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INTRODUCTION

EVEN MORE THAN TEN YEARS AFTER ITS INCEPTION, there is a dearth of books discussing the architec-
ture of OS X, and virtually none about iOS. While there is plentiful documentation on Objective-C, 
the frameworks, and Cocoa APIs of OS X, it often stops short of the system-call level and implemen-
tation specifi cs. There is some documentation on the kernel (mostly by Apple), but it, too, focuses on 
building drivers (with I/O Kit), and shows only the more elegant parts, and virtually nothing on the 
Mach core that is foundation of XNU. XNU is open source, granted, but with over a million lines of 
source (and comments) with some dating as far back to 1987, it’s not exactly a fun read. 

This is not the case with other operating systems. Linux, being fully open source, has no shortage of 
books, including the excellent series by O’Reilly. Windows, though closed, is exceptionally well docu-
mented by Microsoft (and its source has been “liberated” on more than one occasion). This book aims 
to do for XNU what Bovet & Cesati’s Understanding the Linux Kernel does for Linux, and Russinov-
ich’s Windows Internals does for Windows. Both are superb books, clearly explaining the architectures 
of these incredibly complex operating systems. With any luck, the book you are holding (or downloaded 
as a PDF) will do the same to expound on the inner workings of Apple’s operating systems.

A previous book on Mac OS — Amit Singh’s excellent OS X Internals: A Systems Approach is an 
amazing reference, and provides a vast wealth of valuable information. Unfortunately, it is PowerPC 
oriented, and is only updated up until Tiger, circa 2006. Since then, some six years have passed. Six 
long years, in which OS X has abandoned PowerPC, has been fully ported to Intel, and has progressed 
by almost four versions. Through Leopard, Snow Leopard, Lion and, most recently Mountain Lion, the 
wild cat family is expanding, and many more features have been added. Additionally, OS X has been 
ported anew. This time to the ARM architecture, as iOS, (which is, by some counts, the world’s leading 
operating system in the mobile environments). This book, therefore, aims to pick up where its predeces-
sor left off, and discuss the new felines in the Apple ecosystem, as well as the various iOS versions. 

Apple’s operating systems have proven to be moving targets. This book was originally written to 
target iOS 5 and Lion, but both have gone on evolving. iOS is, at the time this book goes to print, 
at 5.1.1 with hints of iOS 6. OS X is still at Lion (10.7.4), but Mountain Lion (10.8) is in advanced 
developer previews, and this book will hit the shelves coinciding with its release. Every attempt has 
been made to keep the information as updated as possible to refl ect all the versions, and remain rel-
evant going forward.

OVERVIEW AND READING SUGGESTION

This is a pretty large book. Initially, it was not designed to be this big and detailed, but the more I 
delved into OS X I uncovered more of the abstruse, for which I could fi nd no detailed explanation 
or documentation. I therefore found myself writing about more and more aspects. An operating sys-
tem is a full eco-system with its own geography (hardware), atmosphere (virtual memory), fl ora and 
fauna (processes). This book tries to methodically document as much as it can, while not sacrifi cing 
clarity for detail (or vice versa). No mere feat.
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Architecture at a Glance
OS X and iOS are have a complex architecture, which is a hybrid of several very different technolo-
gies: The UI and APIs of the legacy OS 9 (for OS X) with NextSTEP’s Cocoa, the system calls and 
kernel layer of BSD, and the kernel structure of NeXTSTEP. Though an amalgam, it still maintains 
a relatively clean separation between its components. Figure I-1 shows a bird’s eye view of the archi-
tecture, and maps the components to the corresponding chapters in this book.

Darwin Libraries & syscalls
(Chapter 2,3,4)

Hardware

Application Frameworks

User Experience

Core Frameworks

IoKit and kexts

(18,19)

Proprietary, strictly user
mode components.
Covered at an overview
level in Chapter 2

Mach Abstractions (Chapter 10)

VFS
(15) 

Networking
(17)

VM
(14)

VM
(11)

Scheduling
(13)

Scheduling
(11)

Kernel/User Transition (Chapter 8)

BSD

Mach

S
E
C
U
R
I
T
Y

FIGURE I-1: OS X Architecture, and its mapping to chapters in this book

This book additionally contains chapters on non-architectural, yet very important topics, such as 
debugging (5), fi rmware (6) and user mode startup (7), kernel-mode startup (9), and kernel modules 
(18). Lastly, there are two appendices: The fi rst, providing a quick reference for POSIX system calls 
and Mach traps, and the second, providing a gentle high-level introduction to the assembly of both 
Intel and ARM architectures.

Target Audience
There are generally four types of people who might fi nd this tome, or its parts, interesting:

 ‰ Power users and system administrators who want to get a better idea of how OS X works. 
Mac OS adoption grows steadily by the day, as market claws back market share that was, for 
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years, denied by the utter hegemony of the PC. Macs are steadily growing more popular in 
corporate environments, and overshadowing PCs in academia. 

 ‰ User mode developers who fi nd the vast playground of Objective-C insuffi cient, and want to 
see how their programs are really executed at the system level. 

 ‰ Kernel mode developers who revel in the vast potential of kernel-mode low-level program-
ming of drivers, kernel enhancements, or fi le system and network hooks. 

 ‰ Hackers and jailbreakers who aren’t satisfi ed with jailbreaking with a ready-made tool, 
exploit or patch, and want to understand how and what exactly is being patched, and how 
the system can be further tweaked and bent to their will. Note, that in this context, the target 
audience refers to people who delve deeper into internals for the fun, excitement, and chal-
lenge, and not for any illicit or evil purposes.

Choose your own adventure
While this book can be read cover to cover, let’s not forget it is a technical book, after all. The chap-
ters are therefore designed to be read individually, as a detailed explanation or as a quick reference. 
You have the option of reading chapters in sequential or random access, skimming or even skipping 
over some chapters, and coming back to them later for a more thorough read. If a chapter refers to a 
concept or function discussed in a previous chapter, it is clearly noted. 

You are also welcome to employ a reading strategy which refl ects the type of target reader you clas-
sify yourself as. For example, the chapters of the fi rst part of this book can therefore be broken into 
the fl ow shown in Figure I-2:

1: Introduction

2: Architecture

7: User Mode Startup

6: Firmware

Part I:

User mode 4: Process Internals

5: Process Tracing and Debugging

PowerUser UserDev Kernel Dev

3: OS X Proprietary

Hacker

FIGURE I-2: Reading suggestion for the fi rst part of this book, which focuses on user mode 

architecture
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In Figure I-2, a full bar implies the chapter contents are of interest to the target reader, and a partial 
bar implies at least some interest. Naturally, every reader’s interest will vary. This is why every chap-
ter starts with a brief introduction, discussing what the chapter is about. Likewise, just by looking 
at the section headers in the table of contents you can fi gure out if the section merits a read or just a 
quick skim.

The second part of this book could actually have been a volume by itself. It focuses on the XNU 
kernel architecture, and is considerably more complicated than the fi rst. This cannot be avoided; by 
their very nature, kernels are subject to a more complicated, real-time, and hardware constrained 
environment. This part shows many more code listings, and (thankfully, rarely) even has to go into 
snippets of code implemented in assembly. Reading suggestions for this part of the book are shown 
in Figure I-3.

Part II:
Kernel mode

Power User User Dev Kernel Dev

15: Filesystems

16: HFS+

17: Networking

18: KEXTs

19: I/O Kit

8: Kernel Architectures

9: Kernel start up and panics

10: Mach Architecture

11: Scheduling

12: Mach VM

13: BSD

14: Advanced BSD

Hacker

FIGURE I-3: Reading suggestion for the second part of this book, which focuses on the kernel
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EXPERIMENTS

Most chapters in this book contain “experiments,” which usually involve running a few shell com-
mands, and sometimes custom sample programs. They are classifi ed as “experiments” because they 
demonstrate aspects of the operating system which can vary, depending on OS version, or on con-
fi guration. Normally, the results of these experiments are demonstrated in detail, but you are more 
than encouraged to try the experiments on your own system, and witness the results. Like UNIX, 
which it implements, Mac OS X can truly be experienced and absorbed through the fi ngers, not the 
eyes or ears. 

In some cases, some parts of the experiments have been left out as an exercise for the reader. 
Even though the book’s companion website will have the solutions — i.e. fully working versions of 
the exercises in question — you are encouraged to try to complete those parts yourself. Careful 
reading of the book, with a modicum of common sense, should provide you with everything you 
need to do so.

TOOLS 

The book also makes use of a few tools, which were developed by the author to accompany the 
book. The tools, true to the UNIX heritage, are command line tools, and are meant to be both 
easily readable as well as grep(1)-able, making them useful not just for manual usage, but also in 
scripts.

fi lemon
Chapter 3 presents a tool called “fi lemon,” to display real time fi le system activity on OS X and iOS. 
An homage to Russinovich’s tool of the same name, this simple utility relies on the FSEvents device, 
present in OS X and iOS 5, to follow fi le system related events, such as creation and deletion of fi les. 

psx
Chapter 4 presents a tool called psx, an extended ps-like command which can display pretty much 
any tidbit of information one could possibly require about processes and threads in OS X. It is 
particularly useful for this chapter, which deals with process internals, and demonstrates using an 
undocumented system call, proc_info. The tool requires no special permissions if you are viewing 
your own processes, but will require root permissions otherwise. The tool can be freely downloaded 
from the book’s companion website, with full source code.

jtool
While for most binary function one can use the OS X built-in otool(1), it leaves much to be desired 
in analyzing data section and can get confused when displaying ARM binaries due to the two 
modes of assembly in the ARM architecture. jtool aims to improve on otool, by addressing these 
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shortcomings, and offering useful new features for static binary analysis. The tool comes in handy 
in Chapter 4, which details the Mach-O fi le format, as well as later in this book, due to its many 
useful features, like fi nding references in fi les and limited disassembly skills. The tool can be freely 
downloaded from the book’s companion website, but is closed source.

dEFI 
This is a simple program to dump the fi rmware (EFI) variables on an Intel Mac and to display reg-
istered EFI providers. This tool demonstrates the basics of EFI programming — interfacing with the 
boot and runtime services. This tool can be freely downloaded, along with its source code. It is pre-
sented in Chapter 6.

joker
The joker tool, presented in Chapter 8, is a simple tool created to play with the kernel (specifi cally, 
in iOS). The tool can fi nd and display the system call and Mach trap tables of iOS and OS X kernels, 
show sysctl structures, and look for particular patterns in the binary. This tool is highly useful for 
reverse engineers and hackers alike, as the trap and system call symbols are no longer exported.

corerupt
Chapter 11 discusses the low-level APIs of the Mach virtual memory manager. To demonstrate just 
how powerful (and dangerous) these APIs are, the book provides the corerupt tool. This tool enables 
you to dump any process’s virtual memory map to a fi le in a core-compatible format, similar to 
Windows’ Create Dump File option, and much like the gcore tool in this book’s predecessor. It fur-
ther improves on its precursor, by providing support for ARM and allowing invasive operations on 
the vm map, such as modifying its pages.

HFSleuth 
A key tool used in the book is HFSleuth, a command line all-in-one utility for viewing the support-
ing structures of HFS+ fi le systems, which are the native OS X fi le system type. The tool was devel-
oped because there really are no alternative ways to demonstrate the inner workings of this rather 
complicated fi le system. Singh’s book, Mac Os X Internals: A Systems Approach (Addison-Wesley; 
2006) also included a similar, though less feature-ful tool called hfsdebug, but the tool was only 
provided for PowerPC, and was discontinued in favor of a commercial tool, fi leXRay.

To use HFSleuth on an actual fi le system, you must be able to read the fi le system. One option is to 
simply be root. HFSleuth’s functions are nearly all read-only, so rest assured it is perfectly safe. But 
access permissions to the underlying block (and sometimes, character) devices on which the fi le sys-
tems are usually rw-r-----, meaning the devices are not readable by plebes. If you generally distrust 
root and adhere to least privilege (a wise choice!), an equally potent alternative is to chmod(1) the 
permissions on the HFS+ partition devices, making them readable to your user (usually, this involves 
an o+r). Advanced functions (such as repair, or HFS+/HFSX conversion) will require write access.
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HFSleuth can be freely downloaded from the book’s companion website and will remain freely 
available, period. Like its predecessor, however, it is not open source.

lsock 
The much needed functionality of netstat –o, which shows the processes owning the various sock-
ets in the system, is missing from OS X. It exists in lsof(1), but the latter makes it somewhat cum-
bersome to weed out sockets from other open fi les. Another functionality missing is the ability to 
display socket connections as they are created, much like Windows’ TCPMon. This tool, introduced 
in Chapter 17, uses an undocumented kernel control protocol called com.apple
.network.statistics to obtain real-time notifi cations of sockets as they are created. The tool is 
especially easy to incorporate into scripts, making it handy for use as a connection event handler. 

jkextstat 
The last tool used in the book is jkextstat, a kextstat(8)-compatible utility to list kernel exten-
sions. Unlike the original, it supports verbose mode, and can work on iOS. This makes it invaluable 
in exploring the iOS kernel hands-on, something which — until this book — was very diffi cult, as 
the binary kextstat for iOS uses APIs which are no longer supported. The tool improves on its origi-
nal inspiration by allowing more detailed output, focusing on particular kernel extensions, as well 
as output to XML format. 

All the tools mentioned here are made available for free, and will remain free, 
whether you buy (or copy) the book. This is because they are generally useful, 
and fi ll many advanced functions, which are either lacking, or present but well 
hidden, in Apple’s own tools. 

CONVENTIONS USED IN THIS BOOK 

To make it easier to follow along the book and not be bogged down by reiterating specifi c back-
ground for example code and programs, this book adopts a few conventions, which are meant to 
subtly remind you of the context of the given listings.

Dramatis Personae
The demos and listings in this book have naturally been produced and tested on various versions of 
Apple computers and i-Devices. As is in the habit of sysadmins to name their boxes, each host has 
his or her own “personality” and name. Rather than repeatedly specifying which demo is based on 
which device and OS, the shell command prompt has been left as is, and by the hostname you can 
easily fi gure out which version of OS X or iOS the demo can be reproduced on. (See Table I-1.) 
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TABLE I-1: Host Name and Version Information for the Book’s Demos

HOST NAME TYPE OS VERSION USED FOR

Ergo MacBook Air, 

2010

Snow Leopard , 10.6.8 Generic OS X feature demonstration. 

Tested in Snow Leopard and later

iPhonoclast iPhone 4S iOS 5.1.1 iOS 5 and later features on an A5 (ARM 

multi-core)

Minion Mac Mini, 2010 Lion, 10.7.4 Lion specifi c feature demonstration

Simulacrum VMWare image Mountain Lion, 10.8.0 

DP3

Mountain Lion (Developer Preview) specifi c 

feature demonstration

Padishah iPad 2 iOS 4.3.3 iOS 4 and later features

Podicum iPod Touch, 4G iOS 5.0.1 iOS 5 specifi c features, on A4 or A5

Further, shell prompts of root@ demonstrate a command runnable only by the root user. This makes 
it easy to see which examples will run on which system, with what privileges. 

Code Excerpts and Samples
This book contains a considerable number of code samples of two types:

 ‰ Example programs, which are found mostly in the fi rst part. These usually demonstrate simple 
concepts and principles that hold in user mode, or specifi c APIs or libraries. The example pro-
grams were all devised by the author, are well commented, and are free for you to try your-
self, modify in any way you see fi t, or just leave on the page. In an effort to promote the lazy, 
all these programs are available on the book’s website, in both open source and binary form.

 ‰ Darwin code excerpts, which are found mostly in the second part. These are almost entirely 
snippets of XNU’s code, taken from the latest open source version, i.e. 1699.26.8 (cor-
responding to Lion 10.7.4). All code is open source, but subject to Apple’s Public Source 
License. The excerpts are provided here for demonstration of the relevant parts in XNU’s 
architecture. While natural language is potentially prone to some ambiguities, code is context 
free and precise (though unfortunately sometimes less readable), and so at times the most 
precise explanation comes from reading the code. When code references are provided, they 
are usually either to the header fi les (denoted by the standard C < > notation, e.g. <mach/
mach-o.h>) in /usr/include. Other times, they may refer to the Darwin sources, either of 
XNU or some related package. In those cases, the relative path is used (e.g. osfmk/kern/
spl.c, relating to where the XNU kernel source is extracted). The related package will 
always be specifi ed in the section, and in Part II of the book nearly all references are to the 
XNU kernel source.
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XNU and Darwin components are fairly well documented, but this book tries to go the extra step, 
and sometimes provide additional explanations inline, as comments. To be clear, such annotations, 
which are not part of the original source code, can be clearly marked by their C++ style comment, 
rather than the C style comment which is typical in Darwin as in this sample listing:

LISTING I-1: SAMPLE LISTING

/* This is a Darwin comment, as it appears in the original source */

// This is an annotation provided by the author, elaborating or explaining
// something which the documentation may or may not leave wanting

// Where the source code is long and tedious, or just obvious, some parts may
// be omitted, and this is denoted by a comment marking ellipsis (...), i.e:

// ...

     important parts of a listing or output may be shown in bold

The book distinguishes between outputs and listings. Listings are verbatim references from fi les, 
either program source code or system fi les. Outputs, on the other hand, are textual captures of user 
commands, shown for demonstration on OS X, iOS, or — sometimes — both. The book aims to 
compare and contrast the two systems, so it is not uncommon to fi nd the same sequence of com-
mands shown on both systems. In an output, you will see the user commands that were typed 
marked in bold, and are encouraged to follow along and try them on your own systems.

In general, the code listings are provided to elucidate, not to confuse. Natural language is not with-
out its ambiguities, but code can only be interpreted one way (even if sometimes that way is not 
entirely clear). Whenever possible, clear descriptions aided by detailed fi gures will hopefully enable 
you to just skim through the code. Fluency in C (and sometimes a little assembly) is naturally helpful 
for reading the code samples, but is not necessary. The comments — especially the extra annota-
tions — help you understand the gist of the code. More commonly, block diagrams and fl ow charts 
are presented, leaving the functions as black boxes. This enables to choose between remaining at an 
overview level, or delving deeper and seeing the actual variables and functions of the implementa-
tions. Be warned, however, that the complexity of the code, being the product of many people and 
many coding styles, varies greatly throughout XNU.

In the case of iOS, XNU remains closed. iOS versions actually use a version of XNU many revi-
sions ahead of the publicly released versions. Naturally, code samples cannot be shown, but in some 
cases disassembly (mostly of iOS 5.x) is provided. The assembly in question is ARM, and comments 
there — all provided by the author — aim to explicate its inner workings. For all things assembly, 
you can refer to the appendix in this book for a quick overview.
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Typographic Conventions
Every effort has been made to ensure that these conventions are followed throughout this book:

 ‰ Words in courier font denote commands, fi le names, function names, or variable names 
from the Darwin sources.

 ‰ Commands are further specifi ed by their man section (if applicable) in parentheses. Example: 
ls(1) for a user command, write(2) for a system call, printf(3) for a library call, and 
ipfw(8) for a system administration command. Most commands and system calls shown in 
this book are usually well documented in the manual page, and the book does not attempt to 
upstage the fi ne manual (i.e. RTFM, fi rst). Occasionally, however, the documentation may 
leave some aspects wanting — or, rarely, undocumented at all — and this is where further 
information is provided.

THE COMPANION WEBSITE(S)

Both OS X and iOS have rapidly evolved, and continue to do so. I will try to play catch up, and 
keep an updated companion website for this book at http://newosxbook.com. My company, 
(http://technologeeks.com), also maintains the OS X and iOS Kernel developers group on 
LinkedIn (alongside those of Windows and Android), with its website of http://darwin.
kerneldevelopers.com (the name chosen in a forward-compatible view of a post OS X era. The 
latter site includes a questions and answers forum, which will hopefully become a bustling arena for 
OS X and iOS related discussions.

On the book’s companion website you can fi nd:

 ‰ An appendix that lists the various POSIX and Mach system calls.

 ‰ The sample programs included in experiments throughout this book — for the enthusiastic 
to try, yet lazy to code. The programs are provided in source form, but also as binaries (for 
those even lazier to compile(!) or devoid of XCode).

 ‰ The tools introduced in this book, and discussed in this introduction freely downloadable in 
binary form for both OS X and iOS, and often times with source.

 ‰ Updated references and links to other web resources, as they become available.

 ‰ Updated articles about new features or enhancements, as time goes by.

 ‰ Errata — Errare est humanum, and — especially in iOS, where most of the details were eked 
out by painful disassembly, there may be inaccuracies or version differences that need to be 
fi xed.

This book has been an unbelievable journey, through the looking glass (while playing with kittens), 
unraveling the very fabric of the reality presented to user mode applications. I truly hope that you, 
the reader, will fi nd it as illuminating as I have, drawing ideas not just on OS X and iOS, but on 
operating system architecture and software design in general. 

Read on then, ye devout Apple-lyte, and learn.
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1
Darwinism: The Evolution 
of OS X

Mac OS has evolved tremendously since its inception. From a niche operating system of a cult 
crowd, it has slowly but surely gained mainstream share, with the recent years showing an 
explosion in popularity as Macbooks, Macbook Pros, and Airs become ever more ubiquitous, 
clawing back market share from the gradually declining PC. Its mobile derivative — iOS — is 
by some accounts the mobile operating system with the largest market share, head-to-head 
with Linux’s derivative, Android. 

The growth, however, did not happen overnight. In fact, it was a long and excruciating pro-
cess, which saw Mac OS come close to extinction, before it was reborn as “OS X.” Simply 
“reborn” is an understatement, as Mac OS underwent a total reincarnation, with its architec-
ture torn down and rebuilt anew. Even then, Mac OS still faced signifi cant hardship before the 
big breakthrough — which came with Apple’s transition to Intel-based architecture, leaving 
behind its long history with PowerPC architectures.

The latest and greatest version, OS X 10.7, or Lion, occurred shortly before the release of this 
book, as did the release of iOS 5.x, the most recent version of iOS. To understand their fea-
tures and the relationship between the two, however, it makes sense to take a few steps back 
and understand how the architecture unifying both came to be.

The following is by no means a complete listing of features, but rather a high-level perspec-
tive. Apple has been known to add hundreds of features between releases, mostly in GUI and 
application support frameworks. Rather, more emphasis is placed on design and engineering 
features. For a comprehensive treatise on Mac OS versions to date, see Amit Singh’s work on 
the subject[1], or check Ars Technica’s comprehensive reviews[2]. Wikipedia also maintains a 
fairly complete list of changes[3].

THE PRE-DARWIN ERA: MAC OS CLASSIC

Mac OS Classic is the name given the pre-OS X era of Mac OS. The operating system then 
was nothing much to boast about. True, it was novel in that it was an all-GUI system (earlier 
versions did not have a command line like today’s “Terminal” app). Memory management was 
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poor, however, and multitasking was cooperative, which — by today’s standards — is considered 
primitive. Cooperative multitasking involves processes voluntarily yielding their CPU timeslice, and 
works reasonably well when processes are well behaved. If even one process refuses to cooperate, 
however, the entire system screeches to a halt. Nonetheless, Mac OS Classic laid some of the foun-
dations for the contemporary Mac OS, or OS X. Primarily, those foundations include the “Finder” 
GUI, and the fi le system support for “forks” in the fi rst generation HFS fi le system. These affect OS 
X to this very day.

THE PRODIGAL SON: NEXTSTEP

While Mac OS experienced its growing pains in the face of the gargantuan PC, its founder Steve 
Jobs left Apple (by some accounts was ousted) to get busy with a new and radically different com-
pany. The company, NeXT, manufactured specialized hardware, the NeXT computer and NeXTsta-
tion, with a dedicated operating system called NeXTSTEP.

NeXTSTEP boasted some avant-garde features for the time:

 ‰ NeXTSTEP was based on the Mach microkernel, a little-known kernel developed by Carne-
gie Mellon University (CMU). The concept of a microkernel was, itself, considered a novelty, 
and remains rarely implemented even today.

 ‰ The development language used was Objective-C, a superset of C, which — unlike C++ — is 
heavily object-oriented.

 ‰ The same object-orientation was prevalent all throughout the operating system. The system 
offered frameworks and kits, which allowed for rapid GUI development using a rich object 
library, based on the NSObject.

 ‰ The device driver environment was an object-oriented framework as well, known as 
DriverKit. Drivers could subclass other drivers, inheriting from them and extending their 
functionality.

