extensions. Called kexts for short, kernel
extensions are a fundamental building block of XNU as much as the core itself. In fact, it is not
uncommon to fi nd more kernel-mode code resulting from module insertion than the original
kernel core.

Although the nomenclature might be different, the idea behind kexts is exactly the same as that of
Windows’ .sys fi les (in %systemroot%\system32\drivers) and Linux’s .ko fi les (usually in /lib
/modules or elsewhere). All three fi le types are relocatable code that is dynamically linked with
specifi c symbols the kernel sees fi t to export. Kexts require only one well-known entry point, which
usually handles all the initialization tasks the extension requires, and from that point can execute
any code the developer wants.

A kext runs in kernel mode, and therefore has full access to kernel space. The developer can
use any function that the kernel defi nes as exportable and even functions that are defi ned pri-
vate — although the latter usually involve some form of hacking or reverse engineering. Global
kernel variables and structures may also be queried and even set, making kexts highly popular for
all sorts of kernel-level development. Profi ling, system call hooking, and other functionality can be
achieved in kernel mode.

Because kernel modules offer so much power, they pose an even greater risk. If the kernel is set
to accept code of foreign origin, determining the intent — or malicious intent — of such code
prior to actual insertion is impossible. Furthermore, once the code is loaded into the kernel, it
is effectively the same, for all intents and purposes, as code from the kernel proper. This means
the stability, and, even more so, the security of the entire operating system can be compromised.
Indeed, most modern-day malware comes in the form of malicious modules, also known as
“rootkits.”

In iOS, in particular, there is another dimension of risk. Apple seems to have no desire whatso-
ever to open up the kernel development space to anyone but its own cadre. As a system, iOS is
hardened in both user and kernel mode to discourage any type of modifi cation. So, although kexts
are used extensively to provide support for the various i-Devices, they are “fused” into the kernel-
cache by Apple when the iOS is built for each device (although kexts do load on the fl y, from the
kernelcache).

Securing Modular Architecture
Because a modular architecture harbors both signifi cant benefi ts as well as huge risks, con-
temporary operating systems continue to allow and promote it, but impose certain limitations
on its use, lest it be subverted for malicious means. There are two approaches for securing the
architecture.

Code Signing
Code signing is the preferred approach and is the standard adopted by most systems. A good exam-
ple is Windows, which (as of Windows Vista in its 64-bit edition) prevents any type of driver from

c18.indd 712c18.indd 712 9/29/2012 5:52:11 PM9/29/2012 5:52:11 PM

Kernel Extensions (Kexts) x 713

loading unless it possesses a valid digital signature. Prior to transferring control to the module entry
point, the kernel validates the signature on the code in the form of an attached certifi cate. The cer-
tifi cate must be signed with a private key, whose public key is known to the kernel, or by a chain of
trust leading to such a key.

Code signing cannot vouch for code purity of purpose, but it can validate the origin of the code.
Because signing the code involves the developer identifying to the signer, any attempted mal-
ware — once caught — would disqualify said developer, and would provide liability for any
damages.

Apple uses code signing ubiquitously in iOS, yet signs no code but its own. The validation key is
embedded deep in ROM, and from the early stages of iBoot, code that is not signed by Apple cannot
be loaded. This makes it impossible to tamper with an iOS software update, which, (as was demon-
strated in Chapter 5), is but a simple zip fi le. Any attempted patching of the update will result in the
update being rejected. Indeed, only by patching the signature check in pre-A5 i-Devices can custom
fi rmware images be loaded onto the device.

Pre-Linking
Pre-linking is the approach used by Apple in OS X and iOS. Rather than loading the kernel, and
then loading the kexts in some order, the boot loader instead loads a kernelcache fi le. This fi le con-
tains the kernel, pre-linked with select extensions. The result is essentially the same as having had
the kernel dynamically load the extensions, but it offers two advantages:

 ‰ Loading time is much faster, because the process of dynamic linking involves resolving sym-
bols in both the kernel and the module during runtime. Pre-linking allows the resolving to
be done once, and the kernel image to be loaded with the modules already in, when the link
addresses have been fully resolved.

 ‰ The kernelcache may be signed, and even encrypted (as is the case on iOS). Once the kernel-
cache is loaded, all further kext loading could potentially be disabled (though in practice,
it isn’t). This would ensure that no code can fi nd a legitimate way into the iOS kernel.

As hardened as it is, even the iOS kernel has been subverted — a necessary step
in the jail-breaking process, which is discussed in Chapter 5. This, however, was
done by injecting code into the kernel due to a security vulnerability, and not by
any “offi cial” mechanism the kernel extensions provide.

KERNEL EXTENSIONS (KEXTS)

When not linked into a kernelcache, kexts can be found in their standalone form populating
/System/Library/Extensions. The vast majority of the kexts here are device drivers, which are
detailed in depth in Chapter 19. The kexts found in this directory vary depending on the Mac

c18.indd 713c18.indd 713 9/29/2012 5:52:11 PM9/29/2012 5:52:11 PM

714 x CHAPTER 18 MODU(LU)S OPERANDI — KERNEL EXTENSIONS

model. Bear in mind, also, that not all of these kexts may be in use. To see which ones are actively
loaded, use the kextstat(8) command, shown in Output 18-1.

OUTPUT 18-1: Output of kextstat(8) from a Lion OS

Index Refs Address Size Wired Name (Version) <Linked Against>
1 82 0xffffff7f80742000 0x683c 0x683c com.apple.kpi.bsd (11.0.1)
2 6 0xffffff7f8072e000 0x3d0 0x3d0 com.apple.kpi.dsep (11.0.1)
3 106 0xffffff7f8074c000 0x1b9d8 0x1b9d8 com.apple.kpi.iokit (11.0.1)
4 111 0xffffff7f80738000 0x9b54 0x9b54 com.apple.kpi.libkern (11.0.1)
5 99 0xffffff7f8072f000 0x88c 0x88c com.apple.kpi.mach (11.0.1)
6 33 0xffffff7f80730000 0x4938 0x4938 com.apple.kpi.private (11.0.1)
7 55 0xffffff7f80735000 0x22a0 0x22a0 com.apple.kpi.unsupported (11.0.1)
8 21 0xffffff7f809bc000 0x7000 0x7000 com.apple.iokit.IOACPIFamily (1.4)<7 6 4 3>
9 30 0xffffff7f80821000 0x1d000 0x1d000 com.apple.iokit.IOPCIFamily (2.6.5)<7 6 5 4 3>
...
82 2 0xffffff7f809c3000 0xc000 0xc000 com.apple.driver.AppleSMC (3.1.1d2)<8 7 5 4 3>
...
96 0 0xffffff7f812b9000 0x5000 0x5000 com.apple.Dont_Steal_Mac_OS_X (7.0.0)<82 7 ...
...

kextstat(8) looks a little bit different on Lion than on previous versions of OS
X. This is due to two reasons:

 ‰ The built-in kernel APIs in Lion have their VMSize and Wired fi elds cor-
rectly fi lled. On previous versions, their values were left at zero.

 ‰ Lion has fewer kernel APIs. Prior to Lion, the kernel exposed the (now
obsolete) com.apple.kernel.* APIs for kexts to rely on, but these were
declared deprecated as of Tiger (10.4), and have fi nally been removed as the
feline evolved (though they are still present in 32-bit kernels and in iOS).

 ‰ The cydia version of kextstat (if you try it on iOS) is woefully broken,
as it relies on deprecated APIs (kmod_get_info) which are unavailable
in iOS. The book’s companion websites offers a version that works well.
But — more on that later.

Kexts may be layered on top of one another. As Output 18-1 shows, each kext has a load index
and a “references” fi eld. The latter is used to determine how many dependents this kext has, and
the former serves as an index to identify the kext in the list to its dependents. The values inside the
angle brackets in each kext show the kexts it relies on, by index. A somewhat simplifi ed and par-
tial graphical representation of kext ordering is shown in Figure 18-1.

c18.indd 714c18.indd 714 9/29/2012 5:52:12 PM9/29/2012 5:52:12 PM

Kernel Extensions (Kexts) x 715

*
-T

h
is

 g
ra

p
h

 i
s
 s

im
p

lif
ie

d
 b

y
 o

m
it

ti
n

g
 d

e
p

e
n

d
e

n
c
ie

s
 w

h
ic

h
 e

x
is

t
b

o
th

 d
ir

e
c
tl

y
 a

n
d

 i
n

d
ir

e
c
tl

y
.
T

h
a

t
is

,
if
 a

 k
e

x
t

is
 d

e
p

e
n

d
e

n
t

d
ir

e
c
tl

y
 o

n
 a

n
o

th
e

r,
 b

u
t

a
ls

o
 i
n

d
e

p
e

n
d

e
n

tl
y
 (
th

ro
u

g
h

a
n

o
th

e
r

k
e

x
t)

 o
n

 t
h

e
 s

a
m

e
 k

e
x
t,

 t
h

e
 d

ir
e

c
t

d
e

p
e

n
d

e
n

c
e

 i
s
 o

m
it

te
d

.
E

v
e

n
 w

it
h

 t
h

is
 s

im
p

lif
ic

a
ti

o
n

,
th

e
 g

ra
p

h
 i
s
 s

o
 b

ig
 s

o
m

e
 k

e
x
ts

 (
p

a
rt

ic
u

la
rl

y
 t

h
o

s
e

 w
h

ic
h

 r
e

ly
 o

n
 A
p
p
l
e
A
R
M
P
l
a
t
f
o
r
m

,

fo
r

h
a

rd
w

a
re

)
h

a
v
e

 b
e

e
n

 o
m

it
te

d
.
L
in

e
s
 a

re
 d

if
fe

re
n

tl
y
 s

ty
le

d
 o

r
b

ro
k
e

n
 i
f

th
e

y
 d

o
 n

o
t

in
te

rs
e

c
t

(i
.e

.
o

n
 d

if
fe

re
n

t
p

la
n

e
s
).
 F

u
ll

lis
t

o
f

k
e

x
ts

 i
s
 i
n

 O
u

tp
u

t
18

-5
.

k
p

i.
b

s
d

1

k
p

i.
d

s
e

p

2

k
p

i.
io

k
it

3

k
p

i.
lib

k
e

rn

4

k
p

i.
m

a
c
h

5

k
p

i.
p

ri
v
a

te

6

u
n

s
u

p
p

o
rt

e
d

7

IO
S

to
ra

g
e

F
a

m
ily

9

E
n

c
ry

p
te

d
B

lo
c
k
S

to
ra

g
e

2
4

IO
A

c
c
e

le
ra

to
rF

a
m

ily

15A
p

p
le

M
o

b
ile

F
ile

In
te

g
ri

ty

16

IO
N

e
tw

o
rk

in
g

F
a

m
ily

17

io
k
it

.I
O

U
s
e

rE
th

e
rn

e
t

18

io
k
it

.I
O

8
0

2
11

F
a

m
ily

10
2

A
p

p
le

B
C

M
W

L
A

N
C

o
re

10
3

A
p

p
le

B
C

M
W

L
A

N
B

u
s
In

te
rf

a
c
e

S
D

IO

10
4

A
p

p
le

P
ro

fi
le

T
im

e
s
ta

m
p

A
c
ti

o
n

3
7

A
p

p
le

P
ro

fi
le

T
h

re
a

d
A

c
ti

o
n

3
8

A
p

p
le

P
ro

fi
le

K
e

v
e

n
tA

c
ti

o
n

3
9

A
p

p
le

P
ro

fi
le

C
a

lls
ta

c
k
S

ta
te

A
c
ti

o
n

4
1

A
p

p
le

P
ro

fi
le

R
e

g
is

te
rS

ta
te

A
c
ti

o
n

4
0

A
p

p
le

P
ro

fi
le

R
e

a
d

C
o

u
n

te
rA

c
ti

o
n

4
2

s
e

c
u

ri
ty

.s
a

n
d

b
o

x

2
9

k
e

x
t.

a
p

p
le

M
a

tc
h

2
8

io
k
it

.I
O

F
la

s
h

S
to

ra
g

e

2
5

D
is

k
Im

a
g

e
s

10

A
p

p
le

K
e

y
S

to
re

2
7

IO
T

e
x
tE

n
c
ry

p
ti

o
n

F
a

m
ily

9
7

F
a

ir
P

la
y
IO

K
it

11

A
p

p
le

P
ro

fi
le

F
a

m
ily

14

A
p

p
le

A
R

M
P

la
tf

o
rm

8

A
p

p
le

C
D

M
A

4
4

L
ig

h
tW

e
ig

h
tV

o
lu

m
e

M
a

n
a

g
e

r

10
6

A
p

p
le

E
ff

a
c
e

a
b

le
S

to
ra

g
e

2
6

A
p

p
le

N
A

N
D

F
T

L

9
4

A
p

p
le

N
A

N
D

L
e

g
a

c
y
F

T
L

9
5

A
p

p
le

D
ia

g
n

o
s
ti

c
D

a
ta

A
c
c
e

s
s
R

e
a

d
O

n
ly

10
5

T
o

 A
p

p
le

A
R

M
P

la
tf

o
rm

(8
)

FI
G

U
R

E
18

-1
:

P
a

rt
ia

l
s
im

p
li
fi

e
d

 r
e

p
re

s
e

n
ta

ti
o

n
 o

f
k
e

x
ts

 i
n

 i
O

S
 5

c18.indd 715c18.indd 715 9/29/2012 5:52:12 PM9/29/2012 5:52:12 PM

716 x CHAPTER 18 MODU(LU)S OPERANDI — KERNEL EXTENSIONS

The fi rst seven (or before Lion, twelve) load indices, which make up the foundation in Table 18-1,
aren’t real kexts; rather, they are “pseudo-kexts,” or kernel built-in components. Their component
version is the same as the Darwin version.

TABLE 18-1: Kernel Interfaces

KERNEL PROGRAMMING INTERFACE REPRESENTS

com.apple.kpi.bsd The kernel’s BSD personality.

This supersedes com.apple.kernel.bsd.

com.apple.kpi.dsep Mandatory Access Control (MAC) Framework. This is a new inter-

face, whose primary clients are the Sandbox.kext, FSCompres-

sion, quarantine (in OS X) and AppleMobileFileIntegrity (in iOS).

com.apple.kpi.iokit The I/O Kit framework.

This supersedes com.apple.kernel.iokit.

com.apple.kpi.libkern The kernel runtime library.

This supersedes com.apple.kernel.libkern.

com.apple.kpi.mach The kernel’s Mach personality.

This supersedes com.apple.kernel.mach.

com.apple.kpi.private Kernel internal APIs, which are not meant to be exported to

non-Apple kexts.

com.apple.kpi.unsupported Unsupported/deprecated APIs.

You can fi nd all the pseudo-kexts in the /System/Library/Extensions/System.kext/
PlugIns directory, yet they contain no code. In fact, they contain only one section — a symbol
table — because their code is already implemented in the kernel. These are often referred to as the
Kernel Programming Interfaces (KPIs). The XNU sources (libsa/bootstrap.cpp) also list four
other kexts:

 ‰ com.apple.iokit.IONVRAMFamily

 ‰ com.apple.driver.AppleNMI

 ‰ com.apple.iokit.IOSystemManagementFamily

 ‰ com.apple.iokit.ApplePlatformFamily

Yet these, too, aren’t actual kexts, and their respective directories contain only an Info.plist.

Kexts declare their dependency on other kexts — pseudo or real — in the OSBundleLibraries prop-
erty of their main property list, as you will see in the next section.

A particularly intriguing kext is “Dont Steal Mac OS X.kext”, also commonly referred to as
DSMOS, shown earlier in Output 18-1. This kext is untouchable — its accompanying (intimidating)

c18.indd 716c18.indd 716 9/29/2012 5:52:14 PM9/29/2012 5:52:14 PM

Kernel Extensions (Kexts) x 717

LICENSE fi le strictly forbids any tampering with, disabling, or destroying it. Many a hackintosh has
had its boot process delayed inevitably “waiting for DSMOS.” For obvious reasons, this book can-
not detail much about the DSMOS kext; suffi ce to say that it is used in decrypting code from various
binaries, like the Finder, as discussed in Chapter 3. As noted in Chapter 11, which discussed Mach
virtual memory internals, Apple has modifi ed Mach and added its own memory pager (apple_
protected_pager) to deal with DSMOS-protected memory, and that part remains open source. iOS
doesn’t have this module, but uses the IOTextEncryptionFamily (and, indirectly FairPlayIOKit)
instead.

Kext Structure
Kexts are bundles, and as such follow the generic bundle layout: A kext directory has a single subdi-
rectory, Contents/, in which you can fi nd the fi les shown in Table 18-2.

TABLE 18-2: Files in the Contents/ Subdirectory

FILE/DIRECTORY CONTAINS

CodeDirectory Code directory fi le for the kext

CodeRequirements Code requirement set for the kext

CodeResources Code resources XML fi le specifying hashes and rules for fi les in kext

CodeSignature Code signature for kext — usually contains Apple’s digital certifi cate

Info.plist Bundle manifest property list

MacOS Directory containing actual kext binary — a fi le of type BUNDLE (Mach-O type

8) or KEXTBUNDLE (Mach-O type 11) for 64-bit

_CodeSignature Directory containing the Code* fi les, which are actually symbolic links to this

directory

version.plist Kext version information, in a property list

Somewhat infrequently, a kext may contain other, related kexts — as in the case of kexts imple-
menting IORegistry families (most IO*Family.kext). In those cases, the related kexts are nested
in a PlugIns subdirectory. Also in some cases (e.g. IOSCSIArchitectureModelFamily.kext,
webdavfs.kext, or ufs.kext), kexts may contain various resources — internationalization fi les,
related user-mode binaries, and even icons. As you can expect, those are all found in a Resources
subdirectory.

Like any bundle, the kext’s Info.plist property list is of special importance. It is mandatory, and
contains specifi c fi elds without which the kext cannot be loaded. Table 18-3 shows the fi elds manda-
tory in any kext:

c18.indd 717c18.indd 717 9/29/2012 5:52:14 PM9/29/2012 5:52:14 PM

718 x CHAPTER 18 MODU(LU)S OPERANDI — KERNEL EXTENSIONS

TABLE 18-3: Mandatory Fields in Kext Plists

PLIST PROPERTY USED FOR

CFBundleExecutable Identifying the actual kext executable inside the bundle. This is, by con-

vention, a fi le in the MacOS/ subdirectory, with the same name as the kext

itself.

CFBundleIdentifier Uniquely identifying the kext name during runtime. This is the standard

reverse DNS notation. Apple recommends com.company.driver.* for

an I/O Kit driver, and com.company.kext for a generic kext.

CFBundleVersion Kext version number, in the form of Major.Minor.Fix.

OSBundleLibraries Required kernel libraries and other kexts on which this one depends.

The Info.plist can also specify several additional, optional properties, as shown in Table 18-4:

TABLE 18-4: Optional Fields in Kext Plists

PLIST PROPERTY USED FOR

OSBundleAllowUserLoad Boolean specifying that non-privileged users can load this kext.

The default is FALSE.

OSBundleCompatibleVersion Specifying which API versions this kext exports. This is the “other

side” of OSBundleLibraries, as other kexts will specify this ver-

sion to link to.

OSBundleRequired Specifying this kext is required to mount the root fi lesystem on

whatever device (Root), on a local device (Local-Root) or a net-

work device (network-root). May also specify that this kext is

required for console support (console), or even when booting –x

(Safe-Boot).

It’s not uncommon to fi nd OSBundle* properties further defi ned for specifi c architecture by appendix
suffi xes (in the case of OS X _i386 and _x86_64). For I/O Kit drivers, the Info.plist contains a host
of other properties (including the mandatory IOKitPersonalities), which are described in Chapter 19.

Kext Security Requirements
Because kexts contain code that is loaded into kernel memory, extra security considerations must be
enforced to make sure that any arbitrary and potentially malicious code will not be accidentally loaded.

The requirements on kexts are thus:

 ‰ Kexts must be owned by the uid of root, and the gid of wheel.

 ‰ Permissions on the directories must be at most 755 — that is, rwxrwxr-x.

 ‰ Any fi les in the kext must be at most 644 (rw-r--r--).

c18.indd 718c18.indd 718 9/29/2012 5:52:14 PM9/29/2012 5:52:14 PM

Kernel Extensions (Kexts) x 719

Working with Kernel Extensions
Mac OS X provides several handy utilities to manipulate and provide information about kernel
extensions, as shown in Table 18-5:

TABLE 18-5: Kext-related Commands

COMMAND USEAGE

kextd Dynamically loads kexts from user-space

kextfind Query kext by myriad properties and criteria. Simulates operation of kextd, as it

looks up kexts for dynamic loading

kextlibs Resolves kext dependencies

kextload A simple kext loader

kextunload A simple kext unloader

kextutil (Snow Leopard and later): The more advanced version of kextload, with far more

options

These tools will be demonstrated in a simple exercise to create kexts.

Kernelcaches
Kernelcaches play an important part in both OS X and iOS. In OS X, they are used to speed up the
boot process by providing a complete kernel, optimized for the specifi c platform the OS is executing
in, with all the drivers pre-loaded. In iOS, they contain the only kexts that the kernel will load, and
no others. This makes the iOS kernel far more secure and tamper resistant.

Kernelcaches follow the same general structure on both platforms, but are implemented a little bit
differently in OS X and iOS, as shown in Table 18-6.

TABLE 18-6 Kernelcache Implementation

OS /SYSTEM/LIBRARY/CACHES/.. CONTAINS

OS X com.apple.kext.caches/Startup Mach-O binary, potentially fat, with complzss

beginning at relative off set 384

iOS com.apple.kernelcaches/kernelcache Kernelcache in IMG3 encrypted form, open-

ing to a complzss, as in the preceding

The iOS kernelcache format (IMG3) and the simple complzss compression scheme were both previ-
ously discussed under “iOS Boot Images.” in Chapter 6.

c18.indd 719c18.indd 719 9/29/2012 5:52:14 PM9/29/2012 5:52:14 PM

720 x CHAPTER 18 MODU(LU)S OPERANDI — KERNEL EXTENSIONS

To unpack a kernelcache, you must fi rst get rid of excess headers: On OS X, these are usually the
fat header (if the kernelcache is a multi-architecture i386/x86_64 binary) and the lzss compres-
sion. On iOS the kernelcache is a thin binary — only the ARM architecture is present. However, the
kernelcache is encrypted, and you therefore must apply a precursor step of decrypting the cache, if
you can obtain the IV and Key. This is shown in Output 18-2:

OUTPUT 18-2: Expanding a kernelcache

morpheus@Minion(/) $ cd /System/Library/Caches/com.apple.kext.caches/Startup
morpheus@Minion(.../com.apple.kext.caches/Startup)$ file kernelcache
kernelcache: Mach-O universal binary with 2 architectures
kernelcache (for architecture x86_64): data
kernelcache (for architecture i386): data

morpheus@Minion(.../com.apple.kext.caches/Startup)$ more kernelcache
"kernelcache" may be a binary file. See it anyway? y
<CA><FE><BA><BE>^@^@^@^B^A^@... ^@^@^@^C^@<9C><90><84>^@<90>\<BC>^@^@^@^@complzss<AD>..

morpheus@Minion (.../Startup)$ lipo –thin x86_64 kernelcache /tmp/thincache

morpheus@Minion (.../Startup)$ more /tmp/thincache
complzss<AD><D2>…

morpheus@Minion (.../Startup)$ complzss –o 384 /tmp/thincache> /tmp/uncompressed_cache
morpheus@Minion (.../Startup)$ file /tmp/uncompressed_cache
/tmp/uncompressed_cache: Mach-O 64-bit executable x86_64
morpheus@Minion (.../Startup)$ ls -l /tmp/uncompressed_cache /mach_kernel
-rw-r--r-- 1 root wheel 23851008 Sep 4 19:46 /tmp/uncompressed_cache
-rw-r--r--@ 1 root wheel 15564456 May 7 07:23 /mach_kernel

Recall, the 0xCAFEBABE is the fat header of the fi le. Soon after it is the complzss header, which in
this case spans 384 bytes. At that offset, the compressed image begins, which can be expanded into
a thin binary.

If you look at the binary and compare it to your mach_kernel, as in the example in Output 18-2,
you will see a signifi cant difference in size. This is the size of all the kernel extensions loaded into
the __PRELINK_TEXT segment. Whereas the mach_kernel in the root has an empty segment, the ker-
nelcache makes use of this segment by putting all the necessary kernel extensions in it. Using otool
once more, this time to dump the PRELINK_TEXT segment (otool -s __PRELINK_TEXT __text),
reveals the segment has additional Mach-O binaries, the kexts, loaded in. You can recognize the
kexts by their Mach-O signature — 0xFEEDFACE (32-bit) or 0xFEEDFACF (64-bit)1 as shown in
Output 18-3:

OUTPUT 18-3: Isolating kexts in the kernelcache’s PRELINK_TEXT section.

1On Intel architecture, remember that endian-ness makes the signature appear to be ce fa fe ed or cf
fa fe ed, and therefore you should grep accordingly.

c18.indd 720c18.indd 720 9/29/2012 5:52:15 PM9/29/2012 5:52:15 PM

mailto:morpheus@Minion(.../com.apple.kext.caches/Startup
mailto:morpheus@Minion(.../com.apple.kext.caches/Startup

Kernel Extensions (Kexts) x 721

morpheus@Ergo(/)$ otool -s __PRELINK_TEXT __text IOS-5.0.0b5.kernel | grep feedface
80347000 feedface 0000000c 00000009 0000000b
80348000 feedface 0000000c 00000009 0000000b
8034c000 feedface 0000000c 00000009 0000000b
80363000 feedface 0000000c 00000009 0000000b
8036b000 feedface 0000000c 00000009 0000000b
80371000 feedface 0000000c 00000009 0000000b
80377000 feedface 0000000c 00000009 0000000b
80378000 feedface 0000000c 00000009 0000000b
8037a000 feedface 0000000c 00000009 0000000b
803a2000 feedface 0000000c 00000009 0000000b
… total of 137 packed kernel extensions..

But how does the kernel know just what these kexts are? You saw that in a standalone form, each
kext as a bundle contains a property list fi le, Info.plist. The same applies for a kernelcache, but
in this case, the Info.plist fi les are packed separately in a __PRELINK_INFO __info segment. If
you use otool on this segment, you will see it is ASCII text. It also is not just any text, but a mas-
sive Plist, containing an array of dicts, each representing one of the kexts loaded. If you use the
book’s companion jtool (or segedit(1)) to extract the PRELINK_INFO segment from the iOS 5
decrypted kernel, you would see something similar to Output 18-4:

OUTPUT 18-4: kextcache __PRELINK_INFO segment, restored to XML format

morpheus@Ergo (../iOS)$ jtool -e PRELINK_INFO kernel.5.0.1.iPod4
Processing kernel.5.0.1.iPod4
Mach-O 32-bit executable for ARMv7; 11 load commands spanning 2076 bytes
Extracting segment@0x10420224, 523911 bytes into kernel.5.0.1.iPod4.__PRELINK_INFO
morpheus@Ergo (../iOS)$ more PRELINK_INFO kernel.5.0.1.iPod4
<dict><key>_PrelinkInfoDictionary</key>
 <array>
 <dict>
 <key>CFBundleName</key><string>MAC Framework Pseudoextension</string>
 <key>_PrelinkExecutableLoadAddr</key><integer size="64">0x80346000</integer>
 <key>_PrelinkKmodInfo</key><integer ID="5" size="32">0x0</integer>
 <key>_PrelinkExecutableSize</key><integer size="64">0x28c</integer>
 <key>CFBundleDevelopmentRegion</key><string ID="7">English</string>
 <key>CFBundleVersion</key><string>11.0.0</string>
 <key>_PrelinkExecutableSourceAddr</key><integer size="64">0x80346000</integer>
 <key>CFBundlePackageType</key><string>KEXT</string>
 <key>CFBundleShortVersionString</key><string>11.0.0</string>
 <key>OSBundleCompatibleVersion</key><string>8.0.0b1</string>
 <key>OSKernelResource</key><true/>
 <key>_PrelinkExecutableRelativePath</key><string>MACFramework</string>
 <key>CFBundleInfoDictionaryVersion</key><string ID="15">6.0</string>
 <key>CFBundleExecutable</key><string>MACFramework</string>
 <key>OSBundleAllowUserLoad</key><true/>
 <key>CFBundleIdentifier</key><string>com.apple.kpi.dsep</string>
 <key>CFBundleSignature</key><string ID="18">????</string>
 <key>OSBundleRequired</key><string>Root</string>

continues

c18.indd 721c18.indd 721 9/29/2012 5:52:15 PM9/29/2012 5:52:15 PM

722 x CHAPTER 18 MODU(LU)S OPERANDI — KERNEL EXTENSIONS

 <key>CFBundleGetInfoString</key>
 <string>MAC Framework Pseudoextension, SPARTA Inc,11.0.0</string>
 <key>_PrelinkBundlePath</key>
 <string>/System/Library/Extensions/System.kext/PlugIns/MACFramework.kext</string>
 <key>_PrelinkInterfaceUUID</key><data>d1F0yq5vQTeuZGj2Y5s5dg==</data>
</dict>
<dict>
 <key>CFBundleName</key><string>Private Pseudoextension</string>
 <key>_PrelinkExecutableLoadAddr</key><integer size="64">0x80347000</integer>
 <key>_PrelinkKmodInfo</key><integer IDREF="5"/>

 … (output truncated – there's over 520KB of XML) …

Note that the prelinked Info.plist sections contain additional keys that are not present (and not
needed) in standalone kexts. These are easily identifi able because of the _Prelink prefi x. They are
not formally documented by Apple, but their use is as shown in Table 18-7:

TABLE 18-7: Plist File Properties

PLIST PROPERTY USED FOR

_PrelinkExecutableSourceAddr The address in memory in which this kext can be found

when loading the kernel. This is the address in which the

kext’s Mach-O header can be expected from the __PRE-

LINK_TEXT section (compare with the output of otool).

_PrelinkExecutableLoadAddr The address in memory where this kext will be loaded. In

the case of a prelinked kernel, equating this value with the

source address just makes sense.

_PrelinkExecutableSize Size of the kext in bytes.

_PrelinkExecutableRelativePath Where this kext would be, relative to the

_PrelinkBundlePath.

_PrelinkBundlePath Where this kext would be, had it been on disk.

_PrelinkInterfaceUUID Used for the core pseudo-extensions. A Base 64 –

encoded unique identifi er.

Kernelcaches are created on OS X dynamically — and the root directory still contains a copy of
mach_kernel. On iOS, however, the kernelcache is one of the fi les provided by Apple. Therein also
lies the difference between the iOS distributions of the various devices: The kexts required for a
CDMA iPad, for example, differ from those of a GSM iPhone.

To view a list of kexts in the iOS kernelcache for yourself, you can run the decache shell script
provided on the book’s website — provided you have the decrypted, decompressed kernelcache. It
will provide you information on the kexts, as well as selectively display their properties.

OUTPUT 18-4 (continued)

c18.indd 722c18.indd 722 9/29/2012 5:52:15 PM9/29/2012 5:52:15 PM

Kernel Extensions (Kexts) x 723

The iPod4, 1 kernel will list something similar to what’s shown in Output 18-5, with some 143
pre-linked extensions in all:

OUTPUT 18-5: Output of decache on the decompressed iPod 4,1 kernelcache of iOS 5.0

morpheus@Ergo (/iOS)$ Tools/decache kernels/iPod4,1_5.0_9A334/kernelcache
MAC Framework Pseudoextension (System.kext/PlugIns/MACFramework.kext)
Private Pseudoextension(System.kext/PlugIns/MACFramework.kext)
I/O Kit Pseudoextension (System.kext/PlugIns/IOKit.kext)
Libkern Pseudoextension (System.kext/PlugIns/Libkern.kext)
BSD Kernel Pseudoextension (System.kext/PlugIns/BSDKernel.kext)
AppleFSCompressionTypeZlib (AppleFSCompressionTypeZlib.kext)
Mach Kernel Pseudoextension (System.kext/PlugIns/Mach.kext)
Unsupported Pseudoextension (System.kext/PlugIns/Unsupported.kext)
I/O Kit USB Family (IOUSBFamily.kext)
I/O Kit Driver for USB User Clients(IOUSBFamily.kext/PlugIns/IOUSBUserClient)
I/O Kit Storage Family (IOStorageFamily.kext)
AppleDiskImageDriver (IOHDIXController.kext)
AppleDiskImagesKernelBacked (IOHDIXController.kext/PlugIns/AppleDiskImagesKernelBacked)
FairPlayIOKit (FairPlayIOKit.kext)
AppleARMPlatform (AppleARMPlatform.kext)
AppleVXD375 (AppleVXD375.kext)
IOSlaveProcessor (IOSlaveProcessor.kext)
IOP_s5l8930x_firmware (IOSlaveProcessor.kext)
AppleDiskImagesUDIFDiskImage(IOHDIXController.kext/PlugIns/AppleDiskImagesUDIFDiskImage)
..

Note, not all kexts may necessarily be loaded (though most are). You can use the jkextstat tool,
described later in this chapter, to see which kexts are actively loaded.

Multi-Kexts
Kernelcaches are just one of two forms of pre-linking available in OS X and iOS. The other is
known as a multi-kext archive, or mkext. This fi le is really just an archive of two or more kexts, like
a kernelcache, but without the kernel. Mkexts are unidentifi able by “fi le” and other utilities, but a
visible ASCII “MKXTMOSX” signature in the fi rst line of the binary format makes them stand out
from other binaries. This header is documented in libkern/mkext.h, as shown in Listing 18-1:

LISTING 18-1: The mkext header, from libkern/mkext.h

* Core Header
*
* All versions of mkext files have this basic header:
*
* - magic & signature - always 'MKXT' and 'MOSX' as defined above.
* - length - the length of the whole file
* - adler32 - checksum from &version to end of file
* - version - a 'vers' style value
* - numkexts - how many kexts are in the archive (only needed in v.1)
* - cputype & cpusubtype - in version 1 could be CPU_TYPE_ANY

continues

c18.indd 723c18.indd 723 9/29/2012 5:52:15 PM9/29/2012 5:52:15 PM

724 x CHAPTER 18 MODU(LU)S OPERANDI — KERNEL EXTENSIONS

* and CPU_SUBTYPE_MULTIPLE if the archive contained fat kexts;
* version 2 does not allow this and all kexts must be of a single
* arch. For either version, mkexts of specific arches can be
* embedded in a fat Mach-O file to combine them.

Mac OS X provides a “kextcache” tool to maintain kernelcaches and mkext fi les alike. Using
kextcache mkextunpack, you can list or unarchive an mkext.

A Programmer’s View of Kexts
From the programmer’s perspective, a kext is just a kernel-mode object fi le, linking with the kernel-
mode, rather than user-mode libraries. This means that many familiar functions from <unistd.h>
and <stdlib.h> are no longer available. Also, kernel-mode brings other constraints — primarily in
the form of severe memory restrictions, because kernel memory is, by default, wired memory and
consumes physical RAM.

The most severe restriction kernel mode imposes is in system stability. Creating a kext is the easy
part — the diffi culty is in how to correctly code a kext, because even the most minor transgression
in a kext can lead to a kernel panic. In kernel mode, no safety net exists like there is in user mode,
and no well-defi ned process bounds to contain errors. Rather than kill an offending kernel thread,
the kernel opts for harakiri, and kills itself.

Take out the warnings, however, and what remains is a relatively simple and straightforward pro-
cess, involving the following steps:

1. Start XCode and choose Generic Kernel Extension from the System Plug-ins pane.

2. XCode defi nes the kext entry and exit points for you automatically. Both have the same
prototype. The generated code will look something like Listing 18-2:

LISTING 18-2: The skeleton code generated for a new kernel extension

#include <mach/mach_types.h>

kern_return_t SampleKext_start(kmod_info_t * ki, void *d);
kern_return_t SampleKext_stop(kmod_info_t *ki, void *d);

kern_return_t SampleKext_start(kmod_info_t * ki, void *d)
{
 return KERN_SUCCESS;
}

kern_return_t SampleKext_stop(kmod_info_t *ki, void *d)
{
 return KERN_SUCCESS;
}

LISTING 18-1 (continued)

c18.indd 724c18.indd 724 9/29/2012 5:52:16 PM9/29/2012 5:52:16 PM

Kernel Extensions (Kexts) x 725

The two arguments are generally treated as opaque, though the kmod_info_t can prove
quite useful if you want to enumerate all the kexts in the system (or do more insidious things
like hide your kext).

3. Edit the Info.plist fi le either directly or through the XCode plist editor (the plist is
under Supporting Files).

4. Compile, either through the GUI or, if you prefer CLI, using xcodebuild(1). Although this
command has many arguments, you can opt for the defaults, or selectively build for specifi c
targets (-target) or confi gurations (-configuration).

Kexts can link with the Kernel.Framework, which is an empty framework (no binary) contain-
ing the kernel headers (exported from XNU during the build stage). In addition, the Resources/
directory of this framework contains text fi les listing the supported KPIs for each architecture
(including ARM).

Kernel Kext Support
Kexts are a unique part of XNU, because they represent a signifi cant component that is neither part of
Mach nor of BSD. Additionally, whereas most of the kernel is C, kext handling is performed in a por-
tion of XNU which is C++. The same holds true for I/O Kit, which rests on kext support, as well.

Mach kmod Support
XNU’s Mach layer was extended to support kernel modules. While the Mach layer is unaware of
kexts, it does support a kmod object, representing a kernel module. Listing 18-3 shows kmod_info,
defi ned in osfmk/kern/kmod.h.

LISTING 18-3: The defi nition of the kmod_info_t , which abstracts kexts

#define KMOD_MAX_NAME 64

typedef struct kmod_info {
 struct kmod_info * next;
 int32_t info_version; // version of this structure
 uint32_t id;
 char name[KMOD_MAX_NAME];
 char version[KMOD_MAX_NAME];
 int32_t reference_count; // # linkage refs to this
 kmod_reference_t * reference_list; // who this refs (links on)
 vm_address_t address; // starting address
 vm_size_t size; // total size
 vm_size_t hdr_size; // unwired hdr size
 kmod_start_func_t * start;
 kmod_stop_func_t * stop;
} kmod_info_t;

It is this kmod_info_t, which every kext gets as a parameter for its entry point. When a kext is cre-
ated, XCode initializes a kmod_info_t for the kext, using a macro, KMOD_DECL_EXPLICIT, which it
generates in the XCode DerivedData/ directory under <moduleName>_info.c fi le. This is shown
in Listing 18-4:

c18.indd 725c18.indd 725 9/29/2012 5:52:16 PM9/29/2012 5:52:16 PM

726 x CHAPTER 18 MODU(LU)S OPERANDI — KERNEL EXTENSIONS

LISTING 18-4: Automatically generated info for kexts

#include <mach/mach_types.h>

extern kern_return_t _start(kmod_info_t *ki, void *data);
extern kern_return_t _stop(kmod_info_t *ki, void *data);
__private_extern__ kern_return_t sampleKext_start(kmod_info_t *ki, void *data);
__private_extern__ kern_return_t sampleKext_stop(kmod_info_t *ki, void *data);

__attribute__((visibility("default")))
 KMOD_EXPLICIT_DECL(com.technologeeks.osx.sampleKext, "1.0.0d1", _start, _stop)
__private_extern__ kmod_start_func_t *_realmain = sampleKext_start;
__private_extern__ kmod_stop_func_t *_antimain = sampleKext_stop;
__private_extern__ int _kext_apple_cc = __APPLE_CC__ ;

Up until Snow Leopard, osfmk/kern/kmod.c used to contain a fair amount of kmod handling code,
including calls such as kmod_create, kmod_destroy, and others. At present, however, all these calls
return a KERN_NOT_SUPPORTED value, with the exception of kmod_get_info(), which is a Mach
host trap, defi ned in user mode’s <mach/mach_host.h>. This still works for 32-bit clients, as shown
in Listing 18-5:

LISTING 18-5: kmod_get_info() falling through to kext_get_kmod_info for 32-bit clients

kern_return_t
kmod_get_info(
 host_t host __unused,
 kmod_info_array_t * kmod_list KMOD_MIG_UNUSED,
 mach_msg_type_number_t * kmodCount KMOD_MIG_UNUSED)
{
#if __ppc__ || __i386__
 if (current_task() != kernel_task && task_has_64BitAddr(current_task())) {
 NOT_SUPPORTED_USER64();
 return KERN_NOT_SUPPORTED;
 } return kext_get_kmod_info(kmod_list, kmodCount);
#else
 NOT_SUPPORTED_KERNEL();
 return KERN_NOT_SUPPORTED;
#endif /* __ppc__ || __i386__ */
}

// kext_get_kmod_info is defined in libkern/OSKextLib.cpp:
/***
* Compatibility implementation for kmod_get_info() host_priv routine.
* Only supported on old 32-bit architectures.
***/
#if __i386__
kern_return_t
kext_get_kmod_info(
 kmod_info_array_t * kmod_list,
 mach_msg_type_number_t * kmodCount)
{
 return OSKext::getKmodInfo(kmod_list, kmodCount);
}
#endif /* __i386__ */

c18.indd 726c18.indd 726 9/29/2012 5:52:16 PM9/29/2012 5:52:16 PM

Kernel Extensions (Kexts) x 727

Indeed, on a 32-bit system, a quick and dirty implementation of kextstat(8) can be coded as
shown in Listing 18-6:

LISTING 18-6: kextstat(8)-style output of struct kmod_info_t’s. Compile with –arch i386.