 ‰ Applications and libraries were distributed in self-contained bundles. Bundles consisted of a 
fi xed directory structure, which was used to package software, along with its dependencies 
and related fi les, so installing and uninstalling could be as easy as moving around a folder.

 ‰ PostScript was heavily used in the system, including a variant called “display postscript,” 
which enabled the rendering of display images as postscript. Printing support was thus 1:1, 
unlike other operating systems, which needed to convert to a printer-friendly format.

NeXTSTEP went down the road of better operating systems (remember OS/2?), and is nowadays 
extinct, save for a GNUStep port. Yet, its legacy lives on to the present day. One winter day in 1997, 
Apple — with an OS that wasn’t going anywhere — ended up acquiring NeXT, bringing its intellec-
tual property into Apple, along with Steve Jobs. And the rest, as they say, is history. 

ENTER: OS X

As a result of the acquisition of NeXT, Apple gained access to Mach, Objective-C, and the other 
aspects of the NeXTSTEP architecture. While NeXTSTEP was discontinued as a result, these 
components live on in OS X. In fact, OS X can be considered as a fusion of Mac OS Classic and 
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NeXTSTEP, mostly the latter absorbing the former. The transition wasn’t immediate, and Mac OS 
passed through an interim operating system called Rhapsody, which never really went public. It 
was Rhapsody, however, that eventually evolved into the fi rst version of Mac OS X, and its kernel 
became the core of what is now known as Darwin. 

Mac OS X is closer in its design and implementation to NeXTSTEP than it is to any other operating 
system, including Apple’s own OS 9. As you will see, the core components of OS X — Cocoa, Mach, 
IOKit, the XCode Interface Builder, and others — are all direct descendants of NeXTSTEP. The 
fusion of two fringe, niche operating systems — one with a great GUI and poor design, the other 
with great design but lackluster GUI — resulted in a new OS that has become far more popular than 
the both of them combined.

OS X VS. DARWIN

There is sometimes some confusion between OS X and Darwin regarding the defi ni-
tions of the two terms, and the relationship between them. Let’s attempt to clarify this:

OS X is the name given, collectively, to the entire operating system. As discussed in 
the next chapter, the operating system contains many components, of which Darwin 
is but one.

Darwin is the UNIX-like core of the operating system, which is itself comprised of 
the kernel, XNU (an acronym meaning “X is Not UNIX”, similar to GNU’s recursive 
acronym) and the runtime. Darwin is open source (save for its adaptation to ARM in 
iOS, discussed later), whereas other parts of OS X — Apple’s frameworks — are not.

There exists a straightforward correlation between the version of OS X and the ver-
sion of Darwin. With the exception of OS X 10.0, which utilized Darwin 1.3. x, all 
other versions follow a simple equation:

If (OSX.version == 10.x.y)
 Darwin.version = (4+x).y

So, for example, the upcoming Mountain Lion, being 10.8.0, is Darwin 12.0. The 
last release of Snow Leopard, 10.6.8, is Darwin 10.8. It’s a little bit confusing, but 
at least it’s consistent.

OS X VERSIONS, TO DATE

Since its inception, Mac OS X has gone through several versions. From a novel, but — by some 
accounts — immature operating system, it has transformed into the feature-rich platform that 
is Lion. The following section offers an overview of the major features, particularly those which 
involve architectural or kernel mode changes.  

10.0 — Cheetah and the First Foray 
Mac OS X 10.0, known as Cheetah, is the fi rst public release of the OS X platform. About a year 
after a public beta, Kodiak, Apple released 10.0 in March 2001. It marks a signifi cant departure 
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from the old-style Mac OSes with the integration of features from NeXT/Openstep, and the layered 
architecture we will discuss shortly. It is a total rewrite of the MacOS 9, and shares little in com-
mon, save for maybe the Carbon interface, which is used to maintain compatibility with OS 9 APIs. 
10.0 ran fi ve sub-versions (10.0 through 10.0.4) with relatively minor modifi cations. The version of 
the core OS packages, called Darwin, were 1.3.1 in all. XNU was version 123.

10.1 — Puma — a Stronger Feline, but . . .
While defi nitely novel, OS 10.0 was considered to be immature and unstable, not to mention slow. 
Although it boasted preemptive multitasking and memory protection, like all its peer operating sys-
tems, it still left much to be desired. Some six months later, Mac OS X 10.1, known as Puma, was 
released to address stability and performance issues, as well as add more user experience features. 
This also led shortly thereafter to Apple’s public abandonment of Mac OS 9, and focus on OS X 
as the new operating system of choice. Puma ran six sub-versions (10.1 through 10.1.5). In version 
10.1.1, Darwin (the core OS) was renumbered from v1.4.1 to 5.1, and since then has followed the 
OS X numbers consistently by being four numbers ahead of the minor version, and aligning its own 
minor with the sub-version. XNU was version 201. 

10.2 — Jaguar — Getting Better
A year later saw the introduction of Mac OS X 10.2, known as Jaguar, a far more mature OS with 
myriad UX feature enhancements, and the introduction of the “Quartz Extreme” framework for 
faster graphics. Another addition was Apple’s Bonjour (then called Rendezvous), which is a form of 
ZeroConf, a uPNP-like protocol (Universal Plug and Play) allowing Apple devices to fi nd one another 
on a local area network (discussed later in this book). Darwin was updated to 6.0. 10.2 ran nine 
sub-versions (10.2 through 10.2.8, Darwin 6.0 through 6.8, respectively). XNU was version 344.

10.3 — Panther and Safari
Yet another year passed, and in 2003 Apple released Mac OS X 10.3, Panther, enhancing the OS 
with yet more UX features such as Exposé. Apple created its own web browser, Safari, displacing 
Internet Explorer for Mac as it distanced itself from Microsoft.

Another noteworthy improvement in Panther is FileVault, which allows for transparent disk encryp-
tion. Mac OS X 10.3 stayed current for a year and a half, and ran 10 sub-versions (10.3 through 10.3.9) 
with Darwin 7.x (7.0 through 7.9). XNU was version 517.

10.4 — Tiger and Intel Transition
The next update to Mac OS was announced in May 2004, but it took almost a year until Mac OS 
X 10.4 (Tiger) was offi cially released. This version sported, as usual, many new GUI features, such 
as spotlight and dashboard widgets, but also signifi cant architectural changes, most important 
of which was the foray into the Intel x86 processor space, with 10.4.4. Until that point, Mac OS 
required a PowerPC architecture. 10.4.4 was also the fi rst OS to introduce the concept of univer-
sal binaries that could operate on both PPC and x86 architectures. The kernel was signifi cantly 
improved, allowing for 64-bit pointers.
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Other important developer features in this release included four important frameworks: Core Data, 
Image, Video, and Audio. Core Data handled data manipulation (undo/redo/save). Core Image and 
Core Video accelerated graphics by exploiting GPUs, and Core Audio built audio right into the 
OS — allowing for Mac’s text-to-speech engine, Voice Over, and the legendary “say” command 
(“Isn’t it nice to have a computer that talks to you?”).

Tiger reigned for over two years and a dozen sub-versions — 10.4.0 (Darwin 8.0) through 10.4.11 
(Darwin 8.11). XNU was 792.

10.5 — Leopard and UNIX
Leopard was over a year in the making. Announced in June 2006, but not released until October 
2007, it boasted hundreds of new features. Chief among them from the developer perspective were:

 ‰ Core Animation, which offl oaded animation tasks to the framework

 ‰ Objective-C 2.0

 ‰ OpenGL 2.1

 ‰ Improved scripting and new languages, including Python and Ruby

 ‰ Dtrace (ported from Solaris 10) and its GUI, Instruments

 ‰ FSEvents, allowing for Linux’s inotify-like functionality (fi le system/directory notifi cations)

 ‰ Leopard is also fully UNIX/POSIX-compliant

Leopard ran 10.5 through 1.0.5.8; Darwin 9.0 through 9.8. XNU leapt forward to version 1228.

10.6 — Snow Leopard
Snow Leopard introduced quite a few changes, but mostly under the hood. Following what now 
was somewhat of a tradition, it took over a year from its announcement in June 2008 to its release 
in August 2009 From the UX perspective, changes are minimal, although all its applications were 
ported to 64-bit. The developer perspective, however, revealed signifi cant changes, including:

 ‰ Full 64-bit functionality: Both in user space libraries and kernel space (K64).

 ‰ File system–level compression: Incorporated very quietly, as most commands and APIs 
still report the fi les’ real sizes. In actuality, however, most fi les — specifi cally those of the 
OS — are transparently compressed to save disk space.

 ‰ Grand Central Dispatch: Enabled multi-core programming through a central API.

 ‰ OpenCL: Enabled the offl oading of computations to the GPU, utilizing the ever-increasing 
computational power of graphics adapters for non-graphic tasks. Apple originally developed 
the standard, and still maintains the trademark over the name. Development has been handed 
over to the Khronos group (www.khronos.org), a consortium of industry leaders (including 
AMD, Intel, NVidia, and many others), who also host OpenGL (for graphics) and OpenSL 
(for sound). 
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Snow Leopard fi nished the process of migration started in 10.4.4 — from PPC to x86/x64 architec-
tures. It no longer supports PowerPCs so universal binaries to support that architecture are no lon-
ger needed, saving much disk space by thinning down binaries. In practice, however, most binaries 
still contain multiple architectures for 32-bit and 64-bit Intel.

The most current version of Snow Leopard is 10.6.8 (Darwin 10.8.0), released July 2011. XNU is 
version 1504.

10.7 — Lion
Lion is Apple’s latest incarnation of OS X at the time of this writing. (More accurately, the latest 
one publicly available, as Mountain Lion has been released as a developer preview as this book goes 
to print.) It is a relatively high-end system, requiring Intel Core 2 Duo or better to run on (although 
successfully virtualized by now).

While it provides many features, most of them are in user mode. Several of the new features have 
been heavily infl uenced from iOS (the mobile port of OS X for i-Devices, as we discuss later). These 
features include, to name but a few:

 ‰ iCloud: Apple’s new cloud-based storage is tightly integrated into Lion, enabling applications 
to store documents in the cloud directly from the Objective-C runtime and NSDocument.

 ‰ Tighter security: Drawing on a model that was started in iOS, of application sandboxing and 
privilege separation. 

 ‰ Improvements in the built-in applications: Such as Finder, Mail, and Preview, as well as port-
ing of apps from iOS, notably FaceTime and the iOS-like LaunchPad.

 ‰ Many framework features: From overlay scrollbars and other GUI enhancements, through 
voice over, text auto-correction similar to iOS, to linguistic and part-of-speech tagging to 
enable Natural Language Processing–based applications.

 ‰ Core Storage: Allowing logical volume support, which can be used for new partitioning fea-
tures. A particularly useful feature is extending fi le systems onto more than one partition.

 ‰ FileVault 2:  Used for encryption of the fi lesystem, down to the root volume level — mark-
ing Apple’s entry into the Full Disk Encryption (FDE) realm. This builds on Core Storage’s 
encryption capabilities at the logical volume level. The encryption is AES-128 in XTS mode, 
which is especially optimized for hard drive encryption. (Both Core Storage and File Vault 
are discussed in Chapter 15 of this book, “Files and Filesystems.”)

 ‰ Air Drop: Extends Apple’s already formidable peer-fi nding abilities (courtesy of Bonjour) to 
allow for quick fi le sharing between hosts over WiFi.

 ‰ 64-bit mode: Enabled by default on more Mac models. Snow Leopard already had a 64-bit 
kernel, but still booted 32-bit kernels on non-Pro Macbooks.

At the time of this writing, the most recent version of Lion is 10.7.3, XNU version 1699.24.23. With 
the announcement of Mountain Lion (destined to be 10.8), it seems that Lion will be especially short 
lived. 
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10.8 — Mountain Lion
In February 2012, just days before this book was fi nalized and sent off to print, Apple surprised the 
world with the announcement of OS X 10.8, Mountain Lion. This is quite unusual, as Apple’s OS 
lifespan is usually longer a year, especially for a cat as big as a Lion, which many believed would end 
the feline species. The book makes every attempt to also include the most up-to-date material so as 
to cover Mountain Lion, but the operating system will only be available to the public much later, 
sometime around the summer of 2012.

Mountain Lion aims to bring iOS and OS X closer together, as was actually speculated in this book 
(see “The Future of OS X,” later in this chapter). Continuing the trend set by Lion, 10.8 further 
brings features from iOS to OS X, as boasted by its tagline — “Inspired by iPad, reimagined for 
Mac.” The features advertised by Apple are mostly user mode. Interestingly enough, however, the 
kernel seems to have undergone major revisions as well, as is hinted by its much higher version num-
ber — 2050. One notable feature is kernel address space randomization, a feature that is expected 
to make OS X far more resilient to rootkits and kernel exploitation. The kernel will also likely be 
64-bit only, dropping support for 32-bit APIs. The sources for Darwin 12 (and, with them, XNU) 
will not be available until Mountain Lion is offi cially released.

Using uname(1)
Throughout this book, many UNIX and OS X-specifi c commands will be presented. It is only fi t-
ting that uname(1), which shows the UNIX system name, be the fi rst of them. Running uname will 
give you the details on the architecture, as well as the version information of Darwin. It has several 
switches, but -a effectively uses all of them. The following code snippets shownin Outputs 1-1a 
through c demonstrate using uname on two different OS X systems:

OUTPUT 1-1A: Using uname(1) to view Darwin version on Snow Leopard 10.6.8, a 32-bit system

morpheus@ergo (~) uname -a
Darwin Ergo 10.8.0 Darwin Kernel Version 10.8.0: Tue Jun  7 16:33:36 PDT 2011; root:xnu-
1504.15.3~1/RELEASE_I386 i386

OUTPUT 1-1B: Using uname(1) to view Darwin version on Lion 10.7.3, a 64-bit system

morpheus@Minion (~) uname -a
Darwin Minion.local 11.3.0 Darwin Kernel Version 11.3.0: Thu Jan 12 18:47:41 PST 2012; 
root:xnu-1699.24.23~1/RELEASE_X86_64 x86_64

If you use uname(1) on Mountain Lion (in the example below, the Developer Preview) you will see 
an even newer version

OUTPUT 1-1C: Using uname(1) to view Darwin version on Mountain Lion 10.8 (DP3), a 64-bit system

morpheus@Simulacrum (~) uname -a
Darwin Simulacrum.local 12.0.0 Darwin Kernel Version 12.0.0: Sun Apr  8 21:22:58 PDT 
2012; root:xnu-2050.3.19~1
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OS X ON NON-APPLE HARDWARE

À la Apple, running OS X on any hardware other than the Apple line of Macs 
constitutes a violation of the EULA. Apple wages a holy war against Mac clones, 
and has sued (and won against) companies like Psystar, who have attempted to 
commercialize non-Apple ports of OS X. This has not deterred many an enthusiast, 
however, from trying to port OS X to the plain old PC, and — recently — to run 
under virtualization.

The OpenDarwin/PureDarwin projects take the open source Darwin environment 
and make of it a fully bootable and installable ISO image. This is carried further 
by the OSX86 project, which aims to fully port OS X onto PCs, laptops, and even 
netbooks (this is commonly referred to as “Hackintosh”). With the bootable ISO 
images, it is possible to circumvent the OS X installer protections and install the 
system on non-Apple hardware. The hackers (in the good sense of the word) emu-
late the EFI environment (which is the default on Mac hardware, but still scarce 
on PC) using a boot loader (Chameleon) based on Apple’s Boot-132, which was 
a temporary boot loader used by Apple back in Tiger v10.4.8. Originally, some 
minor patches to the kernel were needed, as well — which were feasible since XNU 
remains open source.

With the rise of virtualization and the accessibility of excellent products such as 
VMWare, users can now simply download a pre-installed VM image of a fully 
functioning OS X system. The fi rst images made available were of the later Leop-
ards, and are hard to come by, but now images of the latest Lion and even Moun-
tain Lion are readily downloadable from some sites.  

While still in violation of the EULA, Apple does not seem as adamant (yet?) in 
pursuing the non-commercial ports. It has added features to Lion which require an 
Internet connection to install (i.e. “Verify the product with Apple”), but still don’t 
manage to snuff the Hackintosh fl ame. Then again, what people do in the privacy 
of their own home is their business.

IOS — OS X GOES MOBILE

Windows has its Windows Mobile, Linux has Android, and OS X, too, has its own mobile deriva-
tive — the much hyped iOS. Originally dubbed iPhone OS (until mid-2010), Apple (following a short 
trademark dispute with Cisco), renamed the operating system iOS to refl ect the unifi ed nature of the 
operating system which powers all its i-Devices: the iPhone, iPod, iPad, and Apple TVs. 

iOS, like OS X, also has its version history, with its current release at the time of writing being iOS 
5.1. Though all versions have code names, they are private to Apple and are usually known only to 
the jailbreaking community.
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1.x — Heavenly and the First iPhone
This release ran from the iPhone’s inception, in mid-2007, through mid-2008. Version numbers were 
1.0 through 1.02, then 1.1 through 1.1.5. The only device supported was initially the iPhone, but 
the iPod Touch soon followed. The original build was known as “Alpine” (which is also the default 
root password on i-Devices), but the released version was “Heavenly.”

From the jailbreakers’ perspective, this release was heavenly, indeed. Full of debug symbols, unen-
crypted, and straightforward to disassemble. Indeed, many versions later, many jailbreakers still rely 
on the symbols and function-call graphs extracted from this version.

2.x — App Store, 3G and Corporate Features
iPhoneOS 2.0 (known as BigBear) was released along with the iPhone 3G, and both became an 
instant hit. The OS boasted features meant to make the iPhone more compatible with corporate 
needs, such as VPN and Microsoft Exchange support. This OS also marked the iPhone going global, 
with support for a slew of other languages.

More importantly, with this release Apple introduced the App Store, which became the largest soft-
ware distribution platform in the world, and helped generate even more revenue for Apple as a result 
of its commission model. (This is so successful that Apple has been trying this, with less success, 
with the Mac App Store, as of late Snow Leopard).

2.x ran 2.0–2.02, 2.1 (SugarBowl), 2.2–2.2.1 (Timberline), until early 2009, and the release of 3.x.
The XNU version in 2.0.0 is 1228.6.76, corresponding to Darwin 9.3.1.

3.x — Farewell, 1st gen, Hello iPad
The 3.x versions of iOS brought along the much-longed-for cut/paste, support for lesser used lan-
guages, spotlight searches, and many other enhancements to the built-in apps. On the more techni-
cal front, it was the fi rst iOS to allow tethering, and allowed the plugging in of Nike+ receivers, 
demonstrating that the i-Devices could not only be clients but hosts for add-on devices themselves.

3.0 (KirkWood) was quickly superseded by 3.1 (NorthStar), which ran until 3.1.3, the fi nal version 
supported by the “fi rst generation” devices. Version 3.2 (WildCat) was introduced in April of 2010, 
especially for the (then mocked) tablet called the iPad. After its web-based jailbreak by Comex (Star 
2.0), it was patched to 3.2.2, which was its last version. The Darwin version in 3.1.2 was 10.0.0d3, 
and XNU was at 1357.5.30. 

4.x — iPhone 4, Apple TV, and the iPad 2
The 4.x versions of iOS brought along many more features and apps, such as FaceTime and voice 
control, with 4.0 introduced in late June 2010, along with the iPhone 4. 4.x versions were the fi rst to 
support true multitasking, although jailbroken 3.x offered a crude hack to that extent.

iOS 4 was the longest running of the iOS versions, going through 4.0–4.0.2 (Apex), 4.1 (Baker 
or Mohave, which was the fi rst Apple TV version of iOS), and 4.2–4.2.10 (Jasper). Version 4.3 
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(Durango) brought support for the (by then well respected) iPad 2 and its new dual-core A5 chip. 
Another important new feature was Address Space Layout Randomization (ASLR, discussed later in 
this book), which was unnoticeable by users, but — Apple hoped — would prove insurmountable to 
hackers. Hopes aside, by version 4.3.3 ASLR succumbed to “Saffron” hack when jailbreaker Comex 
then released his ingenious “Star 3.0” jailbreak for the till-then-unbreakable iPad 2. Apple quickly 
released 4.3.4 to fi x this bug (discussed later in this book as well), and fi gured the only way to dis-
courage future jailbreaks is to go after the jailbreaker himself — assimilating him. The last release of 
4.3.x was 4.3.5, which incorporated another minor security fi x.

The Darwin version in 4.3.3 is 11.0.0, same as Lion. The XNU kernel, however, is at 
1735.46.10 — way ahead of Lion.

5.x — To the iPhone 4S and Beyond
iOS is, at the time of this writing, in its fi fth incarnation: Telluride (5.0.0 and 5.0.1) and Hoodoo 
(5.1), named after ski resorts. Initially released as iOS 5.0, it coincided with the iPhone 4S, and 
introduced (for that phone only) Apple’s natural language-based voice control, Siri. iOS5 also boasts 
many new features, such as much requested notifi cations, NewsStand (an App Store for digital pub-
lications), and some features iOS users never knew they needed, like Twitter integration. Another 
major enhancement is iCloud (also supported in Lion). 

As a result of complaints concerning poor battery life in 5.0, Apple rushed to release 5.0.1, although 
some complaints persisted. Version 5.1 was released March 2012, coinciding with the iPad 3.

As this book goes to print, the iPhone 4S is the latest and greatest model, and the iPad 3 has just 
been announced, boasting the improved A5X with quad-core graphics. If Apple’s pattern repeats 
itself, it seems more than likely that it will be followed by the highly anticipated iPhone 5. Apple’s 
upgrade cycles have, thus far, been fi rst for iPad, then iPhone, and fi nally iPod. From the iOS 
perspective this matters fairly little — the device upgrades have traditionally focused on better hard-
ware, and fairly few software feature enablers.

Darwin is still at 11.0.0, but XNU is even further ahead of Lion with the version being 1878.11.8 in 
iOS 5.1. 

iOS vs. OS X
Deep down, iOS is really Mac OS X, but with some signifi cant differences:

 ‰ The architecture for which the kernel and binaries are compiled is ARM-based, rather than 
Intel i386 or x86_64. The processors may be different (A4, A5, A5X, etc), but all are based 
on designs by ARM. The main advantage of ARM over Intel is in power management, which 
makes their processor designs attractive for mobile operating systems such as iOS, as well as 
its arch-nemesis, Android. 

 ‰ The kernel sources remain closed — even though Apple promised to maintain XNU, the OS 
X Kernel, as open source, it apparently frees itself from that pledge for its mobile version. 
Occasionally, some of the iOS modifi cations leak into the publicly available sources (as can 
be seen by various #ifdef,__arm__, and ARM_ARCH conditionals), though these generally 
diminish in number with new kernel versions. 

c01.indd 12c01.indd   12 9/29/2012 5:07:33 PM9/29/2012   5:07:33 PM



Levin   c01   V4 - 05/11/2012

iOS — OS X Goes Mobile x 13

 ‰ The kernel is compiled slightly differently, with a focus on embedded features and some new 
APIs, some of which eventually make it to OS X, whereas others do not. 

 ‰ The system GUI is Springboard, the familiar touch-based application launcher, rather than 
Aqua, which is mouse-driven and designed for windowing. SpringBoard proved so popular it 
has actually been (somewhat) back ported into OS X with Lion’s LaunchPad.

 ‰ Memory management is much tighter, as there is no nigh-infi nite swap space to fall on. As a 
consequence, programmers have to adapt to harsher memory restrictions and changes in the 
programming model.

 ‰ The system is hardened, or “jailed,” so as not to allow any access to the underlying UNIX 
APIs (i.e. Darwin), nor root access, nor any access to any directory but the application’s own. 
Only Apple’s applications enjoy the full power of the system. App Store apps are restricted 
and subject to Apple’s scrutiny.

The last point is really the most important: Apple has done its utmost to keep iOS closed, as a spe-
cialized operating system for its mobile platforms. In effect, this strips down the operating system to 
allow developers only the functionality Apple deems as “safe” or “recommended,” rather than allow 
full use of the hardware, which — by itself — is comparable to any decent desktop computer. But 
these limitations are artifi cial — at its core, iOS can do nearly everything that OS X can. It doesn’t 
make sense to write an OS from scratch when a good one already exists and can simply be ported. 
What’s more, OS X had already been ported once, from PPC to x86 — and, by induction, could be 
ported again.

Whether or not you possess an i-Device, you have no doubt heard the much active buzz around the 
“jailbreaking” procedure, which allows you to overcome the Apple-imposed limitations. Without 
getting into the legal implications of the procedure (some claim Apple employs more lawyers than 
programmers), suffi ce it to say it is possible and has been demonstrated (and often made public) for 
all i-Devices, from the very fi rst iPhone to the iPhone 4S. Apple seems to be playing a game of cat 
and mouse with the jailbreakers, stepping up the challenge considerably from version to version, yet 
there’s always “one more thing” that the hackers fi nd, much to Apple’s chagrin.

Most of the examples shown in this book, when applied to iOS, require a jailbroken device. Alterna-
tively, you can obtain an iOS software update — which is normally encrypted to prevent any prying 
eyes such as yours — but can easily be decrypted with well-known decryption keys obtained from 
certain iPhone-dedicated Wiki sites. Decrypting the iOS image enables you to peek at the fi le system 
and inspect all the fi les, but not run any processes for yourself. For this reason, jailbreaking proves 
more advantageous. Jailbreaking is about as harmful (if you ask Apple) as open source is bad for 
your health (if you ask Microsoft). Apple went so far as to “get the facts” and published HT3743[4]

about the terrible consequences of “unauthorized modifi cation of iOS.” This book will not teach 
you how to jailbreak, but many a website will happily share this information.

If you were to, say, jailbreak your device, the procedure would install an alternate software package 
called Cydia, with which you can install third-party apps, that are not App Store approved. While 
there are many, the ones you’ll need to follow along with the examples in this book are:

 ‰ OpenSSH: Allows you to connect to your device remotely, via the SSH protocol, from any 
client, OS X, Linux (wherein ssh is a native command line app), or Windows (which has a 
plethora of SSH clients — for example, PuTTY).
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 ‰ Core Utilities: Packaging the basic utilities you can expect to fi nd in a UNIX /bin directory.

 ‰ Adv-cmds and top: Advanced commands, such as ps to view processes.

SSHing to your device, the fi rst command to try would be the standard UNIX uname which you 
saw earlier in the context of OS X. If you try this on an iPad 2 running iOS 4.3.3, for example, you 
would see something similar to the following:

OUTPUT 1-2A: uname(1) on an iOS 4 iPad 2

root@Padishah (/) # uname -a
Darwin Padishah 11.0.0 Darwin Kernel Version 11.0.0: Wed Mar 30 18:52:42 PDT 2011; 
root:xnu-1735.46~10/RELEASE_ARM_S5L8940X iPad2,3 arm K95AP Darwin

And on an iPod running iOS 5:, you would see the following: 

OUTPUT 1-2B: uname(1) on a 4th-generation iPod running iOS 5.0

root@Podicum (/) # uname -a
Darwin Podicum 11.0.0 Darwin Kernel Version 11.0.0: Thu Sep 15 23:34:16 PDT 2011; 
root:xnu-1878.4.43~2/RELEASE_ARM_S5L8930X iPod4,1 arm N81AP Darwin

So, from the kernel perspective, this is (almost) the same kernel, but the architecture is ARM. 
(S5L8940X is the processor on iPad, commonly known as A5, whereas S5L8930X is the one known 
as A4. The new iPad is reported as iPad3.1, and its processor, A5X, is identifi ed as S5L8945X). 

Table 1-1 partially maps OS X and iOS, in some of their more modern incarnations, to the respec-
tive version of XNU. As you can see, until 4.2.1, iOS was using largely the same XNU version as its 
corresponding OS X at the time. This made it fairly easy to reverse engineer its compiled kernel (and 
with a fairly large number of debug symbols still present!). With iOS 4.3, however, it has taken off 
in terms of kernel enhancements, leaving OS X behind. Mountain Lion seems to put OS X back in 
the lead, but this might very well change if and when iOS 6 comes out. 

TABLE 1-1:  Mapping of OS X and iOS to their corresponding kernel versions, and approximate release 

dates. 

OPERATING SYSTEM RELEASE DATE KERNEL VERSION

Puma (10.1.x) Sep 2001 201.*.*

Jaguar (10.2.x) Aug 2002 344.*.*

Panther (10.3.x) Oct 2003 517.*.*

Tiger (10.4.x) April 2005 792.*.*

iOS 1.1 June 2007 933.0.0.78

Leopard (10.5.4) October 2007 1228.5.20
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OPERATING SYSTEM RELEASE DATE KERNEL VERSION

iOS 2.0.0 July 2008 1228.6.76

iOS 3.1.2 June 2009 1357.5.30

Snow Leopard (10.6.8) August 2009 1504.15.3

iOS 4.2.1 November 2010 1504.58.28

iOS 4.3.1 March 2011 1735.46

Lion (10.7.0) August 2011 1699.22.73

iOS 5 October 2011 1878.4.43

Lion (10.7.3) February 2012 1699.24.23

iOS 5.1 March 2012 1878.11.8

Mountain Lion (DP1) March 2012 2050.1.12

THE FUTURE OF OS X

At the time of writing, the latest publicly available Mac OS X is Lion, OS X 10.7, with Mountain 
Lion — OS X 10.8 — lurking in the bushes. Given that the minor version of the latter is already at 8, 
and the supply of felines has been exhausted, it is also likely to be the last “OS X” branded operat-
ing system (although this is, of course, a speculation).

OS X has matured over the past 10 years and has evolved into a formidable operating system. Still, 
from an architectural standpoint, it hasn’t changed that much. The great transition (to Intel archi-
tectures) and 64-bit changes aside, the kernel has changed relatively little in the past couple of ver-
sions. What, then, may one expect from OS XI?

 ‰ The eradication of Mach: The Mach APIs in the kernel, on which this book will elaborate 
greatly, are an anachronistic remnant of the NeXTSTEP days. These APIs are largely hidden 
from view, with most applications using the much more popular BSD APIs. The Mach APIs 
are, nonetheless, critical for the system, and virtually all applications would break down if 
they were to be suddenly removed. Still, Mach is not only inconvenient — but also slower. 
As you will see, its message-passing microkernel-based architecture may be elegant, but it 
is hardly as effective as contemporary monolithic kernels (in fact, XNU tends toward the 
monolithic than the microkernel architecture, as is discussed in Chapter 8). There is much to 
be gained by removing Mach altogether and solidifying the kernel to be fully BSD, though 
this is likely to be no mere feat.

 ‰ ELF binaries: Another obstacle preventing Mac OS from fully joining the UN*X sorority 
is its insistence on the Mach-O binary format. Whereas virtually all other UN*X support 
ELF, OS X does not, basing its entire binary architecture on the legacy Mach-O. If Mach is 
removed, Mach-O will lose its raison d’etre, and the road to ELF will be paved. This, along 
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with the POSIX compatibility OS X already boasts, could provide both source code and 
binary compatibility, allowing migrating applications from Solaris, BSD, and Linux to run 
with no modifi cations.

 ‰ ZFS: Much criticism is pointed at HFS+, the native Mac OS fi le system. HFS+ is itself a 
patchwork over HFS, which was used in OS 8 and 9. ZFS would open up many features that 
HFS+ cannot. Core Storage was a giant stride forward in enabling logical volumes and multi-
partition volumes, but still leaves much to be desired.

 ‰ Merger with iOS: At present, features are tried out in OS X, and then sometimes ported to 
iOS, and sometimes vice versa. For example, Launchpad and gestures, both now mainstream 
in Lion, originated in iOS. The two systems are very much alike in many regards, but the 
supported frameworks and features remain different. Lion introduced some UI concepts 
borrowed from iOS, and iOS 5.0 brings some frameworks ported from OS X. As mobile 
platforms become stronger, it is not unlikely that the two systems will eventually become 
closer still, paving the way for running iOS apps, for example, on OS X. Apple has already 
implemented an architecture translation mechanism before — with Rosetta emulating the 
PPC architecture on Intel.

SUMMARY

Over the years, Mac OS evolved considerably. It has turned from being the underdog of the operat-
ing system world — an OS used by a small but devoted population of die-hard fans — into a main-
stream, modern, and robust OS, gaining more and more popularity. iOS, its mobile derivative, is 
one of the top mobile operating systems in use today.

The next chapters take you through a detailed discussion of OS X internals: Starting with the basic 
architecture, then diving deeper into processes, threads, debugging, and profi ling.
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c01.indd 16c01.indd   16 9/29/2012 5:07:35 PM9/29/2012   5:07:35 PM

http://osxbook.com/book/bonus/chapter1/pdf/macosxinternals-singh-1.pdf
http://arstechnica.com
http://en.wikipedia.org/wiki/Mac_OS_X
http://support.apple.com/kb/HT3743
http://osxbook.com/book/bonus/chapter1/pdf/macosxinternals-singh-1.pdf


2
E Pluribus Unum: Architecture of 
OS X and iOS

OS X and iOS are built according to simple architectural principles and foundations. This 
chapter presents these foundations, and then focuses further on the user-mode components 
of the system, in a bottom-up approach. The Kernel mode components will be discussed with 
greater equal detail, but not until the second part of this book.

We will compare and contrast the two architectures — iOS and OS X. As you will see, iOS is 
in essence, a stripped down version of the full OS X with two notable differences: The archi-
tecture is ARM-based (as opposed to Intel x86 or x86_64), and some components have either 
been simplifi ed or removed altogether, to accommodate for the limitations and/or features of 
mobile devices. Concepts such as GPS, motion-sensing, and touch — which are applicable at 
the time of this writing only to mobile devices — have made their debut in iOS, and are pro-
gressively being merged into the mainstream OS X in Lion.

OS X ARCHITECTURAL OVERVIEW
When compared to its predecessor, OS 9, OS X is a technological marvel. The entire operat-
ing system has been redesigned from its very core, and entirely revamped to become one of 
the most innovative operating systems available. Both in terms of its Graphical User Interface 
(GUI) and its underlying programmer APIs, OS X sports many features that are still novel, 
although are quickly being ported (not to say copied) into Windows and Linux. 

Apple’s offi cial OS X and iOS documentation presents a very elegant and layered approach, 
which is somewhat overly simplifi ed:

 ‰ The User Experience layer: Wherein Apple includes Aqua, Dashboard, Spotlight, and 
accessibility features. In iOS, the UX is entirely up to SpringBoard, and Spotlight is sup-
ported as well.

 ‰ The Application Frameworks layer: Containing Cocoa, Carbon, and Java. iOS, how-
ever, only has Cocoa (technically, Cocoa Touch, a derivative of Cocoa)

 ‰ The Core Frameworks: Also sometimes called the Graphics and Media layer. Contains 
the core frameworks, Open GL, and QuickTime.

 ‰ Darwin: The OS core — kernel and UNIX shell environment. 
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Of those, Darwin is fully open sourced and serves as the foundation and low-level APIs for the rest 
of the system. The top layers, however, are closed-source, and remain Apple proprietary.

Figure 2-1 shows a high level architectural overview of 
these layers. The main difference from Apple’s offi cial fi g-
ure, is that this rendition is tiered in a stair-like manner. 
This refl ects the fact that applications can be written so as 
to interface directly with lower layers, or even exist solely 
in them. Command line applications, for example, have no 
“User Experience” interaction, though they can interact 
with application or core frameworks. 

At this high level of simplifi cation, the architecture of both 
systems conforms to the above fi gure. But zooming in, one would discover subtle differences. For 
example, the User Experience of the two systems is different: OS X uses Aqua, whereas iOS uses 
SpringBoard. The frameworks are largely very similar, though iOS contains some that OS X doesn’t, 
and vice versa.

While Figure 2-1 is nice and clean, it is far too simplifi ed for our purposes. Each layer in it can be 
further broken down into its constituents. The focus of this book is on Darwin, which is itself not a 
single layer, but its own tiered architecture, as shown in Figure 2-2.
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Figure 2-2 is much closer to depicting the real structure of the Darwin, and particularly its kernel, 
XNU (though it, too, is somewhat simplifi ed). It reveals an inconvenient truth: XNU is really a 
hybrid of two technologies: Mach and BSD, with several other components — predominantly IOKit, 
thrown in for good measure. Unsurprisingly, Apple’s neat fi gures and documentation don’t get to 
this level of unaesthetic granularity. In fact, Apple barely acknowledges Mach.  

The good news in all this is that, to some extent, ignorance is bliss. Most user-mode applications, 
especially if coded in Objective-C, need only interface with the frameworks — primarily Cocoa, the 
preferred application framework, and possibly some of its core frameworks. Most OS X and iOS 
developers therefore remain agnostic of the lower layers, Darwin, and most certainly of the kernel. 
Still, each of the user-mode layers is individually accessible by applications. In the kernel, quite a few 
components are available to device driver developers. We therefore wade into greater detail in the 
sections that follow. In particular, we focus on the Darwin shell environment. The second part of 
this book delves into the kernel.

THE USER EXPERIENCE LAYER

In OS X parlance, the user interface is the User Experience. OS X prides itself on its innovative fea-
tures, and with good reason. The sleek interface, that debuted with Cheetah and has evolved since, 
has been a target for imitation, and has infl uenced other GUI-based operating systems, such as Vista 
and Windows 7.

Apple lists several components as part of the User Experience layer:

 ‰ Aqua

 ‰ Quick Look

 ‰ Spotlight

 ‰ Accessibility options

iOS architecture, while basically the same at the lower layers, is totally differ-
ent at the User Experience level. SpringBoard (the familiar touch driven UI) is 
entirely responsible for all user interface tasks (as well as myriad other ones). 
SpringBoard is covered in greater detail in chapter 6.

Aqua
Aqua is the familiar, distinctive GUI of OS X. Its features, such as translucent windows and graph-
ics effects, are well known but are of less interest in the context of the discussion here. Rather, the 
focus is how it is actually maintained.

The system’s fi rst user-mode process, launchd (which is covered in great depth in Chapter 6) is 
responsible for starting the GUI. The main process that maintains the GUI is the WindowServer.
It is intentionally undocumented, and is part of the Core Graphics frameworks buried deep within 
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another framework, Application Services.  Thus, the full path to it is /System/Library/Frame-
works/ApplicationServices.framework/Frameworks/CoreGraphics.framework/Resources/

WindowServer.

The window server is started with the -daemon switch. Its code doesn’t really do anything — all 
the work is done by the CGXServer (Core Graphics X Server) of the CoreGraphics framework. 
CGXServer checks whether it is running as a daemon and/or as the main console getty. It then forks 
itself into the background. When it is ready, the LoginWindow (also started by launchd) starts the 
interactive login process.

It is possible to get the system to boot in text console mode, just like the good 
ol’ UNIX days. The setting which controls loginWindow is in /etc/ttys, under 
console defi ned as:

root@Ergo (/)# cat /etc/ttys | grep console
#console     "/usr/libexec/getty std.57600"       vt100   on 
secure
console "/System/Library/CoreServices/loginwindow.app/Contents/
MacOS/
loginwindow" vt100 on secure onoption="/usr/libexec/getty
std.9600"

Uncommenting the fi rst console line will make the system boot into single-user 
mode. Alternatively, by setting Display Login Window as Name and Password 
from System Settings Í Accounts Í Login options, the system console can be 
accessed by logging in with ">console" as the user name, and no password. If 
you want back to GUI, a simple CTRL-D (or an exit from the login shell) will 
resume the Window Server. You can also try ">sleep" and ">reboot"

Quicklook
Quicklook is a feature that was introduced in Leopard (10.5) to enable a quick preview from inside 
the Finder, of various fi le types. Instead of double-clicking to open a fi le, it can be QuickLook-ed 
by pressing the spacebar. It is an extensible architecture, allowing most of the work to be done by 
plugins. These plugins are bundles with a .qlgenerator extension, which can be readily installed 
by dropping them into the QuickLook directory (system-wide at /System/Library/QuickLook; or 
per user, at ~/Library/QuickLook). 

Bundles are a fundamental software deployment architecture in OS X, which we 
cover in great detail later in this chapter. For now, suffi ce it to consider a bundle 
as a directory hierarchy conforming to a fi xed structure.

The actual plug-in is a specially compiled program — but not a standalone executable. Instead of the 
traditional main() entry point, it implements a QuickLookGeneratorPluginFactory. A separate 
confi guration fi le associates the plugin with the fi le. The fi le type is specifi ed in what Apple calls 
UTI, Uniform Type Identifi er, which is essentially just reverse DNS notation.
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REVERSE DNS NOTATION — WHY?

There is good reasoning for using reverse DNS name as identifi ers of software 
packages. Specifi cally,

 ‰ The Internet DNS format serves as a globally unique hierarchical namespace 
for host names. It forms a tree, rooted in the null domain (.), with the top-level 
domains being .com, .net, .org, and so on.

 ‰ The idea of using the same namespace for software originated with Java. 
To prevent namespace confl ict, Sun (now Oracle) noted that DNS can be 
used — albeit in reverse — to provide a hierarchy that closely resembles a fi le 
system.

 ‰ Apple uses reverse DNS format extensively in OS X, as you will see through-
out this book.

quicklookd(8) is the system “QuickLook server,” and is started upon login from the fi le 
/System/Library/LaunchAgents/com.apple.quicklook.plist. The daemon itself resides within 
the QuickLook framework and has no GUI. The qlmanage(1) command can be used to maintain 
the plugins and control the daemon, as is shown in Output 2-1:

OUTPUT 2-1: Demonstrating qlmanage(1)

morpheus@Ergo (/) % qlmanage –m
 living for 4019s (5 requests handled - 0 generated thumbnails) -
 instant off: yes - arch: X86_64 - user id: 501
memory used: 1 MB (1132720 bytes)
last burst: during 0.010s - 1 requests - 0.000s idle
plugins:
 org.openxmlformats.wordprocessingml.document -> 
/System/Library/QuickLook/Office.qlgenerator (26.0)
 com.apple.iwork.keynote.sffkey -> /Library/QuickLook/iWork.qlgenerator
 (11)
   ..
 org.openxmlformats.spreadsheetml.template -> 
/System/Library/QuickLook/Office.qlgenerator (26.0)
 com.microsoft.word.stationery -> /System/Library/QuickLook/Office.qlgenerator (26.0)
 com.vmware.vm-package -> /Library/QuickLook/VMware Fusion
 QuickLook.qlgenerator (282344)
 com.microsoft.powerpoint.pot -> /System/Library/QuickLook/Office.qlgenerator (26.0)

Spotlight
Spotlight is the quick search technology that Apple introduced with Tiger (10.4). In Leopard, it has 
been seamlessly integrated into Finder. It has also been ported into iOS, beginning with iOS 3.0. 
In OS X, the user interacts with it by clicking the magnifying glass icon that is located at the right 
corner of the system’s menu bar. In iOS, a fi nger swipe to the left of the home screen will bring up a 
similar window.
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The brain behind spotlight is an indexing server, mds, located in the MetaData framework, which 
is part of the system’s core services. (/System/Library/Frameworks/CoreServices.framework/
Frameworks/Metadata.framework/Support/mds). This is a daemon with no GUI. Every time a fi le 
operation occurs — creation, modifi cation, or deletion — the kernel notifi es this daemon. This noti-
fi cation mechanism, called fsevents, is discussed later in this chapter.

When mds receives the notifi cation, it then imports, via a Worker process (mdworker), various metadata 
information into the database. The mdworker can launch a specifi c Spotlight Importer to extract the 
metadata from the fi le. System-provided importers are in /System/Library/Spotlight, and user-pro-
vided ones are in /Library/Spotlight. Much like QuickLook, they are plugins, implementing a fi xed 
API (which can be generated boilerplate by XCode when a MetaData Importer project is selected). 

Spotlight can be accessed from the command line using the following commands:

 ‰ mdutil: Manages the MetaData database

 ‰ mdfind: Issues spotlight queries

 ‰ mdimport: Confi gures and test spotlight plugins

 ‰ mdls: Lists metadata attributes for fi le

 ‰ mdcheckschema: Validates metadata schemata

 ‰ Mddiagnose: Added in Lion, this utility provides a full diagnostic of the spotlight subsystem 
(mds and mdworker), as well as additional data on the system.

Another little documented feature is controlling Spotlight (particularly, mds) by creating fi les in vari-
ous paths: For example, creating a .metadata_never_index hidden fi le in a directory will prevent 
its indexing (originally designed for removable media). 

DARWIN — THE UNIX CORE

OS X’s Darwin is a full-fl edged UNIX implementation. Apple makes no attempt to hide it, and in 
fact takes pride in it. Apple maintains a special document highlighting Darwin’s UNIX features[2].
Leopard (10.5) was the fi rst version of OS X to be UNIX-certifi ed. For most users, however, the 
UNIX interface is entirely hidden: The GUI environment hides the underlying UNIX directories 
very well. Because this book focuses on the OS internals, most of the discussion, as well as the 
examples, will draw on the UNIX command line.

The Shell
Accessing the command line is simple — the Terminal application will open a terminal emulator 
with a UNIX shell. By default this is /bin/bash, the GNU “Bourne Again” shell, but OS X provides 
quite the choice of shells: 

 ‰ /bin/sh (the Bourne shell): The basic UNIX shell, created by Stephen Bourne. Considered 
the standard as of 1977. Somewhat limited.

 ‰ /bin/bash (Bourne Again shell): Default shell. Backward compatible with the basic Bourne 
shell, but far more advanced. Considered the modern standard on many operating systems, 
such as Linux and Solaris.
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 ‰ /bin/csh (C-shell): An alternative basic shell, with C-like syntax.

 ‰ /bin/tcsh (TC-shell): Like the C-shell, but with more powerful aliasing, completion, and 
command line editing features.

 ‰ /bin/ksh (Korn shell): Another standard shell, created by David Korn in the 1980s. Highly 
effi cient for scripting, but not too friendly in the command-line environment. 

 ‰ /bin/zsh (Z-Shell): A slowly emerging standard, developed at http://www.zsh.org. Fully 
Bourne/Bourne Again compatible, with even more advanced features.

The command line in OS X (and iOS) can also be accessed remotely, over telnet or SSH. Both are 
disabled by default, and the former (telnet) is highly discouraged as it is inherently insecure and 
unencrypted. SSH, however, is used as a drop-in replacement (as well as for the former Berkeley 
“R-utils,” such as rcp/rlogin/rsh).

Either telnet or SSH can be easily enabled on OS X by editing the appropriate property list fi le 
(telnet.plist, or ssh.plist) in /System/Library/LaunchDaemons. Simply set the Disabled 
key to false, (or remove it altogether). To do so, however, you will need to assume root privileges 
fi rst — by using sudo bash (or another shell of your choice).

On iOS, SSH is disabled by default as well, but on jailbroken systems it is installed and enabled 
during the jailbreak process. The two users allowed to log in interactively are root (naturally) and 
mobile. The default root password is alpine, as was the code name for the fi rst version of iOS. 

The File System
Mac OS X uses the Hierarchical File System Plus (or HFS+) fi le system. The “Plus” denotes that HFS+ 
is a successor to an older Hierarchical File System, which was commonly used in pre-OS X days. 

HFS+ comes in four varieties:

 ‰ Case sensitive/insensitive: HFS+ is always case preserving, but may or may not also be case-
sensitive. When set to be case sensitive, HFS+ is referred to as HFSX. HFSX was introduced 
around Panther, and — while not used in OS X — is the default on iOS. 

 ‰ Optional journaling:  HFS+ may optionally employ a journal, in which case it is commonly 
referred to as JHFS (or JHFSX). A journal enables the fi le system to be more robust in cases 
of forced dismounting (for example, power failures), by using a journal to record fi le system 
transactions until they are completed. If the fi le system is mounted and the journal contains 
transactions, they can be either replayed (if complete) or discarded. Data may still be lost, but 
the fi le system is much more likely to be in a consistent state.

In a case-insensitive fi le system in OS X, fi les can be created in any uppercase-lowercase combina-
tion, and will in fact be displayed in the exact way they were created, but can be accessed by any 
case combination. As a consequence, two fi les can never share the same name, irrespective of case. 
However, accidentally setting caps lock wouldn’t affect fi le system operations. To see for yourself, 
try LS /ETC/PASSWD.

In iOS, being the case sensitive HFSX by default, case is not only preserved, but allows for multiple 
fi les to have the same name, albeit with different case. Naturally, case sensitivity means typos pro-
duce a totally different command or fi le reference, often a wrong one.
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The HFS fi le systems have unique features, like extended attributes and transparent compression, 
which are discussed in depth in chapter 15. Programmatically, however, the interfaces to the HFS+ 
and HFSX are the same as other fi le systems, as well — The APIs exposed by the kernel are actu-
ally provided through a common fi le system adaptation layer, called the Virtual File system Switch 
(VFS). VFS is a uniform interface for all fi le systems in the kernel, both UNIX based and foreign. 
Likewise, both HFS+ and HFSX offer the user the “default” or common UNIX fi le system user 
experience — permissions, hard and soft links, fi le ownership and types are all like other UNIX.