#include <mach/mach.h>
#include <mach/mach_host.h>

// Quick kextstat(8) like utility - using the 32-bit APIs of kmod_get_info();
// Compile with -arch i386

void main()
{

 mach_port_t mach_host;
 kern_return_t rc;
 mach_msg_type_number_t modulesCount = 0;
 kmod_args_t modules;
 int i;
 kmod_info_t *mod;

 mach_host = mach_host_self();
 rc = kmod_get_info (mach_host,
 &modules,
 &modulesCount);

 if (rc != KERN_SUCCESS)
 {
 mach_error ("kmod_get_info",rc);
 exit(2);
 }

 printf("Got %d bytes - %d modules\n", modulesCount, modulesCount/sizeof(kmod_info_t));

 mod = (kmod_info_t *) modules;
 for (i = 0; i < modulesCount / sizeof(kmod_info_t); i++)
 {
 printf("%d\t", mod->id);
 printf("%s\t", mod->name);
 printf("%x\t", mod->address);
 printf("%x\n", mod->size);

// break after kpi.bsd, which is also #1
 if (mod->id ==1) break;
 mod++; // increments by sizeof(kmod_info_t)
 }

}

The kmod architecture, however, is considered deprecated, and the code in the previous listing will
fail (claiming “service not supported”) on 64-bit OS X, or iOS (which is why the Cydia-supplied
kextstat fails). The APIs exposed by libKern must be used in these cases, and they are discussed
next.

c18.indd 727c18.indd 727 9/29/2012 5:52:16 PM9/29/2012 5:52:16 PM

728 x CHAPTER 18 MODU(LU)S OPERANDI — KERNEL EXTENSIONS

libKern
While kmod_info_t still serves as the basic structure for kexts, most of the kext handling logic
has been moved to the libkern directory and has been rewritten in C++. The logic for main-
taining kexts is now in libkern/c++/OSKext.cpp and is exposed to user mode via the I/O Kit
framework.

In OS X, Most of the interfacing with kexts is done by a dedicated daemon, kextd(8). This
daemon, (which resides in /usr/libexec, with its ilk), serves as a bridge between user mode
and the kernel, assisting both in loading kexts and resolving dependencies. It registers host
special port #15 (HOST_KEXTD_PORT) when started from Launchd(1), and communicates with
user mode clients over Mach messages (MIG subsystem 70000). The IOKit framework exposes
KextManager APIs that work with kextd (and hide the the Mach messages to it), as well as
non-manager ones that interface with the kernel directly (intended for use by kextd itself). The
latter APIs are defi ned in the the kext.subproj of the open source IOKitUser package, and are
listed in Table 18-8.

TABLE 18-8: libKern’s OS Kext APIs

API FUNCTION USER FOR

OSKextLoad(OSKextRef aKext);
OSKextLoadWithOptions

 (OSKextRef aKext,

 OSKextExcludeLevel startExc,

 OSKextExcludeLevel addPExc,

 CFArrayRef personalityNames,

 Boolean delayAutounloadFlag);

Loading a kext into the kernel. This function is not

meant to be used outside kextd(8).

OSKextUnload(OSKextRef aKext,

Boolean termSvcAndRmvPrsnlt);

The core functionality of kextunload(8).

OSKextStart(OSKextRef aKext);

OSKextStop(OSKextRef aKext);

Start or stop a kext by calling its start or stop routines,

respectively.

Boolean OSKextIsStarted

 (OSKextRef aKext);

Return true if a kext has been started.

CFDictionaryRef

OSKextCopyLoadedKextInfo(

CFArrayRef kextIdentifiers,

 CFArrayRef infoKeys)

Returns a dictionary of all loaded kexts. The core

functionality of kextstat(8).

New in Lion and iOS 4.3. Deprecates Snow Leopard/

iOS 3.x’s OSKextCreateLoadedKextInfo.

The kextd is (for obvious reasons) not present in iOS. The APIs for direct kext loading and
listing, however, still are (but don’t be surprised if they disappear soon after this book sees
print). A kextstat(8)-like utility, similar to the one in Listing 18-7, would look like the
following:

c18.indd 728c18.indd 728 9/29/2012 5:52:17 PM9/29/2012 5:52:17 PM

Kernel Extensions (Kexts) x 729

LISTING 18-7: Using the IOKit-exposed OSKext APIs to provide kextstat(8)-like functionality

 /* A simple implementation of kextstat(8) which actually works on iOS, as well:
 * All the work is done by OSKextCopyLoadedKextInfo.
 *
 * Compile with –framework IOKit –framework CoreFoundation
 */

#include <CoreFoundation/CoreFoundation.h>

void printKexts(CFDictionaryRef dict)

 // Simple dump of an XML dictionary
 CFDataRef xml = CFPropertyListCreateXMLData(kCFAllocatorDefault,
 (CFPropertyListRef)dict);
 write(1, CFDataGetBytePtr(xml), CFDataGetLength(xml));
 CFRelease(xml);
}

int main (int argc, char **argv)
{

 // OSKextCopyLoadedKextInfo does exactly that, i.e. obtains loaded kext
 // information from kernel, and return it as a CoreFoundation "dictionary" object.
 CFDictionaryRef kextDict =
 OSKextCopyLoadedKextInfo(NULL, // CFArrayRef kextIdentifiers,
 NULL); //CFArrayRef infoKeys)

 printKexts(kextDict);

}

The code in Listing 18-6 merely dumps the dictionary returned by OSKextCopyLoadedKextInfo()
as an XML plist. The book’s companion website contains a more complete version, called
jkextstat, offering kextstat(8) compatible output, as shown in Output 18-6:

OUTPUT 18-6: jkextstat on iOS 5, from the author’s iPod Touch 4G

root@Podicum (~)# jkextstat
0 __kernel__
1 kpi.bsd
2 kpi.dsep
3 kpi.iokit
4 kpi.libkern
5 kpi.mach
6 kpi.private
7 kpi.unsupported
8 driver.AppleARMPlatform <1 3 4 5 6 7>
9 iokit.IOStorageFamily <1 3 4 5 6 7>

continues

c18.indd 729c18.indd 729 9/29/2012 5:52:17 PM9/29/2012 5:52:17 PM

730 x CHAPTER 18 MODU(LU)S OPERANDI — KERNEL EXTENSIONS

10 driver.DiskImages <1 3 4 5 6 7 9>
11 driver.FairPlayIOKit <1 3 4 5 6 7>
12 driver.IOSlaveProcessor <3 4>
13 driver.IOP_s5l8930x_firmware <3 4 12>
14 iokit.AppleProfileFamily <1 3 4 5 6 7>
15 iokit.IOCryptoAcceleratorFamily <1 3 4 5 7>
16 driver.AppleMobileFileIntegrity <1 2 3 4 5 6 7 15>
17 iokit.IONetworkingFamily <1 3 4 5 6 7>
18 iokit.IOUserEthernet <1 3 4 5 6 16 17>
19 platform.AppleKernelStorage <3 4 7>
20 iokit.IOSurface <1 3 4 5 6 7 8>
21 iokit.IOStreamFamily <3 4 5>
22 iokit.IOAudio2Family <1 3 4 5 21>
23 driver.AppleAC3Passthrough <1 3 4 5 7 8 11 21 22>
24 iokit.EncryptedBlockStorage <1 3 4 5 9 15>
25 iokit.IOFlashStorage <1 3 4 5 7 9 24>
26 driver.AppleEffaceableStorage <1 3 4 5 7 8 25>
27 driver.AppleKeyStore <1 3 4 5 6 7 15 16 26>
28 kext.AppleMatch <1 4>
29 security.sandbox <1 2 3 4 5 6 7 16 28>
30 driver.AppleS5L8930X <1 3 4 5 7 8>
31 iokit.IOHIDFamily <1 3 4 5 6 7 16>
32 driver.AppleM68Buttons <1 3 4 5 7 8 31>
33 iokit.IOUSBDeviceFamily <1 3 4 5>
34 iokit.IOSerialFamily <1 3 4 5 6 7>
35 driver.AppleOnboardSerial <1 3 4 5 7 34>
36 iokit.IOAccessoryManager <3 4 5 7 8 33 34 35>
37 driver.AppleProfileTimestampAction <1 3 4 5 14>
38 driver.AppleProfileThreadInfoAction <1 3 4 6 14>
39 driver.AppleProfileKEventAction <1 3 4 14>
40 driver.AppleProfileRegisterStateAction <1 3 4 14>
41 driver.AppleProfileCallstackAction <1 3 4 5 6 14>
42 driver.AppleProfileReadCounterAction <3 4 6 14>
43 driver.AppleARMPL192VIC <3 4 5 7 8>
44 driver.AppleCDMA <1 3 4 5 7 8 15>
45 driver.IODARTFamily <3 4 5>
46 driver.AppleS5L8930XDART <1 3 4 5 7 8 45>
47 iokit.IOSDIOFamily <1 3 4 5 7>
48 driver.AppleIOPSDIO <1 3 4 5 7 8 12 47>
49 driver.AppleIOPFMI <1 3 4 5 7 8 12 25>
50 driver.AppleSamsungSPI <1 3 4 5 7 8>
51 driver.AppleSamsungSerial <1 3 4 5 7 8 34 35>
52 driver.AppleSamsungPKE <3 4 5 7 8 15>
53 driver.AppleS5L8920X <1 3 4 5 7 8>
54 driver.AppleSamsungI2S <1 3 4 5 7 8>
55 driver.AppleD1815PMU <1 3 4 5 7 8 31>
56 iokit.AppleARMIISAudio <1 3 4 5 7 22>
57 driver.AppleEmbeddedAudio <1 3 4 5 7 8 22 31 56>
58 driver.AppleCS42L59Audio <3 4 5 8 22 31 56 57>
59 driver.AppleEmbeddedAccelerometer <3 4 5 7 8 31>

OUTPUT 18-6 (continued)

c18.indd 730c18.indd 730 9/29/2012 5:52:17 PM9/29/2012 5:52:17 PM

Kernel Extensions (Kexts) x 731

60 driver.AppleEmbeddedGyro <1 3 4 5 7 8 31>
61 driver.AppleEmbeddedLightSensor <3 4 5 7 8 31>
62 driver.AppleEmbeddedUSB <1 3 4 5 7 8>
63 driver.AppleS5L8930XUSBPhy <1 3 4 5 7 8 62>
64 iokit.IOUSBFamily <1 3 4 5 7>
65 driver.AppleUSBEHCI <1 3 4 5 7 64>
66 driver.AppleUSBComposite <1 3 4 64>
67 driver.AppleEmbeddedUSBHost <1 3 4 5 7 62 64 66>
68 driver.AppleUSBOHCI <1 3 4 5 64>
69 driver.AppleUSBOHCIARM <3 4 5 8 62 64 67 68>
70 driver.AppleUSBHub <1 3 4 5 64>
71 driver.AppleUSBEHCIARM <3 4 5 8 62 64 65 67 70>
72 driver.AppleS5L8930XUSB <1 3 4 5 7 8 62 64 65 67 68 69 71>
73 driver.AppleARM7M <3 4 8 12>
74 driver.EmbeddedIOP <3 4 5 12>
75 driver.AppleVXD375 <1 3 4 5 7 8 11>
76 iokit.IOMobileGraphicsFamily <1 3 4 5 7 8>
77 iokit.IODisplayPortFamily <1 3 4 5 6 7 22>
78 driver.AppleDisplayPipe <1 3 4 5 7 8 76>
79 driver.AppleRGBOUT <1 3 4 5 7 8 76 77 78>
80 driver.AppleTVOut <1 3 4 5 7 8>
81 driver.AppleAMC_r2 <1 3 4 5 7 8 11 21 22>
82 driver.AppleSamsungDPTX <3 4 5 7 8 77>
83 iokit.IOAcceleratorFamily <1 3 4 5 7 8>
84 IMGSGX535 <1 3 4 5 7 8 83>
85 driver.H2H264VideoEncoderDriver <1 3 4 5 7 8>
86 driver.AppleJPEGDriver <1 3 4 5 7 8>
87 driver.AppleH3CameraInterface <1 3 4 5 7 8>
88 driver.AppleM2ScalerCSCDriver <1 3 4 5 7 8 45>
89 driver.AppleCLCD <1 3 4 5 7 8 76 78>
90 driver.AppleSamsungMIPIDSI <1 3 4 5 7 8>
91 driver.ApplePinotLCD <1 3 4 5 7 8>
92 driver.AppleSamsungSWI <1 3 4 5 7 8>
93 driver.AppleSynopsysOTGDevice <1 3 4 5 7 8 33 62>
94 driver.AppleNANDFTL <1 3 4 5 7 9 25>
95 driver.AppleNANDLegacyFTL <1 3 4 5 9 25 94>
96 AppleFSCompression.AppleFSCompressionTypeZlib <1 2 3 4 6>
97 IOTextEncryptionFamily <1 3 4 5 7 11>
98 driver.AppleBSDKextStarter <3 4>
99 nke.ppp <1 3 4 5 6 7>
100 nke.l2tp <1 3 4 5 6 7 99>
102 iokit.IO80211Family <1 3 4 5 6 7 17>
103 driver.AppleBCMWLANCore <1 3 4 5 6 7 8 17 102>
104 driver.AppleBCMWLANBusInterfaceSDIO <1 3 4 5 6 7 8 47 103>
105 driver.AppleDiagnosticDataAccessReadOnly <1 3 4 5 7 8 94>
106 driver.LightweightVolumeManager <1 3 4 5 9 15 24 26>
107 driver.IOFlashNVRAM <1 3 4 5 6 7 25>
108 driver.AppleNANDFirmware <1 3 4 5 25>
109 driver.AppleImage3NORAccess <1 3 4 5 7 8 15 108>
110 driver.AppleBluetooth <1 3 4 5 7 8>
111 driver.AppleMultitouchSPI <1 3 4 5 7 8>
112 driver.AppleUSBMike <1 3 4 5 8 22 33>
113 driver.AppleUSBDeviceMux <1 3 4 5 6 7 33>

c18.indd 731c18.indd 731 9/29/2012 5:52:17 PM9/29/2012 5:52:17 PM

732 x CHAPTER 18 MODU(LU)S OPERANDI — KERNEL EXTENSIONS

The free tool provides many additional features improving on the original, such as XML and
experimental graph output (similar to Figure 18-1), as well as recursively following kext
dependencies — for both OS X and iOS.

Behind the Scenes of Kext Loading
The APIs we have seen so far are all user mode APIs. This is no surprise, as the initiative for loading
a kext comes from user mode — whether from a system process, such as launchd(8), in reaction
to a detected hardware change, or from the administrator, by manually using one the kext utili-
ties. The actual loading of the kext, however, involves kernel memory operations, and can only be
performed in kernel mode.

To bridge the divide, kext loading relies on Mach messages. All kext operations are encapsulated as
serialized XML in the ool_descriptors of Mach kext_request messages (message #425). These
messages, which are part of the host_priv subsystem (discussed in Chapter 9), naturally require
access to the host’s privileged port. Recall, that Mach messages eventually involve the mach_msg_trap,
which moves from user mode to kernel mode.

Using the companion website’s Mach message snoop tool will reveal the serialized XML, for exam-
ple as in Output 18-7, associated with a kext unload:

OUTPUT 18-7: Serialized unload kext_request message:

OSKextUnloadKextWithIdentifier("kextName", //CFStringRef kextIdentifier,
 true); // Boolean
 terminateServiceAndRemovePersonalities);

<dict>
 <key>Kext Request Predicate</key><string>Unload</string>
 <key>Kext Request Arguments</key>
 <dict>
 <key>TerminateIOServices</key><true/>
 <key>CFBundleIdentifier</key><string>kextName</string>
 </dict>
</dict>

Likewise, snooping OS X’s kextstat(8) yields the following:

<dict>
 <key>Kext Request Predicate</key>
 <string>Get Loaded Kext Info</string>
 <key>Kext Request Arguments</key>
 <dict><key>CFBundleIdentifier</key><array></array></dict>
</dict>

The header fi le libkern/libkern/kext_request_keys.h provides a listing of all the various
request “keys” or predicates, which are all textual. They are listed in Table 18-9:

c18.indd 732c18.indd 732 9/29/2012 5:52:17 PM9/29/2012 5:52:17 PM

Kernel Extensions (Kexts) x 733

TABLE 18-9: Predicates for kext_request

PREDICATE PRIVILEGED USE

Get Loaded Kext Info No Get currently loaded kext information

Get Kernel Image No Get sanitized kernel image

Get Kernel Load Address No Get load address of kernel (for debugging)

Get All Load Requests No Get status of all kext load requests since boot

Get Kernel Requests Yes Retrieve list of all kext load requests, including those from

kernel space

Load Yes Load one or more kexts

Start Yes Start a kext

Stop Yes Stop a kext

Unload Yes Unload (remove) a kext

The privileged predicate are reserved for kextd use, though up to an including Lion they can be used
by any root process. The kernel may occasionally initiate requests back to user mode (i.e. kextd), as
well. These requests include Send Resource, to ask kextd to retrieve a fi le resource belonging to a
kext, and Kext Load Request, which asks kextd to load a kext from disk, and send it to the kernel.
Additionally, kextd can get notifi cations from the kernel for kext loading and unloading.

Experiment: Viewing kext_request Messages Issues by kextd
Using gdb, you can view both mach_msg()s sent to and from kextd on an OS X system. To start,
fi nd the PID of kextd, and attach to it using gdb –p, as shown in Output 18-8:

OUTPUT 18-8: Attaching to kextd with gdb

root@Simulacrum (/)# ps -ef | grep kextd
 0 11 1 0 5:46PM ?? 0:00.12 /usr/libexec/kextd
 0 4217 4214 0 5:48PM ttys007 0:00.01 grep kextd
root@Simulacrum (/)# gdb –p 11
GNU gdb 6.3.50-20050815 (Apple version gdb-1817) (Thu Apr 5 20:54:43 UTC 2012)
Copyright 2004 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "x86_64-apple-darwin".
/Users/mahmood1/4197: No such file or directory

continues

c18.indd 733c18.indd 733 9/29/2012 5:52:18 PM9/29/2012 5:52:18 PM

734 x CHAPTER 18 MODU(LU)S OPERANDI — KERNEL EXTENSIONS

Attaching to process 11.
Reading symbols for shared libraries . done
Reading symbols for shared libraries
.. done
Reading symbols for shared libraries + done
0x00007fff8642e6ae in mach_msg_trap ()

The kextd(8) will be in broken into in mach_msg_trap() — not surprising, as this is the blocking
system call in the heart of its message loop. Add a breakpoint on kext_request, and continue:

(gdb) break kext_request
Breakpoint 1 at 0x7fff86421770
(gdb) c
Continuing.

In another terminal (and, if you can, another window), run kextload(8), and load some harmless
module, such as the NTFS driver (kextload /System/Library/Extensions/ntfs.kext). You
should see kextd(8) break on kext_request, as it receives a message on its host special port, and
relays it as a kext_request to the kernel. Likewise, kextload(8) will hang, since it is waiting on
kextd’s reply. Printing the value of the RDX register as a string will reveal the message, as shown in
Output 18-9:

OUTPUT 18-9: Displaying kext MIG messages

 (gdb) x/6s $rdx # First request is a Get Loaded Kext Info, on the NTFS.kext
0x7f8c8a00d200: "<dict><key>Kext Request Predicate</key>
 <string>Get Loaded Kext Info</string>
 <key>Kext Request Arguments</key><dict>
 <key>Kext Request Info Keys</key>
 <array><string>CFBundleIdentifier</string><string>CF"...
0x7f8c8a00d2c8: "BundleVersion</string><string>OSBundleCompatibleVersion
</string><string>OSBundleIsInterface</string><string>OSKernelResource</string>
<string>OSBundleCPUType</string><string>OSBundleCPUSubtype</string>"...
0x7f8c8a00d390: "<string>OSBundlePath</string><string>OSBundleUUID</string>
<string>OSBundleStarted</string><string>OSBundleLoadTag</string>
<string>OSBundleLoadAddress</string><string>OSBundleLoadSize</string> "...
0x7f8c8a00d458: "SBundleWiredSize</string><string>OSBundlePrelinked</string>
<string>OSBundleDependencies</string><string>OSBundleRetainCount</string>
</array><key>CFBundleIdentifier</key><array><string>com.apple.kpi.li"...
0x7f8c8a00d520: "bkern</string><string>com.apple.kpi.private</string>
<string>com.apple.kpi.unsupported</string><string>com.apple.kpi.mach</string>
<string>com.apple.kpi.bsd</string><string>com.apple.filesystems.ntfs</s"...
0x7f8c8a00d5e8: "tring></array></dict></dict>"
(gdb) c
Continuing.

Breakpoint 1, 0x00007fff86421770 in kext_request ()
(gdb) x/6s $rdx # Actual load request is in MultiKext form
0x10b1eb000: "MKXTMOSX"

OUTPUT 18-8 (continued)

c18.indd 734c18.indd 734 9/29/2012 5:52:18 PM9/29/2012 5:52:18 PM

References x 735

As further exercise, try and break inside kext_request, to intercept the kernel’s reply. You could try to
break on the incoming mach_msg from kextload (or, alternatively, run kextload under gdb as well).

SUMMARY

This chapter discussed Kernel Extensions — KEXTs, and kernelcaches. Both are important concepts
in the OS X and iOS kernel space, as they provide the fl exibility required by the kernel to support
third party devices and enhancements. In the right hands, KEXTs offer the developer the ability to
add functionality to the kernel, and provide device drivers, primarily using I/O Kit, as is shown in
the next chapter. In the wrong hands, the functionality of a KEXT — injecting code directly into
kernel space — can be abused to no end, providing a fulcrum for rootkits and malware to quite liter-
ally move the kernel.

REFERENCES

1. Apple Developer, “Kernel Programming Guide,” http://develeoper.apple.com/

2. Apple Developer, “Kernel Extensions Programming Topics,” http://developer.apple.com

c18.indd 735c18.indd 735 9/29/2012 5:52:18 PM9/29/2012 5:52:18 PM

http://develeoper.apple.com
http://developer.apple.com

c18.indd 736c18.indd 736 9/29/2012 5:52:18 PM9/29/2012 5:52:18 PM

19
Driving Force — I/O Kit

Unlike other operating systems, XNU is unique in its offering of a complete runtime environ-
ment for device drivers. Even more unique is that this environment enables developers to code
in C++ rather than C, which has traditionally been, alongside assembly, the language of choice
for kernel programming.

XNU’s device driver environment is called the I/O Kit, and it is a proprietary component
developed by Apple. It is neither part of Mach, nor BSD (nor, for that matter, the legacy OS 9).
Its roots are in NeXTSTEP’s DriverKit though it has advanced considerably since then. It is a
largely self-contained environment, meaning that developers can code and rely solely on the
I/O Kit APIs, remaining largely ignorant of the Mach or BSD layers. By enabling C++, I/O Kit
brings to developers the power of object orientation, chiefl y subclassing and function overrid-
ing, which transforms the device driver development process into a much more effi cient one.
Driver developers need not implement everything from scratch, but can actually subclass exist-
ing drivers, inheriting some already-implemented features to save time, while overriding and
providing different implementations for others.

I/O Kit also offers its own user mode set of APIs, the I/O Kit Framework, which pro-
vides advanced features such as kernel notifi cations and kernel-to-user (and vice versa)
communications.

This chapter covers I/O Kit, dealing with its low-level implementation, which is part of the
XNU open source. I/O Kit is already well documented by Apple Developer references[1,2], and
the reader is encouraged to read these for the driver API specifi cs. Rather than discuss drivers
of various types as other books do[3], we focus on the framework itself, and the implementa-
tion of the features widely required by all drivers: memory allocation, interrupt handling, and
others.

c19.indd 737c19.indd 737 10/5/2012 4:20:30 PM10/5/2012 4:20:30 PM

738 x CHAPTER 19 DRIVING FORCE — I/O KIT

This chapter applies to iOS as it does to OS X, since I/O Kit is part of iOS, and
is in fact widely used by Apple for all the device drivers. Due to the restrictionson
iOS, however, developing third-party drivers for Apple’s i-Devices is extremely
hard (not to say impossible). This makes the term “iOS Kernel Programming” vir-
tually non-existent outside Apple’s own circles. Even on a jailbroken device, kext
and I/O Kit support is (intentionally) limited. Also remember there are very few
public kernel symbols to link the drivers with. Apple doesn’t want anyone messing
around with its prized embedded OS, even more so when it involves the kernel.

INTRODUCING I/O KIT

I/O Kit is quite unique in its design. While all other operating systems certainly have device drivers,
most are doomed to be written in C, and don’t have their own runtime environment. Few exceptions
exist, notably Windows’ NDIS and the new Windows Driver Foundation architecture, but none is as
extensive and as object oriented as I/O Kit.

Device Driver Programming Constraints
Device drivers are the primary reason why developers opt to abandon the relative safety of user
mode and delve into the hazardous realms of kernel programming. Under normal conditions, user
mode code is simply unable to directly access hardware, due to ring (or on ARM, CPSR) restric-
tions. Although user mode driver frameworks exist, most notably for USB, they are fairly limited,
and often don’t live up to the requirements of high-throughput devices, such as disks or display
adapters.

Device drivers, however, operate under the tightest set of requirements possible. By virtue of living
in the kernel, they inherit all the restrictions of kernel mode: limited wired memory, no user mode
APIs, and a very narrow margin of error, with nearly every bug potentially resulting in a kernel
panic. Due to the drivers’ interfacing with hardware, however, the margin of error becomes even nar-
rower still. Device drivers often have to deal with interrupts from their devices, which are the most
critical parts of kernel code, and introduce even further complications dealing with concurrency
and code reentrance. To further complicate things, every operating system has its own device driver
model, resulting in a very steep learning curve, which often proves to be a slippery one, as well.

As such, it is somewhat a relief for developers, in that sense, to be presented with I/O Kit as the API
environment of choice for OS X. Object orientation makes plenty of sense when one considers that
devices can be thought of as instances of their respective classes. While I/O Kit requires a certain
paradigm shift from the usual view of device driver programming, its features make the shift and
adaptation well worth it. These features are discussed next, but before plunging into the details, we
fi rst need to lay out a few clear foundations.

What I/O Kit Is
Before we introduce the internals of I/O Kit, it makes sense to clearly defi ne what I/O Kit is and
is not.

c19.indd 738c19.indd 738 10/5/2012 4:20:35 PM10/5/2012 4:20:35 PM

Introducing I/O Kit x 739

A (Nearly) Self-Contained Environment
I/O Kit is a nearly self-contained runtime environment for drivers. The closest non–OS X compa-
rable runtime is NDIS (Network Driver Interface Specifi cation), which is widely used on Windows
to provide a model and an environment for network device drivers. The NDIS APIs wrap those of
Windows, and a fully NDIS-compliant driver can also run on Linux’s NDISWrapper.

I/O Kit has not been implemented anywhere but OS X and iOS (though, in theory, it can be). It is,
however, a full environment, and an I/O Kit driver can theoretically rely solely on the I/O Kit APIs,
which wrap those of the underlying Mach1. Indeed, the I/O Kit APIs for creating threads, allocating
memory, and many other common tasks are merely thin wrappers over the Mach APIs. Listing 19-1
shows an example of this in IOCreateThread, which wraps Mach’s kernel_thread_start:

LISTING 19-1: I/O Kit thread creation and exit APIs, from I/O Kit/Kernel/IOLib.cpp

IOThread IOCreateThread(IOThreadFunc fcn, void *arg)
{
 kern_return_t result;
 thread_t thread;

 result = kernel_thread_start((thread_continue_t)fcn, arg, &thread);
 if (result != KERN_SUCCESS)
 return (NULL);

 thread_deallocate(thread);

 return (thread);
}

void IOExitThread(void)
{
 (void) thread_terminate(current_thread());
}

In terms of performance, the overhead from I/O Kit is fairly small (in many cases, direct fall-
through calls such as IOExitThread() can be optimized by the compiler). Using the I/O Kit APIs
hides the underlying Mach APIs, making drivers potentially forward compatible even if Mach is
someday changed or altogether removed.

An Object-Oriented Environment
I/O Kit drivers are objects instantiated and derived from certain base classes. These base classes are,
for the most part, provided by Apple. The topmost class — the abstract OSObject — is akin to C++’s
or Java’s basic idea of an “object.” Though OSObject cannot be instantiated (because it is abstract),
everything is a type of OSObject. The true power, however, comes from its descendants, which form
a complex class hierarchy spanning well over a hundred classes. A developer can fi nd the class that
is closest to his or her own required driver and pick up from there, effectively reusing code that is
generic enough to be in the class itself.

1 Theoretically, as more often than not drivers, even Apple’s own, stray outside the I/OKit APIs.

c19.indd 739c19.indd 739 10/5/2012 4:20:35 PM10/5/2012 4:20:35 PM

740 x CHAPTER 19 DRIVING FORCE — I/O KIT

For example, consider an Ethernet driver. Your own specifi c driver for a proprietary multi-gigabit
Ethernet would still share common logic with the lowliest of the 10 Mbps cards. Namely, Ethernet
frame encapsulation, MAC address handling, and many other features are invariant, being part of
the low-level Ethernet protocol. Implementing these in a driver from scratch would consume valu-
able time, and worse, might introduce bugs. Reusing tested code shortens the development time con-
siderably and lends itself to more solid, robust code, which is especially important for drivers.

Specifi cally Designed for Drivers
I/O Kit provides support for many aspects of programming that are specifi c to working with
devices — primarily plug ‘n’ play, and power management. Another important architectural idea is
that of driver layering, which enables the stacking of device drivers on top of one another.

Work Loop Driven
I/O Kit offers a work loop model, which is somewhat similar to Objective-C's Run loop (or Mach's
message loop). In a nutshell, a work loop is a message handling loop which continuously processes
events. Using a work loop greatly simplifi es concurrency issues, and can often alleviate the need for
locks, which may impact performance.

Registry Based
Unlike other driver environments, in I/O Kit everything is accounted for — objects referenced,
classes registered, and more — and is managed in the I/O Registry, which is a multi-layered hier-
archical database tracking both the objects and their interrelations. This registry is maintained
in kernel memory, and can be queried from within an I/O Kit driver or from user mode using the
ioreg(8) command, which will be discussed later in this chapter.

User (Mode) Friendly
I/O Kit offers APIs for user mode access, and in fact you can implement some drivers, such as those
of USB devices, entirely in user mode. The I/O Kit registry is also readily accessible from user mode
(as will be shown later in this chapter), allowing the user mode program to query hardware confi gu-
ration and parameters.

Implemented in a subset of C++
Because I/O Kit is C++ based, it draws on some of the language’s useful compile time features,
such as:

 ‰ Namespaces: I/O Kit drivers can use C++ namespaces to wrap their functions and symbols,
which helps avoid global symbol confl icts in the kernel.

 ‰ Name mangling: I/O Kit symbols are mangled, which embedding of the C++ level prototype
information (namespace, return value and arguments) in the function name. This feature
actually comes in very handy when inspecting the iOS kernel symbols: A name demangler
(for example, HexRays’ IDA-Pro or the free http://demangler.com) can quickly recover
the prototype from the otherwise weird-looking symbol.

c19.indd 740c19.indd 740 10/5/2012 4:20:35 PM10/5/2012 4:20:35 PM

http://demangler.com

Introducing I/O Kit x 741

What I/O Kit Isn’t
For all its capabilities, I/O Kit is still not a perfect environment. It has some shortcomings.
Specifi cally:

A Full C++ Environment
 I/O Kit is implemented in C++, but the C++ is a restricted subset of the C++ you probably know
and love (or hate) from user-land. In particular, it does not offer the following features:

 ‰ Templates: These compile-time features of C++ are not present in I/O Kit, so using the famil-
iar template < > on data structures is impossible. There is no STL support.

 ‰ Exceptions: One of C++’s most powerful features is structured exception handling. I/O Kit
will have none of that, so the try/catch blocks must be left behind. The kernel stack is lim-
ited, because the kernel generally does not place exception handlers on kernel mode code.

 ‰ Standard constructors: These can’t be used in I/O Kit because the only way to fail in a con-
structor is to throw an exception, and I/O Kit does not support exceptions. Instead, object
construction is split into two — a new operator (essentially a simple wrapper over malloc)
and an init() function, which prepares the object.

A Full-Featured API
The I/O Kit APIs are good, but not that good. Because there is no full C++ runtime, the only run-
time functionality is provided by a custom library called libkern. In order to be fully compliant with
I/O Kit, a developer is expected to use only the libkern APIs. A developer might fi nd using those
limited, as it requires getting used to the I/O Kit primitives (e.g. OSArray, OSDictionary), rather
than the familiar data types of C++.

Another problem that arises is the minor transgression into Mach or BSD space. As stated before,
the aim of I/O Kit is to be fully self-contained, but it somewhat falls short of that. Even Apple’s own
examples sometimes use data types or functions that are in Mach headers. This requires the devel-
oper to be cognizant of some Mach primitives after all, and may hinder portability if I/O Kit is ever
ported out of Apple’s systems.

The Most Flexible of Programming Models
An I/O Kit driver must implement a very specifi c lifecycle, which marks a signifi cant departure from
normal driver callbacks that are well known from other operating systems. The lifecycle is quite
complex, and a developer needs to know what callback to implement under what specifi c conditions.

All about code
I/O Kit drivers aren’t just binaries. Being kexts, they must contain the mandatory Info.plist.
Being I/O Kit drivers, the Info.plist is expected to contain I/O Kit-specifi c directives, without
which the driver cannot function. It is not uncommon for a developer to spend frustrating
hours debugging a driver that failed to load before realizing the problem is a typo in the driver’s
property list.

c19.indd 741c19.indd 741 10/5/2012 4:20:35 PM10/5/2012 4:20:35 PM

742 x CHAPTER 19 DRIVING FORCE — I/O KIT

LIBKERN: THE I/O KIT BASE CLASSES

I/O Kit’s foundation, the libkern C++ runtime, defi nes the primitive classes that are available for use
in all I/O Kit drivers. These primitives, which correlate somewhat with those of CoreFoundation,
are defi ned in XNU’s libkern/libkern/c++ directory (in .h fi les) and implemented in the
libkern/c++ directory, in simple fi les, one per class. This is shown in Table 19-1:

TABLE 19-1: I/O Kit Primitives Provided by libkern

LIBKERN/ I/O KIT CLASS CORRESPONDING

COCOA/CARBON CLASS

USED FOR

OSObject NSObject The parent class of all there is. Everything in

I/O Kit inherits from this (with the exception of

OSMetaClass), and by doing so automatically

obtains reference counting logic and other top-

level methods.

OSMetaClass N/A An abstract class used extensively in I/O Kit

to provide RTTI services, in place of C++ RTTI,

which is unsupported.

OSArray CFArray An array of OSObjects.

OSBoolean CFBoolean A primitive boolean type. Simple wrapper over

a private bool value.

OSCollection

OSCollectionIterator

N/A An abstract collection object and its iterator.

The latter inherits from OSIterator.

OSData CFData An opaque array of bytes.

OSDictionary CFDictionary An associative array. This is functionally the

same as a Perl or Java hash, or Objective-C’s

CFDictionary object.

OSIterator N/A Abstract base class for iterators.

OSKext N/A A class defi ning a kernel extension.

OSNumber CFNumber A number — integer, fl oat, or double.

OSOrderedSet

OSSet

CFSet An ordered and an unordered set, respectively.

Both inherit from OSCollection.

OSString CFString A C-String wrapper.

OSSymbol N/A Unique, reusable symbols (for example, hard-

coded strings).

c19.indd 742c19.indd 742 10/5/2012 4:20:35 PM10/5/2012 4:20:35 PM

The I/O Registry x 743

The libkern/c++ directory also contains support fi les (OSRuntime.c and OSRuntimeSupport.cpp)
that are used during libkern’s initialization as well as serialization functions (OSSerialize/OSUnse-
rialize) to allow the writing and reading of objects from XML property lists.

OSObject
All classes but one in I/O Kit’s extensive hierarchy trace back to one ancestor, called OSObject. This is
the same “object” ancestor that can be found in Java and C++ and is akin to the NSObject of Cocoa.
Inheriting from OSObject involves a slight change in the programming model. Due to the lack of excep-
tion support, constructors may no longer be used to initialize the newly created objects. Instead, object
instantiation is now split into two phases: the allocation of memory for it (which is done, as always,
using the new operator), and the initialization, which is carried out by a separate init() function. It is
the responsibility of a client creating an object to follow the new operator by a call to init(), and to
check the return value of the latter. If init() returns false, the object cannot be used, and must be freed.

Quite a few I/O Kit classes implemented static factory methods, which perform the work of new and
init in the same function. These follow a loose convention of “with,” allowing for multiple factory
methods which take different arguments.

Another slight change in the model is the alleviation of the need to explicitly call free or delete to
dispose of an object. In fact, these are disallowed. Instead, OSObjects maintain reference counts,
which can be incremented (with retain) or decremented (with release). Code is expected to use
only those two methods, with release automatically freeing and deleting the object when the refer-
ence count drops to zero. The object’s free() is still supported as the anti-function of its init(),
and for user-defi ned objects should be overridden to counteract any initializations on allocations
performed during init().

OSMetaClass
I/O Kit doesn’t support the standard C++ RunTime Type Identifi cation (RTTI). It offers a similarly
powerful mechanism, however, in its OSMetaClass.

The OSMetaClass is an abstract class and is not meant to be used directly. It does, however, require
that special macros be used to enable its RTTI features. These macros include the following:

 ‰ OSDeclareDefaultStructors: This is used to emit the prototypes of the default construc-
tors and destructors (hence, “Structors”) for I/O Kit objects. Virtually all I/O Kit objects have
this in their header fi le. Abstract classes use OSDeclareAbstractStructors, instead. The
macros take two arguments — the driver class name and its superclass.

 ‰ OSDefineMetaClassAndStructors: This is similarly used in the class implementation.
Abstract classes use OsDefineMetaClassAndAbstractStructors — The suffi x WithInit
may be appended to both, for macros that also include the initialization function.

THE I/O REGISTRY

I/O Kit maintains an up-to-date database on all of its objects and the interrelations between them.
This database resides in memory and is known as the I/O Registry. This should not be confused
with Windows’ registry, which is arguably somewhat similar, but with far reaching differences.

c19.indd 743c19.indd 743 10/5/2012 4:20:36 PM10/5/2012 4:20:36 PM

744 x CHAPTER 19 DRIVING FORCE — I/O KIT

The I/O Kit registry is multi-planar. Quite simply, this means that it exists in three dimensions
(unlike most graphs, which are bi-dimensional) and can be examined in one of several planes.
Registered objects are like lines, which cut through the planes, and may exist in some, and be
missing from others. As a consequence, their relationships with other objects are dependent on
which plane they are viewed in. An object may be connected to its parent on one plane, but not
another.

Table 19-2 lists the planes that are currently defi ned.

TABLE 19-2: Currently Defi ned Planes

PLANE USED FOR

IOService The default plane, wherein all objects have some connection to a parent.

IOACPIPlane The ACPI-enabled devices, as exported by AppleACPIPlatform.kext. Not appli-

cable on iOS, which does not support ACPI.

IODeviceTree The Device Tree, as constructed by EFI (or iBoot) and exported by the

IOPlatformExpert.

IOPower Devices that respond to power management events. Devices are connected in this

plane if a power failure in one aff ects another. Drivers can selectively opt-in to this

plane if they require power management by calling PMInit() and then asking their

provider to joinPMTree(). (You can fi nd more on that topic in the “I/O Kit Power

Management” section.)

IOUSB USB devices. This hierarchy is based on the USB devices’ own hierarchy. Usually

not found on iOS, but may be created dynamically; for example, when an i-Device is

connected to Apple’s digital camera kit.

IOFireWire Firewire buses and devices, if any. Like USB, the hierarchy is based on the internal

hierarchy of devices connected. Not applicable on iOS or any Macs that do not sup-

port FireWire (for example, MacBook Air).

As noted in Table 19-2, planes may also be created dynamically. This is rarely done outside I/O Kit’s
initialization, but one example is iOS’s USB host support, which is enabled when Apple’s digital
camera kit’s adapter is attached to, say, an iPad. Observant hackers have long noticed that the “kit”
is nothing more than a adapter that transforms an iPad into a USB 2.0 host (albeit in a limited man-
ner — USB devices cannot draw power, which limits most hard disks, but lightweight devices like
keyboards can, in fact, be connected).

The defi ned planes are maintained under the root entry, in the "IORegistryPlanes" property
(kIORegistryPlanesKey in I/O Kit/I/O Kit/I/O KitKeys.h). A quick way to fi nd out what
planes are defi ned on a given system is by using ioreg(8) and singling out the "IORegistry-
Planes" key, as shown in Listing 19-2. As noted in Table 19-2, the iMacs, Minis, and Pros also
have an "IOFireWire" plane.

c19.indd 744c19.indd 744 10/5/2012 4:20:36 PM10/5/2012 4:20:36 PM

The I/O Registry x 745

LISTING 19-2: Viewing registry planes on a MacBook Air and on an iPad 2.

#
Macbook Air
#
morpheus@Ergo (~)$ ioreg -l -w 0 | grep IORegistryPlanes
 | "IORegistryPlanes" = {"IOACPIPlane"="IOACPIPlane","IOPower"="IOPower",
"IODeviceTree"="IODeviceTree", "IOService"="IOService","IOUSB"="IOUSB"}
#
#... and, on a jailbroken iPad (with ioreg installed from Cydia)
#
root@Padishah (/) # ioreg -l -w 0 | grep RegistryPlanes
 | "IORegistryPlanes" = {"IODeviceTree"="IODeviceTree","IOService"="IOService",
"IOPower"="IOPower"}

The ioreg(8) command is really an all-in-one utility for all things I/O Registry–related. Because
it is a command-line utility, it is very useful. As shown in Listing 19-2, it can be used with myriad
switches. The -l switch is used to list properties (which "IORegistryPlanes" is), and -w 0 disables
the truncation of output on terminal window boundary). This command can also be compounded
with the powerful grep(1) to quickly single-out only the class, instance, or property of interest. GUI-
oriented developers might prefer IORegistryExplorer, which is part of XCode, and can also show
live registry changes such as the addition and removal of devices, as shown in Figure 19-1.

FIGURE 19-1: IORegistryExplorer showing the connection of an iPad to a MacBook Air

c19.indd 745c19.indd 745 10/5/2012 4:20:36 PM10/5/2012 4:20:36 PM

746 x CHAPTER 19 DRIVING FORCE — I/O KIT

In each plane, the objects are organized in a hierarchical tree structure. Each object can be found by
a path-like specifi cation, which is reminiscent of the Solaris or Linux Device tree (and, in the case of
the IODeviceTree plane, follows it). In addition, each object has a unique path designating its class
inheritance, tracing back to OSObject. Remember that I/O Kit does not allow multiple inheritance;
therefore, both the existence and uniqueness of this inheritance path are assured.

IORegistryEntry
The IORegistryEntry class is used as a parent class for those objects that have representation
in the I/O Registry. It is a simple container of the object’s properties, which are stored as an
OSDictionary object. The class is not meant to be directly inherited from. The parent class for I/O
Kit objects is IOService, a subclass of this one. By virtue of inheritance, however, all drivers are
also automatically registered.

IORegistryEntry contains some 70 or so functions that deal with the implementation of the
IORegistry and its various planes. The initialize method implements a singleton by either
initializing or returning the global gRegistryRoot (which can also be obtained by a call to
IORegistryEntry::getRegistryRoot()). The root also holds the various I/O planes (in the
gIORegistryPlanes dictionary). The IORegistryPlane class itself is also defi ned (in the same
.cpp and .h fi les), though its only useful method is serialize(). New planes can be created at any
time by IORegistryEntry::makePlane(), though as noted earlier this is fairly rare outside initial-
ization. The IORegistryEntry class is responsible for implementing the registry objects’ interface:
getting and setting properties, managing hierarchy, and associating with an I/O plane. By inheriting
from it (via IOService), a driver gets all these services “for free.”

IOService
The direct (and only) descendant of IORegistryEntry is IOService. It is also the ancestor of all
drivers, both Apple supplied and third party. Though most drivers aren’t direct subclasses of
IOService, they are still its eventual descendants, and inherit from it the set of functions they are
capable of using (such as power management, interrupt handling, and so on) and in some cases,
expected to implement (such as the driver standard callbacks). This is described in more detail later
in the “I/O Kit Kernel Drivers” section.

The common ancestry of all I/O Kit classes comes in handy during various registry walking and
enumeration tasks. This is shown next.

I/O KIT FROM USER MODE

I/O Kit drivers can communicate with user mode through APIs offered by the I/O Kit.Framework,
and its IOKitLib APIs. This framework is solely intended for user mode, as kernel mode I/O Kit
components are expected to use the IOKit/ subdirectory of Kernel.Framework. User mode applica-
tions can use the APIs to interface with I/O Kit drivers in the kernel, as well as the I/O Kit compo-
nents themselves, most notably the I/O Registry.

All I/O Kit functions rely on a special host port, which I/O Kit refers to (and obtains by a call to)
IOMasterPort(). This function is really just a simple wrapper over the host_get_io_master()

c19.indd 746c19.indd 746 10/5/2012 4:20:36 PM10/5/2012 4:20:36 PM

I/O Kit from User Mode x 747

function, which obtains the IO_MASTER_PORT special port from mach_host_self(). (Special ports
are discussed in Chapter 10.) Alternatively, applications can use kIOMasterPortDefault as a con-
stant value in place of the master port, which causes I/O Kit to look up the port internally. Com-
munications between user mode and I/O Kit kernel components and drivers is carried over Mach
messages, generated as subsystem 2800 by MIG (as can be seen in System/Library/Frameworks/
IOKit.framework/Headers/iokitmig.h. The implementations of these routines in the kernel are
in iokit/Kernel/IOUserClient.cpp.

One additional kernel function is iokit_user_client_trap, otherwise known as Mach trap #100.
This trap (also implemented in iokit/Kernel/IOUserClient.cpp and defi ned in IOKitUser’s
IOTrap.s for i386) can be used through the IOKit framework’s exported IOConnectTrap[0-6] calls.
These calls are used to invoke driver registered functions which are external to I/O Kit, with up to 6
arguments. This mechanism is largely unused, aside from rare cases (e.g. IOPMSetPMPreferences in
iOS), as the better IOConnectCallMethod and friends have been introduced in Leopard.

The IOKitLib APIs are well documented[4], and Apple maintains a developer-friendly guide for user
mode developers[5]. These APIs are extremely powerful — this section provides an overview of some
of them, while leaving others (even powerful ones, such as IOConnectMapMemory) to whet the vora-
cious user’s appetite.

I/O Registry Access
With the Master Port in hand, an application may send any number of I/O Kit requests. Commonly,
these requests involve querying the I/O Registry. Listing 19-3 shows traversing the I/O Kit planes
programmatically:

LISTING 19-3: Traversing I/O Kit’s service plane in search of a specifi c device

//
// Simple I/O Kit Registry walker
// Compile with -framework IOKit

#include <stdio.h>
#include <mach/mach.h>
#include <CoreFoundation/CoreFoundation.h> // For CFDictionary

// In OS X, you can just #include <IOKit/IOKitLib.h>. Not so on iOS
// in which the following need to be included directly
#define IOKIT // to unlock device/device_types..
#include <device/device_types.h> // for io_name, io_string

// from IOKit/IOKitLib.h
extern const mach_port_t kIOMasterPortDefault;

// from IOKit/IOTypes.h
typedef io_object_t io_connect_t;
typedef io_object_t io_enumerator_t;
typedef io_object_t io_iterator_t;
typedef io_object_t io_registry_entry_t;
typedef io_object_t io_service_t;

continues

c19.indd 747c19.indd 747 10/5/2012 4:20:37 PM10/5/2012 4:20:37 PM

748 x CHAPTER 19 DRIVING FORCE — I/O KIT

// Prototypes also necessary on iOS
kern_return_t IOServiceGetMatchingServices(
 mach_port_t masterPort,
 CFDictionaryRef matching,
 io_iterator_t * existing);

CFMutableDictionaryRef IOServiceMatching(const char *name);

// Main starts here
int main(int argc, char **argv)
{
 io_iterator_t deviceList;
 io_service_t device;
 io_name_t deviceName;
 io_string_t devicePath;
 char *ioPlaneName = "IOService";
 int dev = 0;

 kern_return_t kr;

// Code does not check validity of plane (left as exercise)
 // Try IOUSB, IOPower, IOACPIPlane, IODeviceTree
 if (argv[1]) ioPlaneName = argv[1];

// Iterate over all services matching user provided class.
 // Note the call to IOServiceMatching, to create the dictionary

 kr = IOServiceGetMatchingServices(kIOMasterPortDefault,
 IOServiceMatching("IOService"),
 &deviceList);

 // Would be nicer to check for kr != KERN_SUCCESS, but omitted for brevity

 if (kr){ fprintf(stderr,"IOServiceGetMatchingServices: error\n"); exit(1);}
 if (!deviceList) { fprintf(stderr,"No devices matched\n"); exit(2); }

 while (IOIteratorIsValid(deviceList) &&
 (device = IOIteratorNext(deviceList))) {

 kr = IORegistryEntryGetName(device, deviceName);
 if (kr)
 {
 fprintf (stderr,"Error getting name for device\n");
 IOObjectRelease(device);
 continue;
 }

 kr = IORegistryEntryGetPath(device, ioPlaneName, devicePath);

 if (kr) {
 // Device does not exist on this plane
 IOObjectRelease(device);

LISTING 19-3 (continued)

c19.indd 748c19.indd 748 10/5/2012 4:20:37 PM10/5/2012 4:20:37 PM

I/O Kit from User Mode x 749

 continue;
 }

 // can listProperties here, increment device count, etc..
 dev++;
 printf("%s\t%s\n",deviceName, devicePath);
 }

 if (device) {
 fprintf (stderr,
 "Iterator invalidated while getting devices. Did configuration change?\n");
 }
 return kr;
}

The fi rst thing to notice in the listing is the abundance of declarations. OS X supplies <IOKit/
IOKitLib.h> which defi nes all these, but the iOS SDK does not have this header. Nonetheless, the
typedefs and functions are supported, so it’s a simple matter of importing the declarations manually,
and so this code can compile and link on iOS, as well. The program fl ow is simple to follow, and the
I/O Kit function names are rather self-explanatory, but much occurs behind the scenes.

First, the call to IOServiceMatching() creates a matching dictionary for IOService. This match-
ing dictionary is a CFMutableDictionaryRef (that is, a pointer to a non-constant CFDictionary
object), constructed automatically to match on service name or subclass name. Specifying
IOService as the class name means we are interested in a match of all classes (since it is the pro-
genitor of nearly all other classes).

Every subsequent call to I/O Kit from IOServiceGetMatchingServices() internally calls a low-
ercased version (for example, io_service_get_matching_services), for which there is a corre-
sponding kernel implementation, as created by the MIG (you can fi nd the MIG .defs fi le in osfmk/
device/device.defs, and their implementations in iokit/Kernel/IOUserClient.cpp). The com-
munication is naturally carried out over Mach messages. Whereas all I/O Kit objects are opaque to
user mode, the kernel functions can dereference them, and return specifi c fi elds (for example, io_
registry_entry_get_name, _get_path, and so on). Likewise, the I/O Kit opaque iterator object,
which is used to walk through the device collection, can be safely dereferenced in kernel mode to
return the device handle.

Getting/Setting Driver Properties
Because device drivers in the I/O Kit model are objects, they have properties. These properties are
visible in user mode and may be obtained and even modifi ed by a user mode client. This approach
makes for a simple, intuitive way to communicate with device drivers, rather than the traditional
UNIX ioctl(2) interface.

To manipulate properties, I/O Kit offers several functions. IORegistryEntryCreateCF
Properties() and IORegistryEntryCreateProperty() may be used to retrieve a copy of the
driver’s entire property table, or an individual property by name. To set the property list or indi-
vidual properties, corresponding Set functions may be used. (The corresponding Get functions are
deprecated, superseded by their Create counterparts). Listing 19-4 shows how you can extend List-
ing 19-3 to provide more of ioreg(8)’s functionality:

c19.indd 749c19.indd 749 10/5/2012 4:20:37 PM10/5/2012 4:20:37 PM

750 x CHAPTER 19 DRIVING FORCE — I/O KIT

LISTING 19-4: A property getter function for an IOService

void listProperties(io_service_t Service)
{

 CFMutableDictionaryRef propertiesDict;

 kern_return_t kr = IORegistryEntryCreateCFProperties(Service,
 &propertiesDict,
 kCFAllocatorDefault,
 kNilOptions);
 if (!kr) { fprintf (stderr,"Error getting properties..\n"); return; }

 // If kr indicates success, we have the properties as a dict. From here,
 // it's just a matter of printing the CFDictionary, in this example, as XML

 CFDataRef xml = CFPropertyListCreateXMLData(kCFAllocatorDefault,
 (CFPropertyListRef)propertiesDict);
 if (xml) {
 write(1, CFDataGetBytePtr(xml), CFDataGetLength(xml));
 CFRelease(xml);
 }

}

Many drivers export useful information through the I/O Registry. One such example is battery
status. iOS developers may be familiar with the UIDevice class and the UIDeviceBatteryState,
which enable getting battery properties through Objective-C and the UIKit framework. Similar
functionality can be obtained in a quick-and-dirty way directly from the I/O Registry, by inspect-
ing the AppleSmartBattery class (in OS X) or AppleD1xxxPMUPowerSource (in iOS, 1946 on an
iPad 2, 1816 on an iPod 4G). Though these are different classes, they export the CurrentCapacity
and MaxCapacity properties. Dividing the former by the latter will obtain the battery percentage.
Likewise, the isCharging/fullyCharged properties provide the corresponding Boolean status indi-
cations. The IOKit framework also provides the IOPowerSource APIs (in the ps.subproj of the
IOKitUser package) to wrap the raw I/O Registry parameters in a nicer API.

Plug and Play (Notifi cation Ports)
A client in user mode may ask I/O Kit to notify it of any I/O Registry changes, such as the arrival
(addition) and departure (removal) of devices, or a change in the state of certain devices. This is use-
ful for adding plug and play support for devices, such as starting iTunes (and possibly iPhoto) when
an i-Device is inserted.

To request notifi cations, a client must fi rst create a notifi cation port. This is an IONotification-
Port pointer (or IONotificationPortRef) returned by a call to IONotificationPortCreate. It’s
opaque in user mode, but is actually hiding a Mach port.

The notifi cation port can be registered in I/O Kit’s kernel component by IOServiceAddMatching-
Notification() (for device arrival) or IOServiceAddInterestNotification() (for device state
change). These functions internally call io_service_add_notification and io_service_add_
interest_notification, respectively. Interest notifi cations have a message-type argument, which
is a self-explaining constant from IOMessage.h, as shown in Listing 19-5:

c19.indd 750c19.indd 750 10/5/2012 4:20:38 PM10/5/2012 4:20:38 PM

I/O Kit from User Mode x 751

LISTING 19-5: kIOMessage constants for interest notifi cation messages

#define kIOMessageServiceIsTerminated IOKit_common_msg(0x010) // removal
#define kIOMessageServiceIsSuspended IOKit_common_msg(0x020)
#define kIOMessageServiceIsResumed IOKit_common_msg(0x030)
#define kIOMessageServiceIsRequestingClose IOKit_common_msg(0x100)
#define kIOMessageServiceIsAttemptingOpen IOKit_common_msg(0x101)
#define kIOMessageServiceWasClosed IOKit_common_msg(0x110)
#define kIOMessageServiceBusyStateChange IOKit_common_msg(0x120)
#define kIOMessageServicePropertyChange IOKit_common_msg(0x130)
//
// These are considered deprecated
//
#define kIOMessageCanDevicePowerOff IOKit_common_msg(0x200)
#define kIOMessageDeviceWillPowerOff IOKit_common_msg(0x210)
#define kIOMessageDeviceWillNotPowerOff IOKit_common_msg(0x220)
#define kIOMessageDeviceHasPoweredOn IOKit_common_msg(0x230)
#define kIOMessageCanSystemPowerOff IOKit_common_msg(0x240)

//
// These are wrapped by IOPMLib's IORegisterForSystemPower
//
#define kIOMessageSystemWillPowerOff IOKit_common_msg(0x250)
#define kIOMessageSystemWillNotPowerOff IOKit_common_msg(0x260)
#define kIOMessageCanSystemSleep IOKit_common_msg(0x270)
#define kIOMessageSystemWillSleep IOKit_common_msg(0x280)
#define kIOMessageSystemWillNotSleep IOKit_common_msg(0x290)
#define kIOMessageSystemHasPoweredOn IOKit_common_msg(0x300)
#define kIOMessageSystemWillRestart IOKit_common_msg(0x310)
#define kIOMessageSystemWillPowerOn IOKit_common_msg(0x320)

The notifi cation port may be listened on directly, using the Mach message primitives, or — prefer-
ably — connected to a run loop construct. Run loops are a Core Foundation programming model,
which implements message loops. When a message is received on the notifi cation port, a user-sup-
plied callback is invoked. A good example of this can be found in the IOKitUser package, which
contains an example program called ionotify.c.

I/O Kit notifi cations are also used (in Lion and later) by launchd(1), which can be set to listen for
I/O Kit matching events (by specifying a com.apple.iokit.matching dictionary under Launch-
Events) and start programs on demand (as discussed in Chapter 7).

I/O Kit Power Management
Not all devices need power management support, but for those that do, this support is very impor-
tant. Power management is paramount for Apple’s i-Devices, which run on a battery and must use it
effi ciently, because an i-Device that runs out of battery is about as useful as a brick. (Come to think
of it, less so, because you wouldn’t go around throwing a $600 brick.)

Drivers can register for power notifi cations and both respond and affect system power state transi-
tions. Drivers requiring this functionality can be found in the IOPower plane, and their lineage also
doubles as their power dependency. This is described in Apple’s I/O Kit Fundamentals, and is thus
left out of scope for this work.

c19.indd 751c19.indd 751 10/5/2012 4:20:38 PM10/5/2012 4:20:38 PM

752 x CHAPTER 19 DRIVING FORCE — I/O KIT

User mode applications can also request involvement in Power Management. This has, in fact, been
possible since the advent of OS X, albeit not as documented as is the case with drivers. Applica-
tions can register for power notifi cations, and even prevent system sleep or shutdown using Power
Management Assertions. These are similar in principle to Android’s “wakelocks,” which enable
a user mode program to request a hold on the device, preventing it from going to sleep. Lion pro-
vides a command-line tool called caffeinate(8), whose simple source[6] shows that it is merely a
simple program to call IOPMAssertionCreateWithDescription. This is one of the many API calls
exported through IOPMLib, shown in Table 19-3:

TABLE 19-3: IOP Code

FUNCTION USAGE

io_connect_t

IORegisterForSystemPower

 (void *refcon,

IONotificationPortRef

*thePortRef,

IOServiceInterestCallback callback,

io_object_t * root_notifier);

IOReturn IODeregisterApp

(io_object_t * notifier)

Register for power management notifi cations. This

function creates an I/O notifi cation port and registers

an kIOAppPowerStateInterest. The port refer-

ence is returned in thePortRef, with an optional

callback. The refcon is an opaque identifi er which

should be kept for de-registration.

IOReturn IOAllowPowerChange

(io_connect_t kernelPort,

long notificationID);

IOReturn IOCancelPowerChange

(io_connect_t kernelPort,

 long notificationID)

Respond by allowing or canceling a power change

event.

IOReturn IOPMSleepSystem

(io_connect_t fb);

IOReturn IOPMSchedulePowerEvent

(CFDateRef time_to_wake, CFStringRef

my_id, CFStringRef type);

Request system sleep, or schedule sleep, wake up,

shutdown, or power on.

IOReturn

IOPMAssertionCreateWithName(

CFStringRef AssertionType,

IOPMAssertionLevel AssertionLevel,

CFStringRef AssertionName,

IOPMAssertionID *AssertionID);

IOReturn IOPMAssertionRelease

 (IOPMAssertionID AssertionID)

Create a power management assertion, and specify

a textual AssertionName.

The AssertionType is one of kIOPMAssertion-

TypeNoIdleSleep, kIOPMAssertionTypeNoDis-
playSleep, etc.

The AssertionID should be retained until its even-

tual release.

c19.indd 752c19.indd 752 10/5/2012 4:20:38 PM10/5/2012 4:20:38 PM

I/O Kit from User Mode x 753

FUNCTION USAGE

IOReturn IOPMCopyAssertionsByProcess

(CFDictionaryRef *AssertionsByPID)
Show processes holding assertions (used by

pmset –g).

Driving IOPMLib behind the scenes are Mach messages (this book holds little surprises, even as it
draws to its close). The powermanagement subsystem is subsystem 73000, and MIG is used to gener-
ate connections, notifi cations, and assertions. The full list of messages can be seen in the IOKitUser
package’s pwr_mgt.subproj/powermanagement.defs.

Other I/O Kit Subsystems
The IOKitUser package contains, along side power management, other interesting subprojects,
including the kext subproj (discussed last chapter), USB, HID, and Graphics. The latter is especially
important, as it allows access to the framebuffer (graphics device memory) by communicating with
the kernel’s IOGraphicsFamily. This is useful for all sorts of nifty graphics effects, CLUT manipu-
lation and transparent overlays (such as those which appear when pressing the volume buttons on a
Mac or an i-Device). Singh’s book — Mac OS X Internals: A Systems Approach (Addison-Wesley
Professional, 2006) — has a nice example of framebuffer rotation.

I/O Kit Diagnostics
Apple provides only two diagnostic utilities outside ioreg(8) and the graphical IORegistry
Explorer bundled with Xcode. The only two utilities provided are ioallocount and ioclasscount.

ioalloccount(8)
ioalloccount(8) takes no arguments and presents the memory consumed by I/O Kit allocations,
as shown in Listing 19-6.

LISTING 19-6-A: ioalloccount on OS X

 morpheus@ergo (/)$ ioalloccount
 Instance allocation = 0x0031c9c8 = 3186 K
 Container allocation = 0x001f9ecd = 2023 K
 IOMalloc allocation = 0x01ed5238 = 31572 K
 Pageable allocation = 0x08e55000 = 145748 K

On an i-Device, the numbers are lower by an order of magnitude:

LISTING 19-6-B: ioalloccount on iOS

root@Padishah (/) # ioalloccount
 Instance allocation = 0x00154260 = 1360 K
 Container allocation = 0x002cadd7 = 2859 K
 IOMalloc allocation = 0x00e529c2 = 14666 K
 Pageable allocation = 0x016e1000 = 23428 K

c19.indd 753c19.indd 753 10/5/2012 4:20:39 PM10/5/2012 4:20:39 PM

754 x CHAPTER 19 DRIVING FORCE — I/O KIT

ioclasscount(8)
ioclasscount(8) counts the instances of all registered I/O Kit classes and subclasses, providing an
aggregate count. This means that top-level classes get counted when they, or any subclass of theirs,
get instantiated. The classes counted include the libkern classes as well, which understandably have
the most instances. For example, Listing 19-7 shows an ioclasscount on an iPad 2, sorted by the
number of instances:

LISTING 19-7: ioclasscount, sorted by the number of instances

root@Padishah (/) # ioclasscount | sort -t'=' -n -k 2
AppleAKM8973S = 0
AppleANX9836 = 0
..
AppleARMCHRPNVRAM = 0
AppleARMCortexGeneralPurposeCounter = 0
..
_IOServiceJob = 0
AppleA5AE2 = 1
..
IOServicePM = 49
IOCommand = 53
IOWorkLoop = 61
AppleARMIISCommand = 64
IOPMemory = 75
IOSubMemoryDescriptor = 93
OSObject = 94
AppleSimpleUARTCommand = 96
IOServiceMessageUserNotification = 100
IODMACommand = 107
IOTimerEventSource = 119
_IOServiceInterestNotifier = 120
IOService = 126
OSKext = 157
IOCommandGate = 187
IOSurfaceDeviceCache = 274
IOSurfaceClient = 276
IOSurface = 281
IOMachPort = 348
IOGeneralMemoryDescriptor = 426
IOMemoryMap = 430
IOBufferMemoryDescriptor = 509
OSSet = 567
OSArray = 2393
OSData = 2431
OSSymbol = 3031
OSDictionary = 3575
OSString = 4634
OSNumber = 5357

Both ioclasscount and ioalloccount merely query the I/O KitDiagnostics property of the
registry root, as you can see in Listing 19-8:

c19.indd 754c19.indd 754 10/5/2012 4:20:39 PM10/5/2012 4:20:39 PM

I/O Kit Kernel Drivers x 755

LISTING 19-8: Isolating the IOKitDiagnostics property from the I/O Registry

root@Padishah (/) # ioreg -w 0 -l | grep IOKitDiagnostics
 | "IOKitDiagnostics" = {"Instance allocation"=1363612,"IOMalloc allocation"
=14976148,"Container allocation"=2885921,"Pageable allocation"=26894336
,"Classes"={"IOSDIODevice"=1,"IOApplePartitionScheme"=0,"IOFlashTranslationLayer"=1,
"IODPAudioDriver"=0,"AppleARMIODevice"=47,"AppleEmbeddedAudioPTTFunctionButton"=0,
"AppleProfileManualTriggerClient"=0,"IOHDIXHDDriveInKernel"=1,"AppleBCMWLANTxBuffer"=10,
"M2ScalerDARTVMAllocator"=0,"IOPlatformExpertDevice"=1,"AppleS5L8930XUSBPhy"=1,
"KDIEncoding"=1,"IORangeAllocator"=17,"IOMobileFramebuffer"=1, ...

IOKitDiagnostics is, in I/O Kit terms, a dictionary of fi ve keys: the four allocation counts (dis-
played by ioalloccount(8)) and a “classes” key, which itself contains a dictionary with however
many classes are registered as its keys (and the class instances themselves count as values of the
respective keys).

I/O KIT KERNEL DRIVERS

As explained earlier in this chapter, I/O Kit drivers are objects derived from a common ancestor,
IOService. The hierarchy under IOService is quite rich and extensive, and along the way drivers
can become more specialized and suited for the devices or buses they are meant to handle.

I/O Kit drivers are classifi ed as either “drivers” or “nubs.” A nub is, quite simply, an adapter between
two drivers, representing the devices to be controlled. Drivers create nubs for every device instance
they manage. This is different than the UN*X model, in which the driver “object” is identifi ed by a
major number, and the specifi c devices are identifi ed by minor numbers. That model is still supported,
however, for those drivers which choose to create BSD device instances (in the /dev fi le system).

Driver Matching
I/O Kit maintains a Catalogue object2 that represents the database of all known and registered
driver personalities. In this context, the term personality refers to one or more facets of driver
functionality declared in the driver’s property list, as the value of the <IOKitPersonalities> key,
which is itself a dictionary. Each personality must declare an IOProviderClass key (specifying the
nub it can attach to). The Catalogue is bootstrapped by calling its initialize method, with values
from gIOKernelConfigTables, a global array of strings containing the IOPanicPlaform and the
IOPlatformExpertDevice entries (both in iokit/Kernel/IOPlatformExpert.cpp). The former is
used to panic the system if no IOPlatformDevice matches, and the latter is instantiated as the root
nub in StartIOKit().

I/O Kit uses driver personalities to match drivers to new devices (more accurately, newly generated
nubs of discovered devices). As the provider (for example, PCI or USB) discovers a new device it pub-
lishes the device using a call to IOService::registerService(), which starts the driver matching
process (literally, by a call to IOService::startMatching). This is a three-staged process, detailed
in Figure 19-2. The process can be either synchronous (same thread) or asynchronous (in an I/O Kit
created IOConfigThread).

2 Apple/NeXT’s driver people were chiefl y British, apparently, as is the spelling of “Catalogue.”

c19.indd 755c19.indd 755 10/5/2012 4:20:39 PM10/5/2012 4:20:39 PM

756 x CHAPTER 19 DRIVING FORCE — I/O KIT

The fi rst step of the process is referred to as class matching, and is a simple fi ltering step that enu-
merates all candidate drivers, by looking a match on their IOProviderClass. This, however, may
return many candidates. The next step therefore, is passive matching, which needs to weed out those
that are spurious and irrelevant by looking at their published personalities. Each driver personally
specifi es matching properties, which are either generic I/O Kit properties (listed in iokit/IOKit/
IOKitKeys.h), or provider specifi c, for example PCI device identifi ers (IOPCIMatch), USB types
(such as idVendor/idProduct) and FireWire identifi ers (Unit_SW_Version/Unit_Spec_ID). Vir-
tual device drivers, which specify IOResources as their provider class, specify an IOMatchProperty
to avoid matching all virtual devices. Drivers may specify an optional IOProbeScore property to
ask to be tried fi rst, and an IOMatchCategory property to specify which category they belong to.
(Otherwise they are all classifi ed into the same, unnamed category.)

The properties specifi ed in the personality help the IOProviderClass fi lter the most matching driver(s),
as all criteria should be matched. If a driver is of a more generic type, it can either specify less (or
broader) matching criteria, or publish additional personalities. A good example of this can be found in
VMWare Fusion’s kext, whose IOKitPersonalities keys is shown in Listing 19-9. A wildcard match
(and a high IOProbeScore) enables Fusion’s vmioplug to be the fi rst responder when USB devices are
inserted, prompting the user to redirect the device to a running instance of a virtual machine.

LISTING 19-9: Example of an IOKitPersonalities key (from VMWare Fusion)

...
 <key>IOKitPersonalities</key>
 <dict>
 <key>UsbDevice</key>
 <dict>
 <key>CFBundleIdentifier</key>
 <string>com.vmware.kext.vmioplug</string>
 <key>IOClass</key>
 <string>com_vmware_kext_UsbDevice</string>
 <key>IOProviderClass</key>
 <string>IOUSBDevice</string>
 <key>idProduct</key>
 <string>*</string>
 <key>idVendor</key>
 <string>*</string>
 <key>bcdDevice</key>
 <string>*</string>
 <key>IOProbeScore</key>
 <integer>9005</integer>
 <key>IOUSBProbeScore</key>
 <integer>4000</integer>
 </dict>
...

After ordering all potential matches, the last step is active matching, wherein I/O Kit calls, in turn,
the candidate drivers’ init() and probe() methods (discussed later in the section, “The I/O Kit
Driver Model”) to obtain the active or live probe scores. The drivers are re-ordered by their probe
scores and IOMatchCategory (if any), and I/O Kit proceeds to start the highest-ranking driver
in each category. This gives a chance to the most suitable driver to claim the device. The process
repeats until the fi rst matching driver claims success (i.e. its start() method returns a true value).

c19.indd 756c19.indd 756 10/5/2012 4:20:40 PM10/5/2012 4:20:40 PM

I/O Kit Kernel Drivers x 757

If async, start IOServiceJob

else doServiceMatch

Provider calls IOService::registerService to publish new nub

Do

--- Wait for gJobsSemaphore
--- Match job type

--- IOService::doServiceMatch

--- Lose will to live if too many threads

while (alive);

_IOConfigThread::main
Take gJobsLock
- Increment number of jobs

- Create new thread if needed

Release gJobsLock
Signal gJobsSemaphore

_IOServiceJob::pingConfig

While (keepGuessing)

-- matches = IOCatalogue->findDrivers

-- probeCandidates

…

IOService:doServiceMatch

IOService::startMatching

IOService::findDrivers

Class matching: iterate over kernel tables,

match on IOProviderClass

Return matches

passive matching: Check for plist matches

reorder on family match IOProbeScore
For each of the family Matches

-- active matching:
----- init candidate driver

----- attach to candidate driver

----- probe candidate, get “live” score

-- flush list if sandbox claims match

Reorder list by score and IOMatchCategory
For each IOMatchcategory
-- startCandidate() by score, until success

IOService::probeCandidates

IOService::startCandidate

Log start time (if kIOLogStart)

Call driver’s start

Detach if start unsuccessful

FIGURE 19-2: The I/O Kit matching process

Kernel components and other drivers can access the Catalogue programmatically and draw on its match-
ing services. The iokit/bsddev/IOKitBSDInit.cpp fi le contains functions such as IOCatalogue-
MatchingDriversPresent (to perform a catalog search and return a Boolean indication if there are
matching drivers) and IOServiceWaitForMatchingResource (to block its caller until a matching driver
has been loaded), as well as others, which are mostly wrappers over methods from IOService and other
I/O Kit classes.

The I/O Kit Families
Apple provides several “families,” which defi ned abstract and concrete classes (all derived from
OSObject). These classes implement the “typical” drivers of buses and generic device types. These
include the ones shown in Table 19-4.

c19.indd 757c19.indd 757 10/5/2012 4:20:40 PM10/5/2012 4:20:40 PM

758 x CHAPTER 19 DRIVING FORCE — I/O KIT

TABLE 19-4: The I/O Kit Generic Families

I/O KIT FAMILY USED FOR

IO80211Family Wireless Ethernet (802.11) devices

IOACPIFamily Advanced Confi guration and Power Interface

IOAHCIFamily Advanced Host Controller Interface

IOATAFamily IDE/ATA devices

IOAudioFamily Generic family for all audio devices

IOBDStorageFamily Bluray

IOBluetoothFamily Bluetooth devices

IOCDStorageFamily CD-ROM devices

IODVDStorageFamily DVD-ROM devices

IOFireWireFamily FireWire (IEEE 1394) devices

IOGraphicsFamily Generic graphics adapters

IOHIDFamily Human interface devices (keyboards, mice, the Apple

Remote, and others)

IONetworkFamily Generic network adapters

IOPCIFamily Generic PCI devices

IOPlatformPluginFamily Platform specifi c

IOSCSIArchitectureModelFamily SCSI devices

IOSCSIParallelFamily SCSI over parallel port interfaces

IOSMBusFamily Intel’s System Management Bus

IOSerialFamily Serial port drivers

IOStorageFamily Generic mass storage devices

IOThunderboltFamily Thunderbolt devices (as of later Snow Leopard and Lion)

IOUSBFamily Generic USB devices

Most of the families are in open source domain, as part of Darwin. This way, driver developers can
draw on a large code base of examples, thereby taking a signifi cant shortcut when developing I/O
Kit drivers. The families greatly shorten the time required for development, and improve the overall
stability and memory requirements of the I/O Kit drivers by calling on and reusing existing code. A
driver is expected to fi nd its nearest family member, and directly inherit from it. By doing so, much

c19.indd 758c19.indd 758 10/5/2012 4:20:40 PM10/5/2012 4:20:40 PM

I/O Kit Kernel Drivers x 759

of the generic functionality can be obtained “for free.” For example, a PCI device driver can take
advantage of the pre-existing PCI bus logic, rather than having to re-create it from scratch. Apple
Developer’s I/O Kit Fundamentals guide provides detailed class hierarchies for each of its families,
but we consider a specifi c example — that of IONetworkingFamily — next.

Case Study: IONetworkingFamily and adapting to DLIL
IONetworkingFamily is a wonderful example of the interoperability of I/O Kit with XNU’s support-
ing DLIL (discussed in Chapter 17). It can be considered an adapter (in design pattern parlance, that
is adapting one API to another), translating I/OKit’s IONetworkInterface abstraction to that of the
underlying DLIL’s ifnet.

As an example, consider the case of Ethernet interfaces. IONetworkingFamily provides both
IONetworkInterface (a “generic” interface abstraction) and its daughter class IOEthernet
Interface (a more specifi c abstraction, but common to all Ethernet interfaces). Recall from Chap-
ter 17, that during the initialization of XNU’s interface “object,” the struct ifnet, a driver must
fi ll an ifnet_init_params structure. IONetworkingFamily provides the initIfnetParameters
method, as shown in Figure 19-3:

super::initIfnetParams(params);
// fill in ethernet specific values
params->uniqueid = uniqueID->getBytesNoCopy();
params->uniqueid_len = uniqueID->getLength();
params->family = APPLE_IF_FAM_ETHERNET;
params->demux = ether_demux;
params->add_proto = ether_add_proto;
params->del_proto = ether_del_proto;
params->framer = ether_frameout;
params->check_multi = ether_check_multi;
params->broadcast_addr = ether_broadcast_addr;
params->broadcast_len = sizeof(ether_broadcast_addr);

// Common shims to all interfaces
params->name = (char *)getNamePrefix();
params->type = _type;
params->unit = _unit;
params->output = output_shim;
params->ioctl = ioctl_shim;
params->set_bpf_tap = set_bpf_tap_shim;
params->detach = detach_shim;
params->softc = this;

IONetworkInterface::initIfnetParams

IOEthernetInterface::initIfnetParams (struct ifnet_init_params)

struct ifnet_init_params {
const void *uniqueid;
u_int32_t uniqueid_len;
const char *name;
u_int32_t unit;
ifnet_family_t family;
u_int32_t type;
ifnet_output_func output;
ifnet_demux_func demux;
ifnet_add_proto_func add_proto;
ifnet_del_proto_func del_proto;
ifnet_check_multi check_multi;
ifnet_framer_func framer;
void *softc;
ifnet_ioctl_func ioctl;
ifnet_set_bpf_tap set_bpf_tap;
ifnet_detached_func detach;
ifnet_event_func event;
const void *broadcast_addr;
u_int32_t broadcast_len;

bsd/net/kpi_interface.h

FIGURE 19-3: The initIfNetParameters method in IONetworkFamily classes

c19.indd 759c19.indd 759 10/5/2012 4:20:41 PM10/5/2012 4:20:41 PM

760 x CHAPTER 19 DRIVING FORCE — I/O KIT

Thanks to I/OKit’s inheritance, IOEthernetInterface fi rst calls on its parent class (IONetwork
Interface) to set the common fi elds to all interfaces, such as the ioctl and BPF handlers. The Eth-
ernet specifi c parameters (broadcast addresses, demux, framing, etc.) can then be set as well. Note,
in particular, the setting of ifnet structure’s ifnet_*_func pointers calls to the shims provided
by I/O Kit. Between them, the two functions populate all the necessary fi elds of the ifnet_init_
params structure.

This pattern is followed in the attachToDataLinkLayer method, which is responsible for allocating
and attaching the underlying ifnet structure (and is responsible for calling initIfnetParameters),
as shown in Figure 19-4:

ret=super::attachToDataLinkLayer (options, parameter);
if (ret == kIOReturnSuccess) {
ifnet_set_baudrate(getIfnet(), 10000000); //FIXME..
bpfattach(getIfnet(), DLT_EN10MB, sizeof(struct ether_header));
}

memset(&iparams, 0, sizeof(iparams));
initIfnetParams(&iparams);
if (ifnet_allocate(&iparams, &_backingIfnet))
 return kIOReturnNoMemory;
_syncToBackingIfnet();
if ((!ll_addr || (ll_addr->sdl_alen != 0)) &&
(ifnet_attach(_backingIfnet, ll_addr) == 0))
{
 ret = kIOReturnSuccess;
}
else{ // error condition, clean up
 ifnet_release(_backingIfnet);
 backingIfnet = NULL;
}

IONetworkInterface::attachToDataLinkLayer

IOEthernetInterface::attachToDataLinkLayer(IOOptionBits options,void *parameter)

FIGURE 19-4: The attachToDataLinkLayer method in IONetworkingFamily classes

If you fl ip back a few pages and compare this to the UTUN case study in Chapter 17 (in particular,
Figure 17-16), you will see that the very same functionality required for setting up an interface in
that example has been matched by I/O Kit, through abstraction and object orientation.

IONetworkingFamily also ties to DLIL in two other important locations: packet reception and
transmission. IONetworkInterface::init calls the registerOutputHandler method on the
IONetworkController’s outputPacket function. The IONetworkInterface::initIfnet-
Params method, shown earlier, ties the underlying struct ifnet’s ifnet_output function to
IONetworkInterface’s output_shim, which forwards the packet (read: mbuf) to the outputPacket
handler. A driver is expected to override this function (whose default implementation merely drops
all packets), and supply its own transmission logic.

Packet reception is implemented similarly: IONetworkInterface supplies two methods: input-
Packet and flushInputQueue, which the implementing subclass is expected to call (from its
work loop, when processing an interrupt). The inputPacket method passes the packet to BPF fi lters,
if any, then enqueues it and calls DLIL_INPUT, passes the packet (i.e. mbuf chain) to ifnet_input.
From there, processing continues as described in Chapter 17. This is shown in Figure 19-5:

c19.indd 760c19.indd 760 10/5/2012 4:20:41 PM10/5/2012 4:20:41 PM

I/O Kit Kernel Drivers x 761

To Figure 17-6

inputPacket

flushInputQueue

ifnet_input()DLIL_INPUTIOWorkloop

Driver IONetworkInterface

FIGURE 19-5: Packet reception in IONetworkFamily

The case study ends here, but the object orientation does not; Other families can inherit from
IONetworkingFamily, and extend this functionality even further. Figure 19-6 depicts classes
which rely on IONetworkingFamily. One important family branch is IO80211Family, which
provides wireless Ethernet functionality. Apple’s AirPort drivers (all as “plugins” of that fam-
ily) inherit from IO80211Interface and IO80211Controller. To examine the implementation
of a full Ethernet driver, check out Apple’s Network Device Driver Programming Guide[7] and its
AppleUSBCDCDriver[8].

IONetworkingFamily

AppleBasebandPDP IO80211Family

AppleBCMWLANCore

AppleUSBEthernetDevice

FIGURE 19-6: Descendants of IONetworkingFamily

The I/O Kit Driver Model
Irrespective of which family a driver is derived from, it is the eventual descendant of IOService. By
virtue of this inheritance, an I/O Kit driver is expected to conform to a set interface and required to
implement a very specifi c set of callbacks that correspond to milestones in its lifetime, as shown in
Table 19-5:

c19.indd 761c19.indd 761 10/5/2012 4:20:41 PM10/5/2012 4:20:41 PM

762 x CHAPTER 19 DRIVING FORCE — I/O KIT

TABLE 19-5: I/O Kit Driver Functions

FUNCTION (DRIVER ENTRY POINT) CALLED WHEN

bool init

(OSDictionary * properties)
The driver is fi rst initialized.

void free(void) The driver is unloaded. This is the anti-function of init() and

is expected to undo everything init() has done.

bool attach

(IOService *provider);
The driver is being attached to a nub, for probing or activation.

void detach

(IOService *provider);
The driver is being detached from a nub, after probing or fol-

lowing close.

IOService *probe

(IOService *provider,;

int *score);

I/O Kit performs a probe for the device in question, to see

whether it exists. Return pointer to IOService object repre-

senting driver, and populate score.

If this function is omitted, the driver’s default score, from its

Plist, is returned.

bool start

(IOService *provider)
The driver is started by I/O Kit. Marks driver as active. Driver

can publish its nubs.

bool stop

(IOService *provider)
The driver is stopped by I/O Kit. Marks driver as inactive.

Driver is expected to recall any nubs published.

bool open

(IOService *forClient,

 IOOptionBits options,

 void * arg);

Driver is opened for use.

void close

 (IOService *forClient,

 IOOptionBits options);

Driver is released.

IOReturn message
 (UInt32 type,

 IOService * provider,

 void * argument = 0)

Notifi cation messages from other drivers.

There is a very specifi c order to the function calls, however, which is what I/O Kit considers to be
the driver’s lifecycle, as shown Figure 19-7.

A driver automatically inherits the lifecycle functions from its superclass (IOService), but may
implement them as well, effectively overriding them. To ensure safety, however, any such implemen-
tation is expected to call the corresponding implementation of the superclass (i.e. extending, rather
than overriding the methods).

c19.indd 762c19.indd 762 10/5/2012 4:20:42 PM10/5/2012 4:20:42 PM

I/O Kit Kernel Drivers x 763

init attach probe

free

attach start

detach

open

message

Initial Probing

reattachment

Probing successful?

detach

close

stop

Probing successful?

Asynchronous event notifications

FIGURE 19-7: I/O Kit driver state machine

For example, consider init(): The driver is expected to implement its own initialization func-
tion, which is called when the driver is fi rst loaded. This can be used for any driver-specifi c setup.
Because the driver is a subclass of some other driver, it is expected to call its superclass init func-
tion fi rst. This is usually something following the pattern in Listing 19-10:

LISTING 19-10: Sample I/O Kit driver init() function

bool sampleDriver::init(IOPhysicalAddress * paddr)
{
 bool rc = super::init(); // MUST call superclass before doing anything
 if (!rc) return (rc); // return FALSE to caller if super failed
 // Do own initialization
 return(false);
}

If the driver has nothing to do, the function body can either be left empty, or the function can be
left unimplemented. Looking at the state machine, you can see another unusual trait of the I/O Kit
callbacks, and that is in their coupling: A call to init() ensures an eventual call to free(), a call to
attach() ensures a call to detach(), and start()is met by an eventual stop().

By using the debug boot argument (or sysctl(8) on debug.iokit and debug
.iotrace) you can ask XNU to log all IOKit operations. Specifi c fl ags are
described in IOKit/IOKitDebug.h. Be careful with this, however! Setting all
fl ags (0xFFFFFFFF) will likely cause a kernel panic.

c19.indd 763c19.indd 763 10/5/2012 4:20:42 PM10/5/2012 4:20:42 PM

764 x CHAPTER 19 DRIVING FORCE — I/O KIT

The IOWorkLoop
I/O Kit adopts the NeXT runloop model, familiar to user mode developers as the CFRunLoop. I/O
Kit’s version of the runloop is called IOWorkloop, and it follows the same basic idea: providing a
single, thread-safe mechanism to handle all sorts of events that would otherwise be asynchronous.
Access to the work loop is protected by a mutex, alleviating concerns of reentrancy and thread
safety. Note, however, there is no guarantee that a work loop is, indeed, a thread. That is, the work
loop iteration may be run in the context of another thread in the system. The work loop iteration is
therefore always self-contained.