UNIX SYSTEM DIRECTORIES

As a conformant UNIX system, OS X works with the well-known directories that are standard on 
all UNIX fl avors:

 ‰ /bin: Unix binaries. This is where the common UNIX commands (for example, ls, rm, mv,
df) are.

 ‰ /sbin: System binaries. These are binaries used for system administration, such as fi le-system 
management, network confi guration, and so on.

 ‰ /usr: The User directory. This is not meant for users, but is more like Windows’ program 
fi les in that third-party software can install here.

 ‰ /usr: Contains in it bin, sbin, and lib. /usr/lib is used for shared objects (think, Win-
dows DLLs and \windows\system32). This directory also contains the include/ subdirec-
tory, where all the standard C headers are.

 ‰ /etc: Et Cetera. A directory containing most of the system confi guration fi les; for example, 
the password fi le (/etc/passwd). In OS X, this is a symbolic link to /private/etc.

 ‰ /dev: BSD device fi les. These are special fi les that represent hardware devices on the system 
(character and block devices).

 ‰ /tmp: Temporary directory. The only directory in the system that is world-writable (permis-
sions: rwxrwxrwx). In OS X, this is a symbolic link to /private/tmp.

 ‰ /var: Various. A directory for log fi les, mail store, print spool, and other data. In OS X, this 
is a symbolic link to /private/var.

The UNIX directories are invisible to Finder. Using BSD’s chflags(2) system call, a special fi le 
attribute of “hidden” makes them hidden from the GUI view. The non-standard option -O to ls,
however, reveals the fi le attributes, as you can see in Output 2-2. Other special fi le attributes, such 
as compression, are discussed in Chapter 14.

OUTPUT 2-2: Displaying fi le attributes with the non standard “-O” option of ls

morpheus@Ergo (/) % ls –lO /
drwxrwxr-x+ 39 root      admin     -          1326 Dec  5 02:42 Applications
drwxrwxr-x@ 17 root      admin     -           578 Nov  5 23:40 Developer
drwxrwxr-t+ 55 root      admin     -          1870 Dec 29 17:23 Library
drwxr-xr-x@  2 root      wheel     hidden       68 Apr 28  2010 Network
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drwxr-xr-x   4 root      wheel     -           136 Nov 11 09:52 System
drwxr-xr-x   6 root      admin     -           204 Nov 14 21:07 Users
drwxrwxrwt@  3 root      admin     hidden      102 Feb  6 11:17 Volumes
drwxr-xr-x@ 39 root      wheel     hidden     1326 Nov 11 09:50 bin
drwxrwxr-t@  3 root      admin     hidden      102 Jan 21 02:40 cores
dr-xr-xr-x   3 root      wheel     hidden     4077 Feb  6 11:17 dev
...

OS X–Specifi c Directories
OS X adds its own special directories to the UNIX tree, under the system root:

 ‰ /Applications: Default base for all applications in system.

 ‰ /Developer:If XCode is installed, the default installation point for all developer tools.

 ‰ /Library: Data fi les, help, documentation, and so on for system applications.

 ‰ /Network: Virtual directory for neighbor node discovery and access.

 ‰ /System: Used for System fi les. It contains only a Library subdirectory, but this direc-
tory holds virtually every major component of the system, such as frameworks (/System/
Library/Frameworks), kernel modules (/System/Library/Extensions), fonts, and so on.

 ‰ /Users: Home directory for users. Every user has his or her own directory created here.

 ‰ /Volumes: Mount point for removable media and network fi le systems.

 ‰ /Cores: Directory for core dumps, if enabled. Core dumps are created when a process 
crashes, if the ulimit(1) command allows it, and contain the core virtual memory image of 
the process. Core dumps are discussed in detail in Chapter 4, “Process Debugging.”

iOS File System Idiosyncrasies
From the fi le system perspective, iOS is very similar to OS X, with the following differences:

 ‰ The fi le system (HFSX) is case-sensitive (unlike OS X’s HFS+, which is case preserving, yet 
insensitive). The fi le system is also encrypted in part.

 ‰ The kernel is already prepackaged with its kernel extensions, as a kernelcache (in /System/
Library/Caches/com.apple.kernelcaches). Unlike OS X kernel caches (which are com-
pressed images), iOS kernel caches are encrypted Img3. This is described in chapter 5.

Kernel caches are discussed in Chapter 18, but for now you can simply think of 
them as a preconfi gured kernel.

 ‰ /Applications may be a symbolic link to /var/stash/Applications. This is a feature of 
the jailbreak, not of iOS.

 ‰ There is no /Users, but a /User — which is a symbolic link to /var/mobile
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 ‰ There is no /Volumes (and no need for it,  or for disk arbitration, as iOS doesn’t have any 
way to add more storage to a given system)

 ‰ /Developer is populated only if the i-Device is selected as “Use for development” from 
within XCode. In those cases, the DeveloperDiskImage.dmg included in the iOS SDK is 
mounted onto the device.

INTERLUDE: BUNDLES

Bundles are a key idea in OS X, which originated in NeXTSTEP and, with mobile apps, has become 
the de facto standard. The bundle concept is the basis for applications, but also for frameworks, 
plugins, widgets, and even kernel extensions all packaged into bundles. It therefore makes sense to 
pause and consider bundles before going on to discuss the particulars of applications as frameworks.

The term “bundle” is actually used to describe two different terms in Mac OS: 
The fi rst is the directory structure described in this section (also sometimes called 
“package”). The second is a fi le object format of a shared-library object which 
has to be explicitly loaded by the process (as opposed to normal libraries, which 
are implicitly loaded). This is also sometimes referred to as a plug-in. 

Apple defi nes bundles as “a standardized hierarchical structure that holds executable code and the 
resources used by that code.”[1]. Though the specifi c type of bundle may differ and the contents vary, 
all bundles have the same basic directory structure, and every bundle type has the same directories. 
OS X Application bundles, for example, look like the following code shown in Listing 2-1:

LISTING 2-1: The bundle format of an application

     Contents/
          CodeResources/
          Info.plist           Main package manifest files
          MacOS/               Binary contents of package
          PkgInfo              Eight character identifier of package
          Resources/           .nib files (GUI) and .lproj files
          Version.plist        Package version information
          _CodeSignature/
               CodeResources

Cocoa provides a simple programmatic way to access and load bundles using the NSBundle object, 
and CoreFoundation’s CFBundle APIs. 

APPLICATIONS AND APPS

OS X’s approach to applications is another legacy of its NeXTSTEP origins. Applications are neatly 
packaged in bundles. An application’s bundle contains most of the fi les required for the application’s 
runtime: The main binary, private libraries, icons, UI elements, and graphics. The user remains 
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largely oblivious to this, as a bundle is shown in Finder as a single icon. This allows for the easy 
installation experience in Mac OS — simply dragging an application icon into the Applications 
folder. To peek inside an application, one would have to use (the non-intuitive) right click.

In OS X, applications are usually located in the /Applications folder. Each application is in its 
own directory, named AppName.app. Each application adheres quite religiously to a fi xed for-
mat, discussed shortly — wherein resources are grouped together according to class, in separate 
sub-directories.

In iOS, apps deviate somewhat from the neat structure — they are still contained in their own direc-
tories, but do not adhere as zealously to the bundle format. Rather, the app directory can be quite 
messy, with all the app fi les thrown in the root, though sometimes fi les required for internationaliza-
tion (“i18n”) are in subdirectories (xxx.lproj directories, where xxx is the language, or ISO language 
code).

Additionally, iOS distinguishes between the default applications provided by Apple, which reside 
in /Applications (or /var/stash/Applications in older jailbreak-versions of iOS), and App 
Store purchased ones, which are in /var/mobile/Applications. The latter is installed in a direc-
tory with a specifi c 128-bit GUID, broken up into a more manageable structure of 4-2-2-2-4 (e.g: 
A8CB4133-414E-4AF6-06DA-210490939163 — each hex digit representing 4 bits). 

In the GUID-named directory, you can fi nd the usual .app directory, along with several additional 
directories:

This special directory structure, shown in Table 2-1 is required because iOS Apps are chroot(2)-ed 
to their own application directory — the GUID encoded one — and cannot escape it and access 
the rest of the fi le system. This ensures that non-Apple applications are so limited that they can’t 
even see what other applications are installed side by side — contributing to the user’s privacy and 
Apple’s death grip on the operating system (Jailbreaking naturally changes all that). An application 
therefore treats its own GUID directory as the root, and when it needs a temporary directory, /tmp
points to its GUID/tmp.

TABLE 2-1: Default directory structure of an iOS app.

IOS AP P COMPONENT USED FOR

Documents Data fi les saved by the applications (saved high scores for 

games, documents, notes..)

iTunesArtwork The app’s high resolution icon. This is usually a JPG image.

iTunesMetaData.plist The property list of the app, in binary plist format (more on plists 

follows shortly)

Library/ Miscellaneous app fi les. This is further broken down into 

Caches, Cookies, Preferences, and sometimes WebKit (for apps 

with built-in browsing)

Tmp Directory for temporary fi les
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When downloaded from the App Store (or elsewhere), applications are packaged as an .ipa
fi le — this is really nothing more than a zip fi le (and may be opened with unzip(1)), in which the 
application directory contents are compressed, under a Payload/ directory. If you do not have a jail-
broken device, try to unzip –t an .ipa to get an idea of application structure. The .ipas are stored 
locally in Music/iTunes/iTunes Media/Mobile Applications/.

Info.plist
The Info.plist fi le, which resides in the Contents/ subdirectory of Applications (and of most 
other bundles), holds the bundle’s metadata. It is a required fi le, as it supplies information necessary 
for the OS to determine dependencies and other properties.

The property list format, or plist, is well-documented in its own manual page — plist(5). Prop-
erty lists are stored in one of three formats:

 ‰ XML: These human-readable lists are easily identifi ed by the XML signature and docu-
ment type defi nition (DTD) found in the beginning of the fi le. All elements of the property 
list are contained in a <plist> element, which in turn defi nes an array or a dictionary 
(<dict>) — an associative array of keys/values. This is the common format for property lists 
on OS X.

 ‰ Binary: Known as bplists and identifi ed by the magic of bplist at the beginning of the 
fi le, these are compiled plists, which are less readable by humans, but far more optimized 
for the OS, as they do not require any complicated XML parsing and processing. Further, it 
is straightforward to serialize BPlists, as data can be simply memcpy’d directly, rather than 
being converted to ASCII. BPLists have been introduced with OS X v10.2 and are much 
more common on iOS than on OS X.

 ‰ JSON: Using JavaScript Object Notation, the keys/values are stored in a format that is both 
easy to read, as well as to parse. This format is not as common as either the XML or the 
Binary.

All three of these formats are, of course, supported natively. In fact, the Objective-C runtime 
enables developers to be entirely agnostic about the format. In Cocoa, it is simple to instantiate a 
Plist by using the built-in dictionary or array object without having to specify the fi le format:

NSDictionary *dictionary = [NSDictionary dictionaryWithContentsOfURL:plistURL];
NSArray *array = [NSArray arrayWithContentsOfURL:plistURL];

Naturally, humans would prefer the XML format. Both OS X and iOS contain a console mode pro-
gram called plutil(1), which enables you to convert between the various representations. Output 
2-3 shows the usage of plutil(1) for the conversion: 

OUTPUT 2-3: Displaying the Info.plist of an app, after converting it to a more human readable form

morpheus@ergo (~) $ cd  ~/Music/iTunes/iTunes\ Media/Mobile\ Applications/

# Note the .ipa is just a zipfile..
morpheus@ergo(Mob..) $ file someApp.ipa
someApp.ipa: Zip archive data, at least v1.0 to extract
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# Use unzip –j to "junk" subdirs and just inflate the file, without directory 
structure

morpheus@ergo (Mob..) $ unzip -j someApp.ipa Payload/someApp.app/Info.plist
Archive:  someApp.ipa
 inflating: Info.plist

# Resulting file is a binary plist:

morpheus@ergo (Mob..) $ file Info.plist
Payload/someApp.app/Info.plist: Apple binary property list

# .. which can be converted using plutil..

morpheus@ergo (Mob..) $ plutil -convert xml1 - -o - < Info.plist  > converted.Info.plist

# .. and the be displayed:

morpheus@ergo (Mob..) $ more converted.Info.plist
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" 
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
        <key>BuildMachineOSBuild</key>
        <string>10K549</string>
        <key>CFBundleDevelopmentRegion</key>
        <string>English</string>
        <key>CFBundleDisplayName</key>
... (output truncated for brevity)...

A standard Info.plist contains the following entries:

 ‰ CFBundleDevelopmentRegion: Default language if no user-specifi c language can be found.

 ‰ CFBundleDisplayName: The name that is used to display this bundle to the user.

 ‰ CFBundleDocumentTypes: Document types this will be associated with. This is a dictionary, 
with the values specifying the fi le extensions this bundle handles. The dictionary also specifi es 
the display icons used for the associated documents.

 ‰ CFBundleExecutable: The actual executable (binary or library) of this bundle. Located in 
Contents/MacOS.

 ‰ CFBundleIconFile: Icon shown in Finder view.

 ‰ CFBundleIdentifier: Reverse DNS form.

 ‰ CFBundleName: Name of bundle (limited to 16 characters).

 ‰ CFBundlePackageType: Specifying a four letter code, for example, APPL = Application, 
FRMW = Framework, BNDL = Bundle.

 ‰ CFBundleSignature: Four-letter short name of the bundle.

 ‰ CFBundleURLTypes: URLs this bundle will be associated with. This is a dictionary, with the 
values specifying which URL scheme to handle, and how.
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All of the keys in the preceding list have the CF prefi x, as they are defi ned and handled by the Core 
Foundation framework. Cocoa applications can also contain NS keys, defi ning application script-
ability, Java requirements (if any), and system preference pane integration. Most of the NS keys are 
available only in OS X, and not in iOS.

Resources
The Resources directory contains all the fi les the application requires for its use. This is one of the 
great advantages of the bundle format. Unlike other operating systems, wherein the resources have 
to be compiled into the executables, bundles allow the resources to remain separate. This not only 
makes the executable a lot thinner, but also allows for selective update or addition of a resource, 
without the need for recompilation.

The resources are very application-dependent, and can be virtually any type of fi le. It is common, 
however, to fi nd several recurring types. I describe these next. 

NIB Files
.nib fi les are binary plists which contain the positioning and setup of GUI components of an appli-
cation. They are built using XCode’s Interface Builder, which edits the textual versions as .xib,
before packaging them in binary format (from which point on they are no longer editable). The .nib
extension dates back to the days of the NEXT Interface Builder, which is the precursor to XCode’s. 
This, too, is a property list, and is in binary form on both OS X and iOS.

The plutil(1) command can be used to partially decompile a .nib back to its XML representa-
tion, although it still won’t have as much information as the .xib from which it originated (shown 
in the following code). This is no doubt intentional, as .nib fi les are not meant to be editable; if they 
had been, the UI of an application could have been completely malleable externally.

.XIB FILE

<?xml version="1.0" encoding="UTF-8"?>
<archive type="com.apple.InterfaceBuilder3.CocoaTouch.XIB" version="7.10">
        <data>
                <int key="IBDocument.SystemTarget">1056</int>
                <string key="IBDocument.SystemVersion">10J869</string>
                <string key="IBDocument.InterfaceBuilderVersion">1306</string>
                <string key="IBDocument.AppKitVersion">1038.35</string>
                <string key="IBDocument.HIToolboxVersion">461.00</string>
                <object class="NSMutableDictionary" key=
                "IBDocument.PluginVersions">

...
                        <string key="NS.key.0">com.apple.InterfaceBuilder
                         .IBCocoaTouchPlugin</string>
                        <string key="NS.object.0">301</string>
                </object>
                <object class="NSArray" key="IBDocument
                         .IntegratedClassDependencies">
                        <bool key="EncodedWithXMLCoder">YES</bool>
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                        <string>IBUIButton</string>
                        <string>IBUIImageView</string>
                        <string>IBUIView</string>
                        <string>IBUILabel</string>
                        <string>IBProxyObject</string>
                </object>

.NIB FILE

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/
PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
        <key>$archiver</key>
        <string>NSKeyedArchiver</string>
        <key>$objects</key>
        <array>
                <string>$null</string>
                <dict>
                        <key>$class</key>
                        <dict>
                                <key>CF$UID</key>
                                <integer>135</integer>
                        </dict>
                        <key>NS.objects</key>
                        <array>
                                <dict>
                                        <key>CF$UID</key>
                                        <integer>2</integer>
                                </dict>

Internationalization with .lproj Files
Bundles have, by design, internationalization support. This is accomplished by subdirectories for 
each language. Language directories are suffi xed with an .lproj extension. Some languages are 
with their English names (English, Dutch, French, etc), and the rest are with their country and lan-
guage code (e.g. zh_CN for Mandarin, zh_TW for Cantonese). Inside the language directories are 
string fi les, .nib fi les and multimedia which are localized for the specifi c language.

Icons (.icns)
An application usually contains one or more icons for visual display. The application icon is used in 
the Finder, dock, and in system messages pertaining to the application (for example, Force Quit).

The icons are usually laid out in a single fi le, appname.icns, with several resolutions — from 32 ¥ 32 
all the way up to a huge 512 ¥ 512.

CodeResources
The last important fi le an application contains is CodeResources, which is a symbolic link to 
_CodeSignature/CodeResources. This fi le is a property list, containing a listing of all other fi les 
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in the bundle. The property list is a single entry, files, which is a dictionary whose keys are the 
fi le names, and whose values are usually hashes, in Base64 format. Optional fi les have a subdic-
tionary as a value, containing a hash key, and an optional key (whose value is, naturally, a Bool-
ean true).

The CodeResources fi le helps determine if an application is intact or damaged, as well as prevent 
accidental modifi cation or corruption of its resources.

Application default settings
Unlike other well known operating systems, neither OS X nor iOS maintain a registry for applica-
tion settings. This means that an Application must turn to another mechanism to store user 
preferences, and various default settings.

The mechanism Apple provides is known as defaults, and is yet again, a legacy of NeXTSTEP. The 
idea behind it is simple: Each application receives its own namespace, in which it is free to add, 
modify, or remove settings as it sees fi t. This namespace is known as the application’s domain. Addi-
tionally, there is a global domain (NSGlobalDomain) common to all applications. 

The application defaults are (usually) stored in property lists. Apple recommends the reverse DNS 
naming conventions for the plists, which are (again, usually) binary, are maintained on a per-user 
basis, in ~/Library/Preferences. Additionally, applications can store system-wide (i.e. common to 
all users) preferences in /Library/Preferences. NSGlobalDomain is maintained in a hidden fi le, 
.GlobalPreferences.plist, which can also exist in both locations.

A system administrator or power user can access and manipulate defaults using the defaults(1)
command — a generally preferable approach to direct editing of the plist fi les. The command also 
accepts a –host switch, which enables it to set different default settings for the same application on 
different hosts.

Note, that the defaults mechanism only handles the logistics of storing and retrieving settings. What 
applications choose to use this mechanism for is entirely up to them. Additionally, some applications 
(such as VMWare Fusion) deviate from the plist requirement and naming convention. 

Applications are seldom self-contained. As any developer knows, an application cannot rein-
vent the wheel, and must draw on operating system supplied functionality and APIs. In UNIX, 
this mechanism is known as shared libraries. Apple builds on this the idiosyncratic concept of 
frameworks.

Launching Default Applications
Like most GUI operating systems, OS X keeps an association of fi le types to their registered 
applications. This provides for a default application that will be started (or, in Apple-speak, 
“launched”) when a fi le is double clicked, or a submenu of the registered applications, if the 
Open With option is selected from the right click menu. This is also useful from a terminal, 
wherein the open(1) command can be used to start the default application associated with the 
fi le type. 

Windows users are likely familiar with its registry, in which this functionality is implemented (spe-
cifi cally, in subkeys of HKEY_CLASSES_ROOT). OS X provides this functionality a framework 
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called LaunchServices. This framework (which bears no relation to launchd(1), the OS X boot pro-
cess), is part of the Core Services framework (described later in this chapter). 

The launch services framework contains a binary called lsregister, which can be used to dump 
(and also reset) the launch services database, as shown in Listing 2-2:

LISTING 2-2: Using lsregister to view the type registry

morpheus@Ergo (~)$ cd /System/Library/Frameworks/CoreServices.Framework
morpheus@Ergo (../Core..work)$ cd Frameworks/LaunchServices.framework/Support
morpheus@Ergo (../Support)$ ./lsregister -dump
Checking data integrity......done.
Status: Database is seeded.
Status: Preferences are loaded.
-----------------------------------------------------------------------------
...  // some lines omitted here for brevity...
bundle id:            1760
      path:          /System/Library/CoreServices/Archive Utility.app
      name:          Archive Utility
      category:
      identifier:    com.apple.archiveutility (0x8000bd0c)
      version:       58
      mod date:      5/5/2011 2:16:50

reg date:      5/19/2011 10:04:01
      type code:     'APPL'
      creator code:  '????'
      sys version:   0
      flags:         apple-internal  display-name relative-icon-path  wildcard
      item flags:    container  package  application  extension-hidden  native-app  i386
  x86_64
      icon:          Contents/Resources/bah.icns
      executable:    Contents/MacOS/Archive Utility
      inode:         37623
      exec inode:    37629
      container id:  32
      library:
      library items:
       --------------------------------------------------------
       claim id:            8484
             name:

rank:          Default
roles:         Viewer

             flags:         apple-internal  wildcard
             icon:

bindings:      '****', 'fold'
      --------------------------------------------------------
      claim  id:            8512
            name:          PAX archive

rank:          Default
roles:         Viewer

            flags:         apple-default  apple-internal relative-icon-path
            icon:          Contents/Resources/bah-pax.icns

bindings:      public.cpio-archive, .pax
       --------------------------------------------------------

continues
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      claim id:            8848
            name: bzip2 compressed archive

rank:          Default
roles:         Viewer

            flags:         apple-default  apple-internal relative-icon-path
            icon:          Contents/Resources/bah-bzip2.icns

bindings:      .bzip2
        ...
      // many more lines omitted for brevity

A common technique used when the Open With menu becomes too overwhelming (often due to the 
installation of many application), is to rebuild the database with the command: lsregister -kill 
-r -domain local -domain system -domain user.

FRAMEWORKS

Another key component of the OS X landscape are frameworks. Frameworks are bundles, consisting 
of one or more shared libraries, and their related support fi les. 

Frameworks are a lot like libraries (in fact having the same binary format), but are unique to 
Apple’s systems, and are therefore not portable. They are also not considered to be part of 
Darwin: As opposed to the components of Darwin, which are all open source, Apple keeps 
most frameworks in tightly closed source. This is because the frameworks are responsible 
(among other things) for providing the unique look-and-feel, as well as other advanced features 
that are offered only by Apple’s operating systems — and which Apple certainly wouldn’t want 
ported. The “traditional” libraries still exist in Apple’s systems (and, in fact, provide the basis 
on top of which the frameworks are implemented). The frameworks do, however, provide a full 
runtime interface, and — especially in Objective-C — serve to hide the underlying system and 
library APIs.

Framework Bundle Format
Frameworks, like applications (and most other fi les on OS X), are bundles. Thus, they follow a fi xed 
directory structure:

CodeResources/        Symbolic link to Code Signature/CodeResources plist
     Headers/         Symbolic link to Miscellaneous .h files provided by this
 framework
     Resources/       .nib files (GUI), .lproj files, or other files required by
 framework
     Versions/        Subdirectory to allow versioning
          A/          Letter directories denoting version of this framework
          Current/    Symbolic link to preferred framework version

Framework –name  Symbolic link to framework binary, in preferred version

As you can see, however, framework bundles are a bit different than applications. The key difference 
is in the built-in versioning mechanism: A framework contains one or more versions of the code, 

LISTING 2-2 (continued)
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which may exist side-by-side in separate subdirectories, such as Versions/A , Versions/B, and so 
on. The preferred version can then easily be toggled by creating a symbolic link (shortcut) called 
Current. The framework fi les themselves are all links to the selected version fi les. This approach 
takes after the UN*X model of symbolically linking libraries, but extends it to headers as well. And, 
while most frameworks still have only one version (usually A, but sometimes B or C), this architec-
ture allows for both forward and backward compatibility.

The OS X and iOS GCC supports a -framework switch, which enables the inclusion of any frame-
work, whether Apple supplied or 3rd party.  Using this fl ag provides to the compiler a hint as to 
where to fi nd the header fi les (much like the –I switch), and to the linker where to fi nd the library 
fi le (similar, but not exactly like the –l switch)

Finding Frameworks
Frameworks are stored in several locations on the fi le system:

 ‰ /System/Library/Frameworks. Contains Apple’s supplied frameworks — both in iOS and 
OS X

 ‰ /Network/Library/Frameworks may (rarely) be used for common frameworks installed on 
the network.

 ‰ /Library/Frameworks holds 3rd party frameworks (and, as can be expected, the directory is 
left empty on iOS)

 ‰ ~/Library/Frameworks holds frameworks supplied by the user, if any

Additionally, applications may include their own frameworks. Good examples for this are Apple’s 
GarageBand, iDVD, and iPhoto, all of which have application-specifi c frameworks in Contents/
Frameworks.

The framework search may be modifi ed further by user-defi ned variables, in the following 
order:

 ‰ DYLD_FRAMEWORK_PATH

 ‰ DYLD_LIBRARY_PATH

 ‰ DYLD_FALLBACK_FRAMEWORK_PATH

 ‰ DYLD_FALLBACK_LIBRARY_PATH

Apple supplies a fair number of frameworks — over 90 in Snow Leopard, and well past 100 in Lion. 
Even greater in number, however, are the private frameworks, which are used internally by the 
public ones, or directly by Apple’s Applications. These reside in /System/Library/PrivateFrame-
works, and are exactly the same as the public ones, save for header fi les, which are (intentionally) 
not included. 

Top Level Frameworks
The two most important frameworks in OS X are known as Carbon and Cocoa:
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Carbon
Carbon is the name given to the OS 9 legacy programming interfaces. Carbon has been declared 
deprecated, though many applications, including Apple’s own, still rely on it. Even though many of 
its interfaces are specifi cally geared for OS 9 compatibility, many new interfaces have been added 
into it, and it shows no sign of disappearing.

Cocoa
Cocoa is the preferred application programming environment. It is the modern day incarnation of 
the NeXTSTEP environment, as is evident by the prefi x of many of its base classes — NS, short for 
NeXTSTEP/Sun. The preferred language for programming with Cocoa is Objective C, although it 
can be accessed from Java and AppleScript as well. 

If you inspect the Cocoa and Carbon frameworks, you will see they are both 
small, almost tiny binaries — around 40k or so on Snow Leopard. That’s unusu-
ally small for a framework with such a vast API. It’s even more surprising, given 
that Cocoa is a “fat” binary with all three architectures (including the deprecated 
PPC). The secret to this is that they are built on top of other frameworks, and 
essentially serve as a wrapper for them — by re-exporting their dependencies’ 
symbols as their own. 

The “Cocoa” framework just serves to include three others: AppKit, Core-
Data and Foundation, which can be seen directly, in its Headers/cocoa.h.
In Apple-speak, a framework encapsulating others is often referred to as 
an umbrella framework. The term applies whether the framework merely 
#imports, as Cocoa does, or actually contains nested frameworks, as the 
Application and Core Services frameworks do. This can be seen in the follow-
ing code:

/*
        Cocoa.h
        Cocoa Framework
        Copyright (c) 2000-2004, Apple Computer, Inc.
        All rights reserved.

        This file should be included by all Cocoa application 
source files for easy building.  Using this file is preferred
over importing individual files because it will use a precompiled
version.

        Tools with no UI and no AppKit dependencies may prefer to
include just <Foundation/Foundation.h>.
*/

#import <Foundation/Foundation.h>
#import <AppKit/AppKit.h>
#import <CoreData/CoreData.h>
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List of OS X and iOS Public Frameworks
Table 2-2 lists the frameworks in OS X and iOS, including the versions in which they came to be 
supported. The version numbers are from the Apple offi cial documentation [3, 4], wherein similar (and 
possibly more up to date tables) tables can be found. There is a high degree of overlap in the frame-
works, with many frameworks from OS X being ported to iOS, and some (like CoreMedia) making 
the journey in reverse. This is especially true in the upcoming Mountain Lion, which ports several 
frameworks like Game Center and Twitter from iOS. Additionally, quite a few of the OS X frame-
works exist in iOS as private ones.

TABLE 2-2: Public frameworks in Mac OS X and iOS

FRAMEWORK OS X IOS USED FOR

AGL 10.0 -- Carbon interfaces for OpenGL

Accounts 10.8 5.0 User account database — Single sign on support 

Accelerate 10.3 4.0 Accelerated Vector operations 

AddressBook 10.2 2.0 Address Book functions

AddressBookUI -- 2.0 Displaying contact information (iOS)

AppKit 10.0 -- One of Cocoa’s main libraries (relied on by Cocoa.

Framework), and in itself, an umbrella for others. Also 

contains XPC (which is private in iOS)

AppKitScripting 10.0 -- Superseded by Appkit 

AppleScriptKit 10.0 -- Plugins for AppleScript

AppleScriptObjC 10.0 -- Objective-C based plugins for AppleScript

AppleShareClientCore 10.0 -- AFP client implementation

AppleTalk 10.0 -- Core implementation of the AFP protocol

ApplicationServices 10.0 -- Umbrella (headers) for CoreGraphics, CoreText, Col-

orSync, and others, including SpeechSynthesis (the 

author’s favorite)

AudioToolBox 10.0 2.0 Audio recording/handling and others

AssetsLibrary -- 4.0 Photos and Videos

AudioUnit 10.0 2.0 Audio Units (plug-ins) and Codecs

AudioVideoBridging 10.8 -- AirPlay

AVFoundation 10.7 2.2 Objective-C support for Audio/Visual media. Only 

recently ported into Lion

continues
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FRAMEWORK OS X IOS USED FOR

Automator 10.4 -- Automator plug-in support

CalendarStore 10.5 -- iCal support

Carbon 10.0 -- Umbrella (headers) for Carbon, the legacy OS 9 APIs

Cocoa 10.0 -- Umbrella (headers) for Cocoa APIs — AppKit, Core-

Data and Foundation

Collaboration 10.5 -- The CBIdentity* APIs

CoreAudio 10.0 2.0 Audio abstractions

CoreAudioKit 10.4 -- Objective-C interfaces to Audio

CoreBlueTooth -- 5.0 BlueTooth APIs

CoreData 10.4 3.0 Data model — NSEntityMappings, etc.

CoreFoundation 10.0 2.0 Literally, the core framework supporting all the rest 

through primitives, data structures, etc. (the CF* 

classes)

CoreLocation 10.6 2.0 GPS Services

CoreMedia 10.7 4.0 Low-level routines for audio/video

CoreMediaIO 10.7 -- Abstraction layer of CoreMedia

CoreMIDI 10.0 -- MIDI client interface

CoreMIDIServer 10.0 -- MIDI driver interface

CoreMotion -- 4.0 Accelerometer/gyroscope

CoreServices 10.0 -- Umbrella for AppleEvents, Bonjour, Sockets, 

Spotlight, FSEvents, and many other services (as 

sub-frameworks)

CoreTelephony -- 4.0 Telephony related data

CoreText 10.5 3.2 Text, fonts, etc. On OS X this is a sub framework of 

ApplicationServices.

CoreVideo 10.5 4.0 Video format support used by other libs

CoreWifi 10.8 P Called “MobileWiFi” and private in iOS

CoreWLAN 10.6 -- Wireless LAN (WiFi)

DVComponentGlue 10.0 -- Digital Video recorders/cameras

TABLE 2-2 (continued)
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FRAMEWORK OS X IOS USED FOR

DVDPlayback 10.3 -- DVD playing

DirectoryService 10.0 -- LDAP Access

DiscRecording 10.2 -- Disc Burning libraries

DiscRecordingUI 10.2 -- Disc Burning libraries, and user interface

DiskArbitration 10.4 -- Interface to DiskArbitrationD, the system volume 

manager

DrawSprocket 10.0 -- Sprocket components

EventKit 10.8 4.0 Calendar support

EventKitUI -- 4.0 Calendar User interface

ExceptionHandling 10.0 -- Cocoa exception handling

ExternalAccessory -- 3.0 Hardware Accessories (those that plug in to iPad/

iPod/iPhone)

FWAUserLib 10.2 -- FireWire Audio

ForceFeedback 10.2 -- Force Feedback enabled devices (joysticks, game-

pads, etc)

Foundation 10.0 2.0 underlying data structure support

GameKit 10.8 3.0 Peer-to-peer connectivity for gaming

GLKit 10.8 5.0 OpenGLES helper

GLUT 10.0 -- OpenGL Utility framework

GSS 10.7 5.0 Generic Security Services API (RFC2078), fl avored 

with some private Apple extensions

iAd -- 4.0 Apple’s mobile advertisement distribution system

ICADevices 10.3 -- Scanners/Cameras (like TWAIN)

IMCore 10.6 -- Used internally by InstantMessaging

ImageCaptureCore 10.6 P Supersedes the older ImageCapture

ImageIO -- 4.0 Reading/writing graphics formats

IMServicePlugin 10.7 -- iChat service providers

InputMethodKit 10.5 -- Alternate input methods

continues
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FRAMEWORK OS X IOS USED FOR

InstallerPlugins 10.4 -- Plug-ins for system installer

InstantMessage 10.4 M Instant Messaging and iChat

IOBluetooth 10.2 -- BlueTooth support for OS X

IOBluetoothUI 10.2 -- BlueTooth support for OS X

IOKit 10.0 2.0 User-mode components of device drivers

IOSurface 10.6 P Shares graphics between applications

JavaEmbedding 10.0-

10.7

-- Embeds Java in Carbon. No longer supported in Lion 

and later

JavaFrameEmbedding 10.5 -- Embeds Java in Cocoa

JavaScriptCore 10.5 5.0 The Javascript interpreter used by Safari and other 

WebKit programs.

JavaVM 10.0 -- Apple’s port of the Java runtime library

Kerberos 10.0 -- Kerberos support (required for Active Directory 

integration and some UNIX domains)

Kernel 10.0 -- Required for Kernel Extensions

LDAP 10.0 P Original LDAP support. Superseded by 

OpenDirectory

LatentSemanticMapping 10.5 -- Latent Semantic Mapping

MapKit -- 4.0 Embedding maps and geocoding data

MediaPlayer -- 2.0 iPod player interface and movies

MediaToolbox 10.8 P

Message 10.0 P Email messaging support

MessageUI -- 3.0 UI Resources for messaging and the Mail.app 

(ComposeView and friends)

MobileCoreServices -- 3.0 Core Services, light

Newsstandkit -- 5.0 Introduced with iOS 5.0’s “Newsstand”

NetFS 10.6 -- Network File Systems (AFP, NFS)

OSAKit 10.4 -- OSA Scripting integration in Cocoa

OpenAL 10.4 2.0 Cross platform audio library

TABLE 2-2 (continued)

c02.indd 40c02.indd   40 9/29/2012 5:08:41 PM9/29/2012   5:08:41 PM



Frameworks x 41

FRAMEWORK OS X IOS USED FOR

OpenCL 10.6 P GPU/Parallel Programming framework

OpenDirectory 10.6 -- Open Directory (LDAP) objective-C bindings

OpenGL 10.0 -- OpenGL — 3D Graphics. Links with OpenCL on 

supported chipsets.

OpenGLES -- 2.0 Embedded OpenGL — replaces OpenGL in iOS

PCSC 10.0 -- SmartCard support

PreferencePanes 10.0 -- System Preference Pane support. Actual panes 

are bundles in the /System/Library/

PreferencePanes folder

PubSub 10.5 -- RSS/Atom support

Python 10.3 -- The Python scripting language

QTKit 10.4 -- QuickTime support

Quartz 10.4 -- An umbrella framework containing PDF support, 

ImageKit, QuartzComposer, QuartzFilters, and Quick-

LookUI.Responsible for most of the 2D graphics in 

the system

QuartzCore 10.4 2.0 Interface between Quartz and Core frameworks

QuickLook 10.5 4.0 Previewing and thumbnailing of fi les

QuickTime 10.0 -- Quicktime embedding

Ruby 10.5 -- The popular Ruby scripting language

RubyCocoa 10.5 -- Ruby Cocoa bindings

SceneKit 10.8 -- 3D rendering. Available as a private framework of 

Lion, but made into a public one in Mountain Lion 

ScreenSaver 10.0 -- Screen saver APIs

Scripting 10.0 -- The original scripting framework. Now superseded

ScriptingBridge 10.5 -- Scripting adapters for Objective-C

Security 10.0 3.0 Certifi cates, Keys and secure random numbers

SecurityFoundation 10.0 -- SF* Authorization

SecurityInterface 10.3 -- SF* headers for UI of certifi cates, authorization and 

keychains

ServerNotification 10.6 -- Notfi ciation support

continues
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FRAMEWORK OS X IOS USED FOR

ServiceManagement 10.6 -- Interface to launchD

StoreKit 10.7 3.0 In-App purchases

SyncServices 10.4 -- Sync calendars with .mac

System 10.0 2.0 Internally used by other frameworks

SystemConfiguration 10.0, 

10.3

2.0 SCNetwork, SCDynamicStore

TWAIN 10.2 -- Scanner support

Twitter 10.8 5.0 Twitter support (in iOS 5)

Tcl 10.3 -- TCL Interpreter

Tk 10.4 -- Tk Toolkits

UIKit -- 2.0 Cocoa Touch — replaces AppKit

VideoDecodeAcceleration 10.6.3 -- H.264 acceleration via GPU (TN2267)

VideoToolkit 10.8 P Replaces QuickTime image compression manager 

and provides video format support

WebKit 10.2 P HTML rendering (Safari Core)

XgridFoundation 10.4–

10.7

-- Clustering (removed in Mountain Lion)

vecLib 10.0 -- Vector calculations (sub framework of Accelerate)

Exercise: Demonstrating the Power of Frameworks 
OS X’s frameworks really are technological marvels. By any standards, their ingenuity and reusabil-
ity stands out. There are many stunning examples one can bring using graphical frameworks, but a 
really useful, and equally impressive example is the SpeechSynthesis.Framework.

This framework allows the quick and easy embedding of Text-to-Speech features by drawing on 
complicated logic which has already been developed (and, to a large part, perfected) by Apple. The 
/System/Library/Speech directory contains the Synthesizers (currently, only one — MacinTalk) 
which are Mach-O binary bundles, that can be loaded, like libraries, into virtually any process. 
Additionally, there are quite a few pre-programmed voices (in the Voices/ subdirectory), and Rec-
ognizers (for Speech-to-Text). The voices encode the pitch and other speech parameters, in a pro-
prietary binary form. There is ample documentation about this in the Apple Developer document 
“The Speech Synthesis API,” and a cool utility to customize speech (which is part of XCode) called 
“Repeat After Me” (/Developer/Applications/Utilities/Speech/Repeat After Me).

TABLE 2-2 (continued)
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The average developer, however, needn’t care about all this.  The Speech Synthesizer can be accessed 
(among other ways) through the SpeechSynthesis.Framework, which itself is under Application-
Services (Carbon) or AppKit (Cocoa). This enables a C or Objective-C application to enable Text-
To-Speech — in one of the many voices on the system — in a matter of several lines of code, as is 
demonstrated in the following example. The example shows a quick and dirty example of drawing 
on OS X’s text-to-speech.

To not get into the quite messy Objective-C syntax, the next example, shown in Listing 2-3 is in C, 
and therefore uses the ApplicationServices framework, rather than AppKit.

LISTING 2-3: Demonstrating a very simple (partial) implementation of the say(1) utility

#include <ApplicationServices/ApplicationServices.h>

// Quick and dirty (partial) implementation of OS X's say(1) command
// Compile with -framework ApplicationServices

void main (int argc, char **argv)
{

        OSErr rc;
        SpeechChannel channel;
        VoiceSpec vs;
        int voice;
        char *text = "What do you want me to say?";

        if (!argv[1]) { voice = 1; } else { voice = atoi(argv[1]); }

        if (argc == 3) { text = argv[2]; }

        // GetIndVoice gets the voice defined by the (positive) index
rc= GetIndVoice(voice, // SInt16       index,

                        &vs);  // VoiceSpec *  voice)

        // NewSpeechChannel basically makes the voice usable
rc = NewSpeechChannel(&vs,// VoiceSpec * voice, /* can be NULL */

                              &channel);

        // And SpeakText... speaks!
rc = SpeakText(channel,      // SpeechChannel   chan,

                      text,          // const void *    textBuf,
                      strlen(text)); //unsigned long   textBytes)

        if (rc) { fprintf (stderr,"Unable to speak!\n"); exit(1);}

        // Because speech is asynchronous, wait until we are done.
        // Objective-C has much nicer callbacks for this.

        while (SpeechBusy()) sleep(1);
        exit(0);
}
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The speech framework can also be tapped by other means. There are various bridges to other 
languages, such as Python and Ruby, and for non-programmers, there is the command line of 
say(1) (which the example mimics), and/or Apple’s formidable scripting language, Applescript 
(accessible via osascript(1)). To try this for yourself, have some fun with either command 
(which can be an inexhaustible font of practical jokes, or other creative uses, as is shown in the 
comic in Figure 2-3)

FIGURE 2-3: Other creative uses of OS X Speech, from the excellent site, http://XKCD.com/530 

(incidentally, osascript -e “set Volume 10” is what he is looking for)

As stated, an application may be entirely dependent only on the frameworks, which is indeed the 
case for many OS X and iOS apps. The frameworks themselves, however, are dependent on the 
operating system libraries, which are discussed next.

LIBRARIES

Frameworks are just a special type of libraries.  In fact, framework binaries are libraries, as can be 
verifi ed with the file(1) command. Apple still draws a distinction between the two terms, and 
frameworks tend to be more OS X (and iOS) specifi c, as opposed to libraries, which are common to 
all UNIX systems. 

OS X and iOS store their “traditional” libraries in /usr/lib (there is no /lib). The libraries are 
suffi xed with a .dylib extension, rather than the customary .so (shared object) of ELF on other 
UNIX. Aside from the different extension (and the different binary format, which is incompatible 
with .so), they are still conceptually the same. You can still fi nd your favorite libraries from other 
UNIX here, albeit with the .dylib format. 
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If you try to look around the iOS fi le system — either on a live, jailbroken sys-
tem, or through an iOS software update image (.ipsw), you will see that many 
of the libraries (and, for that matter, also frameworks), are missing! This is due 
to an optimization (and possibly obfuscation) technique of library caching, 
which is discussed in the next chapter. It’s easier, therefore to look at the iPhone 
SDK, wherein the fi les can be found under /Developer/Platforms/iPhoneOS.
platform/Developer/SDKs/iPhoneOS#.#.sdk/.

The core library — libc — has been absorbed into Apple’s own libSystem.B.dylib. This library 
also provides the functionality traditionally offered by the math library (libm), and PThreads 
(libpthread) — as well as several others, which are all just symbolic links to libSystem, as you can 
see in Output 2-4:

OUTPUT 2-4: Libraries in /usr/lib which are all implemented by libSystem.dylib

morpheus@Minion (/)$ ls -l /usr/lib | grep ^l | grep libSystem.dylib
lrwxr-xr-x   1 root  wheel       17 Sep 26 02:08 libSystem.dylib -> libSystem.B.dylib
lrwxr-xr-x   1 root  wheel       15 Sep 26 02:08 libc.dylib -> libSystem.dylib
lrwxr-xr-x   1 root  wheel       15 Sep 26 02:08 libdbm.dylib -> libSystem.dylib
lrwxr-xr-x   1 root  wheel       15 Sep 26 02:08 libdl.dylib -> libSystem.dylib
lrwxr-xr-x   1 root  wheel       15 Sep 26 02:08 libinfo.dylib -> libSystem.dylib
lrwxr-xr-x   1 root  wheel       15 Sep 26 02:08 libm.dylib -> libSystem.dylib
lrwxr-xr-x   1 root  wheel       15 Sep 26 02:08 libpoll.dylib -> libSystem.dylib
lrwxr-xr-x   1 root  wheel       15 Sep 26 02:08 libproc.dylib -> libSystem.dylib
lrwxr-xr-x   1 root  wheel       15 Sep 26 02:08 libpthread.dylib -> libSystem.dylib
lrwxr-xr-x   1 root  wheel       15 Sep 26 02:08 librpcsvc.dylib -> libSystem.dylib

Yet, libSystem itself relies on several libraries internal to it — which are found in /usr/lib/system.
It imports these libraries, and then re-exports their public symbols as if they are its own. In Snow 
Leopard, there are fairly few such libraries. In Lion and iOS 5, there is a substantial number. This is 
shown in Output 2-5, which demonstrates using XCode’s otool(1) to show library dependencies. 
Note, that because libSystem is cached (and therefore not present in the iOS fi lesystem), it’s easier 
to run it on the iPhone SDK’s copy of the library.

OUTPUT 2-5: Dependencies of iOS 5’s libSystem using otool(1). 

morpheus@ergo (.../Developer/SDKs/iPhoneOS5.0.sdk/usr/lib)$ otool -L libSystem.B.dylib
libSystem.B.dylib (architecture armv7):
 /usr/lib/libSystem.B.dylib (compatibility version 1.0.0, current version 161.0.0)
 /usr/lib/system/libcache.dylib (compatibility version 1.0.0, current version 49.0.0)
 /usr/lib/system/libcommonCrypto.dylib (compatibility version 1.0.0, current version 40142.0.0)
 /usr/lib/system/libcompiler_rt.dylib (compatibility version 1.0.0, current version 16.0.0)

continues
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 /usr/lib/system/libcopyfile.dylib (compatibility version 1.0.0, current version 87.0.0)
 /usr/lib/system/libdispatch.dylib (compatibility version 1.0.0, current version 192.1.0)
 /usr/lib/system/libdnsinfo.dylib (compatibility version 1.0.0, current version 423.0.0)
 /usr/lib/system/libdyld.dylib (compatibility version 1.0.0, current version 199.3.0)
 /usr/lib/system/libkeymgr.dylib (compatibility version 1.0.0, current version 25.0.0)
 /usr/lib/system/liblaunch.dylib (compatibility version 1.0.0, current version 406.4.0)
 /usr/lib/system/libmacho.dylib (compatibility version 1.0.0, current version 806.2.0)
 /usr/lib/system/libnotify.dylib (compatibility version 1.0.0, current version 87.0.0)
/usr/lib/system/libremovefile.dylib (compatibility version 1.0.0, current version 22.0.0)
/usr/lib/system/libsystem_blocks.dylib (compatibility version 1.0.0, current version 54.0.0)
 /usr/lib/system/libsystem_c.dylib (compatibility version 1.0.0, current version 770.4.0)
 /usr/lib/system/libsystem_dnssd.dylib (compatibility version 1.0.0, current version 1.0.0)
 /usr/lib/system/libsystem_info.dylib (compatibility version 1.0.0, current version 1.0.0)
 /usr/lib/system/libsystem_kernel.dylib (compatibility version 1.0.0, current version 1878.4.20)
/usr/lib/system/libsystem_network.dylib (compatibility version 1.0.0, current version 1.0.0)
/usr/lib/system/libsystem_sandbox.dylib (compatibility version 1.0.0, current version 1.0.0)
 /usr/lib/system/libunwind.dylib (compatibility version 1.0.0, current version 34.0.0)
 /usr/lib/system/libxpc.dylib (compatibility version 1.0.0, current version 89.5.0)

The OS X loader, dyld(1), is also referred to as the Mach-O loader. This is discussed in great detail 
in the next chapter, which offers an inside view on process loading and execution from the user 
mode perspective.

OS X contains out-of-box many other open source libraries, which have been included in Darwin 
(and in iOS). OpenSSL, OpenSSH, libZ, libXSLT, and many other libraries can either be obtained 
from Apple’s open source site, or downloaded from SourceForge and other repositories, and com-
piled. Ironically enough, it’s not the fi rst (nor last) time these open source libraries were the source 
of iOS jailbreaks (libTiff? FreeType, anyone?) 

OTHER APPLICATION TYPES

The Application and App bundles discussed so far aren’t the only types of applications that can be 
created. OS X (and, to a degree iOS) supports several other types of Applications as well.

Java (OS X only)
OS X includes a fully Java 1.6 compliant Java virtual machine. Just like other systems, Java applications 
are provided as .class fi les. The .class fi le format is not native to OS X — meaning one still needs 
to use the java(1) command-line utility to execute it, just like anywhere else. The JVM implementa-
tion, however, is maintained by Apple. The java command line utilities (java, javac, and friends)
are all part of the public JavaVM.framework. Two other frameworks, JavaEmbedding.framework and 
JavaFrameEmbedding.framework, are used to link with and embed Java in Objective-C.