The driver can opt to join its provider’s work loop (by calling getWork Loop), or create its own (by
calling IOWorkLoop::work Loop()), which may be further exported to any of its subclasses. In prac-
tice most drivers opt to join their provider’s. The driver can register any number of various event
sources whose events it will handle by calling its IOWork Loop::addEventSources method. These
are all subclasses of IOEventSource, and include the event sources shown in Table 19-6.

TABLE 19-6: Event Sources in IOWorkLoops

EVENT SOURCE USED FOR

IOCommandGate Commands from clients, or from power management

IOInterruptEventSource

IOFilterInterruptEventSource

Interrupts, both dedicated and shared

IOTimerEventSource Periodic timer events, watchdogs

The IOWorkLoop has a surprisingly simple and effi cient implementation (at least, compared to earlier
versions of OS X), using Mach continuations, as shown in Listing 19-11:

LISTING 19-11: The IOWorkloop implementation:

/* virtual */ void IOWorkLoop::threadMain()
{
restartThread:
 do {
 // Iterate through all work loop event sources. If we have none, bail.
 // runEventSources will also set "workToDo" to false, but the
 // IOWorkloop:signalWorkAvailable() may be called at any time and reset
 // it to true.

if (!runEventSources())
 goto exitThread;

 IOInterruptState is = IOSimpleLockLockDisableInterrupt(workToDoLock);

 // If we get here and no more work (workToDo = FALSE), we check the
 // kLoopTerminate flag. If it is not set, we restart. Otherwise, we skip
 // this part and continue to exit.
 if (!ISSETP(&fFlags, kLoopTerminate) && !workToDo) {

c19.indd 764c19.indd 764 10/5/2012 4:20:45 PM10/5/2012 4:20:45 PM

I/O Kit Kernel Drivers x 765

 assert_wait((void *) &workToDo, false);
 IOSimpleLockUnlockEnableInterrupt(workToDoLock, is);
 thread_continue_t cptr = NULL;

 // If possible, set threadMain as our own continuation and block
 // otherwise, leave continuation null and use "goto" for same effect
 if (!reserved || !(kPreciousStack & reserved->options))
 cptr = OSMemberFunctionCast(
 thread_continue_t, this, &IOWorkLoop::threadMain);
 thread_block_parameter(cptr, this);
 goto restartThread;
 /* NOTREACHED */
 }

 // At this point we either have work to do or we need
 // to commit suicide. But no matter
 // Clear the simple lock and retore the interrupt state
 IOSimpleLockUnlockEnableInterrupt(workToDoLock, is);

 } while(workToDo);

exitThread:
 // We get here if no sources, or no more work and loop flags had kLoopTerminate
 thread_t thread = workThread;
 workThread = 0; // Say we don't have a loop and free ourselves
 free();

 thread_deallocate(thread);
 (void) thread_terminate(thread);
}

Interrupt Handling
Although some device drivers are for virtual devices, the majority of drivers have to deal with real
hardware, and — in doing so — with interrupts. I/O Kit does a fabulous job of hiding the interrupt
handling logic of Mach from the driver developer, proving once more that ignorance is bliss. Rather
than be bogged down in the quagmire of interrupt specifi cs, I/O Kit provides an object-oriented
view of interrupts that is both effi cient and intuitive.

The Driver View
The main object in the I/O Kit interrupt model is that of an InterruptEventSource, which, as is
evident by Table 19-6 and the class name, is a subclass of IOEventSource. This is, as far as work
loops are concerned, “just another” event source, enabling the driver to treat interrupts with the
same work loop logic it applies to timers and event notifi cations.

The interrupts of the InterruptEventSource, however, aren’t interrupts in the full sense of the
word, but rather a safer kind of deferred interrupts. I/O Kit distinguishes between primary (direct)
interrupts, wherein the handler runs with further interrupts blocked (effectively as part of Mach’s
interrupt handling) and secondary (indirect) interrupts where interrupts are enabled. In other words,
secondary interrupts are signaled after a low-level handler acknowledges the interrupt, re-enables its
line, and wakes up the driver’s thread, to allow the driver’s work loop to process the interrupt. This

c19.indd 765c19.indd 765 10/5/2012 4:20:46 PM10/5/2012 4:20:46 PM

766 x CHAPTER 19 DRIVING FORCE — I/O KIT

is somewhat akin to Linux’s “bottom half” concept (in particular, the SoftIRQ), that Linux device
drivers can schedule in the “top half” (the driver’s interrupt service routine).

Direct interrupts are effectively the highest priority in the system, as they run in “raw” interrupt
context, when the CPU processes the low-level trap which preempts the then-executing thread (i.e.
as a call from iOS’s fleh_irq or OS X’s interrupt(), as discussed in Chapter 8). Apple strongly
discourages the use of primary interrupts due to their time-critical nature, and documents them only
briefl y in the context of developing PCI drivers[9]. For all other purposes, Apple endorses the second-
ary interrupts. Secondary interrupts are much safer and are still of relatively high priority, but trail
behind real time threads, timers, and paging events.

A special case to consider is when interrupt lines are shared between multiple interrupt sources.
Drivers that are aware of that sharing can opt to register an IOFilterInterruptEventSource,
instead of the usual IoInterruptEventSource. The fi lter interrupt event source constructor is pro-
vided with two callback functions: The fi rst, to check whether their driver is indeed responsible for
the device (returning a Boolean), and the second, to handle the interrupt if it is indeed within their
responsibility (i.e. the fi lter returned true). The fi lter routine actually runs in the primary interrupt
context, but is meant to merely check the interrupt source, and not process it. If the fi lter function
returns true, the secondary interrupt is signaled and the handler function is invoked in the driver’s
work loop context:

A non-conforming I/O Kit driver may “cheat” and handle an interrupt in the primary con-
text, by doing more work in the IOFilterInterruptEventSource’s fi lter function. To dissuade
developers from doing so, Apple allows them to explicitly request a direct interrupt using the
IOService::registerInterrupt method. The function is defi ned in iokit/IOKit/IOService.h
as shown in Listing 19-12:

LISTING 19-12: IOService::registerInterrupt

/*!@function registerInterrupt
 @abstract Registers a C function interrupt handler for a device supplying interrupts.
 @discussion This method installs a C function interrupt handler to be called at
 primary interrupt time for a device's interrupt. Only one handler may be installed
 per interrupt source. IOInterruptEventSource provides a work loop based abstraction
 for interrupt delivery that may be more appropriate for work loop based drivers.
 @param source The index of the interrupt source in the device.
 @param target An object instance to be passed to the interrupt handler.
 @param handler The C function to be called at primary interrupt time when the
 interrupt occurs. The handler should process the interrupt by clearing the interrupt
 or by disabling the source.
 @param refCon A reference constant for the handler's use.
 @result An IOReturn code.
 kIOReturnNoInterrupt is returned if the source is not valid;
 kIOReturnNoResources is returned if the interrupt already has an installed handler.
 */

 virtual IOReturn registerInterrupt(int source, OSObject *target,
 IOInterruptAction handler,
 void *refCon = 0);

Let the driver beware, however: Executing in primary interrupt context is so time critical that even
calls to IOLog are considered unsafe.

c19.indd 766c19.indd 766 10/5/2012 4:20:46 PM10/5/2012 4:20:46 PM

I/O Kit Kernel Drivers x 767

Behind the Scenes
The driver’s view of interrupts shows just how well I/O Kit hides the underlying kernel logic sup-
porting interrupts. Interrupt handling is not only among the most critical code paths in any kernel,
but is highly machine dependent. Elegant object orientation abstracts these aspects, and enables
Apple to share similar, if not identical logic between the two platforms. (See Figure 19-8.)

IOInterruptController

IOSharedInterruptControllerIOCPUInterruptController IOInterruptEventSource

IOEventSource

IOFilterInterruptEventSource

FIGURE 19-8: I/O Kit classes involved with interrupt handling

The IOService::registerInterrupt() method called by drivers for primary interrupts looks up
the IOInterruptController instance. This is usually an instance of IOCPUInterruptController,
or that of the Platform kext. The function then proceeds to call the controller’s registerInterrupt
method, passing along the this object reference and the arguments it was given.

IOCPUInterruptController ties I/O Kit to Platform Expert, but indirectly — that is, through the ml
layer. When an interrupt is received, it is fi rst handled by the machine specifi c handlers — hndl_
allintrs on Intel, and fleh_swi on ARM. Chapter 8 discusses this low-level interrupt logic on both
platforms, but stops short of discussing what happens when interrupts are passed to the Platform Expert.

As shown in Listing 8-4 and Figure 8-6, the Platform Expert’s PE_incoming_interrupt() is invoked
from the generic handler interrupt(osfmk/i386/trap.c)if the interrupt in question is found to be
a device interrupt (and not a LAPIC one). The Platform Expert merely calls the corresponding inter-
rupt handler from the i386_interrupt_handler structure. This is shown in Listing 19-13:

LISTING 19-13: Platform Expert Interrupt Handling, from pexpert/i386/pe_interrupt.c

struct i386_interrupt_handler {
 IOInterruptHandler handler;
 void *nub;
 void *target;
 void *refCon;
};

typedef struct i386_interrupt_handler i386_interrupt_handler_t;

i386_interrupt_handler_t PE_interrupt_handler;

void
PE_incoming_interrupt(int interrupt)
{
 i386_interrupt_handler_t *vector;
 // Code also contains DTRACE/DEVELOPMENT INT5 hooks

continues

c19.indd 767c19.indd 767 10/5/2012 4:20:46 PM10/5/2012 4:20:46 PM

768 x CHAPTER 19 DRIVING FORCE — I/O KIT

 vector = &PE_interrupt_handler;
 vector->handler(vector->target, NULL, vector->nub, interrupt);
}

The PE_interrupt_handler is a singleton. The Platform Expert exports a special function, PE_
install_interrupt_handler, which can be used to set its fi elds. This function is wrapped by void
ml_install_interrupt_handler (osfmk/i386/machine_routines.c), which is also exported and
invoked by IOCPUInterruptController::enableCPUInterrupt.

In iOS the structure is largely the same, with minor exceptions outside the scope of this book.
Figure 19-9 shows the iOS disassembly of void ml_install_interrupt_handler, decompiled
using the OS X source. This is aligned with fleh_irq, which is the (rough) equivalent in iOS of OS
X’s interrupt(), and inlines PE_incoming_interrupt(). Without getting bogged down in ARM
assembly, suffi ce it to say that while the installation and invocation of the interrupt handler is not
identical to OS X, it is nonetheless highly similar (did we not say that ignorance is bliss?)

fleh_irq: // q.v. interrupt(), osfmk/i386/trap.c
0x8007967C SUB LR, LR, #4
; Set CPSR Interrupt flag
0x80079680 MRS SP, CPSR
0x80079684 BIC SP, SP, #0x100
0x80079688 MSR CPSR_x, SP
;
; ... lots of irrelevant stuff omitted
;
0x80079778 LDR R8, =_kdebug_enable
0x8007977C LDR R8, [R8]
0x80079780 MOVS R8, R8 ; tests kdebug_enable
0x80079784 MOVNE R0, R5
0x80079788 BLNE do_kdebug_EXCP_INTR_FUNC_START
0x8007978C BL SCHED_STATS_INTERRUPT
;

; void ml_install_interrupt_handler(void *nub,
; int source,
; void *target,
; IOInterruptHandler handler,
; void *refCon);
;
0x8007B794 PUSH {R4-R7,LR}
0x8007B796 ADD R7, SP, #0xC
0x8007B798 STR.W R8, [SP,#0xC+savedR8]!
0x8007B79C MOV R5, R3 ; R5 = handler
0x8007B79E MOV R8, R2 ; R8 = target
0x8007B7A0 MOV R6, R1 ; R6 = source
0x8007B7A2 MOV R4, R0 ; R4 = nub
 ; current_state = ml_get_interrupts_enabled
0x8007B7A4 BLX _ml_get_interrupts_enabled
 ; PE_install_interrupt_handler (…) inline
 ; OS X uses vector = &PE_Interrupt_Controller.
 ; But iOS gets the vector from CPU data (R1)
 ; vector->handler = handler;
 ; vector->nub = nub;
 ; vector->target = target;
 ; vector->refCon = refCon;
0x8007B7A8 MRC p15, 0, R1,c13,c0, 4
0x8007B7AC LDR R2, [R7,#8] ; 5th arg
0x8007B7AE LDR.W R1, [R1,#0x4B8]; vector
0x8007B7B2 ADD.W R3, R1, #0xC0
0x8007B7B6 STR.W R5, [R1,#0xBC] ; handler
;
; One ARM inst stores nub,refcon, target
;
0x8007B7BA STMIA.W R3, {R4,R6,R8} ; C0,C4,C8
0x8007B7BE STR.W R2, [R1,#0xCC] ; 5th arg
0x8007B7C2 MOVS R2, #1
0x8007B7C4 STR R2, [R1,#0x1C]
;
; Note, current_state is still in R0:
; ml_set_interrupts_enabled(current_state)
0x8007B7C6 BLX _ml_set_interrupts_enabled
;
; initialize_screen(NULL, kPEAcquireScreen);
0x8007B7CA MOVS R0, #NULL
0x8007B7CC MOVS R1, kPEAcquireScreen
; ...
0x8007B7D6 B.W _initialize_screen

; v->handler(v->target,.., v->nub, interrupt);
;
0x80079790 MRC p15, 0, R9,c13,c0, 4
0x80079794 LDR R4, [R9,#0x4B8] ; vector
0x80079798 STR R5, [R4,#0xB8]
0x8007979C LDR R3, [R4,#0x16C] ; Load count
0x800797A0 ADD R3, R3, #1 ; Increment
0x800797A4 STR R3, [R4,#0x16C] ; store count
0x800797A8 LDR R0, [R4,#0xC8] ; target
0x800797AC LDR R1, [R4,#0xCC]
0x800797B0 LDR R2, [R4,#0xC0] ; nub
0x800797B4 LDR R3, [R4,#0xC4]
0x800797B8 LDR R5, [R4,#0xBC] ; handler
0x800797BC BLX R5 ; handler(target,...,nub,..)
;
; KERNEL_DEBUG_CONSTANT (MACHDBG_CODE(…
;
0x800797C0 MOVS R8, R8 ; test kdebug_enable
0x800797C4 BLNE do_kdebug_EXCP_INTR_FUNC_END;
; ...

FIGURE 19-9: ml_install_interrupt_handler and fl eh_irq from iOS aligned

LISTING 13-13 (continued)

c19.indd 768c19.indd 768 10/5/2012 4:20:46 PM10/5/2012 4:20:46 PM

BSD Integration x 769

I/O Kit Memory Management
I/O Kit wraps Mach’s kernel memory management calls with its own. Although Mach has its vari-
ous memory management APIs (discussed in Chapter 12), the preferred mode of work is to use solely
the I/O Kit new and delete operators, as well as the IO* wrappers.

The Memory management APIs offered by I/O Kit are shown Table 19-7.

TABLE 19-7: The I/O Kit Memory Allocation Methods

MEMORY MANAGEMENT API WRAPS MACH API USED FOR

New

Delete

kalloc

kfree

C++ objects

IOMalloc

IOFree

kalloc

kfree

I/O Kit malloc()/free()

replacement

IOMallocAligned

IOFreeAligned

kernel_memory_allocate Allocates/frees memory with specifi c

alignment requirements

IOMallocContiguous

IOFreeContiguous

kmem_alloc_contig Allocates/frees contiguous free

memory

(deprecated)

IOMemoryDescriptor Various Recommended

(supersedes IOMallocContiguous)

Mixing and matching methods is obviously a bad idea, and each allocation must be freed with its
matching function.

Additional classes such as IODMACommand, can be used for physical memory and DMA access. This
class (which supersedes IOMemoryCursor) is itself a subclass of IOCommand, which is a generic class
for controller related commands (such as ATA and SCSI).

BSD INTEGRATION

As discussed in this Chapter, I/O Kit presents a rich set of APIs to user mode. This, however, can
lead to a problem when porting UN*X applications, which still use the BSD device interfaces of
/dev. XNU therefore supports the traditional concepts of block and character devices (as well as
network interfaces, as shown in Chapter 17), and even the BSD-specifi c structures of bdevsw and
cdevsw.

Aside from a few in-memory devices, however, the logic in the kernel which supports these devices
isn’t XNU, but I/O Kit: In particular, the IOStorageFamily.Kext, which is responsible for han-
dling mass storage devices, and the IOSerialFamily.Kext, which is responsible for serial ports,
contain specialized classes, (called IOMediaBSDClient and IOSerialBSDClient, respectively. Lion’s
CoreStorage.kext likewise contains a CoreStorageBSDClient). These classes create and remove
/dev entries on the fl y when new volumes are attached or removed from the system. The end result

c19.indd 769c19.indd 769 10/5/2012 4:20:47 PM10/5/2012 4:20:47 PM

770 x CHAPTER 19 DRIVING FORCE — I/O KIT

is a dynamic /dev directory that refl ects the current state of connected devices, albeit implemented
differently than Linux’s udevd. Example code from IOSerialBSDClient, which creates character
devices for serial terminals, is shown in Listing 19-14:

LISTING 19-14: Initialization of BSD character devices in IOSerialBSDClient (IOSerialFamily-59)

// Provide a BSD layer compatible cdevsw structure, by populating all the
// system call handlers expected by BSD with those of the I/O Kit class
struct cdevsw IOSerialBSDClient::devsw =
{
 /* d_open */ IOSerialBSDClient::iossopen,
 /* d_close */ IOSerialBSDClient::iossclose,
 /* d_read */ IOSerialBSDClient::iossread,
 /* d_write */ IOSerialBSDClient::iosswrite,
 /* d_ioctl */ IOSerialBSDClient::iossioctl,
 /* d_stop */ IOSerialBSDClient::iossstop,
 /* d_reset */ (reset_fcn_t *) &nulldev,
 /* d_ttys */ NULL,
 /* d_select */ IOSerialBSDClient::iossselect,
 /* d_mmap */ eno_mmap,
 /* d_strategy */ eno_strat,
 /* d_getc */ eno_getc,
 /* d_putc */ eno_putc,
 /* d_type */ D_TTY
};

// Constructor adds a devsw for TTYs
IOSerialBSDClientGlobals::IOSerialBSDClientGlobals()
{
 // ...
 // Initialization of various globals
 // ...
 fMajor = (unsigned int) -1; // request dynamic major
 fNames = OSDictionary::withCapacity(4);
 fLastMinor = 4; // four minor devices
 fClients = (IOSerialBSDClient **)
 IOMalloc(fLastMinor * sizeof(fClients[0]));

 if (fClients && fNames) {
 bzero(fClients, fLastMinor * sizeof(fClients[0])); // memset to zero
 fMajor = cdevsw_add(-1, &IOSerialBSDClient::devsw); // assign major
 cdevsw_setkqueueok(fMajor, &IOSerialBSDClient::devsw, 0); // enable
 }
 if (!isValid())
 IOLog("IOSerialBSDClient didn't initialize");
}
// Destructor removes the devsw added
IOSerialBSDClientGlobals::~IOSerialBSDClientGlobals()
{
 ... // removal of all globals

c19.indd 770c19.indd 770 10/5/2012 4:20:47 PM10/5/2012 4:20:47 PM

References and Further Reading x 771

 if (fMajor != (unsigned int) -1)
 cdevsw_remove(fMajor, &IOSerialBSDClient::devsw);
 ...
}

bool IOSerialBSDClient::createDevNodes()
{
 // ...
 // Create the device nodes
 //
 calloutNode = devfs_make_node(fBaseDev | TTY_CALLOUT_INDEX,
 DEVFS_CHAR, UID_ROOT, GID_WHEEL, 0666,
 (char *) calloutName->getCStringNoCopy() +
 (uint32_t)sizeof(TTY_DEVFS_PREFIX) - 1);

 dialinNode = devfs_make_node(fBaseDev | TTY_DIALIN_INDEX,
 DEVFS_CHAR, UID_ROOT, GID_WHEEL, 0666,
 (char *) dialinName->getCStringNoCopy() +
 (uint32_t)sizeof(TTY_DEVFS_PREFIX) - 1);
 if (!calloutNode || !dialinNode)
 break;

}

Thanks to I/O Kit inheritance, storage and serial devices can simply inherit from the Apple provided
families, wherein all the BSD code is already nicely implemented and hidden.

SUMMARY

This chapter provided a thorough introduction to the wonderful world of I/O Kit, Apple’s runtime
environment for device drivers, which is a unique part of XNU. This chapter focused on I/O Kit
from an architectural perspective, and not on the specifi c drivers. The various families, particu-
larly USB and PCI, contain even more intricate and complicated classes than those hard coded into
XNU. I/O Kit drivers can be accessed and queried from user mode over Mach messages, a property
which forms the basis for many of Apple’s frameworks (like IOSurface) which communicate with
hardware.

REFERENCES AND FURTHER READING

1. Apple Developer, “I/O Kit Fundamentals,” https://developer.apple.com/library/
mac/#documentation/devicedrivers/conceptual/IOKitFundamentals

2. Apple Developer, “I/O Kit Device Driver Design Guidelines,” https://developer.apple
.com/library/mac/#documentation/DeviceDrivers/Conceptual/WritingDevice-

Driver/Introduction/Intro.html

3. Halvorsen & Clarke, OS X and iOS Kernel Programming. APress, 2011

c19.indd 771c19.indd 771 10/5/2012 4:20:47 PM10/5/2012 4:20:47 PM

https://developer.apple.com/library/mac/#documentation/devicedrivers/conceptual/IOKitFundamentals
https://developer.apple.com/library/mac/#documentation/DeviceDrivers/Conceptual/WritingDevice-Driver/Introduction/Intro.html
https://developer.apple.com/library/mac/#documentation/devicedrivers/conceptual/IOKitFundamentals
https://developer.apple.com/library/mac/#documentation/DeviceDrivers/Conceptual/WritingDevice-Driver/Introduction/Intro.html
https://developer.apple.com/library/mac/#documentation/DeviceDrivers/Conceptual/WritingDevice-Driver/Introduction/Intro.html

772 x CHAPTER 19 DRIVING FORCE — I/O KIT

4. I/O KitLib.h — The user mode I/O Kit.Framework header

5. Apple Developer, “Accessing Hardware from Applications,” https://developer.apple
.com/library/mac/#documentation/DeviceDrivers/Conceptual/AccessingHardware/

6. Darwin Open Source, Caffeinate(8) source, http://opensource.apple.com/source/
PowerManagement/PowerManagement-271.25.8/caffeinate/caffeinate.c

7. Apple Developer, “Network Device Driver Programming Guide,” https://developer
.apple.com/library/mac/#documentation/DeviceDrivers/Conceptual/Network-

Driver/. This guide has been “in a preliminary stage of completion” since 2008, but pro-
vides a good overview of interfacing with IONetworkingFamily.

8. Apple USB CDC Driver, http://www.opensource.apple.com/darwinsource/tarballs/
apsl/AppleUSBCDCDriver-314.4.1.tar.gz

9. Apple Developer, “Writing PCI Drivers” and “Taking Primary Interrupts,” https://
developer.apple.com/library/mac/#documentation/DeviceDrivers/Conceptual/

WritingPCIDrivers/

c19.indd 772c19.indd 772 10/5/2012 4:20:48 PM10/5/2012 4:20:48 PM

https://developer.apple.com/library/mac/#documentation/DeviceDrivers/Conceptual/AccessingHardware/
http://opensource.apple.com/source/PowerManagement/PowerManagement-271.25.8/caffeinate/caffeinate.c
https://developer.apple.com/library/mac/#documentation/DeviceDrivers/Conceptual/Network-Driver/
http://www.opensource.apple.com/darwinsource/tarballs/apsl/AppleUSBCDCDriver-314.4.1.tar.gz
https://developer.apple.com/library/mac/#documentation/DeviceDrivers/Conceptual/WritingPCIDrivers/
https://developer.apple.com/library/mac/#documentation/DeviceDrivers/Conceptual/WritingPCIDrivers/
https://developer.apple.com/library/mac/#documentation/DeviceDrivers/Conceptual/AccessingHardware/
http://opensource.apple.com/source/PowerManagement/PowerManagement-271.25.8/caffeinate/caffeinate.c
https://developer.apple.com/library/mac/#documentation/DeviceDrivers/Conceptual/Network-Driver/
https://developer.apple.com/library/mac/#documentation/DeviceDrivers/Conceptual/Network-Driver/
http://www.opensource.apple.com/darwinsource/tarballs/apsl/AppleUSBCDCDriver-314.4.1.tar.gz
https://developer.apple.com/library/mac/#documentation/DeviceDrivers/Conceptual/WritingPCIDrivers/

Book Title <Chapter No> V1 - MM/DD/2010 Page 773

APPENDIX

Welcome to the Machine
Throughout this book, most of the samples of code are in C. Sometimes, however, especially
in examples of code from the kernel core or from iOS, the excerpts are given in assembly.
Maximum effort has been given to annotate the listings as much as possible, but in some cases
you could fi nd yourself wondering about the particular role or meaning of a register.

This appendix provides a bird’s eye view of both Intel and ARM architectures and assembly
languages. By no means anywhere near comprehensive, this appendix is not meant to replace
the architecture manuals of Intel[1] (whose 64-bit architecture actually follows AMD[2]) and
ARM[3] with their many pages of detail. The Intel architecture is fairly well documented, and
at least one great reference exists for ARM[4]. This appendix, however, is meant to hopefully
save you a time-consuming lookup of commonly used commands and registers, especially as it
pertains to their usage in OS X and iOS.

DRAMATIS PERSONAE: REGISTERS

Virtually every CPU, irrespective of vendor, makes use of registers to hold immediate values
of variables and constants required for various arithmetic and logical operations. The registers
and their conventional purpose, however, differs between architectures.

Intel
Intel’s current architecture dates back to the olden days of the 8086 and the 8-bit architecture.
On 32-bit architectures, the program is limited to using only four general-purpose registers
(EAX through EDX). In 64-bit architectures, R8 through R15 are added, and EAX through
EDX can be used in 64-bit mode (i.e. as RAX through RDX).

Table A-1 lists the registers on the 64-bit architecture, and their traditional usage.

bapp01.indd 773bapp01.indd 773 10/1/2012 7:00:44 PM10/1/2012 7:00:44 PM

Book Title <Chapter No> V1 - MM/DD/2010

774 x APPENDIX WELCOME TO THE MACHINE

TABLE A-1: 64-Bit Registers on the Intel x86_64 Architecture

REGISTER USED FOR

R AX Accumulator. Used as a general purpose register. This is the only register that does

not need to be saved by a function before use, and it is expected to hold the function’s

return value.

RBX Base. Used as a general purpose register.

RCX Counter. Used as a general purpose register. Some loop commands (REP) will decre-

ment RCX and repeat as long as its value is not zero.

RDX Data. Used as general purpose register.

RSI Source Index for copy operations. Used in 64-bit architecture for parameter passing.

RDI Destination Index for copy operations. Used in 64-bit architecture for parameter passing.

RBP Base pointer (if enabled in program).

RSP Stack Pointer.

R8-R15 General purpose registers. R8 and R9 used for parameter passing.

RIP Instruction pointer. Points to the next program to execute.

CS Code Segment. Also holds the Intel “ring” level in two bits: 00 (=0) through 11 (=3).

DS Data Segment

ES Extra Segment. Largely unused in OS X.

FS Far Segment. Largely unused in OS X.

GS General Segment. Kernel/User transition (using swapgs instruction).

SS Stack Segment.

Other registers include the various table registers (IDTR, GDTR, etc.), but they are rarely of any
interest outside of the very startup of XNU, wherein they are initialized.

Floating Point Registers
In addition to the common registers, Intel architectures also support fl oating-point optimized regis-
ters, called XMM registers. These are numbered XMM0 through XMM7. They are rarely used in
the kernel, however, and are thus not of particular interest.

The EFLAGS/RFLAGS Register
There is an additional register in Intel architectures, known as the EFLAGS (32-bit) or RFLAGS
(64-bit). Most of the 64-bit fi elds are “reserved,” meaning they are (at least at present) unused.
Figure A-1 presents the important fl ags in this register.

bapp01.indd 774bapp01.indd 774 10/1/2012 7:00:49 PM10/1/2012 7:00:49 PM

10 Book Title <Chapter No> V1 - MM/DD/2010

Dramatis Personae: Registers x 775

IOPLID P CO TI ZS ARESERVED

Trap flag: Toggle single-step

ID: can use CPUID Zero

Sign

Adjust

Parity

Carry

IOPL: I/O Privilege level (ring)

FIGURE A-1: Important fl ags in the EFLAGS register

The EFLAGS register can only be accessed only by means of a PUSHF (push fl ags) command
through the stack. The machine level ml_get_interrupts_enabled function therefore has to resort
to inline assembly, as shown in Listing A-1:

LISTING A-1: OS X’s ml_get_interrupts_enabled (osfmk/i386/machine_routines.c)

/* Get Interrupts Enabled */
boolean_t ml_get_interrupts_enabled(void)
{
 unsigned long flags;
 __asm__ volatile("pushf; pop %0" : "=r" (flags));
 return (flags & EFL_IF) != 0;
}

The EFLAGS register can be set using POPF, but to Intel provides the STI/CLI assembly instructions
for toggling the interrupt fl ag.

Control Registers
Intel architectures have additional Control Registers (CRs) and DebugRegisters (DRs). The
latter are used by debuggers to set hardware breakpoints (that is, instruct the CPU to break on
read, write, or execute access to a particular address), and are outside the scope of this book.
The former, however, are particularly important. While user mode (Ring 3) has no access to
them, kernel mode (Ring 0) actually relies on them for enforcing protected mode, virtual mem-
ory management, and other system tasks. The following list discusses the control registers and
their usage:

 ‰ CR0: Miscellaneous fl ags controlling processor operation mode. The important ones are:

 ‰ Bit 0 (PE) toggles real/protected mode

 ‰ Bit 16 (WP) enables write protection on memory pages

 ‰ Bit 31 (PG) enables paging (switches to virtual memory, and enables CR3)

 ‰ CR1: Unused.

 ‰ CR2: Address of last page fault.

bapp01.indd 775bapp01.indd 775 10/1/2012 7:00:50 PM10/1/2012 7:00:50 PM

Book Title <Chapter No> V1 - MM/DD/2010

776 x APPENDIX WELCOME TO THE MACHINE

 ‰ CR3: Used when CR0’s PG bit is set. Holds the address of the page directory of the current
process, i.e. a pointer to the virtual memory space of the current process. As a corollary, all
threads of the same process share the same value of CR3.

In 64-bit mode, unless otherwise stated (by the –no_shared_cr3 boot argument), the ker-
nel address space is mapped into all tasks. Entering and exiting kernel mode, therefore, is
equivalent to switching between related threads.

 ‰ CR4: Miscellaneous fl ags controlling various extensions. Bit 5, for example, controls Physical
Address Extensions.

ARM
ARM processors have traditionally had more registers than Intel available for the program’s general
purpose, though Intel’s 64-bit has narrowed the gap. While there are technically 16 registers for
general purpose (R0 through R15, as outlined in Table A-2), the last three are reserved for special
functions, and the fi rst four are used in argument passing, leaving 8 or 9 registers (depending on
platform) used for the program.

TABLE A-2: Shows the Registers on a Typical ARM Processor

REGISTER USED FOR

R0 Used as the fi rst argument to functions, and expected to hold the function’s return value

on exit.

R1 Used as the second argument to functions with more than one argument, or as an addi-

tional 32-bit register to contain a 64-bit fi rst argument. Volatile.

R2 Used as the third argument to functions with more than two arguments, or as the fi rst

32-bits of a 64-bit second argument. Volatile.

R3 Used as the fourth argument to functions with more than three arguments, or as the

second 32-bits of a 64-bit second argument. Volatile.

R4-R12/

V0-V8

General purpose. Must be saved by callee.

R7/FP In some platforms (such as iOS), used as frame pointer (at all other times used as gen-

eral purpose). Note otool(1) incorrectly calls R11 FP, though it is general purpose.

R9/ Reserved for special use in some platforms, such as iOS.

R13/SP Traditionally used as the Stack Pointer.

R14/LR Traditionally used as the Link Register, containing the return address of this function.

PC (R15) The Instruction pointer. Unlike Intel’s IP, this register may be set directly.

bapp01.indd 776bapp01.indd 776 10/1/2012 7:00:50 PM10/1/2012 7:00:50 PM

10 Book Title <Chapter No> V1 - MM/DD/2010

Dramatis Personae: Registers x 777

A special feature in ARM is register banking. Some registers are available in “shadow copies” when
in different modes. More specifi cally, R13 and R14 are available in per-mode copies in all CPU
modes, and R8 through R12 are available in Fast Interrupt (FIQ) mode. This makes it easy to switch
CPU modes without having to explicitly save registers every time (somewhat similar to Intel’s Model
Specifi c Registers (MSRs))

Floating Point Registers
As in Intel, so in ARM — there are special registers for fl oating point operations. As with the Intel
architecture, they are rarely used in kernel mode, but if you ever run into them, you’ll recognize
them from Table A-3:

TABLE A-3: ARM Floating-Point Registers

REGISTER USAGE

S0-S15

D0-D7

Q0-Q3

Floating point registers. Two 16-bit Ss may be grouped together to form a 32-bit

D, and two Ds may be grouped together to form a 64-bit Q. These can be used for

fl oating point arguments, and are volatile.

S16-D31

D8-D15

Q4-Q7

Floating point registers, as above, but non-volatile (i.e. must be saved by callee).

S31-S63

D16-D31

Q8-Q15

Floating point registers, as above, but volatile, and only available on ARMv7 (which

all modern i-Devices are).

Current Program Status Register
ARM CPUs use a special register, called the Current Program Status Register, in a way that is simi-
lar to Intel’s EFLAGS. This register is a fl ags-only register that holds roughly the same fl ags as those
in Intel.

Just as in the case of Intel’s CPL bits (11-12) of EFLAGS, the CPSR dedicates bits to hold the current
program’s processor mode. As discussed in Chapter 8 (and in particular Table 8-1), the CPSR holds
the processor state in its fi ve least signifi cant bits. These status fl ags are naturally not writable by
code in any mode but supervisor mode, though when responding to an interrupt, fast interrupt, or
trap, they are automatically set. A special case is the Thumb mode register, which is set automati-
cally by the BX instruction (discussed later). (See Figure A-2.)

The CPSR can be read using the MRS command, and can be set using MSR, though the latter is not
widely used. Instead, ARM offers a CPS command to change the processor state, and specifi cally
set the I and F bits. The implementation of ml_get_interrupts_enabled in iOS therefore requires
querying the CPSR (using MRS), as shown in Listing A-2:

bapp01.indd 777bapp01.indd 777 10/1/2012 7:00:50 PM10/1/2012 7:00:50 PM

Book Title <Chapter No> V1 - MM/DD/2010

778 x APPENDIX WELCOME TO THE MACHINE

N Z C V Q TFIAE
Processor

Mode

oVerflow bit

Suffix

Q/NE

CS/CC
HS/HL

MI/PL

VS/VC

HI/LS

GE/GT
LT/LE

AL

Values

0/1

2/3

4/5

6/7

8/9

A/C
B/D

E

Carry/borrow/extend

Zero

Negative/less than

Thumb/ARM mode

Mode

10000

10001

10010

10011

10111

11011

11111

Meaning

_usr

_fiq

_irq

_svc

_abt

_und

_system

FIGURE A-2: The ARM CPSR fl ags

LISTING A-2: ml_get_interrupts_enabled in iOS

_ml_get_interrupts_enabled:
0x8007C26C MRS R2, CPSR ; Read value of CPSR into R2
0x8007C270 MOV R0, #1 ; Set R0 to be "1"
0x8007C274 BIC R0, R0, R2,LSR#7 ; Isolate bit #8 ("I")
0x8007C278 BX LR ; returns R0

Similar to Intel, instead of having to set the interrupt fl ag through CPSR the specifi c assembly
instructions of CPSIE(nable) and CPSID(isable) can be used to toggle interrupts. These instruc-
tions take an argument of I for normal IRQs and F or fast IRQs. This can be seen in the disassem-
bly of ml_set_interrupts_enabled, which is left as an exercise to the interested reader.

Control Registers
Whereas Intel uses the CR registers for various process control tasks, ARM employs a coproces-
sor. This coprocessor is known as p15, and has its own registers. It is used for various low-level
operations, including cache control, virtual memory, and multithreading support. Operations on
the coprocessor are generally of the form of reading (MRC) or writing (MCR) to the coprocessor’s
registers.

bapp01.indd 778bapp01.indd 778 10/1/2012 7:00:50 PM10/1/2012 7:00:50 PM

10 Book Title <Chapter No> V1 - MM/DD/2010

Setting: ABIs and Contexts x 779

Both the MRC and MCR commands follow the same general syntax:

MRC/MCR p15, Opcode, Reg, C#1, C#2, Opcode2

Where:

 ‰ p15—This constant denotes coprocessor

 ‰ Opcode—Operation to perform

 ‰ Reg—Destination (MRC) or source (MCR) register

 ‰ C##, C##—Coprocessor control registers, as per Table A-4

 ‰ Opcode 2—Additional opcode, if required

SETTING: ABIS AND CONTEXTS

The processor executes code linearly (out-of-order execution notwithstanding). Developers, how-
ever, make use of functions and subroutines in order to improve code readability and effi cacy. When
the compiler emits code, it follows certain calling convention that dictate how the functions are to
be called and which registers are used for passing the parameters and return values. When the com-
piler emits calls that interface with the operating system (namely, system call invocations), it must
additionally pass system call numbers and parameters in a way that is mutually agreed upon with
the operating system. Additionally, certain other conventions dictate fl oating-point usage, and data
alignment. Collectively, all these are known as the Application Binary Interface, or ABI. Apple pro-
vides documentation for the ABIs used in both OS X[5] and iOS[6], but both documents refer to the
standard architecture ABI documents by AMD (which originated the x86_64 standard) and ARM,
respectively.

ABIs
Intel and ARM have different ABIs, but the principles are similar. In both, the calling conven-
tions follow the same rough idea: Some registers are declared volatile, meaning their values are not
expected to persist across a function call, whereas others are. A non-volatile register, however, is
not necessarily a reserved register: Functions are expected to save non-volatile registers on entry and
restore them on exit. So long as the non-volatile registers are correctly saved and restored, the caller
has no idea (and really doesn’t care, either) if they are used in whatever way. What follows, is that
functions generally have a fi xed prolog and epilog. This can be a useful anchor when trying to disas-
semble blocks of assembly which have no symbols.

When calling a function, the following conventions are adhered to:

 ‰ The calling function (caller) is expected to do the following:

 ‰ Pass as many arguments as possible in the registers allocated for them

 ‰ If there are less arguments than available registers, registers are unused

 ‰ If there are more arguments than registers, any remaining arguments are passed on
the stack

bapp01.indd 779bapp01.indd 779 10/1/2012 7:00:51 PM10/1/2012 7:00:51 PM

Book Title <Chapter No> V1 - MM/DD/2010

780 x APPENDIX WELCOME TO THE MACHINE

 ‰ Save its return address, so the called function may return to its caller upon
completion

 ‰ Pass control to the called function by jumping to its address

The callee has more responsibilities than the caller:

 ‰ On entry (that is, in the prolog), the called function (callee) is expected to:

 ‰ Save any registers it is going to use

 ‰ If a frame pointer (Intel: RBP, ARM: R7) is used, set it

 ‰ Save any fl oating point registers it may be using

 ‰ Allocate space on the stack for local variables

 ‰ On exit, the callee is also expected to:

 ‰ Deallocate space on the stack for local variables

 ‰ Restore any fl oating point registers it may have been using

 ‰ Restore any general purpose registers it may have been using

 ‰ Restore the Frame Pointer, if used, and return to the return address specifi ed by the
caller

Comparing the same function call on Intel and ARM side by side shows this well.

Figure A-3 demonstrates a decompilation of thread_call_allocate(), with interleaved source
code and implementation on both Intel and ARM. You are encouraged to use otool(1) or IDA to
see this call, as it is exported on both platforms.

Unlike the Intel architecture, wherein the instruction pointer may only be set by a JMP, CALL, or
RET instruction, ARM is more fl exible: The PC may be set by a branch, but also by a POP (as in
the previous example), or by a direct load (LDR), or even a simple move (MOV). Both Intel and ARM
assembly opcodes are discussed in this appendix.

Context Switching
Another type of control transfer is context switching, the process of replacing the currently execut-
ing thread with another one. Unlike function calls, in which the caller premeditates the control
transfer, this is an abrupt occurrence, which often happens unexpectedly (due to an interrupt), and
which the thread is totally unaware of. It is, in effect, the same as pausing a movie, changing the
channel, then — at some later point — resuming the movie.

Context switching in Mach is abstracted by the machine_switch_context(osfmk/x86_64/
Cswitch.s) wrapper, which wraps the Switch_Context assembly logic. OS X’s Switch_Context,
as would be expected of an Intel architecture, saves all the registers and loads the previous state.
Intel doesn’t have a “save all registers” command, so this is done manually, as shown in Listing A-3
(i386 code is virtually identical, but with fewer registers).

bapp01.indd 780bapp01.indd 780 10/1/2012 7:00:51 PM10/1/2012 7:00:51 PM

10 Book Title <Chapter No> V1 - MM/DD/2010

Setting: ABIs and Contexts x 781

push r14

push rbx

push rbp

mov rbp, rsp

ADD R7, SP, #0xC ; R7 = SP+12

PUSH {R4-R7,LR} ; 0xB5F0

mov rbx, rsi ; rbx = param0

mov r14, rdi ; r14 = func

mov rdi, = thread_call_zone

call _zalloc

; Now rax = call

MOV R4, R1 ; R4 = param0

LDR R1, =thread_call_zone

; call->func = func

mov [rax+18h], r14

; call->param0 = param

mov [rax+20h], rbx

; call->queue = NULL

mov qword ptr [rax+10h], 0

MOV R6, R0 ; R6 = func

LDR R0, [thread_call_zone]

BL _zalloc

; Now R0 = call

; bzero (call, 60);

MOVS R1, #0x3C ; size_t

MOV R5, R0 ; R5 = call

MOV R0, R5 ; void *

BLX _bzero ; R0 destroyed

STR R6, [R5,#0xC] ;call->func

MOVS R1, #0 ; R1 = 0

MOVS R0, #1 ; R0 = 1

STR R4, [R5,#0x10] ;call->param

STR R1, [R5,#8] ;call->queue

; iOS has more fields than Lion..

STR R1, [R5,#0x30]

STR R0, [R5,#0x34]

STR R0, [R5,#0x38]

thread_call_t call = zalloc(thread_call_zone);

(call)->func = (call_entry_func_t)(func);
(call)->param0 = (call_entry_param_t)(param);
(call)->queue = NULL;

thread_call_t thread_call_allocate(
 thread_call_func_t func,
 thread_call_param_t param0)
{

; rax already holds call

; restore regs in reverse order

pop rbx

pop r14

pop rbp

retn

MOV R0, R5 ; return (call);

POP {R4-R7,PC}

return (call);

FIGURE A-3: Comparison of thread_call_allocate code on both ARM and Intel

bapp01.indd 781bapp01.indd 781 10/1/2012 7:00:51 PM10/1/2012 7:00:51 PM

Book Title <Chapter No> V1 - MM/DD/2010

782 x APPENDIX WELCOME TO THE MACHINE

LISTING A-3: Switch_context on Intel x64, from osfmk/x86_64/cswitch.s

/*
 * thread_t Switch_context(
 * thread_t old, // %rsi
 * thread_continue_t continuation, // %rdi
 * thread_t new) // %rdx
 */
Entry(Switch_context)
 popq %rax /* pop return PC */

 /* Test for a continuation and skip all state saving if so... */
 cmpq $0, %rsi
 jne 5f
 movq %gs:CPU_KERNEL_STACK,%rcx /* get old kernel stack top */
 movq %rbx,KSS_RBX(%rcx) /* save registers */
 movq %rbp,KSS_RBP(%rcx)
 movq %r12,KSS_R12(%rcx)
 movq %r13,KSS_R13(%rcx)
 movq %r14,KSS_R14(%rcx)
 movq %r15,KSS_R15(%rcx)
 movq %rax,KSS_RIP(%rcx) /* save return PC */
 movq %rsp,KSS_RSP(%rcx) /* save SP */
5:
 movq %rdi,%rax /* return old thread */
 /* new thread in %rdx */
 movq %rdx,%gs:CPU_ACTIVE_THREAD /* new thread is active */
 movq TH_KERNEL_STACK(%rdx),%rdx /* get its kernel stack */
 lea -IKS_SIZE(%rdx),%rcx
 add EXT(kernel_stack_size)(%rip),%rcx /* point to stack top */

 movq %rdx,%gs:CPU_ACTIVE_STACK /* set current stack */
 movq %rcx,%gs:CPU_KERNEL_STACK /* set stack top */
 movq KSS_RSP(%rcx),%rsp /* switch stacks */
 movq KSS_RBX(%rcx),%rbx /* restore registers */
 movq KSS_RBP(%rcx),%rbp
 movq KSS_R12(%rcx),%r12
 movq KSS_R13(%rcx),%r13
 movq KSS_R14(%rcx),%r14
 movq KSS_R15(%rcx),%r15

 jmp *KSS_RIP(%rcx) /* return old thread */

The saved value of RIP, which is also the one restored, returns to machine_switch_context()
which called this function. Because this is the very last line in machine_switch_context, however,
control returns back to its caller, thread_invoke(), which either calls the continuation, or returns
right after thread_block().

iOS performs a context switch even more elegantly by using ARM’s STM and LDM commands, which
can store multiple registers with a single instruction, as shown in Listing A-4:

LISTING A-4: Context switching, ARM style

__Switch_context: ; (called in ARM from machine_switch_context) _
0x8007B3A0 TEQ R1, #0 ; is continuation specified?

bapp01.indd 782bapp01.indd 782 10/1/2012 7:00:51 PM10/1/2012 7:00:51 PM

10 Book Title <Chapter No> V1 - MM/DD/2010

Flow: Opcodes x 783

0x8007D364 STRNE R1, [R0,#0x44] ; if yes, save to old+44
 ;;
 ;; If R1 == 0, there is no continuation – so we need to save state:
 ;;
0x8007D368 LDREQ R3, [R0,#0x4B4] ; get TCB
0x8007D36C ADDEQ R3, R3, #0x10 ; get Register save area
0x8007D370 STMEQIA R3!, {R4-LR} ; save registers
 ;;
 ;; The following is done in any case (like the label "5" in the intel case)
 ;;
0x8007D374 LDR R3, [R2,#0x4B4] ; get new thread TCB
0x8007D378 MCR p15, 0, R2,c13,c0, 4
0x8007D37C LDR R6, [R2,#0x4C0]
0x8007D380 MRC p15, 0, R5,c13,c0, 3
0x8007D384 AND R5, R5, #3
0x8007D388 ORR R6, R6, R5
0x8007D38C MCR p15, 0, R6,c13,c0, 3
0x8007D390 LDR R6, [R2,#0x4C4]
0x8007D394 MCR p15, 0, R6,c13,c0, 2
__load_context: ; this is also called in iOS from machine_load_context
0x8007D398 ADD R3, R3, #0x10 ; get Register save area
0x8007D39C LDMIA R3!, {R4-LR} ; Load R4 through R14
0x8007D3A0 BX LR ; Return to loaded R14 (LR)

Note, that in both the OS X and iOS cases, a check is made for a continuation. If one is speci-
fi ed, the operation of saving the register state can be skipped altogether, allowing for a much faster
thread context switch. Continuations are discussed in Chapter 11.

FLOW: OPCODES

Intel and ARM assembly are two different languages: They can be used to convey the same ideas,
though with totally different syntax and words. The two assembly languages are also very rich, with
hundreds of mnemonics. Just like human languages, however, which can be colloquially mastered
with a subset of the full vocabulary, so can assembly be understood with relatively few mnemonics.
These are listed in Table A-5.

TABLE A-5: Assembly Mnemonics

INSTRUCTION INTEL MNEMONIC ARM MNEMONIC

Move value to/from registers MOV MOV

MVN: move negative

LDR/STR: Load/Store Register

LDMIA/STMIA reg!, {register-list}

Load/Store Multiple (Registers)

and increment after

Basic arithmetic ADD

SUB

MUL

DIV

ADD

SUB

MUL/MULA

SDIV/UDIV

continues

bapp01.indd 783bapp01.indd 783 10/1/2012 7:00:52 PM10/1/2012 7:00:52 PM

Book Title <Chapter No> V1 - MM/DD/2010

784 x APPENDIX WELCOME TO THE MACHINE

INSTRUCTION INTEL MNEMONIC ARM MNEMONIC

Logical test on value in a

register

TEST TST

MOVS

No-operation NOP MOV R0, R0

Logical Operations AND

OR

XOR

AND

ORR

EOR

BIC (bitwise-complement)

Jump JMP/Jxx B (with standard conditionals, see

“Conditional Execution” section below)

Call a function CALL address BL address/register

BLX address/register – change

ARM/Thumb

Return from a function RET BX LR (common)

(Can also modify PC directly)

Stack operations PUSH register

POP register

PUSH {register-list}

POP {register-list}

Simulated interrupt/system call INT SWI/SVC

Breakpoint INT $3 BKPT num

A great “cheat sheet” for Intel Assembly can be found in a work by Ange Albertini[7], and ARM
maintains a quick reference card as well[8].

ARM ASSEMBLY ENHANCEMENTS

ARM assembly is somewhat different from other assembly languages, in that it has specifi c features
no other language has. Instructions may be suffi xed with logical conditions, or specifi ed with bit-
shift operations. These features are discussed next.

Conditional Execution
ARM processors have a nifty feature: A conditional suffi x may be appended to every instruction.
This conditional tests the result of the last comparison or logical comparison operation, and only
executes the instruction if it satisfi es that result. Otherwise, the instruction in question effectively
becomes a NOP command. This is more elegant and cache-friendly than simply jumping over a set
of instructions. The suffi xes are shown in Table A-6:

TABLE A-5 (continued)

bapp01.indd 784bapp01.indd 784 10/1/2012 7:00:52 PM10/1/2012 7:00:52 PM

10 Book Title <Chapter No> V1 - MM/DD/2010

ARM Assembly Enhancements x 785

TABLE A-6: Instruction Suffi xes on ARM for Conditional Execution

SUFFIX MEANING

EQ/NE Equal or Not-Equal

CS/CC

HS/HL

Carry set or clear

Unsigned Higher-same or lower

MI/PL Minus (negative) or Zero-Positive

VS/VC Overfl ow or not overfl ow

HI/LS Signed higher or lower

GE/GT/LT/LE >=/>/</<=

AL Always (not specifi ed, as it is default)

If you look back at Figure A-2, you will see how the suffi x maps to the fl ags in the CPSR.

Built-in Bit Shifting
Another useful (though somewhat confusing) feature of ARM processors is the ability to specify bit-
shifts in the instruction. The processor has a barrel shifter, which enables it to shift left (i.e. multiply by
powers of 2) or right (divide by powers of 2). The right shifts, in particular, may be one of three types:

 ‰ Logical: A “0” is pushed into the most signifi cant (leftmost) position, and pushes all the bits
right. The least signifi cant bit is lost.

 ‰ Arithmetic: The current bit value of the most signifi cant bit is used to push it along with all
other bits right. The least signifi cant bit is lost.

 ‰ Rotation: As arithmetic, with the least signifi cant bit used to push the most signifi cant bit.

An example of the logical shift right could be seen in Listing A-2, which demonstrated getting the
interrupt status. To isolate bit #8 of the CPSR (the I bit, which holds the interrupt state), the com-
mand BIC R0, R0, R2,LSR#7 is used to shift R2 (holding the value of CPSR) right 7 bits (making
the eighth bit the fi rst bit), then take a bitwise complement of it, and performs a bitwise AND with
the value of 0x01 (which preserves the fi rst bit) back into R0 (which is returned to the caller).

Thumb mode
ARM processors have more than one mode of operation. In the normal, 32-bit mode, they execute
the default instruction set, known as ARM. They can, however, be instructed to dynamically
change the instruction set to a more compact, 16-bit mode known as Thumb mode. This means
that, when dumping an ARM binary, the assembly may be read in one of two ways, with only one
of them being the “correct” mode. This dual mode often confused otool(1), which is why it can
be forced to dump ARM binaries in Thumb using the –B switch. Even powerful disassemblers, most
notably IDA, sometimes get the mode wrong.

bapp01.indd 785bapp01.indd 785 10/1/2012 7:00:52 PM10/1/2012 7:00:52 PM

Book Title <Chapter No> V1 - MM/DD/2010

786 x APPENDIX WELCOME TO THE MACHINE

The processor itself “knows” which mode is required because its branch instruction, B can
contain the X directive, specifying a mode switch. The encoding of the desired mode is in the
address itself: The least-signifi cant bit of the address encodes 1 for thumb mode, or 0 for ARM. This
encoding is possible since bit is unused anyway: ARM instructions must be aligned on a four byte
boundary, and thumb instructions must be aligned on a two byte boundary, leaving the bit unused
in either case.

So long as you know how the processor got to a particular code section, telling the two modes apart
is simple. But if you are dumping some random text, there is no way to disambiguate ARM mode
from Thumb mode without trying both. Usually, trying the incorrect mode (ARM when it’s actually
Thumb, or vice versa) yields nonsensical or just plain illegal instructions.

GENERAL CONCEPTS

User mode programmers enjoy many benefi ts they often take for granted: multithreading, virtual
memory, and synchronization objects, among others. The kernel, however, is the entity responsible
for providing these, and falls back on the hardware whenever possible. This section discusses hard-
ware support mechanisms the kernel utilizes for various tasks.

Multithreading
Both ARM and Intel processors support threading at the processor level. This is, in fact, why mod-
ern operating systems don’t schedule processes anymore, but threads. The process as we know it,
a vestige of UNIX terminology, remains only at the administrative level, used for accounting, and
resource containment.

Intel
Intel-based operating systems use a segment register to hold the thread control block. OS X uses GS.
This is shown in Listing A-4.

LISTING A-4: The current_task /current_thread machine-specifi c implementation in Lion

_current_task:
ffffff8000235f60 pushq %rbp
ffffff8000235f61 movq %rsp,%rbp
ffffff8000235f64 movq %gs:0x00000008,%rax ; get the current thread
ffffff8000235f6d movq 0x00000348(%rax),%rax ; return thread->task (offset 0x348)
ffffff8000235f74 popq %rbp
ffffff8000235f75 ret

_current_thread:
ffffff80002bc1c0 pushq %rbp
ffffff80002bc1c1 movq %rsp,%rbp
ffffff80002bc1c4 movq %gs:0x00000008,%rax
ffffff80002bc1cd popq %rbp
ffffff80002bc1ce ret
ffffff80002bc1cf nop

bapp01.indd 786bapp01.indd 786 10/1/2012 7:00:52 PM10/1/2012 7:00:52 PM

10 Book Title <Chapter No> V1 - MM/DD/2010

General Concepts x 787

ARM
On ARM (from an iOS 5.0.0 kernel), a call is made to cr13, the “thread and process ID register,” as
documented in the ARM architecture manuals. This is shown in Listing A-5:

LISTING A-5: The current_task and current_thread machine-specifi c implementation in iOS,
from an iOS 5.0.0 iPod 4G (Apple A4, Arm Cortex A8)

_current_task:
80027a18 ee1d0f90 mrc 15, 0, r0, cr13, cr0, {4} ; Get the current thread
80027a1c f8d004cc ldr.w r0, [r0, #1228] ; 0x4CC (note different offset)
80027a20 4770 bx lr ; return
_current_thread:
8007bc00 ee1d0f90 mrc 15, 0, r0, cr13, cr0, {4} ; Get the current thread
8007bc04 e12fff1e bx lr ; return

It is fairly common to fi nd the ARM instruction sequences also inlined in various other thread and
task functions. This is not necessarily for obfuscation, as much as it is a likely consequence of com-
piler optimizations.

Locking and Atomicity
A prerequisite of concurrency in modern operating systems is the ability to provide a safe locking
mechanism, by means of which access to shared resources can be synchronized. This mechanism
often relies on hardware support, and therefore is implemented differently in ARM and Intel archi-
tectures. Furthermore, often, even the same architecture may choose different implementations,
based on UP or SMP availability.

A good example of this can be found in the implementation Mach’s low level hw_lock_lock() func-
tion. From the kernel’s perspective, this function always delivers the same functionality: a fast spin-
lock (as discussed in Chapter 10). The underlying implementation, however, uses different hardware
features in Intel or in ARM.

Intel
Listing A-7 shows the various implementations of _hw_lock_lock on OS X 64-bit (Listing A-7) and
iOS (Listing A-8 and Listing A-9). The i386 implementation is largely the same as the 64-bit one,
and is left as an exercise for the reader.

LISTING A-7: hw_lock_lock from a 10.7.3 kernel, on an x86_64

_hw_lock_lock:
ffffff80002b3300 movq %gs:0x00000008,%rcx
ffffff80002b3309 incl %gs:0x00000010
 ;; Attempt lock here
ffffff80002b3311 movq (%rdi),%rax
ffffff80002b3314 testq %rax,%rax
ffffff80002b3317 jne 0xffffff80002b3326

continues

bapp01.indd 787bapp01.indd 787 10/1/2012 7:00:52 PM10/1/2012 7:00:52 PM

Book Title <Chapter No> V1 - MM/DD/2010

788 x APPENDIX WELCOME TO THE MACHINE

 ;; lock is free – attempt to lock, but double check, since another thread can beat us
to it
ffffff80002b3319 lock/cmpxchgq %rcx,(%rdi)
ffffff80002b331e jne 0xffffff80002b3326 ;; double check failed – go spin
ffffff80002b3320 movl $0x00000001,%eax ;; Successful – return 1 to caller
ffffff80002b3325 ret ;; return
 ; Spinning – pause for a cycle, then jmp right back to the lock attempt
ffffff80002b3326 pause
ffffff80002b3328 jmp 0xffffff80002b3311

ARM
On a single core ARM processor (i.e. pre-A5 processors), hw_lock_lock doesn’t need to spin. In
fact, if it did spin a deadlock could result. The implementation is therefore straightforward:

LISTING A-8: hw_lock_lock from iOS 5.0, on an ARM single core (iPod touch 4G)

0x800757F0 _hw_lock_lock MRC p15, 0, R12,c13,c0, 4 ; Load current thread
0x800757F4 LDR R2, [R12,#0x4BC] ; Load value from thread_t
0x800757F8 ADD R2, R2, #1 ; Increment value
0x800757FC STR R2, [R12,#0x4BC] ; Put value back into thread_t
0x80075800 LDR R3, [R0] ; Load lock value into R3
0x80075804 ORR R1, R3, #1 ; Light lock bit
 ;; sanity check
0x80075808 TST R3, #1 ; Test if indeed 1
0x8007580C STREQ R1, [R0] ; Store back into lock, if 1
0x80075810 BXEQ LR ; And return, if 1
 ;; If we get here, panic!
0x80075814 MOV R1, R0 ; Move lock address to R1
0x80075818 ADR R0, "hw_lock_lock(): lock (0x%08X)\n"
0x8007581C LDR PC, =(_panic+1) ; Jump to panic, in Thumb mode

On the A5, which is a dual-core (hence, SMP) architecture, the code is more complex, with the LDR
and STR replaced by their EX (exclusive) counterparts, and the addition of a slow path. Further, a
Data Memory Barrier (DMB) instruction is executed prior to return:

LISTING A-9: hw_lock_lock from iOS 5.0, on an ARM dual core (iPhone 4S)

_hw_lock_lock:
0x80075630 MRC p15, 0, R12,c13,c0, 4
0x80075634LDR R2, [R12,#0x4BC] ; Load value from thread_t
0x80075638 ADD R2, R2, #1 ; Increment
0x8007563C STR R2, [R12,#0x4BC] ; Store it
0x80075640 _retry LDREX R3, [R0]
0x80075644 TST R3, #1
0x80075648 ORREQ R3, R3, #1
0x8007564C STREXEQ R1, R3, [R0] ; Store and exchange
0x80075650 BNE 0x80075664 ; _slow_path
0x80075654 CMP R1, #0

LISTING A-7 (continued)

bapp01.indd 788bapp01.indd 788 10/1/2012 7:00:53 PM10/1/2012 7:00:53 PM

10 Book Title <Chapter No> V1 - MM/DD/2010

General Concepts x 789

0x80075658 BNE _retry
0x8007565C DMB #0xB ; Data Memory Barrier
0x80075660 BX LR
0x80075660 _slow_path ; ...

A similar functionality closely related to locking is that of atomic operations. An atomic operation is
an operation in which atomicity (i.e. non-interruptibility) is guaranteed. The OSAddAtomic64(b,&a)
is an atomic operation of a = a + b, where a and b are signed Integer 64 types, and a is passed by ref-
erence. Atomic operations often serve as the underlying mechanism to enable locks (as locks must be
accessed in a guaranteed atomic manner), and can often be used instead (when the object guarded is
machine-word sized).

On OS X, either disassemble (otool –tV) the kernel image, or look at the XNU source code. If you
choose to disassemble, make sure to select the i386 image by passing -arch i386 to otool(1), as
shown in Listing A-10:

LISTING A-10: The implementation of _OSAddAtomic64 on Intel, 32-bit

_OSAddAtomic64:
 pushl %edi
 pushl %ebx

 movl 12+8(%esp), %edi ; ptr
 movl 0(%edi), %eax ; load low 32-bits of *ptr
 movl 4(%edi), %edx ; load high 32-bits of *ptr
1:
 movl %eax, %ebx
 movl %edx, %ecx ; ebx:ecx := *ptr
 addl 4+8(%esp), %ebx
 adcl 8+8(%esp), %ecx ; ebx:ecx := *ptr + theAmount
 lock
 cmpxchg8b 0(%edi) ; CAS (eax:edx, ebx:ecx implicit)
 jnz 1b ; - failure: eax:edx re-loaded, retry
 ; - success: old value in eax:edx

 popl %ebx
 popl %edi
 ret

On OS X in 64-bit mode, the atomic operation is natively supported by the architecture, making for
even simpler code, as shown in Listing A-11:

LISTING A-11: The implementation of OSAddAtomic* on Intel, x86_64

_OSAddAtomic64:
ffffff800062916b lock/xaddq %rdi,(%rsi)
ffffff8000629170 movq %rdi,%rax
ffffff8000629173 ret
_OSAddAtomic:
ffffff8000629174 lock/xaddl %edi,(%rsi)
ffffff8000629178 movl %edi,%eax

bapp01.indd 789bapp01.indd 789 10/1/2012 7:00:53 PM10/1/2012 7:00:53 PM

Book Title <Chapter No> V1 - MM/DD/2010

790 x APPENDIX WELCOME TO THE MACHINE

Kernel mode has no monopoly over atomic operations: Atomic functions are available in user
mode, although with the name ordering reversed (q.v. OSAtomicAdd32(3) and friends). The imple-
mentation is the same as the kernel’s, though through a stub (i.e. LibSystem’s OSAtomicAdd32, for
example, loads the address of __atomic_add32 which has the i386 or x86_64 code). The actual
code resides either in the commpage (in Snow Leopard, as discussed in Chapter 4), or is located by
LibSystem’s find_platform_function.

In iOS, you can disassemble (otool –tV) the kernel image, and look for the _OSAddAtomic64 sym-
bol which is still exported (using more(1)/less(1), type "/^_OSAddAtomic64"). You should see
something like Listing A-12:

LISTING A-12: The implementation of _OSAddAtomic on ARM (iOS 5.1)

_OSAddAtomic64:

; ARM is a 32-bit processor, so to pass around 64-bits it groups registers
; together. r0,r1,r2,r3 – usually used for four 32-bit arguments, can pass
; instead up to two 64-bit ones. Thus:
; @param: r0-r1: amount, as 64-bit value spanning both registers
; @param: r2: address of 64-bit value in memory

80077f30 e92d4330 push {r4, r5, r8, r9, lr} ; save non volatile
80077f34 e1b24f9f ldrexd r4, [r2] ; atomic load: *r2 to r4-r5
80077f38 e0948000 adds r8, r4, r0 ; add-signed low bits
80077f3c e0a59001 adc r9, r5, r1 ; add-carry high bits
80077f40 e1a23f98 strexd r3, r8, [r2] ; atomic store r8-r9 -> *r2
80077f44 e3530000 cmp r3, #0 @ 0x0 ; test if failed..
80077f48 1afffff9 bne 0x80077f34 ; if indeed failed, retry
80077f4c e1a00004 mov r0, r4 ; else return: low in r0
80077f50 e1a01005 mov r1, r5 ; .. high in r1
80077f54 e8bd8330 pop {r4, r5, r8, r9, pc} ; restore regs, return

Note that “atomic” does not necessarily mean “single cycle.” It just means that the CPU guar-
antees uninterrupted access. There are many more examples of this. If you want, take a peek at
task_reference() (which is defi ned over task_reference_internal (osfmk/kern/task.h), itself
a macro over hw_atomic_add). The Intel and ARM implementations closely resemble the preceding
example.

Barriers
Modern CPUs can execute instructions out of order to optimize utilization of their internal com-
ponents (such as the ALU, FPU, and load/store units). The CPU has liberty in deciding the actual
order, and usually this goes unnoticed by both the developer and the compiler generating the code.
In some cases, however, out-of-order execution may introduce bugs into the program. In these cases,
barrier instructions can be used to ensure all access completes by a certain point in the program’s
execution.

bapp01.indd 790bapp01.indd 790 10/1/2012 7:00:53 PM10/1/2012 7:00:53 PM

10 Book Title <Chapter No> V1 - MM/DD/2010

General Concepts x 791

Intel provides Load (LFENCE), Store (SFENCE), and both (MFENCE) barrier instructions. ARM
provides three types of barrier instructions: Data synchronization (DSB), Data Memory (DMB), and
Instruction Synchronization (ISB).

Virtual Memory
Both Intel and ARM chips support virtual memory at the processor level, with the low-level func-
tionality of virtual to physical translation performed by a dedicated Memory Management Unit
(MMU). This allows the CPU to switch into virtual memory mode fairly early during the operating
system boot, and from thereon use virtual addresses instead of physical ones.

Intel
Intel architectures enable protected mode and paging through CR0 (bits 0 and 31, respectively).
From that moment on, the CPU shifts to virtual addresses, with CR3 used as the master page table.

The page table is actually a multi-level table: Depending on architecture (32-bit, PAE, or 64-bit), the
page table is of varying depth (2, 3, or 4, respectively). The kernel sets up the page tables in a format
that the MMU can understand, and virtual address resolution is conducted by the MMU. In case of
a page fault, the MMU reports back to the CPU the page fault address in CR2.

In Intel 32-bit architectures each level is on a physical page with 1024 entries 3 (32-bit pointer) = 4k.
Physical Address Extensions (PAE) extend this to work with 64-bit pointers, reducing the number
of entries to 512 (to preserve 512 entries 3 (64-bit pointer) = 4k), resulting in the addition of the
third level (a small 2-bit table, with only four entries). This scheme is further extended in 64-bit to
four levels, each with a 9-bit index, allowing for a maximum addressable space of 48 bits. PAE and
64-bit can also opt to use the penultimate table for pages, which allows for 2 MB (“super”) pages.

Using a multi-level table makes the table more space-effi cient (at the cost of multiple lookups) and
facilitates sharing, particularly of kernel memory. In the original 32-bit OS X, the kernel used its
own virtual memory space (and hence, its own value of CR3). As of OS X 64-bit this is, by default,
no longer true, with the kernel mapping its memory into the high region of every address space,
unless explicitly instructed to not do so with the –no_shared_cr3 boot argument.

ARM
ARM supports a two level page table. Unlike Intel, in 32-bit mode the fi rst level divides the address
space into 1 MB sections (as opposed to Intel’s 4 MB), with 4096 page table entries, allowing for
256 entries of 4 K pages, or 1 entry of a 1 MB superpage. (This is, of course a greatly simplifi ed nut-
shell view: ARM processors also allow fi ne and course page granularity for smaller or larger page
sizes).

Virtual memory is controlled on ARM (like just about everything else) through coprocessor 15, as
the example in Listing A-13 shows. The MMU control bits can be used to enable/disable the MMU
(least signifi cant bit), data and instruction caches, and various other settings. Most important of
those are memory domains and access permissions

bapp01.indd 791bapp01.indd 791 10/1/2012 7:00:53 PM10/1/2012 7:00:53 PM

Book Title <Chapter No> V1 - MM/DD/2010

792 x APPENDIX WELCOME TO THE MACHINE

LISTING A-13: Controlling the MMU

; Near textbook example of reading from cp15. In this case, read MMU value
; (q.v. ARM manual, 3-46)
_get_mmu_control:
_0x8007BDF0 MRC p15, 0, R0,c1,c0, 0 ; Read CP15, c1,c0, opcode 0 into R0
_0x8007BDF4 BX LR ; Returns R0
_set_mmu_control:
_0x8007BDF8 MCR p15, 0, R0,c1,c0, 0 ; Write CP15, c1, c0, opcode 0 from R0
_0x8007BDFC ISB SY ; Instruction barrier
_0x8007BE00 BX LR ; Returns R0

The c2 register holds the Translation Table Base (TTB), which is akin to CR3. ARM also supports a
Translation Lookaside Buffer (TLB) for faster lookups, which is controlled through c8 (usually with
c7). The TLB lines can be locked, which permits them to persist when the TLB is fl ushed (as a result
of a context switch). This is accomplished by modifying p15’s c10 register.

REFERENCES

1. Intel Architecture manuals, http://www.intel.com/content/www/us/en/processors/
architectures-software-developer-manuals.html

2. AMD64 manuals, http://developer.amd.com/documentation/guides/Pages/default
.aspx

3. ARM Architecture Manuals, http://infocenter.arm.com/help/topic/com.arm.doc
.set.architecture/index.html

4. Sloss, Symes and Wright, ARM System Developer’s Guide. Morgan Kaufmann; 2004

5. “Mac OS X ABI Function Call Guide,” http://developer.apple.com/library/
mac/#documentation/DeveloperTools/Conceptual/LowLevelABI/

6. “Iphone OS ABI Reference,” http://developer.apple.com/library/
ios/#documentation/Xcode/Conceptual/iPhoneOSABIReference/

7. x86/x64 Opcodes infographics, https://code.google.com/p/corkami/

8. ARM and Thumb-2 Instruction quick reference card, http://infocenter.arm.com/help/
topic/com.arm.doc.qrc0001l/QRC0001_UAL.pdf

bapp01.indd 792bapp01.indd 792 10/1/2012 7:00:53 PM10/1/2012 7:00:53 PM

http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://developer.amd.com/documentation/guides/Pages/default.aspx
http://infocenter.arm.com/help/topic/com.arm.doc.set.architecture/index.html
http://developer.apple.com/library/mac/#documentation/DeveloperTools/Conceptual/LowLevelABI/
http://developer.apple.com/library/ios/#documentation/Xcode/Conceptual/iPhoneOSABIReference/
https://code.google.com/p/corkami
http://infocenter.arm.com/help/topic/com.arm.doc.qrc0001l/QRC0001_UAL.pdf
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://developer.amd.com/documentation/guides/Pages/default.aspx
http://infocenter.arm.com/help/topic/com.arm.doc.set.architecture/index.html
http://developer.apple.com/library/mac/#documentation/DeveloperTools/Conceptual/LowLevelABI/
http://developer.apple.com/library/ios/#documentation/Xcode/Conceptual/iPhoneOSABIReference/
http://infocenter.arm.com/help/topic/com.arm.doc.qrc0001l/QRC0001_UAL.pdf

Book Title <Chapter No> V1 - MM/DD/2010

793

INDEX

Symbols
\ (backslash), NVRAM variables, 199
?? (question mark-double), dyld, 114

A
-a, 126
aapl, 193
ABIs, 779–780
abnormal_exit_notify, 438
aborts, 270
ABRT(), 534
Absinthe, 173
ABT, 268
Accelerate, 35
accept(), 240
Access Control Lists (ACLs), 578, 608
accessory_device_arbitrator, 244
Accounts, 35
accountsd*, 244
ACLs. See Access Control Lists
-acm, 578
acpi_*, 329
act_set_astbsd(), 325
act_set_bsdast(), 536
addDisk, 576
AdditionalEssentials.pkg, 216
AdditionalSystemVoices.pkg, 216
Address Family (AF), 650
Address Space Layout Randomization (ASLR), 12, 122,

131–132, 173, 548–549
AddressBook, 35
ADD_TO_ZONE, 469
Advanced PIC (APIC), 270
Adv-cmds, 14
AEDebug*, 73
AEServer, 73
AF. See Address Family
AF_, 650
afc, 246
affi nity, CPU threads, 415
AFFINITY_POLICY, 421
affinity_tag, 421
AF_INET, 677

AFP. See Apple Filing Protocol
AGL, 35
Air Drop, 8
alarm_expire_timer, 380
alarm_lock, 380
allmemory(1), 160, 161
alloca(), 138–139
AllocatePages, 189
AllocatePool, 189
allocation fi le, B-Tree, 642
alloc_size, 469
_AllowedClients, 257
al_port, 380
alternate data streams, 611
AMFI. See AppleMobileFileIntegrity
amfi_*, 563
Amfid, 244
Animation, 201
APIC. See Advanced PIC
APM. See Apple Partitioning Scheme
App Store, 11, 25–26
AppKit, 35
AppKitScripting, 35
apple argument, 130
Apple Filing Protocol (AFP), 582, 651, 652
Apple Partitioning Scheme (APM), 570–572
Apple policy modules, BSD, 560–563
Apple Protect pager, 491–493
Apple TV, 11–12
AppleACPIPlatform.Kext, 329
APPLE_BOOT_GUID, 193
AppleEvents, 72–79
AppleFSCompressionTypeZlib.kext, 612
AppleIDAuthAgent(), 242
AppleMobileFileIntegrity (AMFI), 89–90, 331,

562–563
AppleOnBoardSerialBSDClient, 656
AppleProfile*, 155
appleprofilepolicyd, 242
apple_protect_pager_setup(), 493
AppleScript*, 35, 72–79
AppleShareClientCore, 35
AppleTalk, 35
APPLE_VENDOR_NVRAM_GUID, 195
/Applicants, 23
/Application, 25

bindex.indd 793bindex.indd 793 9/29/2012 5:56:50 PM9/29/2012 5:56:50 PM

Book Title <Chapter No> V1 - MM/DD/2010

794

applications – backing store

applications
bundles, 24
containers, Lion, 84–97
debugging

crashes, 170–176
hangs, 173–174
sampling, 173–174

defaults, 30–32
Java, 44–45
NeXTSTEP, 4, 24
OS X, 24–32

Application Frameworks layer, 15
Application Services, 18
Applications, 26
/Applications, 23
ApplicationServices, 35
Application.System, 257
Application.User, 257
<app>.pkg, 216
Apsd, 244
ApTicket, 213
Aqua, 17–18
arbiter, kernel, 262
arch(1), 100, 101–102
architecture

ARM, 519
Intel, Mach physical memory management, 465–467
kernel, 261–287

XNU, 302–305
Mach

Intel, physical memory management, 465–467
VM, 447–462

modular, 712–713
OS X, 518
PPC, 518–519

arg_ptr, 304
arg_string, 304
arguments, XNU boots, 329–331
argv[], 326–327
ARM, 12, 14

architecture, 519
ASLR, 549
assemblies, 784–786
atomicity, 788–790
Darwin, 5
EFLAGS, 296
exception vector, 268
Intel trap handlers, 275–278
interrupts, 296
iOS, 5, 261
kernel, 267–268
locking, 788–790
machine_init, 316
multithreading, 787
registers, 776–779
SWI, 280
VM, 447, 791
voluntary user/kernel transition, 280–282

__arm__, 12

ARM_ARCH, 12
arm_init, 311
ARM_THREAD_STATE, 109
arm_vm_init(), 311
array, 255
AS, 302
asctl(1), 84
A_SETCOND, 557
AsianLanguagesSupport.pkg, 216
ASL, 70–71
-asl_in 1, 70
aslmanager, 242
ASLR. See Address Space Layout Randomization
assemblies

ARM, 784–786
mnemonics, 783–784

assert_wait, 406, 414
assert_wait_deadline, 430
Assetsd, 244
AssetsLibrary, 35
AST. See asynchronous system trap
AST_*, 406, 424, 426, 430
ASTs. See Asynchronous Software Traps
ast_taken(), 425–426
asynchronous interrupts, 431
asynchronous kernel, 268
Asynchronous Software Traps (ASTs), 275, 423–427
asynchronous system trap (AST), 325
Atc, 244
atd, 231
atomicity

ARM, 788–790
Intel, 787–788

atrun, 231
Attribute B-Tree, 640–641
Audio*, 35
audit(), 61
audit_*, 60–61, 352
AUDIT_ARG, 557
auditctl(), 61
auditing, OS X, 59–62, 556–558
auditon(), 61, 557
AUDIT_SYSCALL_*, 557
authentication, 80
auto-boot, 212
autofsd, 587
Automator, 36
automount, 587
autorun, 237
AVFoundation, 35

B
-b, XNU boot argument, 330
Background Color, 199
BACKGROUND_APPLICATION, 423
BACKGROUND_POLICY, 421
backing store, 452, 497

bindex.indd 794bindex.indd 794 9/29/2012 5:56:51 PM9/29/2012 5:56:51 PM

10 Book Title <Chapter No> V1 - MM/DD/2010

795

BackupAgent – BSD

BackupAgent, 173
Backupd, 242
bad_info, 395
Baker, 11
barriers, 256, 790–791
BaseSystemBinaries.pkg, 216
BaseSystem.dmg, 214, 215
BaseSystemResources.pkg, 216
Basic Input Output System (BIOS), 183–185
Basic Security Module (BSM), 59
BBTicket, 213
BeepGen, 191
Berkeley Packet Filter (BPF), 701–705
BigBear, 11
/bin, 22
binaries

BSD process creation, 516–522
EFI, 187
ELF, 15–16
Mach-O, 522–525
portability, 46, 502
__stubs, 115
universal

executables, 98
file(1), 99
kernel, 100
Mach-O, 102–105
OS X, 99
processes, 99–111
Snow Leopard, 99
Tiger, 6

widgets, 47
/bin/csh, 21
binding, Mach, 415
binfmt, 516
/bin/ksh, 21
/bin/sh, 20
/bin/tcsh, 21
binutils, 102
/bin/zsh, 21
/bin/zsh -i, 241
BIOC*, 702, 705
BIOS. See Basic Input Output System
bit shifting, 785
Blazakis, Dionysus, 561
bless(1), 204–206, 215
bless(8), 204–206
block fragmentation, 624
blockCount, 639
BLOCK_IO_PROTOCOL, 190
/bn/bash, 20
Bom, 217, 613
bond, 678
Bonjour, 6
bool, 254
boot, 183–225

disk image fi les, 590–591
EFI, 185–210
iBoot, 210–214

installation images, 214–225
Mach zones, 470–471
traditional, 183–185
XNU

arguments, 329–331
kernel, 299–340

Boot Camp, 204
boot loader, 184
Boot Logo*, 199
Boot Services, 188–191
boot-args, 193
launchd, 228
nvram, 329

boot_args
dTrace, 202–203
Lion, 201–202
Revision, 202
Version, 202

boot-command, 212
boot.efi, 187, 195, 204
BootServices, 201
EFI GUIDs, 192–193
OS X, 194–210

boothowto, 326
boot-image*, 193
BootMGR, 184
bootsArgs, 304
BootServices, 201
BOOT_SERVICES_TABLE, 188
boot-signature, 193
bootstrap server, 234–235
bootstrap_cmds, 300
bootstrap_server, 235
Bourne Again shell, 20
Bourne shell, 20
BPF. See Berkeley Packet Filter
bpfattach(), 702
BPF_WORDALIGN, 705
bplist, 26
bridge, 678
BSD, 22, 45, 501–536

advanced aspects, 519–563
Apple policy modules, 560–563
ASLR, 548–549
cache, 545
disk image fi les, 589
EFI, 203
heirlooms, 55–65
implementing, 503
initialization, 318
I/O Kit, 737, 769–771
kqueues, 555–556
ledgers, 398
MAC, 318, 558–560
Mach, 343, 501, 510–512

tasks, 395
malloc(), 541–544
_MALLOC, 479
mcache, 545

bindex.indd 795bindex.indd 795 9/29/2012 5:56:52 PM9/29/2012 5:56:52 PM

Book Title <Chapter No> V1 - MM/DD/2010

796

bsd – CARenderServerSBUserNotifi cationUIKit.statusbarserverbulletinboard.*.chatkit

memory
management, 539–549
pressure, 545

mincore(2), 456
msync(2), 454, 458
network stack, 649
OS X, 501
packet fi ltering, 693, 697
POSIX, 501, 503

system calls, 284–287
processes, 504–508

control and tracing, 525–529
creating, 512–525
groups, 507–508
lists, 507–508
software, 535
structs, 504–507
suspension and resumption, 529

signals, 529–536
handling by victims, 536
hardware, 534

slab allocators, 545
sysctl(8), 552–555
system calls, 47–48
threads, 508–512

objects, 508–510
UNIX, 501–502
work queues, 550–552
XNU, 49–50, 501, 504
zones, 541–544

bsd, 307
BSD(4), 167
bsd_ast(), 536
bsd_info, 510
bsd_init(), 318, 320–325, 326, 544, 673
bsdinit_task(), 227, 325–328, 530
bsd/kern_descrip.c, 601–602
bsd/kern/kern_descrip.c, 603–604
bsd/kern/mach_loader.c, 522–523
bsd/kern/makesyscalls.master,

 285–286
bsd/kern/uipc_domain.c, 673
bsd/net/if_var.h, 680–681
bsd/net/kpi_protocol.h, 677
-bsd_out, 70, 71
BSD.pkg, 216
bsd/sys/file_internal, 602–603
bsd/sys/mount.h, 591–592
bsd/sys/mount_internal.h, 592–593
bsd/sys/protosw.h, 672–673
bsd/sys/sysent, 285
bsd/sys/user.h, 508–510
bsd/sys/vnode_if.h, 597
bsd_utasbootstrap(), 325
bsd/uxkern/ux_exception.c, 529–533
BSM. See Basic Security Module
bsm/security, 307
bstree, 253
BTNodeDescriptor, 625
B-Tree

allocation fi le, 642
Attribute, 640–641
catalog, 633–640

deletions, 636–637
forks, 639–640
hard links, 639
insertions, 636
lookups, 634–636
permissions, 637–639
soft links, 639

components, 630–645
defi nition of, 625
extent overfl ow, 640
header node, 627–629
HFS+, 624–645

journaling, 642–643
volume header, 631–632

hot fi les, 641–642
insertions, 624

catalog, 636
nodes, 625–627
random access, 624
search, 624, 629–630
updates, 624

buffer overfl ow, 131
bundle, 248
bundles

applications, 24
Finder, 25
frameworks, 32–34
Info.plist, 26
NeXTSTEP, 4, 24
OS X, 24
Quicklook, 18

byteordering, 100

C
-c, dtruss, 151
C++, I/O Kit, 737, 740–741
C++, 302
cache, 23, 121, 545

shared library, 121
Unifi ed Buffer Cache, 484, 488, 596

Calaccessd, 244
CalendarStore, 36
CALL, 279
call psignal(), 535
call_continuation(), 420
callnum, 156–157
calloutart, 508
canblock, 469
cansignal(), 535
can_update_priority(), 430
Carbon, 34, 122
Carbon, 36
CARenderServerSBUserNotificationUIKit.

statusbarserverbulletinboard.*.chat
kit, 245

bindex.indd 796bindex.indd 796 9/29/2012 5:56:52 PM9/29/2012 5:56:52 PM

10 Book Title <Chapter No> V1 - MM/DD/2010

797

Cascading Style Sheet – core dumps

Cascading Style Sheet (CSS), 45
widgets, 47

case sensitivity, 21, 619
cat(1), 88–89
catalog, B-Tree, 633–640

deletions, 636–637
forks, 639–640
hard links, 639
insertions, 636
lookups, 634–636
permissions, 637–639
soft links, 639