OUTPUT 2-5 (continued)
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The actual launching of the Java VM process is performed by the private JavaLaunching.frame-
work, and JavaApplicationLauncher.framework. iOS does not, at present, support Java.

Widgets
Dashboard widgets (or, simply, Widgets) are HTML/Javascript mini-pages, which can be presented 
by dashboard. These mini-apps are very easy to program (as they are basically the same as web 
pages), and are becoming increasingly popular.

Widgets are stored in /Library/Widgets, as bundles with the .wdgt extension. Each such bundle is 
loosely arranged, containing:

 ‰ An HTML fi le (widgetname.html) which is the Widget’s UI. The UI is marked up just like 
normal HTML, usually with two <div> elements — displaying the front and back of the 
widget, respectively.

 ‰ A Javascript (JS) fi le (widgetname.js) which is the Widget’s “engine,” providing for its 
interactivity

 ‰ A Cascading Style Sheet (CSS) fi le (widgetname.css), which provides styles, fonts, etc.

 ‰ Language directories, like other bundles, containing localized strings

 ‰ Any images or other fi les, usually stored in an Images/ subdirectory

 ‰ Any binary plugins, required when the widget cannot be fully implmeneted in Javascript. 
This is optional (for example, Calculator.wdgt does not have one) and, if present, contains 
another bundle, with a binary plugin (with a Mach-O binary subtype of “bundle”). These 
can be loaded into Dashboard itself to provide complicated functionality that needs to break 
out of the browser environment, for example to access local fi les.

BSD/Mach Native
Though the preferred language for both iOS and OS X is Objective-C, native applications may be 
coded in C/C++, and may choose to forego frameworks, working directly with the system libraries 
and the low-level interfaces of BSD and Mach instead. This allows for the relatively straightforward 
porting of UNIX code bases, such as PHP, Apache, SSH, and numerous other open-source products.  
Additionally, initiatives such as “MacPorts” and “fi nk” go the extra step by packaging these sources, 
once compiled, into packages akin to Linux’s RPM/APT/DEB model, for quick binary installation.

OS X’s POSIX compliance makes it very easy to port applications to it, by relying on the standard 
system calls, and the libraries discussed earlier. This also holds true for iOS, wherein developers 
have ported everything but the kitchen sink, available through Cydia. There is, however, another 
subset of APIs — Mach Traps, which remains OS X (and GNUStep) specifi c, and which coexists 
with that of BSD. Both of these are explained from the user perspective next.
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SYSTEM CALLS

As in all operating systems, user programs are incapable of directly accessing system resources. Pro-
grams can manipulate the general-purpose registers and perform simple calculations, but in order to 
achieve any signifi cant functionality, such as opening a fi le or a socket, or even outputting a simple 
message — they must use system calls. These are entry points into predefi ned functions exported 
by the kernel and accessible in user mode by linking against /usr/lib/libSystem.B.dylib. OS X 
system calls are unusual in that the system actually exports two distinct “personalities” — that of 
Mach and that of POSIX. 

POSIX
Starting with Leopard (10.5), OS X is a certifi ed UNIX implementation. This means that it is fully 
compliant with the Portable Operating System Interface, more commonly known as POSIX. POSIX 
is a standard API that defi nes, specifi cally:

 ‰ System call prototypes: All POSIX system calls, regardless of underlying implementation, 
have the same prototype — i.e., the same arguments and return value. Open(2), for example, 
is defi ned on all POSIX systems as:

                          int    open(const char *path, int oflag, ...);

path is the name of the fi le name to be opened, and oflags is a bitwise OR of fl ags defi ned 
in <fcntl.h> (for example, O_RDONLY, O_RDWR, O_EXCL).

This ensures that POSIX-compatible code can be ported — at the source level — between 
any POSIX compatible operating system. Code from OS X can be ported to Linux, Free-
BSD, and even Solaris — as long as it relies on nothing more than POSIX calls and the 
C/C++ standard libraries.

 ‰ System call numbers: The key POSIX functions, in addition to the fi xed prototype, have well-
defi ned system call numbers. This enables(to a limited extent) binary portability — meaning 
that a POSIX-compiled binary can be ported between POSIX systems of the same underlying 
architecture (for example, Solaris can run native Linux binaries — both are ELF). OS X does
not support this, however, because its object format, Mach-O, is incompatible with ELF. 
What’s more, its system call numbers deviate from those of the standard. 

The POSIX compatibility is provided by the BSD layer of XNU. The system-call prototypes are in 
<unistd.h>. We discuss their implementations in Chapter 8.

Mach System Calls
Recall that OS X is built upon the Mach kernel, a legacy of NeXTSTEP. The BSD layer wraps the 
Mach kernel, but its native system calls are still accessible from user mode. In fact, without Mach 
system calls, common commands such as top wouldn’t work.

In 32-bit systems, Mach system calls are negative. This ingenious trick enables both POSIX and 
Mach system calls to exist side by side. Because POSIX only defi nes non-negative system calls, the 
negative space is left undefi ned, and therefore usable by Mach.
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In 64-bit systems, Mach system calls are positive, but are prefi xed with 0x2000000 — which clearly 
separates and disambiguates them from the POSIX calls, which are prefi xed with 0x1000000.

The online appendix at http://newosxbook.com lists the various POSIX and Mach system calls. We 
will further cover the transition to Kernel mode in Chapter 8, and the Kernel perspective of system 
calls and traps in Chapters 9 and 13.

Experiment: Displaying Mach and BSD system calls
System calls aren’t called directly, but via thin wrappers in libSystem.B.dylib. Using otool(1),
the default Mach-O handling tool and disassembler on OS X, you can disassemble (with the –tV
switch) any binary, and peek inside libSystem. This will enable you to see how the system call inter-
face in OS X works with both Mach and BSD calls.

On a 32-bit system, a Mach system call would look something like this:

Morpheus@Ergo (/) % otool –arch i386 –tV /usr/lib/libSystem.B.dylib | more
/usr/lib/libSystem.B.dylib:
(__TEXT,__text) section
_mach_reply_port:
000010c0        movl    $0xffffffe6,%eax    ; Load system call # into EAX
000010c5        calll   __sysenter_trap
000010ca ret
000010cb        nop                         ; padding to 32-bit boundary
_thread_self_trap:
000010cc        movl    $0xffffffe5,%eax    ; Load system call # into EAX…
000010d1        calll   __sysenter_trap
000010d6 ret
000010d7        nop                         ; padding to 32-bit boundary
__sysenter_trap:
000013d8        popl    %edx
000013d9        movl    %esp,%ecx
000013db        sysenter                    ; Actually execute sysenter
000013dd        nopl    (%eax)

The system call number is loaded into the EAX register. Note the number is specifi ed as 
0xFFFFxxxx. Treated as a signed integer, the Mach API calls would be negative.  Looking at a BSD 
system call:

Ergo (/) % otool –arch i386 –tV /usr/lib/libSystem.B.dylib –p _chown | more
/usr/lib/libSystem.B.dylib:
(__TEXT,__text) section
_chown:
0005d350        movl    $0x000c0010,%eax    ; load system call -
0005d355        calll   0x00000dd8          ; jump to __sysenter_trap
0005d35a        jae     0x0005d36a          ; if return code >= 0: jump to ret
0005d35c        calll   0x0005d361
0005d361        popl    %edx
0005d362        movl    0x0014c587(%edx),%edx
0005d368        jmp     *%edx
0005d36a ret
0005d87c        calll   0x0005d881          ; on error…
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0005d881        popl    %edx
0005d882        movl    0x0014c063(%edx),%edx
0005d888        jmp     *%edx
0005d88a ret

The same example, on a 64-bit architecture, reveals a slightly different implementation:

Ergo (/) % otool –arch x86_64 –tV /usr/lib/libSystem.B.dylib | more
/usr/lib/libSystem.B.dylib:
(__TEXT,__text) section
_mach_reply_port:
00000000000012a0        movq    %rcx,%r10
00000000000012a3        movl    $0x0100001a,%eax ; Load system call 0x1a with

; flag 0x01
00000000000012a8        syscall ; call syscall directly
00000000000012aa ret
00000000000012ab        nop

And, for a POSIX (BSD) system call:

Ergo (/) % otool –arch x86_64 –tV /usr/lib/libSystem.B.dylib –p _chown | more
/usr/lib/libSystem.B.dylib:
(__TEXT,__text) section
___chown:
0000000000042f20        movl    $0x02000010,%eax  # Load system call (0x10),

 # with flag 0x02
0000000000042f25        movq    %rcx,%r10
0000000000042f28        syscall  # call syscall directly
0000000000042f2a        jae     0x00042f31 # if >=0, jump to ret
0000000000042f2c        jmp     cerror  # else jump to cerror

# (return -1, set errno)
0000000000042f31 ret

If you continue this example and try the ARM architecture (for iOS) as well, you’ll see a similar 
fl ow, with the system call number loaded into r12, the intra-procedural register, and executed 
using the svc (also sometimes decoded by assemblers as swi, or SoftWare Interrupt) command.  In 
the example below (using GDB, though otool(1) would work just as well), BSD’s chown(2) and 
Mach’s mach_reply_port are disassembled. Note the latter is loaded with “mvn” — Move Negative. 
The return code is, as usual in ARM, in R0.

 (gdb) disass chown
0x30d2ad54 <chown>:        mov r12, #16 ; 0x10
0x30d2ad58 <chown+4>:      svc    0x00000080
0x32f9c758 <chown+8>: bcc    0x32f9c770 <chown+32> ; jump to exit on >= 0
0x32f9c75c <chown+12>:     ldr r12, [pc, #4] ; 0x32f9c768 <chown+24>
0x32f9c760 <chown+16>:     ldr r12, [pc, r12]
0x32f9c764 <chown+20>: b      0x32f9c76c <chown+28>
0x32f9c768 <chown+24>: bleq   0x321e2a50 ; to errno setting
0x32f9c76c <chown+28>: bx r12
0x32f9c770 <chown+32>: bx     lr
(gdb) disass mach_reply_port
Dump of assembler code for function mach_reply_port:
0x32f99bbc <mach_reply_port+0>:  mvn r12, #25  ; 0x19
0x32f99bc0 <mach_reply_port+4>:  svc    0x00000080
0x32f99bc4 <mach_reply_port+8>: bx     lr
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A HIGH-LEVEL VIEW OF XNU

The core of Darwin, and of all of OS X, is its Kernel, XNU. XNU (allegedly an infi nitely recursive 
acronym for XNU’s Not UNIX) is itself made up of several components:

 ‰ The Mach microkernel 

 ‰ The BSD layer

 ‰ libKern

 ‰ I/O Kit

Additionally, the kernel is modular and allows for pluggable Kernel Extensions (KExts) to be 
dynamically loaded on demand.

The bulk of this book — its entire second part — is devoted to explaining XNU in depth. Here, 
however, is a quick overview of its components.

Mach
The core of XNU, its atomic nucleus, if you will, is Mach. Mach is a system that was originally 
developed at Carnegie Mellon University (CMU) as a research project into creating a lightweight 
and effi cient platform for operating systems. The result was the Mach microkernel, which handles 
only the most primitive responsibilities of the operating system:

 ‰ Process and thread abstractions

 ‰ Virtual memory management

 ‰ Task scheduling

 ‰ Interprocess communication and messaging

Mach itself has very limited APIs and was not meant to be a full-fl edged operating system. Its APIs 
are discouraged by Apple, although — as you will see — they are fundamental, and without them 
nothing would work. Any additional functionality, such as fi le and device access, has to be imple-
mented on top of it — and that is exactly what the BSD layer does. 

The BSD Layer
On top of Mach, but still an inseparable part of XNU, is the BSD layer. This layer presents a solid 
and more modern API that provides the POSIX compatibility discussed earlier. The BSD layer pro-
vides higher-level abstractions, including, among others:

 ‰ The UNIX Process model

 ‰ The POSIX threading model (Pthread) and its related synchronization primitives

 ‰ UNIX Users and Groups

 ‰ The Network stack (BSD Socket API)
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 ‰ File system access

 ‰ Device access (through the /dev directory)

XNU’s BSD implementation is largely compatible with FreeBSD’s, but does have some noteworthy 
changes. After covering Mach, this book turns to BSD, focusing on the implementations of the BSD 
core, and providing specifi c detail about the virtual fi le system switch and the networking stack in 
dedicated chapters.

libkern 
Most kernels are built solely in C and low level Assembly. XNU, however, is different. Device driv-
ers — called I/O Kit drivers, and discussed next, can be written in C++. In order to support the C++ 
runtime and provide the base classes, XNU includes libkern, which is a built-in, self-contained 
C++ library. While not exporting APIs directly to user mode, libkern is nonetheless a foundation, 
without which a great deal of advanced functionality would not be possible.

I/O Kit 
Apple’s most important modifi cation to XNU was the introduction of the I/O Kit device-driver 
framework. This is a complete, self-contained execution environment in the kernel, which enables 
developers to quickly create device drivers that are both elegant and stable. It achieves that by estab-
lishing a restricted C++ environment (of libkern), with the most important functionality offered by 
the language — inheritance and overloading.

Writing an I/O Kit driver, then, becomes a greatly simplifi ed matter of fi nding an existing driver to 
use as a superclass, and inheriting all the functionality from it in runtime. This alleviates the need 
for boilerplate code copying, which could lead to stability bugs, and also makes driver code very 
small — always a good thing under the tight memory constraints of kernel space. Any modifi cation 
in functionality can be introduced by either adding new methods to the driver or overloading/hiding 
existing ones. 

Another benefi t of the C++ environment is that drivers can operate in an object-oriented envi-
ronment. This makes OS X drivers profoundly different than any other device drivers on other 
operating systems, which are both limited to C and require hefty code for even the most basic func-
tionality. I/O Kit forms an almost self-contained system in XNU, with a rich environment consisting 
of many drivers. It could easily be covered in a book of its own (and, in fact, is, in a recent book), 
though this book dedicates chapter 18 to its architecture.

SUMMARY

This chapter explained the architecture of OS X and iOS. Though the two operating systems are 
designed for different platforms, they are actually quite similar, with the gaps between them grow-
ing narrower still with every new release of either. 
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The chapter provided a detailed overview, yet still remained at a fairly high level, getting into code 
samples as little as possible. The next chapter goes deeper and discusses OS X specifi c APIs — with 
plenty of actual code samples you can try.
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[1] Apple Developer — Bundle Programming Guide 

[2] “OS X for UNIX Users” (Lion version): http://images.apple.com/macosx/docs/
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[3] Apple Developer — OS X Technology Overview: (details all the frameworks):
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OSX_Technology_Overview/SystemFrameworks/SystemFrameworks.html

[4] Details frameworks for iOS: http://developer.apple.com/library/
ios/#documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/

iPhoneOSFrameworks/iPhoneOSFrameworks.html
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3
On the Shoulders of Giants: 
OS X and iOS Technologies

By virtue of being a BSD-derived system, OS X inherits most of the kernel features that are 
endemic to that architecture. This includes the POSIX system calls, some BSD extensions 
(such as kernel queues), and BSD’s Mandatory Access Control (MAC) layer.

It would be wrong, however, to classify either OS X or iOS as “yet another BSD system” like 
FreeBSD and its ilk. Apple builds on the BSD primitive’s several elaborate constructs — fi rst 
and foremost being the “sandbox” mechanism for application compartmentalization and 
security. In addition, OS X and iOS enhance or, in some cases, completely replace BSD com-
ponents. The venerable /etc fi les, for example, traditionally used for system confi guration, are 
entirely replaced. The standard UN*X syslog mechanism is augmented by the Apple System 
Log. New technologies such as Apple Events and FSEvents are entirely proprietary. 

This chapter discusses these features and more, in depth. We fi rst discuss the BSD-inspired 
APIs, and then turn our attention to the Apple-specifi c ones. The APIs are discussed from the 
user-mode perspective, including detailed examples and experiments to illustrate their usage. 
For the kernel perspective of these APIs, where applicable, see Chapter 14, “Advanced BSD 
Aspects.”

BSD HEIRLOOMS

While the core of XNU is undeniably Mach, its main interface to user mode is that of BSD. OS 
X and iOS both offer the set of POSIX compliant system calls, as well as several BSD-specifi c 
ones. In some cases, Apple has gone several extra steps, implementing additional features, 
some of which have been back-ported into BSD and OpenDarwin.
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sysctl
The sysctl(8) command is somewhat of a standardized way to access the kernel’s internal state. 
Introduced in 4.4BSD, it can also be found on other UN*X systems (notably, Linux, where it is 
backed by the /proc/sys directories). By using this command, an administrator can directly query 
the value of kernel variables, providing important run-time diagnostics. In some cases, modifying 
the value of the variables, thereby altering the kernel’s behavior, is possible. Naturally, only a fairly 
small subset of the kernel’s vast variable base is exported in this way. Nonetheless, those variables 
that are made visible play key roles in recording or determining kernel functionality.

The sysctl(8) command wraps the sysctl(3) library call, which itself wraps the __sysctl sys-
tem call (#202). The exported kernel variables are accessed by their Management Information Base
(MIB) names. This naming convention, borrowed from the Simple Network Management Protocol 
(SNMP), classifi es variables by namespaces. 

XNU supports quite a few hard-coded namespaces, as is shown in Table 3-1.

TABLE 3-1: Predefi ned sysctl Namespaces

NAMESPACE NUMBER STORES

debug 5 Various debugging parameters.

hw 6 Hardware-related settings. Usually all read only.

kern 1 Generic kernel-related settings.

machdep 7 Machine-dependent settings. Complements the hw namespace with 

processor-specifi c features.

net 4 Network stack settings. Protocols are defi ned in their own 

sub-namespaces.

vfs 3 File system-related settings. The Virtual File system Switch is the kernel’s 

common fi le system layer.

vm 2 Virtual memory settings.

user 8 Settings for user programs.

As shown in the table, namespaces are translated to an integer representation, and thus the vari-
able can be represented as an array of integers. The library call sysctlnametomib(3) can translate 
from the textual to the integer representation, though that is often unnecessary, because sysctlby-
name(3) can be used to look up a variable value by its name.

Each namespace may have variables defi ned directly in it (for example, kern.ostype, 1.1), or in 
sub-namespaces (for example, kern.ipc.somaxconn, 1.32.2). In both cases accessing the variable 
in question is possible, either by specifying its fully qualifi ed name, or by its numeric MIB specifi er. 
Looking up a MIB number by its name (using sysctlnametomib(3)) is possible, but not vice versa. 
Thus, one can walk the MIBs by number, but not retrieve the corresponding names. 
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Using sysctl(8) you can examine the exported values, and set those that are writable. Due to 
the preceding limitation, however, you cannot properly “walk” the MIBs — that is, traverse the 
namespaces and obtain a listing of their registered variables, as one would with SNMP’s getNext().
The command does have an -A switch to list all variables, but this is done by checking a fi xed list, 
which is defi ned in the <sys/sysctl.h> header (CTL_NAMES and related macros). This is not a prob-
lem with the OS X sysctl(8), because Apple does rebuild it to match the kernel version. In iOS, 
however, Apple does not supply a binary, and the one available from Cydia (as part of the system-
cmds package) misses out on iOS-specifi c variables. 

Kernel components can register additional sysctl values, and even entire namespaces, on the fl y. 
Good examples are the security namespace (used heavily by the sandbox kext, as discussed in this 
chapter) and the appleprofile namespace (registered by the AppleProfileFamily kexts — as dis-
cussed in Chapter 5, “Process Tracing and Debugging”). The kernel-level perspective of sysctls are 
discussed in Chapter 14.

The gamut of sysctl(3) variables ranges from various minor debug variables to other read/write 
variables that control entire subsystems. For example, the kernel’s little-known kdebug functional-
ity operates entirely through sysctl(3) calls. Likewise, commands such as ps(1) and netstat(1)
rely on sysctl(2) to obtain the list of PIDs and active sockets, respectively, though this could be 
achieved by other means, as well. 

kqueues
kqueues are a BSD mechanism for kernel event notifi cations. A kqueue is a descriptor that blocks 
until an event of a specifi c type and category occurs. A user (or kernel) mode process can thus 
wait on the descriptor, providing a simple but effective method for synchronization of one or more 
processes.

kqueues and their kevents form the basis for asynchronous I/O in the kernel (and enable the POSIX 
poll(2)/select(2), accordingly). A kqueue can be constructed in user mode by simply calling the 
kqueue(2) system call (#362), with no arguments. Then, the specifi c events of interest can be speci-
fi ed using the EV_SET macro, which initializes a struct kevent. Calling the kevent(2) or 
kevent64(2) system calls (#363 or #369, respectively) will set the event fi lters, and return if they 
have been satisfi ed. The system supports several “predefi ned” fi lters, as shown in Table 3-2:

TABLE 3-2: Some of the predefi ned Event Filters in <sys/event.h>

EVENT FILTER CONSTANT USAGE

EVFILT_MACHPORT Monitors a Mach port or port set and returns if a message has been 

received.

EVFILT_PROC Monitors a specifi ed PID for execve(2), exit(2), fork(2), wait(2), or 

signals.

EVFILT_READ For fi les, returns when the fi le pointer is not at EOF.

For sockets, pipes, and FIFOs, returns when there is data to read (such as 

select(2)).

continues
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EVENT FILTER CONSTANT USAGE

EVFILT_SESSION Monitors an audit session (described in the next section).

EVFILT_SIGNAL Monitors a specifi c signal to the process, even if the signal is currently 

ignored by the process.

EVFILT_TIMER A periodic timer with up to nanosecond resolution.

EVFILT_WRITE For fi les, unsupported.

For sockets, pipes, and FIFOs, returns when data may be written. Returns 

buff er space available in event data.

EVFILT_VM Virtual memory Notifi cations. Used for memory pressure handling (discussed 

in Chapter 14).

EVFILT_VNODE Filters fi le (vnode)-specifi c system calls such as rename(2), delete(2), 

unlink(2), link(2), and others.

Listing 3-1 demonstrates using kevents to track process-level events on a particular PID:

LISTING 3-1: Using kqueues and kevents to fi lter process events

void main (int argc, char **argv)
{
   pid_t pid;  // PID to monitor
   int kq;     // The kqueue file descriptor
   int rc;     // collecting return values
   int done;
   struct kevent ke;

   pid = atoi(argv[1]);

   kq = kqueue();

   if (kq == -1) { perror("kqueue"); exit(2); }

   // Set process fork/exec notifications

   EV_SET(&ke, pid, EVFILT_PROC, EV_ADD,
       NOTE_EXIT | NOTE_FORK | NOTE_EXEC , 0, NULL);

   // Register event

   rc = kevent(kq, &ke, 1, NULL, 0, NULL);
   if (rc < 0) { perror ("kevent"); exit (3); }

   done = 0;
   while (!done) {

TABLE 3-2 (continued)
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        memset(&ke, '\0', sizeof(struct kevent));

        // This blocks until an event matching the filter occurs
        rc = kevent(kq, NULL, 0, &ke, 1, NULL);
        if (rc < 0) { perror ("kevent"); exit (4); }

        if (ke.fflags & NOTE_FORK)
            printf("PID %d fork()ed\n", ke.ident);

        if (ke.fflags & NOTE_EXEC)
            printf("pid %d has exec()ed\n", ke.ident);

        if (ke.fflags & NOTE_EXIT)
           {
             printf("pid %d has exited\n", ke.ident);
             done++;
           }

      } // end while 
}

Auditing (OS X)
OS X contains an implementation of the Basic Security Module, or BSM. This auditing subsystem 
originated in Solaris, but has since been ported into numerous UN*X implementations (as Open-
BSM), among them OS X. This subsystem is useful for tracking user and process actions, though 
may be costly in terms of disk space and overall performance. It is, therefore, of value in OS X, but 
less so on a mobile system such as iOS, which is why it is not enabled in the latter. 

Auditing, as the security-sensitive operation that it is, must be performed at the kernel level. In BSD 
and other UN*X fl avors the kernel component of auditing communicates with user space via a spe-
cial character pseudo-device (for example, /dev/audit). In OS X, however, auditing is implemented 
over Mach messages.