Catalog Node ID (CNID), 633–634, 635
catch_mach_exception_raise, 533
CC, 302
CCALL, 274
CD-Audio File System (CDDAFS), 581
CD-ROM File System (CDFS/ISO-9660), 582
CFBundle*, 27, 248, 257, 718
C++filt, 300
CG(11), 167
CGXServer. See Core Graphics X Server
CheckEvent, 189
CheckHibernate, 198
checksum, 644
Cheetah, 5–6
chfn(1), 67
child_thread, 514
chmod(1), 578
chmod +x, 98
choose_processor(), 429
choose_thread(), 429
chown(2), 48
C/H/S. See Cylinder/Head/Sector
chsh(1), 67
CHUD. See Computer Hardware Understanding and

Development
chud, 307
chud.chum, 242
c_init, 379
Clock, 352
clock, 378–380
clock_alarm*, 378, 380
clock_get_*, 378
clock_init(), 379
clock_oldinit(), 379
clock_priv, 352
clock_reply, 352
clock_service_create(), 379
cloneproc(), 325, 516
close(), 127, 512
CloseEvent, 189
CloseProtocol, 189
CNID. See Catalog Node ID
Cocoa, 34, 122, 145, 254
Cocoa, 36
code injection, 131
code signing, 80–81, 712–713
Code Signing in Depth, 110
CodeDirectory, 717

CodeRequirements, 717
CodeResources, 29–32, 717
codesign(1), 80, 86–87, 110
CodeSignatures, 717
Collaboration, 36
com.apple.audited.plist, 59
com.apple.blued.plist, 237
com.apple.Boot.plist, 199
com.apple.decmpfs, 612, 613
com.apple.dock.extra, 247
com.apple.iokit.matching, 237
com.apple.kpi*, 714
com.apple.syslogd.plist, 233–234
com.apple.WindowServer.plist, 235–236
Comex, 11, 12
commpage, 318
compartmentalization. See sandboxing
compression, 7, 612–617
compute_averages, 411
compute_priority(), 429
Computer Hardware Understanding and Development

(CHUD), 154–155, 373
conditional execution, 784–785
conf, 303, 307
config, 307
CONFIG_AUDIT, 305
CONFIG_CODE_DECRYPTION, 493
configd, 242, 411
-configd(8), 67
CONFIG_DEBUG, 308
CONFIG_DTRACE, 305
CONFIG_EMBEDDED, 305, 421, 548
CONFIG_FREEZE, 494, 547
CONFIG_MACF, 305, 318
CONFIG_NO_KPRINTF_STRINGS, 305
CONFIG_NO_PRINTF_STRINGS, 305
CONFIG_SCHED_*, 305, 428
CONFIG_SOCKETS, 649
CONFIG_ZLEAKS, 468
connect(2), 682
connection, 254
consider_buffer_cache_collect(), 497
consider_machine_collect(), 497
consider_zone_gc(), 471–473, 497
console, 307
console protocols, 189–190
CONT, 94
Contents/, 26
Contents/Frameworks, 33
context switching, 780–783
continuations, 416–418
Control Registers (CRs), 266–267, 775–776, 778–779
CONTROL_APPLICATION, 423
cooperative multitasking, 420
coprocessors, 778
Core*, 36, 494
Core Animation, 7
Core Audio, 7
Core Data, 7
core dumps, 170–171

bindex.indd 797bindex.indd 797 9/29/2012 5:56:52 PM9/29/2012 5:56:52 PM

Book Title <Chapter No> V1 - MM/DD/2010

798

Core Frameworks layer – debugging

Core Frameworks layer, 15
Core Graphics X Server (CGXServer), 18
Core Image, 7
Core Storage, 8, 200, 204
Core Utilities, 14
Core Video, 7
/Cores, 23
CoreServices, 36, 75–76, 247
coreservicesd, 75
CoreStorage, 191, 575–577
CORESTORAGE(10), 167
CoreTelephony, 36
CoreText, 36
CoreVideo, 36
CoreWifi, 36
coreWLAN, 36
correctness, 265
corservices.appleid.authentication.

coreservices.appleid.passwordcheck,
242

cprotect, 609
CPSR. See Current Program Status Register
CPU

affi nity, threads, 415
multithreading, 93
processes, 92–93
threads, 408
yielding, 415

cpuid, 195, 200
cpu_mode_init(), 279
cpus, 330
cpusubtype, 100
cputype, 100
crash_mover, 244
CrashReporter, 171–173, 442
CrashReportSupport, 336
CreateEvent*, 189
CreateRemoteThread(), 407
CRO, 266–267
crond, 231
CRs. See Control Registers
crypto, 307
cs_debug, 562
cs_enforcement_disable, 562
C-shell, 21
csops, 110
csreq(1), 80
CSS. See Cascading Style Sheet
CTFCONVERT, 302
CTFMerge, 300
CTL_*, 552–553
CTLIOCGINF ioctl(2), 682
Current Program Status Register (CPSR), 267–268,

777–778
cut(1), 409
cvmsServ, 242
cvmsServer, 242
Cxxfilt, 300
Cylinder/Head/Sector (C/H/S), 568

D
.d, DTrace, 149
-d, dtruss, 151
D language, 147–150
DAAP. See Digital Audio Access Protocol
DADissenterCreate, 589
-daemon, 18
daemons. See also specifi c daemons
launchd, 229
Spotlight, 20
system confi guration, 67

Darwin
architecture, 15–17
Cheetah, 6
GDB, 181
iOS, 12
Jaguar, 6
LibC, 139
Mountain Lion, 9
notifi cations, 78
Panther, 6
Snow Leopard, 8
Tiger, 7
UNIX, 5, 20–22

data, 254
Data?, 85
_DATA(), 107
__DATA, 125, 134
Data Execution Prevention (DEP), 522, 549
data forks, 611
Data Link Interface Layer (DLIL), 680
DATA_HUB_PROTOCOL, 191
data_list, 454
data_request, 493, 494
data_return, 482, 494
date, 254
DB_*, 332–333
DB_ARP, 333
DBG_APPS(33), 167
DBG_MACH_SCHED, 430
DBG_MIG(255), 168
DBG_PERF(37), 168
DbgPrintKernel, 332
ddb, 307
deadfs, 586–587
deadline timers, 432–433
DEAD_NAME, 350
DEBUG, 308
debug, 56, 331, 332
Debug Registers (DRs), 775
debugging, 147–182

applications
crashes, 170–176
hangs, 173–174
sampling, 173–174

DTrace, 147–154
exception ports, 439
GDB, 181–182

bindex.indd 798bindex.indd 798 9/29/2012 5:56:52 PM9/29/2012 5:56:52 PM

10 Book Title <Chapter No> V1 - MM/DD/2010

799

DebugPrintFilter – drivers

hfsleuth, 577
init_kdp(), 318
kernel, 332–340
launchd, 228
LLDB, 182
Mach zones, 473
memory leaks, 176–178
UNIX, 178–180
VMWare, 333

DebugPrintFilter, 332
debugserver, 87–88
decmpfs, 608
decmpfs_file_is_compressed, 613
decompression, 613–616
decryptVolume, 576
default:, 333
default directories, 25
Default Freezer, 494
DEFAULT_APPLICATION, 423
default_freezer, 529, 547
default_pager, 307, 448, 499
default_pager_*, 487
defaults(1), 173
#defines, 305, 318, 463, 650
defragmentation, 622–623
.defs, 353
<defunct>, 93
DEP. See Data Execution Prevention
DEPRESSPRI, 412
dev, 307
/dev, 22
/dev/auditpipe, 60
/Developer, 23, 24
DeveloperDiskImage.dmg, 24
devfs*, 584
device drivers

I/O Kit, 738
user mode, 749–750

NeXTSTEP, 4
Device Firmware Update (DFU), 211, 213
device tree, 196–198

iOS, 224–225
device_pager, 448
DFLAGS(2), 169
DFU. See Device Firmware Update
diag, 331
diagCall(), 292–295
diag.h, 487
diagnose, 86
diagnostic system calls, 292–295
dictionary, 255
didReceiveMemoryWarning, 139, 545
Differentiated Services (DiffSrv), 706
Digital Audio Access Protocol (DAAP), 652
di_load_controller, 592
DIOCADDRULE, 698
DIOCGETRULE, 698
direct_dispatch_to_idle_processors, 430
directories

GUID, 25
UNIX, 22–24

iOS, 23–24
OS X, 23

DirectoryServices, 37
-disable_aslr, 330
DiscRecording*, 37
disk image fi les, 589–591
DiskArbitration, 37
diskarbitrationd, 587–589
DiskImageMounter.app, 589
DISK_IO_PROTOCOL, 190
diskutil(8), 575
dispatch_get_global_queue(), 145
dispatch_queue_create(), 146, 257
DISPATCH_QUEUE_PRIORITY_*, 145, 550
--display, 86
distnoted(8), 78
disym(void *handle, char *sym), 122
ditto(1), 613
dladdr(), 122
dlerror(), 122
DLIL. See Data Link Interface Layer
DLIL(8), 167
dlil_output(), 693
dlopen(), 122
dlopen_preflight(), 122
.dmg, 589–591
dmgextractor, 589
DNS

mDNS, 652
reverse, 18–19, 30

Dock.app, 247
document type defi nition (DTD), 26
Documents, 25
do_init_slave(), 313–314
domains

initialization, 673–675
protosws, 669–673
sockets, UNIX, 651
XNU, 675

domaininit(), 673
Don’t Steal Mac OS X (DSMOS), 491, 716–717
do_priority_computation, 411, 412
double, 254
double fault, 270
downgrade attacks, 213–214
do_write, 599–600
dp_backing_store.c, 487
dp_memory_object.c, 487
Draves, Richard, 418
DrawBootGraphics, 200
DrawSprocket, 37
drivers. See also device drivers

I/O Kit
kernel, 755–769
matching, 755–757
model, 761–763

NDIS, 739

bindex.indd 799bindex.indd 799 9/29/2012 5:56:53 PM9/29/2012 5:56:53 PM

Book Title <Chapter No> V1 - MM/DD/2010

800

DriverKit – executables

DriverKit, 4
DRIVERS(6), 167
DRs. See Debug Registers
dscl(8), 65–66
DSMOS. See Don’t Steal Mac OS X
DTD. See document type defi nition
DTrace, 147–154

Leopard, 7
Dtrace, 300
dTrace, 202–203
dtrace, 152
dtruss, 150–151
dummynet(4), 705–707
DumpPanic(), 242
dup2(), 240
Durango, 12
DVComponentGlue, 36
DVDPlayback, 37
dyld

environment variables, 128–130
function interposing, 125–128
kernel, 111
load commands, 114
shared library cache, 121
two-level namespace, 125

DYLD_*, 125, 126, 128, 129–130, 493
.dyld(1), 44
DYLD(31), 167
dyldinfo(1), 114
dyld_stub_linker, 119
dyld_stub_puts, 120
.dylib, 42
dynamic defragmentation, 622–623
dynamic libraries, 111–130
dynamic resizing, 620
dynamic_pager(8), 142–143, 488, 498–499
DYNAMIC_PAGER_PORT, 499

E
-e, 59, 409

ACLs, 578
dtruss, 151

EAPOL, 653
EAX, 278
EDR, SUN-RPC, 353
EEPROM. See Electronically-Erasable Programmable Read

Only Memory
EFI. See Extensible Firmware Interface
efi-boot-*, 193, 205
efi_init(), 203
efi_set_tables_[32|64], 203
EFI_STATUS, 187
EFI_SUCCESS, 187
EFI_SYSTEM_TABLE, 187–188
EFLAGS, 295, 296, 774–775
EFLAGS(1), 169

Electronically-Erasable Programmable Read Only Memory
(EEPROM), 184

ELF. See Executable and Library Format
EMMI. See External Memory Manager Interface
EMT, 534
en, 679
ENABLE(3), 169
Enable Transactions, 236
enable_preemption(), 426
encryptVolume, 576
ENDIAN_MAGIC(), 644
EndOfAllTime, 435–436
endpoint, 254
enterlctx(), 515
entitlements

iOS, 87–89, 97
OS X, 97
sandboxing, 83–89

entry points, 130
environment variables, 128–130
EPPC. See Event Process-to-Process Communication
errno_t, 681
error, 255
Essentials.pkg, 216
etap_trace_thread, 405
/etc/syslog.conf, 70
/etc/ttys, 18, 22
etimer_intr, 434
etimer_resync_deadlines(), 435
EULA, 10
Event Process-to-Process Communication (EPPC), 652
EventKit*, 37
every, 409
EVFILT_*, 57–58
exc, 352
EXC_*, 438, 534
exceptions

Intel trap handlers, 269–270
involuntary user/kernel transition, 269–270
Mach scheduling, 436–445
ports, 436

debugging, 439
UNIX, 529–534
vector, ARM, 268

EXCEPTION_DEFAULT, 439
exception_deliver(), 439
ExceptionHandling, 37
EXCEPTION_STATE*, 439
exception_triage(), 438, 439
ExceptionVectorsBase, 275–276
EXC_SOFTWARE, 534
exec(), 240
exec_activate_image(), 521
exec_archhandler, 519
execargs_alloc, 521
exec_save_path, 521
execsw, 516, 518
executables

entry points, 130

bindex.indd 800bindex.indd 800 9/29/2012 5:56:53 PM9/29/2012 5:56:53 PM

10 Book Title <Chapter No> V1 - MM/DD/2010

801

Executable and Library Format – fi le systems

libraries, 111
Mach-O, segments and sections, 108
PEs, 187
processes, 98
UNIX, 98

Executable and Library Format (ELF), 102, 502
binaries, 15–16

execution
conditional, 784–785
DEP, 522, 549
policies, 527–528
threads, 408

execve(), 130, 327, 520–521
exit(), 117
exit(2), 92, 93, 143
ExitBootServices(), 188
explicit preemption, 418–420
Exposé, 6
extended attributes, 577, 608–611
EXTENDED_POLICY, 421
Extensible Firmware Interface (EFI), 10, 185–210

architecture, 186
ASLR, 549
binaries, 187
BIOS, 184
Boot Camp, 204
Boot Services, 188–191
BSD, 203
console protocols, 189–190
GUIDs, boot.efi, 192–193
kernel, 203
Mach, 203
media access protocols, 190
Platform Expert, 303
protocols, 188–191
runtime services, 191–192
variables, APPLE_BOOT_GUID, 193

extents, 577
overfl ow, 640

external data representation (XDR), 351
External Memory Manager Interface (EMMI), 480
ExternalAccessory, 37
extract_heap, 706

F
-f, dtruss, 150
-F, dynamic-pager(8), 143
FaceTime, 11
facility, 70
FairplaydUnfreed, 244
fairplay.d.XXX, 244
fairshare_dequeue(), 430
fairshare_enqueue(), 430
fairshare_init(), 430
fairshare_runq_count(), 430
fairshare_runq_stats_count_sum(), 430
false, 254

FAT. See File Allocation Table
faults, 270
fbt, 152
fd, 255
fdcopy(), 515
FDE. See full disk encryption
fd_ofiles, 601
f_flob, 602
fg_data, 603
fg_type, 603
FIFOfs, 584–586
file(1), 99, 212–213
File Allocation Table (FAT), 580, 625
fi le systems

CDDAFS, 581
CDFS/ISO-9660, 582
generic concepts, 577–579
HFS, 4, 579
HFS+, 21–22, 579–580, 607–648

ACLs, 608
B-Tree, 624–645
case sensitivity, 619
compression, 612–617
decompression, 613–616
design concepts, 624
disk image fi les, 589
dynamic defragmentation, 622–623
dynamic resizing, 620
extended attributes, 608–611
finderInfo, 205–106
forks, 611–612
hfsleuth, 577
hot fi les, 621–622
journaling, 619–620
metadata zone, 620–621
OS X Finder, 617–618
panic(), 333
permissions, 577, 639
sandboxing, 84
status notifi cations, 647
timestamps, 607–608
Unicode, 617
VFS, 591

links, 578–579
native, 579–580
networks, 582–583
NFS, 582–583
NTFS, 578, 581, 591, 624
OS X, 587–589
pseudo, 583–587
shortcuts, 578–579
timestamps, 578
VFS, 22, 577, 591–600

fsctl(2), 645–646
FUSE, 597–605
kernel, 645–648
mount entry, 592–595
struct vnode, 595–597
sysctl(2), 646–647

bindex.indd 801bindex.indd 801 9/29/2012 5:56:53 PM9/29/2012 5:56:53 PM

Book Title <Chapter No> V1 - MM/DD/2010

802

File systems in USEr space – gdb

vnode, 595–597
File systems in USEr space (FUSE), 597–605
File Transfer Protocol (FTP), 583, 598
fileglob, 602–603, 605
FILE_PROTOCOL, 190
filesize, 107
FileVault, 6, 8
filterfn, 508
FinalizeBootStruct, 201
Finder

bundles, 25
GUI, 247–248
OS X, 247–248

HFS+, 617–618
Quicklook, 18–19
Spotlight, 19–20
UI, 250–253
UNIX directories, 22

FinderInfo, 608
finderInfo, 205–206
FIQ, 268
fi rmware, 184

DFU, 211, 213
EFI, 10, 185–210

architecture, 186
ASLR, 549
binaries, 187
BIOS, 184
Boot Camp, 204
Boot Services, 188–191
BSD, 203
console protocols, 189–190
GUIDs, boot.efi, 192–193
kernel, 203
Mach, 203
media access protocols, 190
Platform Expert, 303
protocols, 188–191
runtime services, 191–192
variables, APPLE_BOOT_GUID, 193

UEFI, 185–186, 191
FixedPriorityString(), 427
FixedPriorityWithPsetRunqueueString(),

427
flags, 107
fl ashing, 184
flavor, 156
fleh_irq, 426
fleh_swi, 280, 438
fl oating point registers, 774, 777
fmm-hostname, 193
folderCount, 633
f_ops, 605
Force Quit, 174
ForceFeedback, 37
fo_read, 604
FOREGROUND_APPLICATION, 422
fork(), 512, 514, 515
forks, 611–612, 639–640

forkproc(), 514, 515–516
Foundation, 37
fp_data, 667
FPE, 534
fpextovrfit, 438
fp_lookup, 601–602
free(), 127

memory leaks, 176
vm_allocate, 453

FreeBSD, 55
FreePages, 189
FreePool, 189
FREE_ZONE, 544
friends, 44
fsboot(), 212
fsck(1), 217
fsck_cs(8), 576
fsctl(2), 645–646
FSE_CHOWN, 5
FSE_CONTENT_MODIFIED, 5
FSE_CREATE_DIR, 5
FSE_CREATE_FILE, 5
FSE_DELETE, 5
FSE_EVENTS_DROPPED, 75
FSE_FINDER_INFO_CHANGED, 5
FSE_RENAME, 5
FSE_STAT_CHANGED, 5
FSEvents, 7, 74–78, 237, 242
fseventsd, 75, 242
FSEventStreamCreate, 75
-fstack-protector, 130
fstat1(), 603–604
fs_usage(1), 76, 165
FSYSTEM(3), 166
FTP. See File Transfer Protocol
full disk encryption (FDE), 204, 575
function interposing, 125–128
FUSE. See File systems in USEr space
fuse_main(), 598
fuse_operations, 599
fuser(1), 156, 180
fw, 679
FWAUserLib, 37
fwkpfv(1), 333
FXR, 305

G
-g, dtruss, 151
GameKit, 37
garbage collection

Mach zones, 471–473
Objective-C, 545
vm_pageout(), 497

GateKeeper, 84
GCD. See Grand Central Dispatch
GDB. See GNU Debugger
gdb, 118, 119, 337

bindex.indd 802bindex.indd 802 9/29/2012 5:56:53 PM9/29/2012 5:56:53 PM

10 Book Title <Chapter No> V1 - MM/DD/2010

803

gen – HFS_GET_BOOT_INFO

gen, 303
general protection fault, 267
Generic Security Services (GSS), 37
getaudit(), 61
getaudit_addr(), 61
get_bsdtask_info(task_t), 511
get_bsdthread_info(thread_t), 511
GETBUF(5), 169
get_dp_control_port, 376
GetMemoryMap, 189
GetNextVariableName, 192
GETREG(9), 169
getrlimit(2), 398, 512
get/set inferior-auto-start-dyld, 181
get/set inferior-bind-exdception-port,

181
get/set inferior-ptrace[-on-attach], 181
get_special_port(), 400
get-task-allow, 444
GetTime, 192
GetVariable, 192
GetWakeupTime, 192
GID. See group identifi er
gif, 678
gif(4), 655
gif_clone_create(), 685
GLKit, 37
Globally Unique Identifi er Partition Table (GPT), 572–574,

576–577
GLUT, 37
GNU Debugger (GDB), 181–182, 458
GNUStep port, 4
GPT. See Globally Unique Identifi er Partition Table
GPU, 7
GrabFS, 598
Grand and Unifi ed Bootloader (GRUB), 184
Grand Central Dispatch (GCD), 7, 79, 145–146, 253, 550
Graphical User Interface (GUI), 15

Aqua, 17–18
dtruss, 151
Finder, 247–248
Force Quit, 174
Leopard, 7
Lion, 8
Mac OS Classic, 3–4
NeXTSTEP, 4
OS X, 215
shells, launchd, 246–253
SpringBoard, 13, 248–253
Tiger, 6

graphics, Quartz Extreme, 6
GRAPHICS_OUTPUT_PROTOCOL, 190
GRAPHICS_SERVER, 423
grep, 306
groups

lock, 361
processes, 91

BSD, 507–508
group identifi er (GID), 97

GRRRString(), 427
GRUB. See Grand and Unifi ed Bootloader
GSEvent, 253
GSS. See Generic Security Services
GuardMalloc, 125
GUI. See Graphical User Interface
GUIDs

directories, 25
EFI, boot.efi, 192–193
protocols, UEFI, 191

GUID/tmp, 25

H
-h, 105
-H, dynamic-pager(8), 143
HandleProtocol, 189
handoffs, 415–416
hard links, 578–579, 639
hardening, 13
HardResourceLimits, 236
hardware

BSD signals, 534
CHUD, 154–155, 373
EFI, 189
interrupts, 431
non-Apple, 10
pop, timer interrupts, 435–436

hardware extraction, XNU kernel, 295–297
hdiutil, 213, 568–569, 589
header records, 627
heap(1), 177
heaps, 139–140
heap spray, 103
Heavenly, 11
hertz_tick(), 431
HFS. See Hierarchical File System
hfs, 307
HFS+. See Hierarchical File System Plus
HFS_BULKACCESS_FSCTL, 646
HFSCatalogFileRecord, 637
HFSCatalogFolderRecord, 637
HFS_CHANGE_NEXT_ALLOCATION, 646
HFS_CLRBACKINGSTOREINFO, 646
--hfsCompression, 613
HFS_DISABLE_JOURNALING, 647
HFS_DISABLE_METAZONE, 646
HFS_ENABLE_JOURNALING, 647
HFS_ENABLE_RESIZE_DEBUG, 647
HFS_ENCODINGBIAS, 647
HFS_ENCODINGHINT, 647
HFS_EXTEND_FS, 647
sysctl(2), 620

HFS_FSCTL_GET_JOURNAL_INFO, 646
HFS_FSCTL_SET_DESIRED_DISK, 646
HFS_FSCTL_SET_LOW_DISK, 646
HFS_FSCTL_SET_VERY_LOW_DISK, 646
HFS_GET_BOOT_INFO, 646

bindex.indd 803bindex.indd 803 9/29/2012 5:56:54 PM9/29/2012 5:56:54 PM

Book Title <Chapter No> V1 - MM/DD/2010

804

HFS_GET_JOURNAL_INFO – i386_THREAD_STATE

HFS_GET_JOURNAL_INFO, 647
HFS_GETPATH, 646
<hfs/hfs_format.h>, 625
hfsleuth, 577, 613, 628, 635
HFS_MARK_BOOT_CORRUPT, 646
HFS_NEXT_LINK, 646
HFSPlusCatalogKey, 633
HFSPlusCatalogThread, 633
HFSPlusForkData, 639
HFS_PREV_LINK, 646
hfs_readwrite.c, 622–623
hfs_relocate(), 622–623
HFS_RESIZE_PROGRESS, 646
HFS_RESIZE_VOLUME, 646
ioctl(2), 620

HFS_SET_ALWAYS_ZEROFILL, 646
HFS_SETBACKINGSTOREINFO, 646
HFS_SET_BOOT_INFO, 646
HFS_SET_PKG_EXTENSIONS, 647
HFS_SET_XATTREXTENTS_STATE, 646
HFS_VOLUME_STATUS, 646
HFSX, 619
hibernate_newruntime_map(), 203
hidden, 248
Hierarchical File System (HFS), 4, 579
Hierarchical File System Plus (HFS+), 21–22, 579–580,

607–648
ACLs, 608
B-Tree, 624–645
case sensitivity, 619
compression, 612–617
decompression, 613–616
design concepts, 624
disk image fi les, 589
dynamic defragmentation, 622–623
dynamic resizing, 620
extended attributes, 608–611
fi le systems, status notifi cations, 647
finderInfo, 205–106
forks, 611–612
hfsleuth, 577
hot fi les, 621–622
journaling, 619–620
journaling, B-Tree, 642–645
metadata zone, 620–621
OS X Finder, 617–618
panic(), 333
permissions, 577, 639
sandboxing, 84
timestamps, 607–608
Unicode, 617
VFS, 591
volume header, B-Tree, 631–632

himemory_mode, 331
HNDL_ALLINTRS, 274
HNDL_ALLTRAPS, 274
hndl_alltraps, 273–274
Hoodoo, 12
host, 367–371

HOST_AMFID_PORT(18), 373
HOST_AUDIT_CONTROL(9), 372
HOST_AUTOMOUNTD_PORT(11), 373
HOST_CHUD_PORT(16), 373
host_default_memory_manager, 375
HOST_DYNAMIC_PAGER_PORT(8), 372
host_get_boot_info, 374
host_get_clock_control, 375
host_get_clock_service, 368, 379
host_get_host_priv_port(), 374
host_get_special_port, 371–374, 375
host_get_UNDServer, 376
HOST_GSSD_PORT(19), 373
host_info, 355, 368
hostinfo(1), 369–371
HOST_KEXTD_PORT(15), 373
host_load_symbol_table, 376
HOST_LOCKD_PORT(12), 373
host_lockgroup_info, 369
host_notify_reply, 352
host_priv, 352
host_priv_statistics, 374
host_processor_info, 368
host_processors, 375
host_processor_sets, 376
host_reboot, 374
HOST_SEATBELT_PORT, 561
HOST_SEATBELT_PORT(14), 373
host_security, 352
host_set_exception_ports, 376
bsdinit_task(), 530

host_set_special port, 376
host_set_UNDServer, 376
HostSpecialPort, 235
host_statistics, 369
HOST_UNFREED_PORT(17), 373
HOST_USER_NOTIFICATION_PORT(10), 372
host_virtual_physical_table(), 456
host_virtual_physical_table_info, 369
hot fi les, 621–622, 641–642
HTML, 241

widgets, 45, 47
hw, 56
hw_lock_t, 364
hybrid kernel, 265–267
hyperthreading, 408, 415

I
i386, 303
[i386|arm]_init, 311–313
i386_astintr(), 425
i386_exception(), 274, 438
i386_init(), 311, 395
i386_init_slave(), 311, 313
i386/machine/ppc, 307
i386/ppc/x86_64, 307
i386_THREAD_STATE, 109

bindex.indd 804bindex.indd 804 9/29/2012 5:56:54 PM9/29/2012 5:56:54 PM

10 Book Title <Chapter No> V1 - MM/DD/2010

805

i386/trap.c – interrupts

i386/trap.c, 274
iAD, 37
iBoot, 210–214
ICADevices, 37
iCloud, 8, 12
.icns, 29
icons, 29
IDL. See Interface Defi nition Language
idle_queue, 384
idle_thread, 384
IDT. See Interrupt Descriptor Table
IDT_ENTRY_WRAPPER, 272
ifconfig(8), 679
#ifdef, 12
#ifdef’ed, 314
ifnet, 680–682
ifnet_allocate(), 682
ifnet_attach(), 682
ifnet_attach_proto_param(), 682
ifnet_reference(), 682
ifnet_release(), 682
if_output, 693
ILL, 534
imageboot_needed(), 590
imageboot_setup(), 590
ImageCaptureCore, 37
ImageIO, 37
image_params, 518
IMCore, 37
IMG3, 221–222
implicit preemption, 420–423
__IMPORT, 134
IMServicePlugin, 37
#include, 355
INET, 234
inetd, 232–234, 238
info mach-port <task> <port>, 181
info mach-ports <task>, 181
info mach-region <address>, 181
info mach-regions, 181
info mach-task <task>, 181
info mach-tasks, 181
info mach-thread <thread>, 181
info mach-threads <task>, 181
Info.plist, 26–28, 717, 721

I/O Kit, 741
init(), 93, 230, 428
inital_thread_sched_mode(), 429
InitBootStruct, 200
initialization

BSD, 318
domains, 673–675
launchd, 230–231

initializeConsole, 195
initial_quantum_size(), 429
init_kdp(), 318
InitMemoryConfig, 198
initprot, 107
init_proto(), 674

InitSupportedCPUTypes, 198
inode, 608
inotify, 74
InputMethodKit, 37
insertions, B-Tree, 624, 636
installation

images, boot process, 214–225
OS X, 214–219

InstallESD.dmg, 214, 215
InstallProtocolInterface, 189
install_real_mode_bootstrap(), 316, 329
instances, processes, 91
InstantMessage, 38
Int 13h, 183
int64, 254
IntallerPlugins, 38
Integrated Services (IntSrv), 706
Intel

architecture, Mach physical memory management,
465–467

atomicity, 787–788
IDT, 268
kernel, 266–267
locking, 787–788
multithreading, 786
OS X, 261
registers, 773–776
32-bit, process address space, 132
trap handlers, 268–278

ARM, 275–278
XNU, 272–275

VM, 791
x86, 6

interfaces. See also Graphical User Interface
EMMI, 480
fi lters, packet fi ltering, 701
ifconfig(8), 679
iOS, 678–680
KPI functions, 682
layer III, 678–686
NDIS, 739
OS X, 678–680
protocols, 677–678
utun, 682–686

Interface Defi nition Language (IDL), 351
internationalization, 29
__interpose, 125
interpreters, 98
INTerrupt, 278
Interrupt(), 275
interrupts

ARM, 296
asynchronous, 431
hardware, 431
involuntary user/kernel transition, 270–271
I/O Kit, 765–768
PIC, 270
PPC, 296–297
SWI, 275, 280

bindex.indd 805bindex.indd 805 9/29/2012 5:56:54 PM9/29/2012 5:56:54 PM

Book Title <Chapter No> V1 - MM/DD/2010

806

Interrupt Descriptor Table – iOS

synchronous, 278
timer, 431–436

Interrupt Descriptor Table (IDT), 268, 438
Interrupt Handler, 270
Interrupt Request (IRQ), 270–271
Interrupt Service Routine (ISR), 268, 270
IntSrv. See Integrated Services
involuntary user/kernel transition

exceptions, 269–270
interrupts, 270–271

io, 331
I/O. See also Basic Input Output System
launchd, 236
policies, 527–528
processes, 93, 600–605

I/O Kit, 737–771
BSD, 769–771
C++, 737, 740–741
device drivers, 738
diagnostics, 753–755
diskarbitrationd, 587
driver matching, 755–757
driver model, 761–763
families, 757–761
Info.plist, 741
interrupts, 765–768
I/O registry, 740, 743–746
IOMalloc, 479
IOMemoryDescriptor, 485
IOPlatformExpert, 304–305
kernel drivers, 755–769
kernel_bootstrap_thread, 318
launchd, 237–238
libkern, 742–743
loops, 740
memory management, 769
name mangling, 740
namespaces, 740
NDIS, 739
OSObject, 739, 741
Platform Expert, 303
power management, 751–753
subsystems, 753
user mode, 740, 746–755

device drivers, 749–750
I/O registry, 747–749
plug and play, 750–751

XNU, 50
I/O registry, 740, 743–749
IOACPIPlane, 744
ioalloccount(8), 753
IOAllowPowerChange(), 752
IOBluetooth, 38
IOBluetoothUI, 38
ioclasscount(8), 754
IOCommandate, 764
IOCopyAssertionsByProcess(), 753
ioctl(), 566–567, 672
ioctl(2), 75, 620
IODeviceTree, 196–198, 744

IOFilterInterruptEventSource, 764
IOFilterInterruptSource, 764
IOGENERALMEMORYDESCRIPTOR::doMap, 488
IOHDIXController, 592
IOHDIXController.kext, 589
IOHibernateIO.cpp, 193
IOHibernatePrivate.h, 193
IOKernelConfigTables, 755
IOKit, 38, 79, 196
iokit, 307
IOKIT(5), 167
iokit/bsddev/DINetBookHook.cpp, 590
IOMalloc, 479
IOMemoryDescriptor, 485
IONetworkController::outputPacket(), 693
IONotificationPortCreate, 750
IOPlatformDevice, 755
IOPlatformExpert, 304–305
IOPMAssertionCreateWithName(), 752
IOPMSchedulePowerEvent(), 752
IOPMSleepSystem(), 752
iopolicysys(), 527–528
IOPower, 744, 751
ioreg, 194, 224
ioreg(8), 196
IORegisterForSystemPower(), 752
IORegistry, 717
IORegistryEntry, 746
iOS

Apple TV, 11–12
architecture, 15–51
ARM, 5, 261
ASLR, 173
BackupAgent, 173
CHUD, 155
default directories, 25
Default Freezer, 494
device tree, 224–225
downgrade attacks, 213–214
DTrace, 148
entitlements, 87–89, 97
fleh_irq, 426
frameworks, 32–43
GDB, 182
hiding applications, 250
hostinfo(1), 369
iBoot, 210–214
interfaces, 678–680
iPad, 11
iPad 2, 11–12
iPhone, 11
iPhone 4, 11–12
.ipsw, 219–225
IPv6, 654
jailbreaking, 210
Jetsam, 236–237, 546–548
kernel, 23

ExceptionVectorsBase, 275–276
jailbreaking, 457
system calls, 286–287

bindex.indd 806bindex.indd 806 9/29/2012 5:56:55 PM9/29/2012 5:56:55 PM

10 Book Title <Chapter No> V1 - MM/DD/2010

807

IOService – kdebug

versions, 14–15
kernelcache, 719
LaunchDaemons, 241–253
libraries, 42–44
lockdownd, 234
Mach, 343

scheduling exceptions, 445
Mountain Lion, 9
network stack, 649
OS X, 12–15

merger, 16
PF_NDRV, 652
pid_shutdown_sockets, 94
process hibernation, 547–548
replay attacks, 213–214
sandboxing, 81–82
security, 79–90
Setup.App, 249
shared cache, 121
sleep, 329
SpringBoard, 248–253
start(), 310–311
32-bit, process address space, 133–134
UNIX directories, 23–24
versions, 10–12
XNU, 310
XPC, 253–257

IOService, 744, 746
IOServiceAddInterestNotification(), 750
IOSurface, 38
iothread, 496
IOUSB, 744
IOUserEthernetController, 656
IOWorkLoop, 764–765
IP fi lters, 698–701
ip6config, 655
iPad, 11
iPad 2, 11–12
ipc, 307
IPC services, 234, 357–360
ipc_kmsg_send(), 359
ipc_kobject_server(), 359
ip_clock_enable(), 379
ipc_mqueue_*, 359–360
ipc_port_t, 357
ipf_filter, 699
ipfw(8), 696–697
iPhone, 11
iPhone 4, 11–12
ip_output_list(), 692
IPSec Key Management sockets, 654
.ipsw, 219–225
iptap_init(), 656
IPv4, 651–652
IPv6, 654–655
IRQ. See Interrupt Request
IRQ, 268
isolated virtual memory, 130
ISR. See Interrupt Service Routine
iTunesArtwork, 25

iTunesMetaData.plist, 25
Itunesstored(), 244
iTunesStore.daemon.*itunesstored.*, 244

J
Jaguar, 6
jailbreaking, 13

ASLR, 549
CrashReporter, 173
ioreg, 224
iOS, 210

kernel, 457
LC_CODE_SIGNATURE, 110
lockdownd, 245
logging, 71–72
sandboxing, 81–82
SSH, 21
unionfs, 587
versions, 213

Jasper, 11
Java, 44–45
java, 44
JavaApplicationLauncher.framework, 45
javac, 44
JavaEmbedding, 38
JavaEmbedding.framework, 44
JavaFrameEmbedding, 38
JavaFrameEmbedding.framework, 44
JavaLaunching.framework, 45
JavaScript, 45

widgets, 47
JavaScript Object Notation (JSON), 26
JavaScriptCore, 38
JavaTools.pkg, 216
JavaVM, 38
Jetsam, 236–237, 546–548
jetsam_flags_procs(), 546
jetsam_kill_hiwat_proc(), 546
jetsam_kill_top_proc(), 546
jetsam_snapshot_procs(), 546
jetsam_task_page_count(), 546
JIT. See Just-In-Time
JOURNAL_HEADER_MAGIC, 644
journalInfoBlock, 643
journaling, HFS+, 21, 619–620, 642–645
JSON. See JavaScript Object Notation
jtool, 721
Just-In-Time (JIT), 457

K
-k, 149–150
kalloc(), 470, 477–479
kas_info(), 549
KAUTH, 578
kBTHeaderNode(1), 627
kdebug, 79, 165–170, 434

bindex.indd 807bindex.indd 807 9/29/2012 5:56:55 PM9/29/2012 5:56:55 PM

Book Title <Chapter No> V1 - MM/DD/2010

808

kdebug_trace – KEV_IOKIT_CLASS

kdebug_trace, 169
KDGETENTROPY(16), 170
KDP. See Kernel Debugger Protocol
kdp, 307
kdp_match_name, 332
kdp_register_send_received(), 332
Kerberos, 38
kern, 56, 307
KERN_BAD_ACCESS, 534
kern.coredump, 171
kern.corfile, 171
kern_ctl_reg, 656
kernel, 12–13

arbiter, 262
architecture, 261–287
ARM, 267–268
asynchronous versus synchronous, 268
cache, 23
clients, 261
control protocol, 655–657
debugging, 332–340
drivers, I/O Kit, 755–769
DTrace, 152
dyld, 111
EFI, 203
event protocol, 657–658
extensions, 711–735

code signing, 712–713
modular architecture, 712–713
pre-linking, 713

FUSE, 598
hybrid, 265–267
Intel, 266–267
iOS, 23

ExceptionVectorsBase, 275–276
jailbreaking, 457
system calls, 286–287
versions, 14–15

kdebug, 166
kext, 725–735
kprintf(), 313
launchd, 227
Linux, 262–264, 303
logging, 70
MAC, 63
Mach, 303

scheduling, 406–407
memory, 198

Mach, 473–480
microkernels, 264–265
monolithic, 262–264
Mountain Lion, 9
NeXTSTEP, 4
OS X versions, 14–15
panic(), 333–340
permissions, 262
Platform Expert, 296, 303
printf(), 313
runtime services, 191
scheduling, 262

security services, 262
serial, 313
64-bit, 264
system calls, 261, 268, 283–295
32-bit, 266
tick-less, 432
Tiger, 6
trap handlers, 334
universal binaries, 100
user mode/kernel mode, 266–282

involuntary transition, 269–271
transition, 268–282
voluntary transition, 278–282

VFS, 22, 645–648
virtualization, 262
XNU, 50

architecture, 302–305
boot, 299–340
hardware extraction, 295–297

Kernel, 38, 199
kernel Architecture, 199
Kernel Cache, 199
Kernel Debug Kit, 337
Kernel Debugger Protocol (KDP), 331, 332
Kernel Flags, 199
kernel mode

BSD process creation, 513–516
involuntary transition

exceptions, 269–270
interrupts, 270–271

sockets, 667–668
voluntary transition, 278–282

kernel_bootstrap(), 314–316, 379
kernel_bootstrap_thread(), 318–320, 379, 495
kernelcache, 201, 211, 214, 719–723
kernel_create_thread(), 318
KERNEL_DEBUG_CONSTANT, 169
kernel_memory_allocate(), 469, 473–476
kernel_task, 395, 402
-kernel_text_ps-4k, 330
kernel_thread_create, 416–417
kernel_thread_start_priority, 416
kern_hibernation_wakeup, 547
kern_invalid(), 290
KERN_INVALID_ARGMENT, 290
KERN_KD*, 169–170
KERN_KDENABLE, 169
KERN_NOT_SUPPORTED, 345
kern_os_malloc(), 479
KERN_PANICINFO_TEST, 336
KERN_PROCARGS, 156
kern_return_t, 353
KERN_SUCCESS, 436
kern.sugid_coredump, 171
KEV_APPLESHARE_CLASS(4), 657
kevent(2), 556
kevent64(2), 556
KEV_FIREWALL_CLASS(5), 657
KEV_IEEE80211_CLASS(6), 657
KEV_IOKIT_CLASS(2), 657

bindex.indd 808bindex.indd 808 9/29/2012 5:56:55 PM9/29/2012 5:56:55 PM

10 Book Title <Chapter No> V1 - MM/DD/2010

809

KEV_NETWORK_CLASS – LCK_ATTR_DEBUG

KEV_NETWORK_CLASS(1), 657
KEV_SYSTEM_CLASS(3), 657
kext, 713–735

kernel, 725–735
loading, 732–733
MIG, 734–735
otool(1), 340
plist, 718
programmer’s view of, 724–725
security, 718
structure, 717–718

kextd, 733–734
kextd(8), 728
kextlog, 331
kext_request, 377, 733–734
kextstat(8), 714, 727
Kext-tools, 300
keyed records, 627
kHFS*, 633
Khronos, 7
KILL(), 534
kill -9, 236, 247, 253
kill -15, 236
kill -CONT, 247
kill -STOP, 247
killall(1), 248
killpg1(), 508, 535
killpg1_callback(), 535
kIODTNVRAMPanicInfoKey, 336
KirkWood, 11
kJIJournalInFsMask(), 644
kJIJournalOnOtherDeviceMask(), 644
-klog_in 1, 70
kmem, 331
kmem_alloc(), 477
kmem_alloc_contig(), 477
kmem_alloc_pageable(), 477
kmem_alloc_pages(), 477
kmeminit(), 544
kmod_get_info(), 368, 726
kmod_info_t, 725
kmzones[], 542
Kodiak, 5
Korn shell, 21
KPI functions

interfaces, 682
protocols, 677

kpi_socket, 667
kprintf(), 313, 333
kqueues, 57–59, 237, 555–556
kSBXProfileNoNetwork, 83