The Administrator’s View
Auditing is a self-contained subsystem in OS X. The main user-mode component is the auditd(8),
a daemon that is started on demand by launchd(8), unless disabled (in the com.apple.auditd
.plist fi le). The daemon does not actually write the audit log records; those are done directly by 
the kernel itself. The daemon does control the kernel component, however, and so he who controls 
the daemon controls auditing. To do so, the administrator can use the audit(8) command, which 
can initialize (-i) or terminate (-t) auditing, start a new log (-n), or expire (-e) old logs. Normally, 
auditd(8) times out after 60 seconds of inactivity (as specifi ed in its plist TimeOut key). Just 
because auditd(8) is not running, therefore, implies nothing about the state of auditing.

Audit logs, unless otherwise stated, are collected in /var/audit, following a naming convention of 
start_time.stop_time, with the timestamp accurate to the second. Logs are continuously gener-
ated, so (aside from crashes and reboots), the stop_time of a log is also a start_time of its succes-
sor. The latest log can be easily spotted by its stop_time of not_terminated, or a symbolic link to 
current, as shown in Output 3-1.
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OUTPUT 3-1: Displaying logs in the /var/audit directory

root@Ergo (/)# ls -ld /var/audit 
drwx------  3247 root  wheel  110398 Mar 19 17:44 /var/audit 

root@Ergo (/)# ls –l /var/audit
…
-r--r-----  1 root  wheel     749 Mar 19 16:33 20120319203254.20120319203327
-r--r-----  1 root  wheel     337 Mar 19 17:44 20120319203327.20120319214427
-r--r-----  1 root  wheel       0 Mar 19 17:44 20120319214427.not_terminated
lrwxr-xr-x  1 root  wheel      40 Mar 19 17:44 current -> 
                                                /var/audit/20120319214427.not_terminated

The audit logs are in a compact binary format, which can be deciphered using the praudit(1) com-
mand. This command can print the records in a variety of human- and machine-readable formats, 
such as the default CSV or the more elegant XML (using –x). To enable searching through audit 
records, the auditreduce(1) command may be used with an array of switches to fi lter records by 
event type (-m), object access (-o), specifi c UID (-e), and more. 

Because logs are cycled so frequently, a special character device, /dev/auditpipe, exists to allow 
user-mode programs to access the audit records in real time. The praudit(1) command can there-
fore be used directly on /dev/auditpipe, which makes it especially useful for shell scripts. As a 
quick experiment, try doing so, then locking your screen saver, and authenticating to unlock it. You 
should see something like Output 3-2.

OUTPUT 3-2: Using praudit(1) on the audit pipe for real-time events

root@Ergo (/)# praudit /dev/auditpipe 
header,106,11,user authentication,0,Tue Mar 20 02:26:01 2012, + 180 msec
subject,root,morpheus,wheel,root,wheel,38,0,0,0.0.0.0
text,Authentication for user <morpheus>
return,success,0
trailer,106

Auditing must be performed at the time of the action, and can therefore have a noticeable impact on 
system performance as well as disk space. The administrator can therefore tweak auditing using sev-
eral fi les, all in /etc/security, listed in Table 3-3.

TABLE 3-3: Files in /etc/security Used to Control Audit Policy

AUDIT CONTROL FILE USED FOR

audit_class Maps event bitmasks to human-readable names, and to the mnemonic classes 

used in other fi les for events.

audit_control Specifi es audit policy and log housekeeping.
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AUDIT CONTROL FILE USED FOR

audit_event Maps event identifi ers to mnemonic class and human-readable name.

audit_user Selectively enables/disables auditing of specifi c mnemonic event classes on a 

per-user basis. The record format is:

Username:classes_audited:classes_not_audited

audit_warn A shell script to execute on warnings from the audit daemon (for example, 

“audit space low (< 5% free) on audit log fi le-system”). Usually passes the mes-

sage to logger(1).

The Programmer’s View
If auditing is enabled, XNU dedicates system calls #350 through #359 to enable and control 
auditing, as shown in Table 3-4 (all return the standard int return value of a system call: 0 on 
success, or -1 and set errno on error). On iOS, these calls are merely stubs returning –ENOSYS
(0x4E).

TABLE 3-4: System Calls Used for Auditing in OS X, BSM-Compliant

# SYSTEM CALL USED TO

350 audit(const char *rec, 

      u_int length);

Commit an audit record to the log.

359 auditctl(char *path); Open a new audit log in fi le specifi ed by path (similar to 

audit –n)

351 auditon(int cmd, 

        void *data,

        u_int length);

Confi gure audit parameters. Accepts various A_* com-

mands from <bsm/audit.h>.

355

356

getaudit

  (auditinfo_t *ainfo);

setaudit

  (auditinfo_t *ainfo);

Get or set audit session state. The auditinfo_t is 

defi ned as

struct auditinfo {

au_id_t    ai_auid;

au_mask_t ai_mask;

au_tid_t   ai_termid;

au_asid_t ai_asid; };

These system calls are likely deprecated in Mountain 

Lion.

continues
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# SYSTEM CALL USED TO

357

358

getaudit_addr

(auditinfo_addr_t *aa, 

 u_int length);

setaudit_addr

(auditinfo_addr_t *aa,

 u_int length);

As getaudit or setaudit, but with support for >32-bit 

termids, and an additional 64-bit ai_flags fi eld.

353

354

getauid(au_id_t *auid);

setauid(au_id_t *auid);

Get or set the audit session ID. 

Apple deviates from the BSM standard and enhances it with three additional proprietary system 
calls, tying the subsystem to the underlying Mach system. Unlike the standard calls, these are 
undocumented save for their open source implementation, as shown in Table 3-5.

TABLE 3-5: Apple-Specifi c System Calls Used for Auditing

# SYSTEM CALL USED FOR

428 mach_port_name_t

audit_session_self(void);
Returns a Mach port (send) for the cur-

rent audit session

429 audit_session_join

  (mach_port_name_t port);

Joins the audit session for the given 

Mach port

432 audit_session_port(au_asid_t asid, 

user_addr_t portnamep);
New in Lion and relocates fileport_

makeport. Obtains the Mach port 

(send) for the given audit session asid.

Auditing is revisited from the kernel perspective in Chapter 14.

Mandatory Access Control
FreeBSD 5.x was the fi rst to introduce a powerful security feature known as Mandatory Access 
Control (MAC). This feature, originally part of Trusted BSD[1], allows for a much more fi ne-grained 
security model, which enhances the rather crude UN*X model by adding support for object-level 
security: limiting access to certain fi les or resources (sockets, IPC, and so on) by specifi c processes, 
not just by permissions. In this way, for example, a specifi c app could be limited so as not to access 
the user’s private data, or certain websites. 

A key concept in MAC is that of a label, which corresponds to a predefi ned classifi cation, which 
can apply to a set of fi les or other objects in the system (another way to think of this is as sensitivity 
tags applied to dossiers in spy movies — “Unclassifi ed,” “Confi dential,” “Top Secret,” etc). MAC 
denies access to any object which does not comply with the label (Sun’s swan song, Trusted Solaris, 
actually made such objects invisible!). OS X extends this further to encompass security policies (for 
example “No network”) that can then be applied to various operations, not just objects.  

TABLE 3-4 (continued)
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MAC is a framework — not in the OS X sense, but in the architectural one: it provides a solid 
foundation into which additional components, which do not necessarily have to be part of the ker-
nel proper, may “plug-in” to control system security. By registering with MAC, specialized kernel 
extensions can assume responsibility for the enforcement of security policies. From the kernel’s side, 
callouts to MAC are inserted into the various system call implementations, so that each system call 
must fi rst pass MAC validation, prior to actually servicing the user-mode request. These callouts are 
only invoked if the kernel is compiled with MAC support, which is on by default in both OS X and 
iOS. Even then, the callouts return 0 (approving the operation) unless a policy module (specialized 
kernel extension) has registered for them, and provided its own alternate authorization logic. The 
MAC layer itself makes no decisions — it calls on the registered policy modules to do so.

The kernel additionally offers dedicated MAC system calls. These are shown in Table 3-6. Most 
match those of FreeBSD’s, while a few are Apple extensions (as noted by the shaded rows).

TABLE 3-6: MAC-Specifi c System Calls

# SYSTEM CALL USED FOR

380 int __mac_execve(char *fname, 

char **argp, 

char **envp, 

struct mac *mac_p);

As execve(2), but executes 

the process under a given MAC 

label

381 int __mac_syscall(char *policy, 

int call, 

user_addr_t arg);

MAC-enabled Wrapper for 

indirect syscall.

382

383

int __mac_[get|set]_file

(char *path_p, 

struct mac *mac_p);

Get or set label associated with 

a pathname 

384

385

int __mac_[get|set]_link

(char *path_p, struct mac *mac_p);

Get or set label associated with 

a link

386

387

int __mac_[get|set]_proc(struct mac 

*mac_p);
Retrieve or set the label of the 

current process

388

389

int __mac_[get|set]_fd

(int fd, 

struct mac *mac_p);

Get or set label associated with 

a fi le descriptor. This can be a 

fi le, but also a socket or a FIFO

390 int __mac_get_pid(pid_t pid, 

struct mac *mac_p);
Get the label of another pro-

cess, specifi ed by PID

391 int __mac_get_lcid(pid_t lcid, 

struct mac *mac_p);
Get login context ID

392

393

int __mac_[get|set]_lctx

(struct mac *mac_p);

Get or set login context ID

continues
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# SYSTEM CALL USED FOR

424 int __mac_mount(char *type, 

char *path, 

int flags, 

caddr_t data, 

struct mac *mac_p);

MAC enabled mount(2) 

replacement

425 int __mac_get_mount(char *path, 

    struct mac *mac_p);
Get Mount point label 

information

426 int __mac_getfsstat(user_addr_t buf, 

int bufsize, 

user_addr_t mac, 

int macsize, 

int flags);

MAC enabled getfsstat(2) 

replacement

The administrator can control enforcement of MAC policies on the various subsystems using sys-
ctl(8): MAC dynamically registers and exposes the top-level security MIB, which contain 
enforcement fl ags, as shown in Output 3-3:

OUTPUT 3-3: The security sysctl MIBs exposed by MAC, on Lion

morpheus@Minion (/)$ sysctl security
security.mac.sandbox.sentinel: .sb-4bde45ee
security.mac.qtn.sandbox_enforce: 1
security.mac.max_slots: 7
security.mac.labelvnodes: 0
security.mac.mmap_revocation: 0 # Revoke mmap access to files on subject relabel
security.mac.mmap_revocation_via_cow: 0 # Revoke mmap access to files via copy on write
security.mac.device_enforce: 1
security.mac.file_enforce: 0
security.mac.iokit_enforce: 0
security.mac.pipe_enforce: 1
security.mac.posixsem_enforce: 1 # Posix semaphores
security.mac.posixshm_enforce: 1 # Posix shared memory
security.mac.proc_enforce: 1            # Process operation (including code signing)
security.mac.socket_enforce: 1
security.mac.system_enforce: 1
security.mac.sysvmsg_enforce: 1
security.mac.sysvsem_enforce: 1
security.mac.sysvshm_enforce: 1
security.mac.vm_enforce: 1
security.mac.vnode_enforce: 1           # VFS VNode operations (including code signing)

The proc_enforce and vnode_enforce MIBS are the ones which control, among other things, code 
signing on iOS. A well known workaround  for code signing on jailbroken devices was to manually 
set both to 0 (i.e. disable their enforcement). Apple made those two settings read only in iOS 4.3 and 
later, but kernel patching and other methods can still work around this.

TABLE 3-6 (continued)
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MAC provides the substrate for OS X’s Compartmentalization (“Sandboxing”) and iOS’s entitle-
ments. Both are unique to OS X and iOS, and are described later in this chapter under “OS X and 
iOS Security Mechanisms.” The kernel perspective of MAC (including an in-depth discussion of its 
use in OS X and iOS) is described in Chapter 14.

OS X- AND IOS-SPECIFIC TECHNOLOGIES

Mac OS has, over the years, introduced several avant-garde technologies, some of which still remain 
proprietary. The next section discusses these technologies, particularly the ones that are of interest 
from an operating-system perspective.

User and Group Management (OS X)
Whereas other UN*X traditionally relies on the age-old password fi les (/etc/passwd and, com-
monly /etc/shadow, used for the password hashes), which are still used in single-user mode (and 
on iOS), with /etc/master.passwd used as the shadow fi le. In all other cases, however, OS X 
deprecates them in favor of its own directory service: DirectoryService(8) on Snow Leopard, 
which has been renamed to opendirectoryd(8) as of Lion. The daemon’s new name refl ects its 
nature: It is an implementation of the OpenLDAP project. Using a standard protocol such as the 
Lightweight Directory Access Protocol (LDAP) enables integration with non-Apple directory ser-
vices as well, such as Microsoft’s Active Directory. (Despite the “lightweight” moniker, LDAP is 
a lengthy Internet standard covered by RFCs 4510 through 4519. It is a simplifi ed version of DAP, 
which is an OSI standard).

The directory service maintains more than just the users and groups: It holds many other aspects of 
system confi guration, as is discussed under “System Confi guration” later in the chapter.

To interface with the daemon, OS X supplies a command line utility called dscl(8). You can use 
this tool, among other things, to display the users and groups on the system. If you try dscl . 
-read /Users/username on yourself (the “.” is used to denote the default directory, which is also 
accessible as /Local/Default ), you should see something similar to Output 3-4:

OUTPUT 3-4: Running dscl(8) to read user details from the local directory

morpheus@ergo(/)$ dscl . -read /Users/ `whoami `
dsAttrTypeNative:_writers_hint: morpheus
dsAttrTypeNative:_writers_jpegphoto: morpheus
dsAttrTypeNative:_writers_LinkedIdentity: morpheus
dsAttrTypeNative:_writers_passwd: morpheus
dsAttrTypeNative:_writers_picture: morpheus
dsAttrTypeNative:_writers_realname: morpheus
dsAttrTypeNative:_writers_UserCertificate: morpheus
AppleMetaNodeLocation: /Local/Default
AuthenticationAuthority: ;ShadowHash; ;Kerberosv5;;morpheus@LKDC:SHA1.3023D12469030DE9DB
FE2C2621A01C121615DC80;LKDC:SHA1.3013D12469030DE9DBFD2C2621A07C123615DC70;
AuthenticationHint:
GeneratedUID: 11E111F7-910C-2410-9BAB-ABB20FE3DF2A
JPEGPhoto:
 ffd8ffe0 00104a46 49460001 01000001 00010000 ffe20238 4943435f 50524f46 494c4500..

continues
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 ... User photo in JPEG format
NFSHomeDirectory: /Users/morpheus
Password: ********
PasswordPolicyOptions:
 <?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" 
"http://www.apple.com/DTDs/
PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
       <key>failedLoginCount</key>
       <integer>0</integer>
       <key>failedLoginTimestamp</key>
       <date>2001-01-01T00:00:00Z</date>
       <key>lastLoginTimestamp</key>
       <date>2001-01-01T00:00:00Z</date>
       <key>passwordTimestamp</key>
       <date>2011-09-24T20:23:03Z</date>
</dict>
</plist>
Picture:
 /Library/User Pictures/Fun/Smack.tif
PrimaryGroupID: 20
RealName: Me
RecordName: morpheus
RecordType: dsRecTypeStandard:Users
UniqueID: 501
UserShell: /bin/zsh

You can also use the dscl(8) tool to update the directory and create new users. The shell script in 
Listing 3-2 demonstrates the implementation of a command-line adduser, which OS X does not 
provide.

LISTING 3-2: A script to perform the function of adduser (to be run as root)

#!/bin/bash
# Get username, ID and full name field as arguments from command line
USER=$1
ID=$2
FULLNAME=$3
# Create the user node
dscl . -create /Users/$USER
# Set default shell to zsh 
dscl . -create /Users/$USER UserShell /bin/zsh
# Set GECOS (full name for finger)
dscl . -create /Users/$USER RealName "$FULLNAME"
dscl . -create /Users/$USER UniqueID $ID
# Assign user to gid of localaccounts
dscl . -create /Users/$USER PrimaryGroupID 61
# Set home dir (~$USER)
dscl . -create /Users/$USER NFSHomeDirectory /Users/$USER

OUTPUT 3-4 (continued)
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# Make sure home directory is valid, and owned by the user
mkdir /Users/$USER
chown $USER /Users/$USER
# Optional: Set the password.
dscl . -passwd /Users/$USER "changeme"
# Optional: Add to admin group
dscl . -append /Groups/admin GroupMembership $USER

One of Lion’s early security vulnerabilities was that dscl(8) could be used to 
change passwords of users without knowing their existing passwords, even as a 
non-root user. If you keep your OS X constantly updated, chances are this issue 
has been resolved by a security update.

The standard UNIX utilities of chfn(1) and chsh(1), which enable the modi-
fi cation of the full name and shell for a given user, respectively, are implemented 
transparently over directory services by launching the default editor to allow 
root to type in the fi elds, rather than bother with dscl(8) directly. Most admin-
istrators, of course, probably use the system confi guration GUI — a much safer 
option, though not as scalable when one needs to create more than a few users.

System Confi guration
Much like it deprecates /etc user database fi les, OS X does away with most other confi guration 
fi les, which are traditionally used in UN*X as the system “registry.”

To maintain system confi guration, OS X and iOS use a specialized daemon: – configd(8).  This 
daemon can load additional loadable bundles (“plug-ins”) located in the /System/Library/
SystemConfiguration/ directory, which include IP and IPv6 confi guration, logging, and other 
bundles. The average user, of course, is blissfully unaware of this, as the System Preferences applica-
tion can be used as a graphical front-end to all the confi guration tasks.

Command line-oriented power users can employ a specialized tool, scutil(8) in order to navigate 
and query the system confi guration. This interactive utility can list and show keys as shown in the 
following code snippet:

root@Padishah (~)# scutil
> list
  subKey [0] = Plugin:IPConfiguration
  subKey [1] = Plugin:InterfaceNamer
  subKey [2] = Setup:
  subKey [3] = Setup:/
  subKey [4] = Setup:/Network/Global/IPv4
  subKey [5] = Setup:/Network/HostNames
  ...
  subKey [50] = com.apple.MobileBluetooth
  subKey [51] = com.apple.MobileInternetSharing
  subKey [52] = com.apple.network.identification

> show com.apple.network.identification
<dictionary> {
  ActiveIdentifiers : <array> {
    0 : IPv4.Router=192.168.1.254;IPv4.RouterHardwareAddress=00:43:a3:f2:81:d9
  }
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  PrimaryIPv4Identifier : IPv4.Router=192.168.1.254;IPv4.RouterHardwareAddress=
00:43:a3:f2:81:d9
  ServiceIdentifiers : <array> {
    0 : 12C4C9CC-7E42-1D2D-ACF6-AAF7FFAF2BFC
  }
}

The public SystemConfiguration.framework allows programmatic access to the system confi gura-
tion. Commands such as OS X’s pmset(1), which confi gures power management settings, link with 
this framework. The framework exists in OS X and iOS, so the program shown in Listing 3-3 can 
compile and run on both.

LISTING 3-3: Using the SystemConfi guration APIs to query values

#include <SystemConfiguration/SCPreferences.h>
// Also implicitly uses CoreFoundation/CoreFoundation.h

void dumpDict(CFDictionaryRef dict){
    // Quick and dirty way of dumping a dictionary as XML
    CFDataRef xml = CFPropertyListCreateXMLData(kCFAllocatorDefault,
                                                (CFPropertyListRef)dict);
    if (xml) {
        write(1, CFDataGetBytePtr(xml), CFDataGetLength(xml));
        CFRelease(xml);
    }
}

void main (int argc, char **argv)
{
  CFStringRef myName = CFSTR("com.technologeeks.SystemConfigurationTest");
  CFArrayRef  keyList;
  SCPreferencesRef prefs = NULL; 
  char *val;
  CFIndex i;
  CFDictionaryRef global;

  // Open a preferences session
  prefs = SCPreferencesCreate (NULL,   // CFAllocatorRef allocator,
                               myName, // CFStringRef name,
                               NULL);  // CFStringRef prefsID

  if (!prefs) { fprintf (stderr,"SCPreferencesCreate"); exit(1); }

  // retrieve preference namespaces
  keyList =  SCPreferencesCopyKeyList (prefs);

  if (!keyList) { fprintf (stderr,"CopyKeyList failed\n"); exit(2);}

  // dump 'em
  for (i = 0; i < CFArrayGetCount(keyList); i++) {
       dumpDict(SCPreferencesGetValue(prefs, CFArrayGetValueAtIndex(keyList, i)));
       }

}
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The dictionaries dumped by this program are naturally maintained in plist fi les. The default location for 
these dictionaries is in /Library/Preferences/SystemConfiguration. If you compare the output of 
this program with that of the preferences.plist fi le from that directory, you will see it matches.

Experiment: Using scutil(8) for Network Notifi cations
You can also use the scutil(8) command to watch for system confi guration changes, as demon-
strated in the following experiment:

1. Using scutil(8), set a watch on the state of the Airport interface (if you have one, other-
wise the primary Ethernet interface will do):

> n.add State:/Network/Interface/en0/AirPort
> n.watch
#  verify the notification was added
> n.list
  notifier key [0] = State:/Network/Interface/en0/AirPort

2. Disable Airport (or unplug your network cable). You should see notifi cation messages break 
through the scutil prompt:

notification callback (store address = 0x10010a150).
  changed key [0] = State:/Network/Interface/en0/AirPort
notification callback (store address = 0x10010a150).
  changed key [0] = State:/Network/Interface/en0/AirPort
notification callback (store address = 0x10010a150).
  changed key [0] = State:/Network/Interface/en0/AirPort

3. Use the “show” subcommand to see the changed key. In this case, the power status value has 
been changed:

> show State:/Network/Interface/en0/AirPort
<dictionary> {
  Power Status : 0
  SecureIBSSEnabled : FALSE
  BSSID : <data> 0x0013d37f84d9
  Busy : FALSE
  SSID_STR : AAAA
  SSID : <data> 0x41414141
  CHANNEL : <dictionary> {
    CHANNEL : 11
    CHANNEL_FLAGS : 10
  }
}

In order to watch for changes programmatically, you can use the SCDynamicStore class. Because 
obtaining the network connectivity status is a common action, Apple provides the far simpler 
SCNetworkReachability class. Apple Developer also provides sample code demonstrating the usage 
of the class.[2]

Logging
With the move to a BSD-based platform, OS X also inherited support for the traditional UNIX Sys-
tem log. This support (detailed in Apple Technical Article TA26117[3]) provides the full compatibility 
with the ages-old mechanism commonly referred to as syslogd(8).
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The syslog mechanism is well detailed in many other references (including the aforementioned 
technical article). In a nutshell, it handles textual messages, which are classifi ed by a message facil-
ity and severity. The facility is the class of the reporting element: essentially, the message source. 
The various UNIX subsystems (mail, printing, cron, and so on) all have their own facilities, as does 
the kernel (LOG_KERN, or “kern”). Severities range from LOG_DEBUG and LOG_INFO (“About to open 
fi le…”), through LOG_ERR (“Unable to open fi le”), LOG_CRIT (“Is that a bad sector?”), LOG_ALERT
(“Hey, where’s the disk?!”), and fi nally, to LOG_EMERG (“Meltdown imminent!”). By using the con-
fi guration fi le /etc/syslog.conf, the administrator can decide on actions to take, corresponding to 
facility/severity combinations. Actions include the following: 

 ‰ Message certain usernames specifi ed 

 ‰ Log to fi les or devices (specifi ed as a full path, starting with “/” so as to disambiguate fi les 
from usernames)

 ‰ Pipe to commands (|/path/to/program)

 ‰ Send to a network host (@loghost)

Programmers interface with syslog using the syslog(3) API, consisting of a call to openlog()
(specifying their name, facility, and other options), through syslog(), which logs the messages with 
a given priority. The syslog daemon intercepts the messages through a UNIX domain socket (tradi-
tionally /dev/log, though in OS X this has been changed to /var/run/syslog). 

OS X 10.4 (Tiger) introduced a new model for logging called the Apple System Log, or ASL. This 
new architecture (which is also used in iOS) aims to provide more fl exibility than is provided by 
syslog. ASL is modeled after syslog, with the same levels and severities, but allows more features, 
such as fi ltering and searching not offered by syslog.

ASL is modular in that it simultaneously offers four logging interfaces:

 ‰ The backward-compatible syslogd: Referred to as BSD logging, ASL can be confi gured to 
accept syslog messages (using –bsd_in 1), and process them according to /etc/syslog.
conf (using –bsd_out 1). In OS X, these are enabled by default, but not so on iOS. The 
messages, as in syslogd, come in through the /var/run/syslog socket.