L
-l, 330, 409
-L, dynamic-pager(8), 143
Label, 238
labels, MAC, 62
<language>.pkg, 216

LAPIC. See Local Advanced Programmable Interrupt
Controller

Large Block Address (LBA), 568
lastMountedVersion, 642–645
latency(1), 165
LatentSemanticMapping, 38
Launch Daemon, 79, 229
launchctl(), 228, 240–241
bstree, 253

launchctl(1), 240–246
launchd, 93, 227–257, 326

agents, 229
atd, 231
autorun, 237
bsdinit_task, 227
crond, 231
daemons, 229
GUI shells, 246–253
inetd, 232–234
init, 230
initialization, 230–231
I/O Kit, 237–238
kernel, 227
LaunchDaemons, 241–246
load_init_program(), 227, 326
lockdownd, 245–246
mach_init(), 234–236, 351
MachServices, 373
parameters, 240
PID, 228
resource limits, 236–237
socket descriptors, 240
starting, 227–241
syslogd, 72
system-wide versus per-user, 228
throttling, 236–237
transactions, 236
wrappers, 240–241
xinetd, 232–234
XPC, 253–257

launchd(8), 59
LAUNCHD(34), 168
.launchd_log_debug, 228
.launchd_log_shutdown, 228
.launchd_use_gmalloc, 228
<launch.h>, 235, 240
launch_msg(), 240
LaunchPad, 13
layer III interfaces, 678–686
layer III network protocols, 676–678
layer IV transport protocols, 668–669
layer V sockets, 660–668
LBA. See Large Block Address
LC_CODE_SIGNATURE, 106, 110
LC_DYLINKER, 111
LC_DYSMTAB, 114
LC_ENCRYPTION_INFO, 106
LC_FUNCTION_STARTS, 114
LC_ID_DYLIB, 114
LCK_ATTR_DEBUG, 361

bindex.indd 809bindex.indd 809 9/29/2012 5:56:55 PM9/29/2012 5:56:55 PM

Book Title <Chapter No> V1 - MM/DD/2010

810

lck_grp_t – LOAD_FILE_PROTOCOL

lck_grp_t, 361
lck_mtx_destroy, 364
lck_mtx_free, 363, 364
lck_mtx_init, 364
lck_mtx_lock, 364
lck_mtx_t, 364
lck_mtx_try_lock, 364
lck_mtx_unlock, 364
lck_rw_destroy, 363
lck_rw_init, 363
lck_rw_lock, 363
lck_rw_t, 363
lck_rw_unlock, 363
lck_spin_t, 364
LC_LOAD_DYLIB, 114, 115
LC_LOAD_DYLINKER, 106
LC_MAIN, 110
LC_REEXPORT_DYLIB, 114, 115
LC_SEGMENT, 106, 107–109
LC_SEGMENT(64), 130
LC_SEGMENT_64, 106, 107–109
LC_SOURCE_VERSION, 114
LC_SYMTAB, 114, 115
LC_THREAD, 106, 109
LC_UNIXTHREAD, 106, 109, 110, 311
otool, 308

LC_UUID, 106
LC_VERSION_MIN_IPHONEOS, 114
LC_VERSION_MIN_MACOSX, 114
LDAP, 38
ldd, 105, 114
LDFILELIST, 302
leaks(1), 177–178
ledger, 352
ledgers, Mach scheduling, 398–399
ledger_entry_info(), 399
ledger_info(), 399
ledger_template_info(), 399
Legacy PICs (XT-PICs), 270
Lemon, Jonathan, 555
Leopard, 7, 131
LibC, 139
LibC, OS X, memory, 174–175
libdispatch, 545
libgmalloc, 175–176
libKern, 728–732
libkern, 50, 307, 742–743
libraries

ASLR, 122
dynamic, 111–130
ELF, 102, 502

binaries, 15–16
executables, 111
iOS, 42–44
launch-time loading, 111–121
NeXTSTEP, 4
OS X, 42–44
runtime loading, 122–124

shared cache, 121
/Library, 23
Library/, 25
/Library/Frameworks, 33
/Library/LaunchAgents, 229
~/Library/LaunchAgents, 229
/Library/LaunchDaemons, 229
libSystem, 115
libxpc.dylib, 254, 256
libXSLT, 44
libZ, 44
LICENSE, 717
Lightweight Volume Manager (LwVM), 574–575
lightweight_update_priority(), 430
links, 578–579, 639

pre-linking, 713
_LINKEDIT(), 107
__LINKEDIT, 134
Linus Cross Reference (LXR), 305
Linux
binfmt, 516
kernel, 262–264, 303
NetFilter, 698
OOM, 139

Lion, 8
application containers, 84–97
asctl(1), 84
ASLR, 131–132
boot_args, 201–202
boot.efi, 195, 204
booting from disk image, 590–591
compression, 612
Core Storage, 200, 204
diagnose, 86
dscl(8), 67
I/O Kit, 237–238
kextstat(8), 714
kSBXProfileNoNetwork, 83
LaunchPad, 13
ledgers, 398
MAC, 64
malloc_entropy, 130
64-bit, 200
stack_guard, 130
XPC, 253–257
zones, 542

lipo, 99
lipo(1), 101–102
listImages(), 122
listq, 452
lists, BSD processes, 507–508
LLB. See Low Level Bootloader
LLDB, debugging, 182
lo, 678
LoadCoreStorageConfiguration(), 200
LoadDrivers, 200
LOAD_FAILURE, 523
LOAD_FILE_PROTOCOL, 190

bindex.indd 810bindex.indd 810 9/29/2012 5:56:56 PM9/29/2012 5:56:56 PM

10 Book Title <Chapter No> V1 - MM/DD/2010

811

load_init_program – Mach

load_init_program(), 227, 326
LoadKernelCache, 200
load_machfile(), 522–525
LoadRamDisk, 200–201
load_result(), 524–525
load_segment(), 107, 492
Local Advanced Programmable Interrupt Controller

(LAPIC), 316
/Local/Default, 65
LocateHandle, 189
locationd, 242
lock groups, 361
lock objects, Mach

groups, 361–362
lock sets, 366–367
mutex, 362–363
read-write, 363
semaphores, 364–366
spinlock, 364

lock sets, 366–367
lock_acquire, 366
Lockbot, 244
lockbundle, 248
Lockdownd, 245
lockdownd, 234, 245–246
lockdown.host_watcher, 245
lock_handoff, 367
lock_handoff_accept, 367
locking

ARM, 788–790
Intel, 787–788

lock_make_stable, 367
lock_release, 366
lock_set, 352
lock_set_create, 366
lock_set_destroy, 366
lock_set_t, 366
lock_try, 367
LOG_ALERT, 70
LOG_ERR, 70
logging

jailbreaking, 71–72
OS X, 69–72

LoginWindow, 18
LOG_KERN, 70
lookups, B-Tree catalog, 634–636
loops, I/O Kit, 740
loopattach(), 677
LoopbackFS, 598
Low Level Bootloader (LLB), 210, 211
LowPriorityIO, 236
.lproj, 29
ls(1), 578
lseek(), 512
lsof(1), 156, 180
lsregister, 31–32
LwVM. See Lightweight Volume Manager
LXR. See Linus Cross Reference

M
-m, Mach, 441
MAC. See Mandatory Access Control
Mac OS Classic, 3–5
MAC_CHECK, 560
mac_execve, 82
__mac_execve(), 520
MACF. See Mandatory Access Control Framework
Mach, 4, 45

APIs, 79
binding, 415
BSD, 343, 501, 510–512
design goals, 345–346
design philosophy, 344
EFI, 203
eradication of, 15
I/O Kit, 737
iOS, 343
IPC services, 234
kernel, 303

memory allocators, 473–480
lock groups, 361
lock objects

groups, 361–362
lock sets, 366–367
mutex, 362–363
read-write, 363
semaphores, 364–366
spinlock, 364

-m, 441
messages, 346–357

complex, 347–348
MIG, 351–357
passing, 344
ports, 349–351
sending, 348–349

microkernels, 264, 501
XNU, 343

OS X, 343
osfmk/console, 334
pagers, 447, 480–499

policy management, 494–499
physical memory management, 462–467

Intel architecture, 465–467
PID, 511–512
ports, 251–253, 357–358
POSIX, 343
primitives, 343–388

clock, 378–380
IPC, 357–360
machine primitives, 367–387
privileged ports, 374–377
processor, 380–384
processor_set, 384–387
scheduling, 389–408
synchronization, 360–367

read-write lock objects, 363

bindex.indd 811bindex.indd 811 9/29/2012 5:56:56 PM9/29/2012 5:56:56 PM

Book Title <Chapter No> V1 - MM/DD/2010

812

mach – mach_vm

scheduling, 389–446
algorithms, 427–430
ASTs, 423–427
continuations, 416–418
dispatch table, 428–430
exceptions, 436–445
explicit preemption, 418–420
handoffs, 415–416
implicit preemption, 420–423
kernel, 406–407
ledgers, 398–399
preemption modes, 418–423
tasks, 395–398, 422–423
task APIs, 399–404
threads, 390–395
thread APIs, 404–408
thread creation, 407–408
timer interrupts, 431–436

subsystems, 352–353
system calls, 46–48
throttling, 412
trailers, 347
trap handlers, 287–291
UNIX, 534
UN*X, 389
UPL, 484–486
VM, 447–500

architecture, 447–462
XNU, 49
zones, 467–473

boot, 470–471
debugging, 473
garbage collection, 471–473
OS X, 470–471

mach, 307
MACH(1), 166
Mach Interface Generator (MIG), 236, 256, 343, 351–357,

734–735
mach_call_munger, 287–289
mach_call_munger_xx, 438
machdep, 56
machdep_call_table, 292
mach_exc, 352
<mach/exception_types.h>, 437
mach_header, 105
mach_host, 352
mach_host.h, 355
mach_host_self(), 374, 496
machine, 307
machine primitives, 367–387
machine_init, 316–317
machine_startup, 314
mach_init(), 234–236, 351
<mach/mach_host.h>, 355
mach_make_memory_entry(), 456
<mach/message.h>, 346
mach_msg(), 236, 349, 353, 442
mach_msg_context_trailer_t, 347
mach_msg_mac_trailer_t, 347

MACH_MSG_OOL_DESCRIPTOR, 347–348
MACH_MSG_OOL_PORTS_DESCRIPTOR, 347–348
MACH_MSG_OOL_VOLATILE_DESCRIPTOR, 347–348
mach_msg_overwrite, 348
mach_msg_overwrite_trap(), 359
MACH_MSG_PORT_DESCRIPTOR, 347–348
mach_msg_receive(), 359–360
mach_msg_receive_results(), 360
mach_msg_security_trailer_t, 347
mach_msg_seqno_trailer_t, 347
mach_msg_trailer_t, 347
mach_msg_trailer_type_t, 346
mach_msg_trap(), 349
Mach-O

ASLR, 131–132
binaries, 522–525
dynamic libraries, 111–130
executables, 98

segments and sections, 108
fi le types, 103
header fl ags, 104
heaps, 139–140
LC_CODE_SIGNATURE, 110
load commands, 106–111
loader, 44
memory, 138–143
NeXTSTEP, 102
otool(1), 105
process address space, 130–138
universal binaries, 102–105
VM, 140–143

<mach-o/arch.h>, 100
mach_port, 352
mach_port_name_t(), 61
mach_port_t, 357, 452
MACH_RCV_INTERRUPT, 348
MACH_RCV_LARGE, 348
MACH_RCV_MSG, 348
mach_msg(), 353

MACH_RCV_NOTIFY, 348
MACH_RCV_OVERWRITE, 348
MACH_RCV_TIMEOUT, 348
MACH_RCV_TOO_LARGE, 348
mach_reply_port, 48
MACH_SEND_ALWAYS, 349
MACH_SEND_CANCEL, 349
MACH_SEND_INTERRUPT, 349
MACH_SEND_MSG, 349
mach_msg(), 353

MACH_SEND_NOTIFY, 349
MACH_SEND_TIMEOUT, 349
MACH_SEND_TRAILER, 349
MachServices, 373
mach_sg_send(), 359
mach_task_self(), 400, 407, 453
mach_trap, 152
mach_trap_table, 290–291
mach_types, 352
mach_vm, 352

bindex.indd 812bindex.indd 812 9/29/2012 5:56:56 PM9/29/2012 5:56:56 PM

10 Book Title <Chapter No> V1 - MM/DD/2010

813

mach_vm_allocate – memory

mach_vm_allocate(), 453
mach_vm_behavior_set(), 454
mach_vm_deallocate(), 453
mach_vm_inherit(), 454
mach_vm_machine_attribute(), 455
mach_vm_map(), 455
mach_vm_map_page_query(), 456
mach_vm_msync(), 454
mach_vm_page_info(), 456
mach_vm_page_query(), 456
mach_vm_protect(), 453
mach_vm_purgable_control(), 456
mach_vm_read(), 454
mach_vm_read_overwrite(), memcpy, 454
mach_vm_region(), 453
mach_vm_region_recurse(), 453
mach_vm_region_recurse, 458–462
mach_vm_remap(), 455
[mach]_vm_wire, 375
mach_vm_wire, 458
mach_vm_write(), 454
mach_zone_info(), 467
MacOS, 717
mac_policy_conf, 559
mac_policy_initmach(), 318
mac_policy_ops, 559
MAC_POLICY_SET, 559
mac_policy_unregister, 559
mac_vnode_check_signature, 560
macx_swapoff(), 499
macx_swapon(), 499
macx_triggers(), 499
madvise(), 454
magazine allocator, 139
main(), 18, 92, 93, 187
_main, 120
maintenance_continuation(), 428
malloc(), 125, 127–128, 453, 467, 541–544
_MALLOC, 479
malloc(3), 174–175
MallocCheckHeapEach, 174
MallocCheckHeapSleep/Abort, 174
MallocCheckHeapStart, 174
MallocCorruptionAbort, 175
MallocDoNotProtectPostlude, 175
MallocDoNotProtectPrelude, 175
malloc_entropy, 130
MallocErrorAbort, 175
MallocGuardEdges, 175
malloc_history(1), 178
__MALLOC_LARGE, 134
MallocLogFile, 174
malloc_printf, 128
MALLOC_PROTECT_BEFORE, 176
MallocScribble, 175
__MALLOC_SMALL, 134
MallocStackLogging, 175
MallocStackLoggingDirectory, 175
MallocStackLoggingNoCompact, 175

__MALLOC_TINY, 134
man, 307
Management Information Base (MIB), 56, 64
Mandatory Access Control (MAC), 55, 62–65, 558–560
mac_policy_initmach(), 318
sandboxing, 89

Mandatory Access Control Framework (MACF), 527
Map Record, 628
MapKit, 38
Master Boot Record (MBR), 568–570
maxmem, 331
MAXPRI_THROTTLE(4), 412
maxprot, 107
MBR. See Master Boot Record
mbuf, 661–667
mcache, 545
mdcheckschema, 20
mddiagnose, 20
mdfind, 20
mdimport, 20
MDL. See Memory Descriptor List
mdls, 20
mDNS. See multicast DNS
mDNSResponder, 243
mds, 75
mdutil, 20
media access protocols, 190
MediaFiles.pkg, 216
MediaPlayer, 38
MediaToolbox, 38
memcpy, 26, 454
memory

EEPROM, 184
EFI, 189
EMMI, 480
kernel, 198

Mach, 473–480
leaks, debugging, 176–178
Mac OS Classic, 3–4
Mach-O, 138–143
management, 13

BSD, 539–549
I/O Kit, 769

OOM, 139
OS X LibC, 174–175
physical

Mach, 462–467
VM, 448–449

PROM, 184
ROM, 184
VM

ARM, 447, 791
arm_vm_init(), 311
Intel, 791
isolated, 130
Mach, 447–500
Mach-O, 140–143
PE, 304
physical memory plane, 448–449

bindex.indd 813bindex.indd 813 9/29/2012 5:56:56 PM9/29/2012 5:56:56 PM

Book Title <Chapter No> V1 - MM/DD/2010

814

Memory Descriptor List – NDR

POSIX, 458, 540–541
processes, 107–109
threads, 144

Memory Descriptor List (MDL), 485
memory objects, 447
memory pressure, 545
memory_object, 452
memory_object_control.defs, 481
memory_object_data_initialize(), 482
memory_object_data_reclaim(), 482
memory_object_data_request(), 482
memory_object_data_return(), 482, 496
memory_object_data_unlock(), 482
memory_object_deallocate(), 481
memory_object_default.defs, 481
memory_object.defs, 481
memory_object_init(), 481
memory_object_last_unmap(), 482
memory_object_map(), 482
memory_object_name.defs, 481
memory_object_reference(), 481
memory_object_synchronize(), 482
memory_object_t, 483, 596
memory_object_terminate(), 481
Memorystatus, 546–548
memq, 452
Message, 38
messages

facility, 70
Mach, 346–357

complex, 347–348
MIG, 351–357
ports, 349–351
sending, 348–349

passing, 264, 344
severity, 70

MessageUI, 38
metadata, 20
metadata, 609
MetaData Importer, 20
metadata zone, 620–621
MH_ALLOW_STACK_EXECUTION, 103
MH_BINDS_TO_WEAK, 103
MH_BUNDLE(8), 103
MH_CORE(4), 103
MH_DSYM(10), 103
MH_DYLIB(6), 103
MH_DYLINKER(7), 103
MH_EXECUTABLE(2), 103
MH_FORCEFLAT, 103
MH_FORCE_FLAT, 125
MH_KEXT_BUNDLE(11), 103
MH_NO_HEAP_EXECUTION, 103
MH_NOUNDEFS, 103
MH_OBJECT(1), 103
MH_PIE, 103
MH_SPLITSEGS, 103
MH_TWOLEVEL, 103
MH_WEAK_DEFINES, 103

MIB. See Management Information Base
microkernels, 264–265, 343, 501
MIG. See Mach Interface Generator
MIG, 302
mig(1), 353
MINCORE_*, 456
mincore(2), 456
MISC(20), 167
MJ_DIRECTORY_CONTROL, 74
mkext, 723–724
Mkext Cache, 199
ml_enable_initmach(), 318
ml_enable_interrupts(), 318
ml_functions, 296–297
ml_get_interrupts_enabled, 295
mlock(2), 458
ml_thrm_init(), 314
Mobileassetd, 245
MobileCoreServices, 38
MobileFileIntegrity, 244
mobile.installd, 245
mobil.installd.mount_helper, 245
model specifi c registers (MSRs), 279
modular architecture, 712–713
Mohave, 11
monolithic kernel, 262–264
mount entry, 592–595
Mountain Lion, 9, 84, 215, 398

ASLR, 548–549
CoreStorage, 575–576

mpo_proc_check_get_task, 562
mpo_proc_check_run_cs_invalid, 562
mpo_vnode_check_exec, 562
mpo_vnode_check_signature, 562
msgbuf, 331
msgh_remote_por, 359
msgh_size, 346
MSRs. See model specifi c registers
msync(2), 454, 458
multicast DNS (mDNS), 652
multitasking, 4, 11, 420–423
multithreading, 93, 786, 787
mutual exclusion (mutex), 360, 362–363
mvn, 48

N
-n, 59
name mangling, 740
named pipes, 584
namespaces

I/O Kit, 740
two-level, 125

native fi le systems, 579–580
Natural Language Processing, 8
ncmds, 104
NDIS. See Network Driver Interface Specifi cation
NDR. See Network Data Representation

bindex.indd 814bindex.indd 814 9/29/2012 5:56:57 PM9/29/2012 5:56:57 PM

10 Book Title <Chapter No> V1 - MM/DD/2010

815

NDRV sockets – OS X

NDRV sockets, 653
net, 56
net_add_domain(), 674
net_del_domain(), 674
NetFilter, 698
NetFS, 38
net*/netinet*, 307
netsrc_init(), 655
/Network, 23
NETWORK(2), 166
Network Data Representation (NDR), 353
Network Driver Interface Specifi cation (NDIS), 739
network driver sockets, 652–654
Network File System (NFS), 582–583
network protocols, layer III, 676–678
network stack, 649–708

layer II interfaces, 678–686
layer III network protocols, 676–678
layer IV transport protocols, 668–669
layer V sockets, 660–668
packet fi ltering, 693–705
QoS, 705–707
receiving data, 686–690
sending data, 690–693
socket statistics, 658–660
traffi c shaping, 705–707
user mode, 650–658

networking
fi le systems, 582–583
IPv4, 651–652
IPv6, 654–655

/Network/Library/Networks, 33
NewsStand, 12
Newsstandkit, 38
nextCatalogID, 633
NeXTSTEP, 4, 24, 34, 102, 737
NFS. See Network File System
nfs, 307
.nib, 28–29
nm(1), 105
-no64exec, 330
nodeSize, 627
NONUI_APPLICATION, 423
NORMAL, 528
NorthStar, 11
-no_shared_cr3, 330
notifi cations, OS X, 78–79
notify(), 78–79, 352
notifyd(/usr/sbin), 243
notifyd(8), 79
<notify.h>, 79
notifyutil(1), 79
not_terminated, 59
novfscache, 331
NRQBM, 413
nsects, 107
NSGlobalDomain, 30
nstat_control_register(), 656
NSTAT_PROVIDER_CP, 659

NSTAT_PROVIDER_ROUTE, 659
NSTAT_PROVIDER_UDP, 659
NSZones, 139
NT File System (NTFS), 578, 581, 591, 624
NULL, 134
null, 254
numbers, system calls, 46
NVRAM, 191, 192–194, 336
nvram, 329
NXFindBestFatArch(), 100
NXGetLocalArchInfo(), 100

O
-o, 151, 612
-o union, 587
Objective-C, 45

Cocoa, 34
CoreServices, 75–76
garbage collection, 545
Info.plist, 26
Java, 44
Leopard, 7
NeXTSTEP, 4
XPC, 256

offset, 456
ofileflags, 601
OOM. See Out-Of-Memory
open(), 127
OpenAL, 38
OpenCL, 7, 215
OpenCL, 39
OpenDarwin, 10
OpenDirecotry, 39
OpenGL, 7
OpenGL, 39
OpenGLES, 39
OpenProtocol, 189
OpenSL, 7
OpenSSH, 13, 44
OpenSSL, 44
OS X

ACLs, 578
applications, 24–32
architecture, 15–51, 518
auditing, 59–62, 556–558
boot.efi, 194–210
BSD, 501
bundles, 24
CHUD, 155
Code Signing in Depth, LC_CODE_SIGNATURE, 110
defaults(1), 173
device tree, 196–198
disk image fi les, 589
DSMOS, 491, 716–717
DTrace, 148
dynamic_pager(8), 498–499
EFI, 185

bindex.indd 815bindex.indd 815 9/29/2012 5:56:57 PM9/29/2012 5:56:57 PM

Book Title <Chapter No> V1 - MM/DD/2010

816

OSAKit – packet fi ltering

entitlements, 97
evolution, 3–16
execsw, 516
fi le systems, 587–589
Finder, 247–248

HFS+, 617–618
forks, 611
frameworks, 32–43
FUSE, 598
future, 15–16
GUI, 215
hdiutil, 568–569
hostinfo(1), 369
installation, 214–219
Intel, 261
interfaces, 678–680
iOS, 12–15

merger, 16
IPv6, 654–655
-k, 149–150
kernel, versions, 14–15
kernelcache, 719
kextd(8), 728
-l, 409
LaunchDaemons, 241–253
LibC, memory, 174–175
libgmalloc, 175–176
libraries, 42–44
logging, 69–72
Mac OS Classic, 4–5
Mach, 343

scheduling exceptions, 444–445
zones, 470–471

machine_init, 316
Mountain Lion, 9
network stack, 649
non-Apple hardware, 10
notifi cations, 78–79
otool -L, 114
PF_NDRV, 652
POSIX, 45, 46
preemptive multitasking, 420–423
process information, 156–159
Rosetta installer, 102
security, 79–90
shared cache, 121
sleep, 328–329
snapshots, 159–170
system confi guration, 67–69
universal binaries, 99
UNIX, 502

directories, 23
user and group management, 65–67
utun, 682
versions, 5–10
vstart, 310
XNU, 266

OSAKit, 38
OSArray, 742

osascript(1), 72
OSBoolean, 742
OSBundleAllowUserLoad, 718
OSBundleCompatibleVersion, 718
OSBundleLibraries, 718
OSBundleRequired, 718
OSCollection, 742
OSCollectionIterator, 742
OSData, 742
OSDeclareDefaultStructors, 741
OSDefineMetaClassAndStructures, 741
OSDictionary, 742
osfmk, 303, 307
osfmk/console, 334
osfmk/kern/ast.h, 423
osfmk/kern/ledger.c, 398
osfmk/kern/sched.h, 409, 412–413
osfmk/kern/task.h, 395–397
osfmk/kern/timer_call_entry.h, 433
osfmk/kern/wait_queue.h, 414
osfmk/kern/zalloc.h, 469
osfmk/mach/host_priv.h, 457
osfmk/man, 345
osfmk/memory_object.types.h, 483
osfmk/thread/thread.c, 395
osfmk/vm/vm_user.c, 458
OSInstaller, 216–217
OSInstall.mkpg, 216
OSInstall.pkg, 216
OSIterator, 742
OSKext*, 728, 742
OSMalloc, 479–480
OSMetaClass, 741, 742
OSNumber, 742
OSObject, 739, 741, 742
OSORderedSet, 742
OSSet, 742
OSString, 742
OSSymbol, 742
otool, 308
otool(1), 105, 340
otool -L, 114
otool -l, 117
Out-Of-Memory (OOM), 139

P
-p, 467
p_acflag, 514
PackageInfo, 217
PackageKit, 217
packet fi ltering

BPF, 701–705
interface fi lters, 701
IP fi lters, 698–701
ipfw(8), 696–697
network stack, 693–705
PF, 697–698

bindex.indd 816bindex.indd 816 9/29/2012 5:56:57 PM9/29/2012 5:56:57 PM

10 Book Title <Chapter No> V1 - MM/DD/2010

817

page management system calls – Point-to-Point Protocol

socket fi lters, 694–696
page management system calls, 540–541
page table entries (PTEs), 449
#defines, 463

pageout, 495–497
pageout daemon, 448
pagers

Apple protect, 491–493
Mach, 447, 480–499

policy management, 494–499
swap fi les, 488
XNU, 486

pagestuff(1), 126–127
__PAGEZERO(), 107, 133–134
panic(), 333–340
_panicd_corename, 332
panic_dialog.c, 334
_panicd_ip, 332
_panicd_port, 332
panic_image.c, 334
panic-info, 193
panic_ui/genimage.c, 334
panic_ui/qtif2raw.c, 334
panic_ui/setupdialog.c, 334
Panther, 6
Parent Process Identifi er (PPID), 91–92
parent processes, 91–92
parentID, 633, 635
parent_proc, 516
parse_machfile, 523–524
Partition Boot Record, 568
partitions, 565–577
CoreStorage, 575–577
disks, APM, 570–572
GPT, 572–574
LwVM, 574–575
MBR, 568–570

PASSIVE, 528
passwords, 67
Pastboard(), 245
Payload, 217
PCSC, 39
pdp_ip, 679
PE. See Platform Expert
PE_i_can_has_debugger, 562
PE_init_platform, 304
PE_parse_boot_argn, 314, 331, 562
permissions, 262, 577–578, 637–639
PersistentURLTranslator.Gatekeeper, 244
personality, 755
PEs. See Portable Executables
PESavePanicInfo(), 336
PE_State, 202
PE_state, 304
_PE_state, 303
PE_Video, 304
pexpert, 303, 307
PF. See Protocol Family
PFDL. See process fi le descriptor lock

PF_INET, 650, 677
PF_INET6, 650
PF_KEY, 650
PF_LAT, 650
PF_LOCAL, 650
pflog, 678
pflog_clone_create(), 685
PF_NDRV, 650, 651, 652

spoofi ng packets, 653–654
PF_PACKET, 653
PF_PPP, 651
PF_ROUTE, 650, 652
PF_SYSTEM, 79, 650, 651, 682

system sockets, 655–666
PF_SYSTEM/SYSPROTO_EVENT, 657–658
PFZ. See Preemption Free Zone
pg_members, 508
pgrp_iterate(), 508
physical memory

Mach, 462–467
VM, 448–449

PIC. See Programmable Interrupt Controller
PID. See Process ID
PIDEX(14), 170
pid_resume(), 94, 494
pid_shutdown_sockets, 94
pid_suspend(), 94, 494
PIDTR(11), 169
pinsertchild(), 516
PIPE(), 534
pipeops, 605
.pkg, 217
PL. See process lock
<platform>, 313
Platform Expert (PE), 296, 303, 304
plist, 162, 718
.plist, 229
p_listflag, 516
P_LIST_INCREATE, 516
plumbing, 677
plutil(), 28
pmap, 448–449, 463, 464–465
pmap_create(), 464
pmap_destroy(), 464
pmap_disconnect(), 465
PMAP_ENTER(), 498
pmap_enter(), 464
pmap_enter[_options](), 464
pmap_page_protect(), 464
pmap_reference(), 464
pmap_remove(), 465
pmap_switch(), 465
pmap_t, 463, 465–467
pmap_zero_page(), 464
pmc/profiling, 307
pmCPUGetDeadline(), 433
pmset(1), 68
PNG, 204
Point-to-Point Protocol (PPP), 651

bindex.indd 817bindex.indd 817 9/29/2012 5:56:57 PM9/29/2012 5:56:57 PM

Book Title <Chapter No> V1 - MM/DD/2010

818

policies – PROCESSOR_NULL

policies
Apple policy modules, 560–563
execution, 527–528
I/O, 527–528
MAC, 559–560
Mach pagers, 494–499

policy_check, 331
poll(2), 144
Portable Executables (PEs), 187
portmapper, RPC, UNIX, 234–235
ports, 234

exceptions, 436, 439
Mach, 251–253, 357–358

messages, 349–351
tasks, 402

PORT_SET, 350
POSIX

BSD, 501, 503
system calls, 284–287

FUSE, 598
Leopard, 7
Mach, 343
network stack, 649
OS X, 45, 46
page management system calls, 540–541
semaphores, 364
system calls, 46, 283
threads, 144–145
VFS, 591
VM, 458, 540–541

posix_spawn(), 91, 132, 513, 514, 515
PostScript, 4
power management, 751–753
Power On Self Test, 184
PowerPC, 183
PPC, 296–297, 518–519
PPID. See Parent Process Identifi er
PPP. See Point-to-Point Protocol
ppp, 679
praudit(1), 60, 556
pr_ctlinput(), 671
pr_ctloutput(), 671
pr_drain(), 671
PRECEDENCE_POLICY, 421
Preemption Free Zone (PFZ), 275, 426–427
preemption modes, Mach scheduling, 418–423

explicit, 418–420
implicit, 420–423

preemptive multitasking, OS X, 420–423
prefabt, 426
PreferencePanes, 39
_PrelinkBundlePath, 722
_PrelinkExecutable*, 722
PRELINK_INFO, 109
__PRELINK_INFO, 721–722
pre-linking, 713
_PrelinkInterfaceUUID, 722
pr_fasttimo(), 671
pr_init(), 671, 674

pr_input(), 671
printf(), 117, 128, 131, 313
private frameworks, 33
privileged ports, 374–377
pr_lock(), 672
probes, 147
proc, 152
PROC_ALLPROCLIST, 508
PROC_CREATE_FORK, 514, 516
PROC_CREATE_SPAWN, 514, 516
PROC_CREATE_VFORK, 514
Procedure, 353
proc_enforce, 64
processes, 91–146

BSD, 504–508
control and tracing, 525–529
creating, 512–525
lists, 507–508
software, 535
structs, 504–507
suspension and resumption, 529

CPU, 92–93
executables, 98
groups, 91

BSD, 507–508
hibernation, iOS, 547–548
information, OS X, 156–159
instances, 91
I/O, 93, 600–605
lifecycle, 92–95

pid_resume, 94
pid_suspend, 94
zombie state, 93–94

security, 97
threads, 91–92
universal binaries, 99–111
UNIX, 91

signals, 95–97
VM, 107–109

process address space, Mach-O, 130–138
process fi le descriptor lock (PFDL), 507
Process ID (PID), 91, 93, 228, 326, 515
bsdinit_task(), 325
dtruss, 150
killpg1_callback(), 535
Mach, 511–512

process lock (PL), 507
process spin lock (PSL), 507
ProcessOptions, 198–199
processor, 352, 380–384
processor_assign, 381
processor_control, 381
processor_csw_check(), 429
processor_enqueue(), 429
processor_exit, 381
processor_get_assignment, 381
processor_info, 381
processor_init(), 428
PROCESSOR_NULL, 415

bindex.indd 818bindex.indd 818 9/29/2012 5:56:58 PM9/29/2012 5:56:58 PM

10 Book Title <Chapter No> V1 - MM/DD/2010

819

processor_queue_empty – readelf

processor_queue_empty(), 429
processor_queue_has_priority(), 429
processor_queue_remove(), 429
processor_queue_shutdown(), 429
processor_queue_urgent(), 429
processor_runq(), 430
processor_runq_stats_count_sum(), 430
processor_set, 352, 384–387, 408
processor_set_destroy, 385
processor_set_info, 386
processor_set_max_priority, 385
processor_set_policy_control, 386
processor_set_policy_enable, 385
processor_set_stack_usage, 386
processor_set_statistics, 385
processor_set_tasks, 385
processor_set_threads, 385
processor_start, 381
processor_ts, 382–384
process_policy(), 528
Procfs, 598
proc_info, 156–159, 527, 552
proc_iterate(), 508
proc_listallpids, 159
proc_listchildpids, 159
proc_listpgrppids, 159
PROC_PIDWORKQUEUEINFO, 552
PROC_POLICY_APP_LIFECYCLE, 528
PROC_POLICY_APPTYPE, 528
PROC_POLICY_BACKGROUND, 528
PROC_POLICY_HARDWARE_ACCESS, 528
PROC_POLICY_RESOURCE_STARVATION, 528
PROC_POLICY_RESOURCE_USAGE, 528
proc_t, 326, 515, 600
PROC_ZOMPROCLIST, 508
profile, 152
Program, 238
ProgramArguments, 238
Programmable Interrupt Controller (PIC), 270
Programmable Read Only Memory (PROM), 184
protocols. See also specifi c protocols

EFI, 188–191
GUIDs, UEFI, 191
interfaces, 677–678
KPI functions, 677
transport, layer IV, 668–669

Protocol Family (PF), 650
packet fi ltering, 697–698

proto_plumb(), 677
ProtoString(), 427
protosws, 669–673
prototypes, 46
pr_output(), 671
pr_slowtimo(), 671
pr_sysctl(), 672
pr_unlock(), 672
pru_sosend, 691
pr_usrreq(), 672–673
ps(1), 179, 409–411

pset_init(), 428
pset_name_self, 384
psets, 408
pseudo fi le systems, 583–587
PSL. See process spin lock
PTEs. See page table entries
Pthread, 49
pthread, 144–145
pthread_create(), 407, 510
pthread_exit(), 408
pthread_mutex_lock(), 134
ptrace(2), 148, 525–527
PubSub, 39
Puma, 6
PureDarwin, 10
purgeable zones, 139
PurpleSystemEventPort, 253
PUSH_FUNCTION, 272
p_uthlist, 515
puts, 117
Pystar, 10
Python, 7
Python, 39

Q
.qlgenerator, 18
qlmanage(), 19
QoS. See Quality of Service
QT(32), 167
QTKit, 39
Quality of Service (QoS), 705–707
quantum_expire(), 430
quarantine, 609
Quartz, 39
Quartz Extreme, 6
QuartzCore, 39
QueueDirectories, 237
queue_head.t, 398
queue-iterate, 398
QuickLook, 18–19
QuickLook, 39
QuickLookGeneratorPluginFactory, 18
QuickTime, 39

R
Racoon, 243
RaiseTPL, 189
RAM Disk, 199
RAMDisk, 200–201
random access, 624
RAX, 278
RB_SINGLE, 326
read(), 418
read(2), 143
readelf, 105

bindex.indd 819bindex.indd 819 9/29/2012 5:56:58 PM9/29/2012 5:56:58 PM

Book Title <Chapter No> V1 - MM/DD/2010

820

Read-Only Memory – scheduling

Read-Only Memory (ROM), 184
READTR(10), 169
read-write lock objects, 363
ready_heap, 706
real GID, 97
real UID, 97
realtime_setrun, 407
RECEIVE, 349
recovery mode, iBoot, 212–213
ref_count, 456
rEFIT, 194
registers

ARM, 776–779
CPSR, 267–268, 777–778
CRs, 266–267, 775–776, 778–779
DRs, 775
fl oating point, 774, 777
Intel, 773–776
MSRs, 279

RegisterProtocolNotify, 189
regular expressions, 306
ReinstallProtocolInterface, 189
relpath, 300
Remote Procedure Call (RPC), 351

portmapper, UNIX, 234–235
REMOVE(7), 169
removeDisk, 576
Rendezvous, 6
RENICED, 422
replay attacks, 213–214
_reply_sync, 256
ReportCrash, 243
reservation specifi cation (RSpec), 706
ResetSystem, 192
ResizeDisk, 576
resizeStack, 576
ResizeVolume, 576
resource forks, 611–612
Resources, 28
RestoreTPL, 189
Return-Oriented Programming (ROP), 132
reverse DNS, 18–19, 30
Revision, 202
RFLAGS, 774–775
Rhapsody, 5
rings, 266–267
RLIMIT_CORE, 170
robustness, 265
ROM. See Read-Only Memory
Root UUID, 199
ROP. See Return-Oriented Programming
Rosetta installer, 102
route(8), 652
_router_ip, 332
Routine, 353
routing sockets, 652
RPC. See Remote Procedure Call
rpcgen, 351
RSpec. See reservation specifi cation

rtclock, 431
rtclock_timer.deadline, 432–433
rtclock_timer_t, 432
rtc_timer, 435
Ruby, 7
Ruby, 39
RubyCocoa, 39
run queues, 412–413
RunLoopType(), 257
runtime services, 191–192
RunTimeServices, initializeConsole, 195

S
-S, 143
-s, 151, 228, 326, 330
Safari, 6
Saffron, 12
sample(1), 174
Sandboxd, 243
sandboxd, 243
SandBoxedFetch, 257
sandboxing, 65, 81–90

controlling, 82–83
enforcing, 89–90
entitlements, 83–89
iOS, 81–82
jailbreaking, 81–82
voluntary imprisonment, 82

sandbox_init(3), 82
Sandbox.kext, 561
_SandboxProfile, 257
SandboxProfileData, 86
SandboxProfileDataValidation

EntitlementsKey, 86
Saved Application State, 85
sbappend(), 690
sbappendaddr(), 690
sbappendrecord(), 690
sbappendstream(), 690
SBAppTags, 248
/sbin, 22
/sbin/launchd, 227
scalable allocator, 139
SCDyamicStore, 69
SceneKit, 39
sched, 152
sched_decay_shifts, 411–412
sched_dispatch_table, 428
sched_pri, 413
sched_prim.h, 428
sched_pri_shift, 411
scheduling

kernel, 262, 406–407
Mach, 389–446

algorithms, 427–430
ASTs, 423–427
continuations, 416–418

bindex.indd 820bindex.indd 820 9/29/2012 5:56:58 PM9/29/2012 5:56:58 PM

10 Book Title <Chapter No> V1 - MM/DD/2010

821

SCNetworkReachability – 64-bit

dispatch table, 428–430
exceptions, 436–445
explicit preemption, 418–420
handoffs, 415–416
implicit preemption, 420–423
kernel, 406–407
ledgers, 398–399
preemption modes, 418–423
primitives, 389–408
tasks, 395–398, 422–423
task APIs, 399–404
threads, 390–395
thread APIs, 404–408
thread creation, 407–408
timer interrupts, 431–436

SCNetworkReachability, 69
SCNetworkReachabilityConfigd, 242
ScreenSaver, 39
Scripting, 39
ScriptingBridge, 39
Scripts, 217
sc_usage(1), 165
scutil(8), 67–68, 69
search, B-Tree, 624, 629–630
SECURE_KERNEL, 305
security

iOS, 79–90
kernel, 262
kext, 718
Lion, 8
OS X, 79–90
processes, 97

Security, 39
security, 307, 352
_security(), 553
security(1), 80
SECURITY(9), 167
Securityd, 243
securityd, 243
SecurityFoundation, 39
SecurityInterface, 39
SecurityServer (SL), 243
-segcreate, 109
segedit(1), 105, 721
segname, 107
select(), 418
select(2), 144
self-contained*_init(), 320
semaphores, 364–366

Mach lock objects, 364–366
POSIX, 364

semaphore_create, 365
semaphore_destroy, 365
semaphore_signal, 365
semaphore_signal_all, 365
semaphore_wait, 365
SEND, 349
SEND_ONCE, 350
serial, 313, 318, 331, 332

SERIAL_KDP, 318
ServerNotification, 39
serverperfmode, 331
servicebundle, 248
ServiceManagement, 40
ServiceType, 257
set_alarm, 380
setaudit(), 61
setaudit_addr(), 61
SETBUF(4), 169
SetConsoleMode, 200
set_dp_control_port, 376
setfsgid, 97
setfsuid, 97
setpgrp(2), 91
setPop(), 435
SETREG(8), 169
setrlimit(2), 170, 398, 515
SETRTCDEC(15), 170
SetTime, 192
SetTimer, 189
SETUP(6), 169
Setup.App, 249
setup_wqthread, 551
SetVariable, 192
SetWakeupTime, 192
severity, 70
sflt_detach(), 695
SFLT_GLOBAL, 696
sflt_register(), 694
sflt_unregister(), 694
sftl_attach(), 695
SG_PROTECTED_VERSION, 492
shared library cache, 121
shells, 246–253
shmem, 255
should_current_thread_rechoose_

processor(), 430
show regions, 458
SHSH, 213–214
SIDL, 92
signals

BSD, 529–536
UNIX, processes, 95–97

SignalEvent, 189
Simple Network Management Protocol (SNMP), 56
SIMPLE_FILE_SYSTEM_PROTOCOL, 190
SIMPLE_POINTER_PROTOCOL, 190
Simpleprocedure, 353
Simpleroutine, 353
SIMPLE_TEXT_INPUT_PROTOCOL, 190
SIMPLE_TEXT_OUTPUT_PROTOCOL, 190
single UNIX specifi cation (SUS), 502
Siri, 12
SIUResources.pkg, 216
64-bit

BIOS, 184
kernel, 264
Lion, 8, 200

bindex.indd 821bindex.indd 821 9/29/2012 5:56:59 PM9/29/2012 5:56:59 PM

Book Title <Chapter No> V1 - MM/DD/2010

822

size – SWI

memory leaks, 176
process address space, 132–133
Snow Leopard, 7
XNU, system calls, 283–284

size, 346
size(1), 105, 109
sizeof(void *), 286
sizeofncmds, 104
slab allocators, 545
slave_pstart(), 313, 316, 329
sleep, 328–329
sleep, 418
sleep_kernel(), 329
sleh_abort, 438
sleh_undef, 438
SMP, 316, 319, 360, 415
smp_init, 316–317
snapshots, 159–170
SNMP. See Simple Network Management Protocol
Snow Leopard, 7–8, 99, 130, 139, 561
.so, 42
sockaddr, 691
sockets

descriptors
launchd, 240
layer V sockets, 660–661

domains, UNIX, 651
fi lters

packet fi ltering, 694–696
XNU, 695–696

kernel mode, 667–668
layer V, 660–668
NDRV, 653
network driver, 652–654
routing, 652
statistics, 658–660
system, 556, 655–658

Sockets, 238
socket_t, 696
sock_inject_*, 695
sockkets, IPSec Key Management, 654
SOCK_RAW, 653
soft links, 578–579, 639
SoftResourceLimits, 236
SoftWare Interrupt (SWI), 275, 280
Solaris, 149
so_proto, 667
source-level compatibility, 502
specfs, 586
Spin Control, 174
spindump, 174
spinlock, Mach lock objects, 364
spllo(), 318
spoofi ng packets, 653–654
Spotlight, 6, 19–20, 75
SpotlightFS, 598
SpringBoard, 13, 248–253, 411
Springboard(), 245

SRUN, 93
SSH, 13–14, 21, 598
ssh.plist, 232–233
SSLEEP, 94
stack protector, 130
stack_collect(), 497
stack_guard, 130
stackshot(1), 160–162
stack_snapshot, 162–165
STANDARD_POLICY, 421
starblock, 639
start(), 310–311
start-stf, 655
start_time.stop_time, 59
stderr, 232, 238, 241
stdin, 232, 238, 241
<stdlib.h>, 503, 724
stdout, 232, 238, 241
std_types, 352
steal_thread(), 429
stf, 678
stf(4), 655
stfattach(), 685
STOP, 94
StopAnimation, 201
StoreKit, 40
strace, 150
string, 254
<string.h>, 503
strings(1), 105
stroff, 115
struct, 201, 463
structs, BSD processes, 504–507
struct fuse_operations, 598
struct ifnet, 680–681
struct mbuf, 661
struct mount, 592–593
struct proc, 504–507
struct proclist, 507–508
struct sockbuf, 661
struct uthread, 508–510
struct vnode, 595–597
stub_helper, 118
__stubs, 115
subsystems

I/O Kit, 753
Mach, 352–353

sunrpc, 235
SUN-RPC, 351, 353
superblock, 592
SuperVisor Call (SVC), 275
supports_timeshare(), 429
SUS. See single UNIX specifi cation
SVC. See SuperVisor Call
SVC, 267
swap fi les, 488
swapfile_pager_data_request(), 488–491
SWI. See SoftWare Interrupt

bindex.indd 822bindex.indd 822 9/29/2012 5:56:59 PM9/29/2012 5:56:59 PM

10 Book Title <Chapter No> V1 - MM/DD/2010

823

switch – threads

switch(), 272, 333
symoff, 115
synchronous interrupt, 278
synchronous kernel, 268
SyncServices, 40
SYS, 267
SYS(), 534
sys, 307
SYSCALL, 279–282
syscall, 152, 169
sysctl(), 56–57, 156
SYSCTL_*, 553, 554
sysctl(2), 169, 620, 646–647
sysctl(8), 110, 142, 171, 552–555
sysdiagnose(1), 159–160
<sys/disk.h>, 566–567
sysent, 285–287
SYSENTER, 279–282
sysenter, 280
sys/kern_control.h, 656
syslog, 70
syslogd, 71, 72, 243
sys/malloc.h, 542
<sys/proc.h>, 92
SYSPROTO_EVENT, 657
<sys/signal.h>, 95
<sys/socket.h>, 650
<sys/syscall.h>, 94
System, 40
/System, 23
system calls

BSD, 47–48
POSIX, 284–287

diagnostic, 292–295
kernel, 261, 268, 283–295

iOS, 286–287
MAC, 63–64
Mach, 46–48
numbers, 46
POSIX, 46, 283

BSD, 284–287
prototypes, 46
UNIX, 292
XNU 64-bit, 283–284

system sockets, 556, 655–658
system sockets, 79
SystemAudioVolume, 193
SystemConfiguration, 40
SystemConfiguration.framework, 68
/System/Library/CoreServices, 247
/System/Library/Frameworks, 33
/System/Library/LaunchAgents, 229
/System/Library/LaunchDaemons, 229
/System/Library/Sandbox/Profiles, 83
system.logger, 243
system.notification_center, 243
system_profiler(8), 159
system.Security, 609

SystemUIServer, 247

T
tar(1), 217
target_task, 455
task, 352
tasks

Mach scheduling, 395–398, 422–423
APIs, 399–404

multitasking, 4, 11, 420–423
ports, 402
threads, 397

task_access, 353
task_create(), 400
task_for_allow, 444
task_for_pid(), 462, 511
task_get_exception_ports(), 401
task_get_state(), 401
task_importance(), 401
task_info(), 400
task_policy_get(), 401
task_policy_set(), 401
task_priority(), 397–398, 401
task_resume(), 400, 529
task_sample(), 401
task_set_emulation(), 345
task_set_exception_ports(), 401
task_set_info(), 400
task_suspend(), 400, 529
task_terminate(), 400
task_threads(), 400, 405
task_zone_info(), 467
Tcl, 40
TC-shell, 21
Telluride, 12
Terminal, 20
Terminal.app, 231
_TEXT(), 107
__TEXT, 134
TextEdit, 84–87
32-bit

Intel, process address space, 132
iOS, process address space, 133–134
kernel, 266
memory leaks, 176

threads, 143–146
BSD, 508–512
CPU, 408

affi nity, 415
execution, 408
hyperthreading, 408, 415
Mach scheduling, 390–395

APIs, 404–408
creation, 407–408

multithreading, 93, 786, 787
objects, BSD, 508–510

bindex.indd 823bindex.indd 823 9/29/2012 5:56:59 PM9/29/2012 5:56:59 PM

Book Title <Chapter No> V1 - MM/DD/2010

824

thread_abort[_safely] – two-level namespace

POSIX, 144–145
priorities, 409–412
processes, 91–92
run queues, 412–413
tasks, 397
UNIX, 143
VM, 144
vm_pageout(), 495
wait queues, 414
XNU, 512

thread_abort[_safely](), 404
thread_act, 353
[thread/act]_[get/set]_state, 404
THREAD_AFFINITY_POLICY, 422
thread_assign(), 405
thread_assign_default(), 405
thread_ast_set(), 423
THREAD_BACKGROUND_POLICY, 422
THREAD_BASIC_INFO, 405
thread_bind, 406
thread_block(), 416
thread_block_parameter(), 406, 419
thread_block_reason(), 406, 418–419
thread_bootstrap(), 395
thread_bootstrap_return(), 417
thread_call_daemon, 469
thread_count, 397
thread_create(), 395, 407
thread_create_running(), 407
thread_depress_abort(), 404
thread_exception_return(), 417
THREAD_EXTENDED_POLICY, 422
thread_get_assignment(), 405
thread_get_exception_ports(), 405
thread_[get/set]_special port(), 405
thread_go, 407, 414
thread_info(), 405
thread_invoke(), 406, 419
thread_policy, 405
thread_policy_[get/set](), 405
thread_policy_set_internal(), 421
THREAD_PRECEDENCE_POLICY, 422
thread_resume(), 325–326, 404
thread_run, 406
thread_sample, 405
thread_set_exception_ports, 405, 436
thread_set_policy, 405
thread_setrun, 407, 414
thread_set_state, 408
THREAD_STANDARD_POLICY, 422
thread_suspend(), 404
thread_swap_exception_ports, 405
thread_switch(), 415–416
thread_t, 419
thread_t mach_thread(), 404
thread_template, 395
thread_terminate(), 404
thread_terminate, 408
THREAD_TIME_CONSTRAINT_POLICY, 422
thread_unblock, 414

thread_wakeup_prim, 406
THRMAP(12), 169
THROTTLE, 528
THROTTLE_APPLICATION, 423
throttling
launchd, 236–237
Mach, 412

thumb mode, 785–786
tick-less kernel, 432
Tiger, 6–7
TIME_ABSOLUTE, 378
timebase_init(), 428
TIME_CONSTRAINT_POLICY, 421
TimeOut, 59
timer interrupts, 431–436
TIMER_CALL_CRITICAL, 433
timer_call_enter, 433
TIME_RELATIVE, 378
timer_queue_expire, 434
timestamps, 578, 607–608
TinySCHEME, 82
TinyUmbrella, 214
Tk, 40
TLB. See Translation Lookaside Buffer
Tmp, 25
/tmp, 22, 25
top(1), 179–180
TOSTOP, 93
totalNodes, 628
tr(1), 409
TRACE(7), 167
Trace Server, 162
tracers, 147
TraditionalString(), 427
TraditionalWithPsetRun

QueueString(), 427
traffi c shaping, 705–707
transactions

HFS+ journaling, 644–645
launchd, 236

Translation Lookaside Buffer (TLB), 144, 449
transport protocols, layer IV, 668–669
TRAP, 272, 274, 534
trap handlers

Intel, 268–278
ARM, 275–278

kernel, 334
Mach, 287–291

treeDepth, 627
true, 254
truss, 150
Trusted BSD, 62
TSTOP, 93
tunneling, 682–686
TWAIN, 40
Twitter, 40
twitter.authenticate, 245
Twitterd, 245
twittered.server, 245
two-level namespace, 125

bindex.indd 824bindex.indd 824 9/29/2012 5:56:59 PM9/29/2012 5:56:59 PM

10 Book Title <Chapter No> V1 - MM/DD/2010

825

-u – uuid

U
-u, 441
-u mobile, 246
ubc_info, 596
ubc_info_init(), 488
UDF. See Universal Disk Format
UDIF. See Universal Disk Image Format
-udp_in 1, 70
udp_output(), 691
udp_send(), 691
UEFI. See Universal Extensible Firmware Interface
UGA_DRAW_PROTOCOL, 190
UID. See user identifi er
UIKit, 40
UIKit.pasteboardd, 245
uint64, 254
ulimit(1), 512, 515
ulimit -c, 170–171
uname(1), 9, 14
UND, 268
undef, 426
Unicode, 617
Unifi ed Buffer Cache, 484, 488, 596
Uniform Type Identifi er (UTI), 18
UninstallProtocolInterface, 189
unionfs, 587
<unistd.h>, 46, 503, 724
universal binaries

executables, 98
file(1), 99
kernel, 100
Mach-O, 102–105
OS X, 99
processes, 99–111
Snow Leopard, 99
Tiger, 6

Universal Disk Format (UDF), 582, 591
Universal Disk Image Format (UDIF), 589
Universal Extensible Firmware Interface (UEFI), 185–186,

191
Universal Page List (UPL), 484–486
Universal Plug and Play (uPNP), 6
UNIX. See also X is Not UNIX

BSD, 501–502
Darwin, 5, 20–22
debugging, 178–180
directories, 22–24

iOS, 23–24
OS X, 23

domain sockets, 651
exceptions, 529–534
executables, 98
fork(), 512
FUSE, 598
INET, 234
inetd, 238
inode, 608
Leopard, 7
load_init_program(), 326

Mach, 534
OS X, 502
permissions, 577, 639
processes, 91
RPC portmapper, 234–235
signals, processes, 95–97
system calls, 292
threads, 143
-u, 441

unix_syscall, 284–285
unpackers, cache, 121
unprotect_segment(), 492, 493
UNSPECIFIED4, 422
UN*X
atd, 231
crond, 231
inetd, 232–234
launchd, 229
ldd, 114
Mach, 389
SUN-RPC, 351
xinetd, 232–234

update_priority(), 411, 430
UPL. See Universal Page List
upl_abort[range](), 486
upl_clear_dirty(), 486
upl_create(), 485
upl_deallocate(), 486
uPNP. See Universal Plug and Play
user, 56
User Data Record, 628
User Experience layer, 15, 17–20
user identifi er (UID), 97
user mode

BSD process creation, 512–513
involuntary transition

exceptions, 269–270
interrupts, 270–271

I/O Kit, 740, 746–755
device drivers, 749–750
I/O registry, 747–749
plug and play, 750–751

network stack, 650–658
traffi c shaping, 707
voluntary transition, 278–282

UserNotification, 307
/Users, 23
USER_TRAP, 272
user_trap(), 274, 438
user_trap_returns, 425
USR, 267
/usr, 22
/usr/share/sandbox, 83
utaskbootstrap(), 326
uthread, 510
UTI. See Uniform Type Identifi er
utun, 679, 682–686
utun_control_register(), 655
utun_ctl_connect(), 684–685
uuid, 255

bindex.indd 825bindex.indd 825 9/29/2012 5:57:00 PM9/29/2012 5:57:00 PM

Book Title <Chapter No> V1 - MM/DD/2010

826

ux_handler – voluntary user/kernel transition

ux_handler(), 529–532
ux_handler_init(), 326, 529–530

V
-v, 313
/var, 22
/var/audit, 60
/var/log/asl, 70
/var/log/install.log, 214
/var/run/lockdown.sock, 234
/var/tmp/launchd-shutdown.log, 228
Vassetd, 245
vecLib, 40
--verify, 86
Version, 202
version.plist, 717
vfork(), 514, 515
VFS. See Virtual FileSystem Switch
vfs, 56, 307
VFS_CTL_QUERY, 647
vfs_fentry, 591–592, 593
vfs_fsadd(), 593
vfs_mountroot(), 592
VideoDecodeAcceleration, 40
VideoToolKit, 40
Virtual FileSystem Switch (VFS), 22, 577, 591–600
fsctl(2), 645–646
FUSE, 597–605
kernel, 645–648
mount entry, 592–595
struct vnode, 595–597
sysctl(2), 646–647
vnode, 595–597

virtual memory (VM)
ARM, 447, 791
arm_vm_init(), 311
Intel, 791
isolated, 130
Mach, 447–500

architecture, 447–462
Mach-O, 140–143
PE, 304
physical memory plane, 448–449
POSIX, 458, 540–541
processes, 107–109
threads, 144

virtualization, 10, 262, 267
vlan, 679
VM. See virtual memory
vm, 56, 307
vmaddr, 107
vm_allocate, 453
vm_allocate_cpm, 375
VM_BASIC_INFO_64, 453
VM_CHECK_MEMORYSTATUS, 548
vm_check_memorystatus, 548
vm_fault(), 498

VM_FLAGS_ANWHERE, 453
vminfo, 152
VM_INHERIT_COPY, 455
VM_INHERIT_SHARE, 455
vmmap(), 135–138
vm_map(), 353, 448, 450–451, 456, 493
VM_MAP_ANWHERE, 455
vm_map_apple_protected(), 493
vm_map_behavior_set, 454
vm_map_copyin(), 454
vm_map_copyout(), 454
vm_map_copy_overwrite, 454
vm_map_enter(), 453, 457
vm_map_entry(), 448, 451–452
vm_map_inherit(), 454
vm_map_lookup_entry(), 453
vm_map_machine_attribute(), 455
vm_map_msync, 454
vm_map_object, 452
VM_MAP_OVERWRITE, 455
vm_map_page_query_internal(), 456
vm_map_protect(), 453, 457
vm_map_remap(), 455
vm_map_t, 452
VM_MEM_SUPERPAGE, 465
VM_NOT_CACHEABLE, 465
vm_object(), 448
vm_object_t, 452
vm_page(), 448, 452
vm_page_info(), 456
VM_PAGE_INFO_BASIC, 456
vm_pageout(), 319, 495, 496, 497
vm_pageout_garbage_collect, 471–473
VM_PAGE_QUERY_PAGE_*, 456
vm_page_queue_active, 495
vm_page_queue_free, 495
vm_page_queue_inactive, 495
vm_page_queue_speculative, 495
VM_PRESSURE_MINIMUM_RSIZE, 545
vm_pressure_monitor(), 545
VM_PROT_EXECUTE, 455
VM_PROT_READ, 455
VM_PROT_WRITE, 455
vm_rdwr, 521
vm_read_overwrite, 454
VM_REGION_BASIC_INFO, 458–462
vmsize, 107
vm_stat(1), 141–142, 495–496
vm_statistics, 495–497
VMWare, 10, 333
vnmap(1), 458–462
vnode, 488, 584–587, 595–597
vnode_enforce, 64
vnode_pager, 448
VNOP_LOOKUP, 597
void, 361, 464–465
/Volume, 23, 24
volume header, HFS+, 631–632
voluntary user/kernel transition, 278–282

bindex.indd 826bindex.indd 826 9/29/2012 5:57:00 PM9/29/2012 5:57:00 PM

10 Book Title <Chapter No> V1 - MM/DD/2010

827

<vproc.h> – XPC

<vproc.h>, 236
vpro_transaction, 236
vstart(), 279, 306, 310

W
wait(), 93
wait(2), 93
wait queues, 414
wait3(2), 93
wait4(2), 93
WaitForEvent, 189
waitpid(2), 93
wait_queue_assert_wait[64[_locked]], 414
wait_queue_t, 365
wait_result_t, 363, 364
WatchPaths, 237
weakly defi ned symbols, 124
Web Distributed Authoring and Versioning (WebDAV), 583
WebKit, 40
wfq_ready_heap, 706
widgets, 6, 45, 47
WildCat, 11
WindowServer, 17
work queues, 550–552
wpkernel, 331
WQOPS_QUEUE_ADD, 550
WQOPS_THREAD_RETURN, 551
WQOPS_THREAD_SETCONC, 550
wq_runitem, 551
wrappers, 122, 149, 240–241
write(2), 144
WriteProcessMemoryEx(), 407

X
-x, 330
X is Not UNIX (XNU), 5

boot
arguments, 329–331
kernel, 299–340

BSD, 49–50, 501, 504
build actions, 302
Cheetah, 6
CHUD, 155
compiling, 300–302
CONFIG_CODE_DECRYPTION, 493
CONFIG_DEBUG, 308
confi guration, 305
CONFIG_ZLEAKS, 468
DEBUG, 308
domains, 675
EFI, 184
hardware extraction, kernel, 295–297
hybrid kernel, 265
Intel trap handlers, 272–275
I/O Kit, 50, 737

iOS, 12, 310
Jaguar, 6
kdebug, 165–170
kernel, 50

architecture, 302–305
kpi_socket, 667
kqueues, 555
ledgers, 398
Lion, 8
MAC, 560
Mach, 49

microkernels, 343
Memorystatus, 546
microkernels, 264, 343
ml_functions, 296–297
Mountain Lion, 9
OS X, 266
osfmk/man, 345
packet fi ltering, 693, 697
pagers, 486
Panther, 6
Puma, 6
regular expressions, 306
runtime services, 191
sandboxing, 89
64-bit, system calls, 283–284
Snow Leopard, 8
socket fi lters, 695–696
sources, 299–308
source tree, 305–308
stack_snapshot, 162–165
struct proclist, 507–508
system sockets, 556
threads, 512
Tiger, 7
timer interrupts, 431–436

X Kernel, 12
xar(1), 217
xattr(1), 608, 609
XBD, 503
XCode, 20, 148, 173, 174
xcodebuild(1), 723
XCU, 503
XDR. See external data representation
XgridFoundation, 40
.xib, 28
xinetd, 232–234
XllUser.pkg, 216
XNU. See X is Not UNIX
XPC, 79

Cocoa, 254
GCD, 253
iOS, 253–257
kill -9, 253
launchd, 253–257
Lion, 253–257
messages, 255–256
MIG, 256
object types, 254–255

bindex.indd 827bindex.indd 827 9/29/2012 5:57:00 PM9/29/2012 5:57:00 PM

Book Title <Chapter No> V1 - MM/DD/2010

828

<xpc/connection.h> – Z-shell

Objective-C, 256
property lists, 257
SandBoxedFetch, 257
services, 256–257

<xpc/connection.h>, 255–256
xpc_connection_send_barrier, 255
xpc_connection_send_message, 255
xpc_connection_send_message_with_reply,

255
xpc_connection_set_target_queue, 257
xpc_dictionary_create_replay, 257
XPCKit, 254
xpc_main, 256
xpc_object_t, 256
XPCServices, 257
XSH, 503
XT-PICs. See Legacy PICs

Y
yielding, 415

Z
zalloc(), 470, 544
*zalloc(), 469
*zalloc_canblock(), 469

zalloc_noblock(), 544
-zc, 330
Z_CALLERACCT, 469, 544
ZeroConf, 6
Z_EXHAUSTIBLE, 469
Z_EXPAND, 469
Z_FOREIGN, 469
zfree(), 469
ZFS, 16
-zinfop, 330
zinit(), 469, 544
zlog, 330
Z_NOENCRYPT, 469
zombie state, 93–94
zones

BSD, 541–544
Lion, 542
Mach, 467–473

boot, 470–471
debugging, 473
garbage collection, 471–473
OS X, 470–471

zone_bootstrap(), 470
zone_change(), 469
zone_init(), 470
-zp, 330
zprint(1), 467
zrecs, 330
Z-shell, 21

bindex.indd 828bindex.indd 828 9/29/2012 5:57:01 PM9/29/2012 5:57:01 PM

10

bindex.indd 829bindex.indd 829 9/29/2012 5:57:01 PM9/29/2012 5:57:01 PM

Try Safari Books Online FREE
for 15 days + 15% off
for up to 12 Months*

With Safari Books Online, you can experience
searchable, unlimited access to thousands of
technology, digital media and professional
development books and videos from dozens of
leading publishers. With one low monthly or yearly
subscription price, you get:

• Access to hundreds of expert-led instructional
videos on today’s hottest topics.

• Sample code to help accelerate a wide variety
of software projects

• Robust organizing features including favorites,
highlights, tags, notes, mash-ups and more

• Mobile access using any device with a browser

• Rough Cuts pre-published manuscripts

Read this book for free online—along with thousands of others—
with this 15-day trial offer.

With Safari Book
searchable, unlim
technology, digit
development boo
leading publisher
subscription pric

• Access to hund
videos on toda

• Sample code t
of software pr

• Robust organiz
highlights, tag

• Mobile access

• Rough Cuts pr

Read this book for free online—along with th
with this 15-day trial offe

START YOUR FREE TRIAL TODAY!
Visit www.safaribooksonline.com/wrox55 to get started.

*Available to new subscribers only. Discount applies to the
Safari Library and is valid for fi rst 12 consecutive monthly
billing cycles. Safari Library is not available in all countries.

badvert_.indd 710badvert_.indd 710 10/16/2012 4:25:47 PM10/16/2012 4:25:47 PM

http://www.safaribooksonline.com/wrox55

http://facebook.com/wroxpress
http://www.twitter.com/wrox
http://newsletter.wrox.com

	Mac OS® X and iOS Internals
	Contents���������������
	Introduction
	Part I: For Power Users������������������������������
	Chapter 1: Darwinism: The Evolution of OS X��
	The Pre-Darwin Era: Mac OS Classic���
	The Prodigal Son: NeXTSTEP���������������������������������
	Enter: OS X������������������
	OS X Versions, to Date�����������������������������
	10.0—Cheetah and the First Foray���������������������������������������
	10.1—Puma—a Stronger Feline, but . . .���
	10.2—Jaguar—Getting Better���������������������������������
	10.3—Panther and Safari������������������������������
	10.4—Tiger and Intel Transition��������������������������������������
	10.5—Leopard and UNIX����������������������������
	10.6—Snow Leopard������������������������
	10.7—Lion����������������
	10.8—Mountain Lion�������������������������

	iOS—OS X Goes Mobile���������������������������
	1.x—Heavenly and the First iPhone��
	2.x—App Store, 3G and Corporate Features���
	3.x—Farewell, 1st gen, Hello iPad��
	4.x—iPhone 4, Apple TV, and the iPad 2���
	5.x—To the iPhone 4S and Beyond��������������������������������������
	iOS vs. OS X�������������������

	The Future of OS X�������������������������
	Summary��������������
	References�����������������

	Chapter 2: E Pluribus Unum: Architecture of OS X and iOS���
	OS X Architectural Overview����������������������������������
	The User Experience Layer��������������������������������
	Aqua�����������
	Quicklook����������������
	Spotlight����������������

	Darwin—The UNIX Core���������������������������
	The Shell����������������
	The File System����������������������

	UNIX System Directories������������������������������
	OS X–Specific Directories��������������������������������
	iOS File System Idiosyncrasies�������������������������������������

	Interlude: Bundles�������������������������
	Applications and Apps����������������������������
	Info.plist�����������������
	Resources����������������
	NIB Files����������������
	Internationalization with .lproj Files���
	Icons (.icns)��������������������
	CodeResources��������������������

	Frameworks�����������������
	Framework Bundle Format������������������������������
	List of OS X and iOS Public Frameworks���

	Libraries����������������
	Other Application Types������������������������������
	System Calls�������������������
	POSIX������������
	Mach System Calls������������������������

	A High-Level View of XNU�������������������������������
	Mach�����������
	The BSD Layer��������������������
	libkern��������������
	I/O Kit��������������

	Summary��������������
	References�����������������

	Chapter 3: On the Shoulders of Giants: OS X and iOS Technologies���
	BSD Heirlooms��������������������
	sysctl�������������
	kqueues��������������
	Auditing (OS X)����������������������
	Mandatory Access Control�������������������������������

	OS X- and iOS-Specific Technologies��
	User and Group Management (OS X)���������������������������������������
	System Configuration���������������������������
	Logging��������������
	Apple Events and AppleScript�����������������������������������
	FSEvents���������������
	Notifications��������������������
	Additional APIs of interest����������������������������������

	OS X and iOS Security Mechanisms���������������������������������������
	Code Signing�������������������
	Compartmentalization (Sandboxing)��
	Entitlements: Making the Sandbox Tighter Still���
	Enforcing the Sandbox����������������������������

	Summary��������������
	References�����������������

	Chapter 4: Parts of the Process: Mach-O, Process, and Thread Internals���
	A Nomenclature Refresher�������������������������������
	Processes and Threads����������������������������
	The Process Lifecycle����������������������������
	UNIX Signals�������������������

	Executables������������������
	Universal Binaries�������������������������
	Mach-O Binaries����������������������
	Load Commands��������������������

	Dynamic Libraries������������������������
	Launch-Time Loading of Libraries���������������������������������������
	Runtime Loading of Libraries�����������������������������������
	dyld Features��������������������

	Process Address Space����������������������������
	The Process Entry Point������������������������������
	Address Space Layout Randomization���
	32-Bit (Intel)���������������������
	64-Bit�������������
	32-Bit (iOS)�������������������
	Experiment: Using vmmap(1) to Peek Inside a Process’s Address Space��

	Process Memory Allocation (User Mode)��
	Heap Allocations�����������������������
	Virtual Memory—The sysadmin Perspective��

	Threads��������������
	Unraveling Threads�������������������������

	References�����������������

	Chapter 5: Non Sequitur: Process Tracing and Debugging���
	DTrace�������������
	The D Language���������������������
	dtruss�������������
	How DTrace Works�����������������������

	Other Profiling mechanisms���������������������������������
	The Decline and Fall of CHUD�����������������������������������
	AppleProfileFamily: The Heir Apparent��

	Process Information��������������������������
	sysctl�������������
	proc_info����������������

	Process and System Snapshots�����������������������������������
	system_profiler(8)�������������������������
	sysdiagnose(1)���������������������
	allmemory(1)�������������������
	stackshot(1)�������������������
	The stack_snapshot System Call�������������������������������������

	kdebug�������������
	kdebug-based Utilities�����������������������������
	kdebug codes�������������������
	Writing kdebug messages������������������������������
	Reading kdebug messages������������������������������

	Application Crashes��������������������������
	Application Hangs and Sampling�������������������������������������
	Memory Corruption Bugs�����������������������������

	Memory Leaks�������������������
	heap(1)��������������
	leaks(1)���������������
	malloc_history(1)������������������������

	Standard UNIX Tools��������������������������
	Process listing with ps(1)���������������������������������
	System-Wide View with top(1)�����������������������������������
	File Diagnostics with lsof(1) and fuser(1)���

	Using GDB����������������
	GDB Darwin Extensions����������������������������
	GDB on iOS�����������������
	LLDB�����������

	Summary��������������
	References and Further Reading�������������������������������������

	Chapter 6: Alone in the Dark: The Boot Process: EFI and iBoot��
	Traditional Forms of Boot��������������������������������
	EFI Demystified����������������������
	Basic Concepts of EFI����������������������������
	The EFI Services�����������������������
	NVRAM Variables����������������������

	OS X and boot.efi������������������������
	Flow of boot.efi�����������������������
	Booting the Kernel�������������������������
	Kernel Callbacks into EFI��������������������������������
	Boot.efi Changes in Lion�������������������������������
	Boot Camp����������������
	Count Your Blessings���������������������������
	Experiment: Running EFI Programs on a Mac��

	iOS and iBoot��������������������
	Precursor: The Boot ROM������������������������������
	Normal Boot������������������
	Recovery Mode��������������������
	Device Firmware Update (DFU) Mode��
	Downgrade and Replay Attacks�����������������������������������

	Installation Images��������������������������
	OS X Installation Process��������������������������������
	iOS File System Images (.ipsw)�������������������������������������

	Summary��������������
	References and Further Reading�������������������������������������

	Chapter 7: The Alpha and the Omega — launchd���
	launchd��������������
	Starting launchd�����������������������
	System-Wide Versus Per-User launchd��
	Daemons and Agents�������������������������
	The Many Faces of launchd��������������������������������

	Lists of LaunchDaemons�����������������������������
	GUI Shells�����������������
	Finder (OS X)��������������������
	SpringBoard (iOS)������������������������

	XPC (Lion and iOS)�������������������������
	Summary��������������
	References and Further Reading�������������������������������������

	Part II: The Kernel��������������������������
	Chapter 8: Some Assembly Required: Kernel Architectures��
	Kernel Basics��������������������
	Kernel Architectures���������������������������

	User Mode versus Kernel Mode�����������������������������������
	Intel Architecture — Rings���������������������������������
	ARM Architecture: CPSR�����������������������������

	Kernel/User Transition Mechanisms��
	Trap Handlers on Intel�����������������������������
	Voluntary kernel transition����������������������������������

	System Call Processing�����������������������������
	POSIX/BSD System calls�����������������������������
	Mach Traps�����������������
	Machine Dependent Calls������������������������������
	Diagnostic calls�����������������������

	XNU and hardware abstraction�����������������������������������
	Summary��������������
	References�����������������

	Chapter 9: From the Cradle to the Grave — Kernel Boot and Panics���
	The XNU Sources����������������������
	Getting the Sources��������������������������
	Making XNU�����������������
	One Kernel, Multiple Architectures���
	The XNU Source Tree��������������������������

	Booting XNU������������������
	The Bird’s Eye View��������������������������
	OS X: vstart�������������������
	iOS: start�����������������
	[i386|arm]_init����������������������
	i386_init_slave()������������������������
	machine_startup����������������������
	kernel_bootstrap�����������������������
	kernel_bootstrap_thread������������������������������
	bsd_init���������������
	bsdinit_task�������������������
	Sleeping and Waking Up�����������������������������

	Boot Arguments���������������������
	Kernel Debugging�����������������������
	“Don’t Panic”��������������������
	Implementation of Panic������������������������������
	Panic Reports��������������������

	Summary��������������
	References�����������������

	Chapter 10: The Medium Is the Message: Mach Primitives���
	Introducing: Mach������������������������
	The Mach Design Philosophy���������������������������������
	Mach Design Goals������������������������

	Mach Messages��������������������
	Simple Messages����������������������
	Complex messages�����������������������
	Sending Messages�����������������������
	Ports������������
	The Mach Interface Generator (MIG)���

	IPC, in Depth��������������������
	Behind the Scenes of Message Passing���

	Synchronization Primitives���������������������������������
	Lock Group Objects�������������������������
	Mutex Object�������������������
	Read-Write Lock Object�����������������������������
	Spinlock Object����������������������
	Semaphore Object�����������������������
	Lock Set Object����������������������

	Machine Primitives�������������������������
	Clock Object�������������������
	Processor Object�����������������������
	Processor Set Object���������������������������

	Summary��������������
	References�����������������

	Chapter 11: Tempus Fugit—Mach Scheduling���
	Scheduling Primitives����������������������������
	Threads��������������
	Tasks������������
	Task and Thread APIs���������������������������
	Task APIs����������������
	Thread APIs������������������

	Scheduling�����������������
	The High-Level View��������������������������
	Priorities�����������������
	Run Queues�����������������

	Mach Scheduler Specifics�������������������������������
	Asynchronous Software Traps (ASTs)���
	Scheduling Algorithms����������������������������

	Timer Interrupts�����������������������
	Interrupt-Driven Scheduling����������������������������������
	Timer Interrupt Processing in XNU��

	Exceptions�����������������
	The Mach Exception Model�������������������������������
	Implementation Details�����������������������������
	Experiment: Mach Exception Handling��

	Summary��������������
	References�����������������

	Chapter 12: Commit to Memory: Mach Virtual Memory��
	Virtual Memory Architecture����������������������������������
	The 30,000-Foot View of Virtual Memory���
	The Bird’s Eye View��������������������������
	The User Mode View�������������������������

	Physical Memory Management���������������������������������
	Mach Zones�����������������
	The Mach Zone Structure������������������������������
	Zone Setup During Boot�����������������������������
	Zone Garbage Collection������������������������������
	Zone Debugging���������������������

	Kernel Memory Allocators�������������������������������
	kernel_memory_allocate()�������������������������������
	kmem_alloc() and Friends�������������������������������
	kalloc�������������
	OSMalloc���������������

	Mach Pagers������������������
	The Mach Pager interface�������������������������������
	Universal Page Lists���������������������������
	Pager Types������������������

	Paging Policy Management�������������������������������
	The Pageout Daemon�������������������������
	Handling Page Faults���������������������������
	The dynamic_pager(8) (OS X)����������������������������������

	Summary��������������
	References�����������������

	Chapter 13: BS”D — The BSD Layer���������������������������������������
	Introducing BSD����������������������
	One Ring to Bind Them����������������������������
	What’s in the POSIX Standard?������������������������������������
	Implementing BSD�����������������������
	XNU Is Not Fully BSD���������������������������

	Processes and Threads����������������������������
	BSD Process Structs��������������������������
	Process Lists and Groups�������������������������������
	Threads��������������
	Mapping to Mach����������������������

	Process Creation�����������������������
	The User Mode Perspective��������������������������������
	The Kernel Mode Perspective����������������������������������
	Loading and Executing Binaries�������������������������������������
	Mach-O Binaries����������������������

	Process Control and Tracing����������������������������������
	ptrace (#26)�������������������
	proc_info (#336)�����������������������
	Policies���������������
	Process Suspension/Resumption������������������������������������

	Signals��������������
	The UNIX Exception Handler���������������������������������
	Hardware-Generated Signals���������������������������������
	Software-Generated Signals���������������������������������
	Signal Handling by the Victim������������������������������������

	Summary��������������
	References�����������������

	Chapter 14: Something Old, Something New: Advanced BSD Aspects���
	Memory Management������������������������
	POSIX Memory and Page Management System Calls��
	BSD Internal Memory Functions������������������������������������
	Memory Pressure����������������������
	Jetsam (iOS)�������������������
	Kernel Address Space Layout Randomization��

	Work Queues������������������
	BSD Heirlooms Revisited������������������������������
	Sysctl�������������
	Kqueues��������������
	Auditing (OS X)����������������������
	Mandatory Access Control�������������������������������

	Apple’s Policy Modules�����������������������������
	Summary��������������
	References�����������������

	Chapter 15: Fee, FI-FO, File: File Systems and the VFS���
	Prelude: Disk Devices and Partitions���
	Partitioning Schemes���������������������������

	Generic File System Concepts�����������������������������������
	Files������������
	Extended Attributes��������������������������
	Permissions������������������
	Timestamps�����������������
	Shortcuts and Links��������������������������

	File Systems in the Apple Ecosystem��
	Native Apple File Systems��������������������������������
	DOS/Windows File Systems�������������������������������
	CD/DVD File Systems��������������������������
	Network-Based File Systems���������������������������������
	Pseudo File Systems��������������������������

	Mounting File Systems (OS X only)��
	Disk Image Files�����������������������
	Booting from a Disk Image (Lion)���������������������������������������

	The Virtual File System Switch�������������������������������������
	The File System Entry����������������������������
	The Mount Entry����������������������
	The vnode Object�����������������������

	FUSE—File Systems in USEr Space��������������������������������������
	File I/O from Processes������������������������������
	Summary��������������
	References and Further Reading�������������������������������������

	Chapter 16: To B (-Tree) or Not to Be— The HFS+ File Systems���
	HFS+ File System Concepts��������������������������������
	Timestamps�����������������
	Access Control Lists���������������������������
	Extended Attributes��������������������������
	Forks������������
	Compression������������������
	Unicode Support����������������������
	Finder integration�������������������������
	Case Sensitivity (HFSX)������������������������������
	Journaling�����������������
	Dynamic Resizing�����������������������
	Metadata Zone��������������������
	Hot Files����������������
	Dynamic Defragmentation������������������������������

	HFS+ Design Concepts���������������������������
	B-Trees: The Basics��������������������������

	Components�����������������
	The HFS+ Volume Header�����������������������������
	The Catalog File�����������������������
	The Extent Overflow��������������������������
	The Attribute B-Tree���������������������������
	The Hot File B-Tree��������������������������
	The Allocation File��������������������������
	HFS Journaling���������������������

	VFS and Kernel Integration���������������������������������
	fsctl(2) integration���������������������������
	sysctl(2) integration����������������������������
	File System Status Notifications���������������������������������������

	Summary��������������
	References�����������������

	Chapter 17: Adhere to Protocol: The Networking Stack���
	User Mode Revisited��������������������������
	UNIX Domain Sockets��������������������������
	IPv4 Networking����������������������
	Routing Sockets����������������������
	Network Driver Sockets�����������������������������
	IPSec Key Management Sockets�����������������������������������
	IPv6 Networking����������������������
	System Sockets���������������������

	Socket and Protocol Statistics�������������������������������������
	Layer V: Sockets�����������������������
	Socket Descriptors�������������������������
	mbufs������������
	Sockets in Kernel Mode�����������������������������
	Layer IV: Transport Protocols������������������������������������
	Domains and Protosws���������������������������
	Initializing Domains���������������������������

	Layer III: Network Protocols�����������������������������������
	Layer II: Interfaces���������������������������
	Interfaces in OS X and iOS���������������������������������
	The Data Link Interface Layer������������������������������������
	The ifnet Structure��������������������������
	Case Study: utun�����������������������

	Putting It All Together: The Stack���
	Receiving Data���������������������
	Sending Data�������������������

	Packet Filtering�����������������������
	Socket Filters���������������������
	ipfw(8)��������������
	The PF Packet Filter (Lion and iOS)��
	IP Filters�����������������
	Interface Filters������������������������
	The Berkeley Packet Filter���������������������������������

	Traffic Shaping and QoS������������������������������
	The Integrated Services Model������������������������������������
	The Differentiated Services Model��
	Implementing dummynet����������������������������
	Controlling Parameters from User Mode��

	Summary��������������
	References and Further Reading�������������������������������������

	Chapter 18: Modu(lu)s Operandi—Kernel Extensions���
	Extending the Kernel���������������������������
	Securing Modular Architecture������������������������������������

	Kernel Extensions (Kexts)��������������������������������
	Kext Structure���������������������
	Kext Security Requirements���������������������������������
	Working with Kernel Extensions�������������������������������������
	Kernelcaches�������������������
	Multi-Kexts������������������
	A Programmer’s View of Kexts�����������������������������������
	Kernel Kext Support��������������������������

	Summary��������������
	References�����������������

	Chapter 19: Driving Force—I/O Kit��
	Introducing I/O Kit��������������������������
	Device Driver Programming Constraints��
	What I/O Kit Is����������������������
	What I/O Kit Isn’t�������������������������

	LibKern: The I/O Kit Base Classes��
	The I/O Registry�����������������������
	I/O Kit from User Mode�����������������������������
	I/O Registry Access��������������������������
	Getting/Setting Driver Properties��
	Plug and Play (Notification Ports)���
	I/O Kit Power Management�������������������������������
	Other I/O Kit Subsystems�������������������������������
	I/O Kit Diagnostics��������������������������

	I/O Kit Kernel Drivers�����������������������������
	Driver Matching����������������������
	The I/O Kit Families���������������������������
	The I/O Kit Driver Model�������������������������������
	The IOWorkLoop���������������������
	Interrupt Handling�������������������������
	I/O Kit Memory Management��������������������������������

	BSD Integration����������������������
	Summary��������������
	References and Further Reading�������������������������������������

	Appendix: Welcome to the Machine
	Dramatis Personae: Registers
	Intel

	ARM
	Setting: Abis and Contexts
	ABIs
	Context Switching

	Flow: Opcodes
	Arm Assembly Enhancements
	Conditional Execution
	Built-in Bit Shifting
	Thumb mode

	General Concepts
	Multithreading
	Locking and Atomicity
	ARM
	Barriers
	Virtual Memory

	References

	Index
	Advertisments