 ‰ The network protocol syslogd: On the well-known UDP port 514, this protocol may 
be enabled by –udp_in 1. It is actually enabled by default, but ASL/syslogd relies on 
launchd(8) for its socket handling, and therefore the socket is not active by default.

 ‰ The kernel logging interface: Enabled (the default) by –klog_in 1, this interface accepts ker-
nel messages from /dev/log (a character device, incorrectly specifi ed in the documentation 
as a UNIX domain socket).

 ‰ The new ASL interface: By using –asl_in 1, which is naturally enabled by default, ASL mes-
sages can be obtained from clients of the asl(3) API using asl_log(3) and friends. These 
messages come in through the /var/run/asl_input socket, and are of a different format 
than the syslogd ones (hence the need for two separate sockets).

ASL logs are collected in /var/log/asl. They are managed (rotated/deleted) by the aslmanager(8)
command, which is automatically run by launchd (from com.apple.aslmanager.plist). You may 
also run the command manually.
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ASL logs, unlike syslog fi les, are binary, not text.  This makes them somewhat smaller in size, but 
not as grep(1)-friendly as syslog’s.  Apple includes the syslog(1) command in OS X to display 
and view logs, as well as perform searches and fi lters. 

Experiment: Enabling System Logging on a Jailbroken iOS
Apple has intentionally disabled the legacy BSD syslog interface, but re-enabling it is a fairly simple 
matter for the root user via a few simple steps:

1. Create an /etc/syslog.conf fi le. The easiest way to create a valid fi le is to simply copy a 
fi le from an OS X installation. The default syslog.conf looks something like Listing 3-4:

LISTING 3-4: A default /etc/syslog.conf, from an OS X system

*.notice;authpriv,remoteauth,ftp,install,internal.none      /var/log/system.log
kern.*                                                      /var/log/kernel.log

# Send messages normally sent to the console also to the serial port.
# To stop messages from being sent out the serial port, comment out this line.
#*.err;kern.*;auth.notice;authpriv,remoteauth.none;mail.crit        /dev/tty.serial

# The authpriv log file should be restricted access; these
# messages shouldn't go to terminals or publically-readable
# files.
auth.info;authpriv.*;remoteauth.crit                       /var/log/secure.log

lpr.info                                                   /var/log/lpr.log
mail.*                                                     /var/log/mail.log
ftp.*                                                      /var/log/ftp.log
install.*                                                  /var/log/install.log
install.*                                                  @127.0.0.1:32376
local0.*                                                   /var/log/appfirewall.log
local1.*                                                   /var/log/ipfw.log

*.emerg                                                    *

2. Enable the –bsd_out switch for syslogd. The syslogd process is started both in iOS and 
OS X by launchd(8). To change its startup parameters, you must modify its property list 
fi le. This fi le is aptly named com.apple.syslogd.plist, and you can fi nd it in the standard 
location for all launch daemons: /System/Library/LaunchDaemons.

The fi le, however, like all plists on iOS, is in binary form. Copy the fi le to /tmp and use 
plutil –convert xml1 to change it to the more readable XML form. After it is in XML, 
just edit it so that the ProgramArguments key contains –bsd_out 1. Because the key 
expects an array, the arguments have to be written separately, as follows:

<key>ProgramArguments</key>
        <array>
               <string>/usr/sbin/syslogd</string>

<string>-bsd_out</string>
<string>1</string>

        </array>

After this is done, convert the fi le back to the binary format (plutil –convert binary1
should do the trick), and copy it back to /System/Library/LaunchDaemons.
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3. Restart launchd, and then syslogd. A kill –HUP 1 will take care of launchd, and — after 
you fi nd the process ID of syslogd — a kill –TERM on its PID will cause launchd to restart it, 
this time with the –bsd_out 1 argument, as desired. A ps aux will verify that is indeed the 
case, as will the log fi les in /var/log.

Apple Events and AppleScript
One of OS X’s oft-overlooked, though truly powerful features, lies in its scripting capabilities. 
AppleScript has its origins traced back to OS 7(!) and a language called HyperCard. It has since 
evolved considerably, and become the all-powerful mechanism behind the osascript(1) command 
and the friendly (but neglected) Automator.

In a somewhat similar way to how iPhone’s SIRI recognizes English patterns, AppleScript allows a 
semi-natural language interface to scriptable applications.  The “semi” is because commands must 
follow a given grammar. If the grammar is adhered to, however, it allows for a large range of free-
dom. The OS X built-in applications can be almost fully automated. For those wary of scripts, the 
Automator provides a feature-oriented drag-and-drop GUI, as shown in Figure 3-1. Note the rich 
“Library” composed of actions and defi nitions in /System/Library/Automator.

FIGURE 3-1: Automator and its built-in templates.
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The mechanism allowing AppleScript’s magic is called AppleEvents. AppleScript can be extended 
to remote hosts, either via the (now obsolete) AppleTalk protocol, or over TCP/IP. In the latter case, 
the protocol is known as “eppc,” and is a proprietary, undocumented protocol that uses TCP port 
3031. The remote functionality is only enabled if Remote Apple Events are enabled from the Sharing 
applet of System Preferences. This tells launchd(8) to listen on the eppc port, and — when requests 
are received — start the AppleEvents server, AEServer (found in the Support/ directory of the 
AE.framework, which is internal to CoreServices). launchd(8) is responsible for starting many on-
demand services from their respective plist fi les in /System/Library/LaunchDaemons. AEServer’s 
is com.apple.eppc.plist.

Though covering it is far beyond the scope of this book, AppleScript is a great mechanism for 
automating tasks. Outside Apple’s own reference, two books devoted to the topic can be found 
elsewhere.[4,5] The simple experiment described next, however, shows you the fl urry of events that 
occurs behind the scenes when you run AppleScript or Automator.

Experiment: Viewing Apple Events
You can easily see what goes on in the Apple Events plane via two simple environment variables — 
AEDebugSends and AEDebugReceives. Then, using osascript (or, in some cases, Automator), will 
generate plenty of output. In Output 3-5, note the debug info only pertains to events sent or received 
by the shell and its children, not events occurring elsewhere in the system.

OUTPUT 3-5: Output of AppleEvents driving Safari application launch

morpheus@ergo(/)$ export AEDebugSends=1 AEDebugReceives=1
morpheus@ergo(/)$ osascript -e 'tell app "Safari" to activate'
{ 1 } 'aevt':  ascr/gdte (i386){
          return id: -16316 (0xffffc044)
     transaction id: 0 (0x0)
  interaction level: 64 (0x40)
     reply required: 1 (0x1)
             remote: 0 (0x0)
      for recording: 0 (0x0)
         reply port: 0 (0x0)
  target:
    { 2 } 'psn ':  8 bytes {
      { 0x0, 0x5af5af } (Safari)
    }
  fEventSourcePSN: { 0x1,0xc044 } ()
  optional attributes:
    < empty record >
  event data:
    { 1 } 'aevt':  - 1 items {
      key '----' - 
        { 1 } 'long':  4 bytes {
          0 (0x0)
        }
    }
}

continues
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{ 1 } 'aevt':  aevt/ansr (****){
          return id: -16316 (0xffffc044)
     transaction id: 0 (0x0)
  interaction level: 112 (0x70)
     reply required: 0 (0x0)
             remote: 0 (0x0)
      for recording: 0 (0x0)
         reply port: 0 (0x0)
  target:
    { 1 } 'psn ':  8 bytes {
      { 0x1, 0xc044 } (<process { 1, 49220 } not found>
      )
    }
  fEventSourcePSN: { 0x0,0x5af5af } (Safari)
  optional attributes:
    < empty record >
  event data:
    { 1 } 'aevt':  - 1 items {
      key '----' - 
        { 1 } 'aete':  9952 bytes {
           000: 0100 0000  0000 0500  0a54 7970  6520 4e61     ........-Type Na
           001: 6d65 731a  4f74 6865  7220 636c  6173 7365     mes.Other classe
           ...:  // etc, etc, etc…

FSEvents
All modern operating systems offer their developers APIs for fi le system notifi cation. These enable 
quick and easy response by user programs for additions, modifi cations, and deletions of fi les. Thus, 
Windows has its MJ_DIRECTORY_CONTROL, Linux has inotify. Mac OS X and iOS (as of version 
5.0) both offer FSEvents.

FSEvents is conceptually somewhat similar to Linux’s inotify — in both, a process (or thread) 
obtains a fi le descriptor, and attempts to read(2) from it. The system call blocks until some 
event occurs — at which time the received buffer contains the event details by which the pro-
gram can tell what happened, and then act accordingly (for example, display a new icon in the 
fi le browser). 

FSEvents is, however, a tad more complicated (and, some would say, more elegant) than inotify. In 
it, the process proceeds as follows:

 ‰ The process (or thread) requests to get a handle to the FSEvents mechanism. This is /dev/
fsevents, a pseudo-device.

 ‰ The requestor then issues a special ioctl(2), FSEVENTS_CLONE. This ioctl enables 
the specifi c fi ltering of events so that only events of interest — specifi c operations on 
particular fi les — are delivered. Table 3-7 lists the types that are currently supported. 
Supporting these events is possible because FSEvents is plugged into the kernel’s fi le 
system-handling logic (VFS, the Virtual File system Switch — see Chapter 15 for more on 
that topic). Each and every supported event will add a pending notifi cation to the cloned 
fi le descriptor.

OUTPUT 3-5 (continued)
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TABLE 3-7: FSEvent Types

FSEVENT CONSTANT INDICATES

FSE_CREATE_FILE File creation.

FSE_DELETE File/directory has been removed.

FSE_STAT_CHANGED stat(2) of fi le or directory has been changed.

FSE_RENAME File/directory has been renamed.

FSE_CONTENT_MODIFIED File has been modifi ed.

FSE_EXCHANGE The exchangedata(2) system call.

FSE_FINDER_INFO_CHANGED File fi nder information attributes have changed.

FSE_CREATE_DIR A new directory has been created.

FSE_CHOWN File/directory ownership change.

FSE_XATTR_MODIFIED File/directory extended attributes have been modifi ed.

FSE_XATTR_REMOVED File/directory extended attributes have been removed.

 ‰ Using ioctl(2), the watcher can modify the exact event details requested in the notifi cation. 
The control codes defi ned include FSEVENTS_WANT_COMPACT_EVENTS (to get less informa-
tion), FSEVENTS_WANT_EXTENDED_INFO (to get even more information), and NEW_FSEVENTS_
DEVICE_FILTER (to fi lter on devices the watcher is not interested in watching).

 ‰ The requestor (also called the “watcher”) then enters a read(2) loop. Each time the sys-
tem call returns, it populates the user-provided buffer with an array of event records. The 
read can be tricky, because a single operation might return multiple records of variable size. 
If events have been dropped (due to kernel buffers being exceeded), a special event (FSE_
EVENTS_DROPPED) will be added to the event records.

If you check Apple’s documentation, the manual pages, or the include fi les, your search will come 
out quite empty handed. <sys/fsevents.h> did make an early cameo appearance when FSEvents 
was introduced, but has since been thinned and deprecated (and might disappear in Mountain Lion 
altogether). This is because, even though the API remains public, it only has some three offi cial 
users:

 ‰ coreservicesd: This is an Apple internal daemon supporting aspects of Core Services, such 
as launch services and others.

 ‰ mds: The Spotlight server. Spotlight is a “heavy” user of FSEvents, relying on notifi cations to 
fi nd and index new fi les.

 ‰ fseventsd: A generic user space daemon that is buried inside the CoreServices framework 
(alongside coreservicesd). FSEventsd can be told to not log events by a “no_log” fi le in 
the .fseventsd directory, which is created on the root of every volume.

Both Objective-C and C applications can use the CoreServices Framework (Carbon) APIs of 
FSEventStreamCreate and friends.  This framework is a thin layer on top of the actual mechanism, 
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which allows integration of the “real” API with the RunLoop model, events, and callbacks. In essence, 
this involves converting the blocking, synchronous model to an asynchronous, event-driven one. Apple 
documents this well.[6] The rest of this section, therefore, concentrates on the lower-level APIs.

Experiment: A File System Event Monitor
Listing 3-5 shows a barebones FSEvents client that will listen on a particular path (given as an argu-
ment) and display events occurring on the path. Though functionally similar to fs_usage(1),  the 
latter does not use FSEvents (it uses the little-documented kdebug API, described in Chapter 5, 
“Process Tracing and Debugging”).

LISTING 3-5: A bare bones FSEvents-based fi le monitor

#include <stdio.h>
#include <fcntl.h>
#include <stdlib.h>
#include <sys/ioctl.h>     // for _IOW, a macro required by FSEVENTS_CLONE
#include <sys/types.h>     // for uint32_t and friends, on which fsevents.h relies
#include <sys/fsevents.h>

// The struct definitions are taken from bsd/vfs/vfs_events.c
// since they are no long public in <sys/fsevents.h>

#pragma pack(1)
typedef struct kfs_event_a {
  uint16_t type;
  uint16_t refcount;
  pid_t    pid;
} kfs_event_a;

typedef struct kfs_event_arg {
  uint16_t type;
  uint16_t pathlen;
  char data[0];
} kfs_event_arg;

#pragma pack()

int print_event (void *buf, int off)
{
   // Simple function to print event – currently a simple printf of "event!". 
   // The reader is encouraged to improve this, as an exercise.
   // This book's website has a much better (and longer) implementation
   printf("Event!\n");
   return (off);

}

void main (int argc, char **argv)
{

        int fsed, cloned_fsed;
        int i; 
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        int rc;
        fsevent_clone_args  clone_args;
        char buf[BUFSIZE];

        fsed = open ("/dev/fsevents", O_RDONLY);

        int8_t  events[FSE_MAX_EVENTS];

        if (fsed < 0)
        {
                perror ("open"); exit(1);
        }

        // Prepare event mask list. In our simple example, we want everything
        // (i.e. all events, so we say "FSE_REPORT" all). Otherwise, we 
        // would have to specifically toggle FSE_IGNORE for each:
        //
        // e.g. 
        //       events[FSE_XATTR_MODIFIED] = FSE_IGNORE;
        //       events[FSE_XATTR_REMOVED]  = FSE_IGNORE;
        // etc..

        for (i = 0; i < FSE_MAX_EVENTS; i++)
        {
               events[i] = FSE_REPORT; 
        }

        memset(&clone_args, '\0', sizeof(clone_args));
        clone_args.fd = &cloned_fsed; // This is the descriptor we get back
        clone_args.event_queue_depth = 10;
        clone_args.event_list = events;
        clone_args.num_events = FSE_MAX_EVENTS;

        // Request our own fsevents handle, cloned

        rc = ioctl (fsed, FSEVENTS_CLONE, &clone_args);

        if (rc < 0) { perror ("ioctl"); exit(2);}
        printf ("So far, so good!\n");
        close (fsed);

        while ((rc = read (cloned_fsed, buf, BUFSIZE)) > 0)
        {

// rc returns the count of bytes for one or more events:
                int offInBuf = 0;

                while (offInBuf < rc) {

                   struct kfs_event_a *fse = (struct kfs_event_a *)(buf + offInBuf);
                   struct kfs_event_arg *fse_arg;

                   struct fse_info *fse_inf;

                if (offInBuf) { printf ("Next event: %d\n", offInBuf);};
continues
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                offInBuf += print_event(buf,offInBuf); // defined elsewhere

                } // end while offInBuf..
                if (rc != offInBuf) 
                   { fprintf (stderr, "***Warning: Some events may be lost\n"); }

        } // end while rc = ..

} // end main

If you compile this example on either OS X or iOS 5 and, in another terminal, make some fi le modi-
fi cations (for example, by creating a temporary fi le), you should see printouts of fi le system event 
occurrences. In fact, even if you don’t do anything, the system periodically creates and deletes fi les, 
and you will be able to receive notifi cations. 

Note this fairly rudimentary example can be improved on in many ways, not the least of which is dis-
play event details. Singh’s book has an “fslogger” application (which no longer compiles on Snow Leop-
ard due to missing dependencies). One nifty GUI-based app is FernLightning’s “fseventer,” [7] which is 
conceptually very similar to this example, but whose interface is far richer (yet has not been updated in 
recent years). The book’s companion website offers a tool, fi lemon, which improves this example and 
can prove quite useful, especially on iOS 5. Output 3-6 shows a sample output of this tool.

OUTPUT 3-6: Output of an fsevents-based fi le monitoring tool

File /private/tmp/xxxxx has been modified 
     PID: 174 (/tmp/a)
     INODE: 7219206 DEV 40007 UID 501 (morpheus) GID 501
File /Users/morpheus/Library/PubSub/Database/Database.sqlite3-journal has been created
     PID: 43397 (mysqld)
     INODE: 7219232 DEV 40007 UID 501 (morpheus) GID 501
File /Users/morpheus/Library/PubSub/Database/Database.sqlite3-journal has been modified
     PID: 43397 (mysqld)
     INODE: 7219232 DEV 40007 UID 501 (morpheus) GID 501
File /Users/morpheus/Library/PubSub/Database/Database.sqlite3-journal has been deleted
Type: 1 (Deleted ) refcount 0  PID: 43397
     PID: 43397 (mysqld)
     INODE: 7219232 DEV 40007 UID 501 (morpheus) GID 501
...

Notifi cations
OS X provides a systemwide notifi cation mechanism. This is a form of distributed IPC, by means of 
which processes can broadcast or listen on events. The heart of this mechanism is the notifyd(8)
daemon, which is started at boot time: this is the Darwin notifi cation server. An additional daemon, 
distnoted(8), functions as the distributed notifi cation server. Applications may use the notify(3)
API to pass messages to and from the daemons. The messages are for given names, and Apple rec-
ommends the use of reverse DNS namespaces here, as well (for example, com.myCompany.myNoti-
fi cation) to avoid any collisions.

LISTING 3-5 (continued)
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The API is very versatile and allows requesting notifi cations by one of several methods. The well-
documented <notify.h> lists functions to enable the notifi cations over UNIX signals, Mach ports, 
and fi le descriptors. Clients may also manually suspend or resume notifi cations. The notifyd(8)
handles most notifi cations, by default using Mach messages and registering the Mach port of com.
apple.system.notification_center.

A command line utility, notifyutil(1), is available for debugging. Using this utility, you can wait 
for (-w) and post (-p) notifi cations on arbitrary keys.

An interesting feature of notifyd(8) is that it is one of the scant few daemons to use Apple’s fi le-
port API. This enables fi le descriptors to be passed over Mach messages. 

Additional APIs of interest
Additional Apple-specifi c APIs worth noting, but described elsewhere in this book include:

 ‰ Grand Central Dispatch (Chapter 4): A system framework for parallelization using work 
queue extensions built on top of pthread APIs.

 ‰ The Launch Daemon (Chapter 7): Fusing together many of UN*X system daemons (such as 
init, inetd, at, crond and others), along with the Mach bootstrap server.

 ‰ XPC (Chapter 7): A framework for advanced IPC, enabling privilege separation between 
processes

 ‰ kdebug (Chapter 5): A little-known yet largely-useful facility for kernel-level tracing of sys-
tem calls and Mach traps.

 ‰ System sockets (Chapter 17): Sockets in the PF_SYSTEM namespace, which allow communica-
tion with kernel mode components

 ‰ Mach APIs (Chapters 9, 10, and 11): Direct interfaces to the Mach core of XNU, which sup-
ply functionality matching the higher level BSD/POSIX interfaces, but in some cases well 
exceeding them.

 ‰ The IOKit APIs (Chapter 19): APIs to communicate with device drivers, providing a plethora of 
diagnostics information as well as powerful capabilities for controlling drivers from user mode.

OS X AND IOS SECURITY MECHANISMS

Viruses and malware are rare on OS X, which is something Apple has kept boasting for many years as 
an advantage for Mac, in their commercials of “Mac versus PC.” This, however, is largely due to the 
Windows monoculture. Put yourself in the role of Malware developer, concocting your scheme for the 
next devious bot. Would you invest time and effort in attacking over 90% of the world, or under 5%?

Indeed, OS X (and, to an extent, Linux) remain healthy, in part, simply because they do not attract much 
attention from malware “providers” (another reason is that UN*X has always adhered to the principle 
of least privilege, in this case not allowing the user root access by default). This, however, is changing, as 
with OS X’s slow but steady increase in market share, so increases its allure for malware. The latest Mac 
virus, “Flashback” (so called because it is a Trojan masquerading as an Adobe Flash update) infected 
some 600,000 users in the United States alone. Certain industry experts were quick to pillory Apple for 
its hubris, chiding their security mechanisms as being woefully ineffi cient and backdated.
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In actuality, however, Apple’s application security is light years (if not parsecs) ahead of its peers. 
Windows’ User Account Control (UAC) has been long present in OS X. iOS’s hardening makes 
Android seem riddled in comparison. Nearly all so called “viruses” which do exist in Mac are actu-
ally Trojans — which rely on the cooperation (and often utter gullibility) of the unwitting user. 
Apple is well aware of that, and is determined to combat malware. The arsenal with which to do 
that has been around since Leopard, and Apple is investing ongoing efforts to upgrade it in OS X 
and, even more so in iOS. 

Code Signing
Before software can be secured, its origin must be authenticated. If an app is downloaded from 
some random site on the Internet, there is a signifi cant risk it is actually malware. The risk is greatly 
mitigated, however, if the software’s origin can be verifi ably determined, and it can further be 
assured that it has not been modifi ed in transit. 

Code signing provides the mechanism to do just that. Using the same X.509v3 certifi cates that SSL 
uses to establish the identity of websites (by signing their public key with the private key of the issuer), 
Apple encourages developers to sign their applications and authenticate their identity. Since the crux 
of a digital signature is that the signer’s public key must be a priori known to the verifi er, Apple 
embeds its certifi cates into both OS X and iOS’s keychains (much like Microsoft does in Windows), 
and is effectively the only root authority. You can easily verify this using the security(1) utility, 
which (among its many other functions) can dump the system keychains, as shown in Output 3-7:

OUTPUT 3-7: Using security(1) to display Apple’s built-in certifi cates on OS X

morpheus@Minion (~)$ security –i    # Interactive mode
security> list-keychains
  "/Users/morpheus/Library/Keychains/login.keychain" # User's passwords, etc
  "/Library/Keychains/System.keychain"               # Wi-Fi password,s and certificates

# Non-Interactive mode

morpheus@Minion (~)$ security dump-keychain /Library/Keychains/System.keychain |
grep labl                       # Show only labels

    "labl"<blob>="com.apple.systemdefault"
    "labl"<blob>="com.apple.kerberos.kdc"
    "labl"<blob>="Apple Code Signing Certification Authority"
    "labl"<blob>="Software Signing"
    "labl"<blob>="Apple Worldwide Developer Relations Certification Authority"

Apple has developed a special language to defi ne code signing requirements, which may be displayed 
with the csreq(1) command. Apple also provides the codesign(1) command to allow develop-
ers to sign their apps (as well as verify/display existing signatures), but codesign(1) won’t sign 
anything without a valid, trusted certifi cate, which developers can only obtain by registering with 
Apple’s Developer Program. Apple’s Code Signing Guide[8] covers the code signing process in depth, 
with Technical Note 2250[9] discussing iOS.

Whereas in OS X code signing is optional, in iOS it is very much mandatory. If, by some miracle, 
an unsigned application makes its way to the fi le system, it will be killed by the kernel upon any 
attempted execution. This is what makes jailbreakers’ life so hard: The system simply refuses to run 
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unsigned code, and so the only way in is by exploiting vulnerabilities in existing, signed applica-
tions (and later the kernel itself). Jailbreakers must therefore seek faults in iOS’s system apps and 
libraries (e.g. MobileSafari, Racoon, and others). Alternatively, they may seek faults in the code-
signing mechanism itself, as was done by renowned security researcher Charlie Miller in iOS 5.0.[10]

Disclosing this to Apple, however, proved a Pyrrhic victory. Apple quickly patched the vulnerability 
in 5.0.1, and another future jailbreak door slammed shut forever. Mr. Miller himself was controver-
sially banned from the iOS Developer Program. 

Code-signed applications may still be malicious. Any applications that violate the terms of service, 
however, would quickly lead to their developer becoming a persona non grata at Apple, banned 
from the Mac/iOS App Stores (q.v. Mr. Miller). Since registering with Apple involves disclosing 
personal details, these malicious developers could also be the target of a lawsuit. This is why you 
won’t fi nd any apps in iOS’s App Store attempting to spawn /bin/bash or mimic its functionality. 
Nobody wants to get on Apple’s bad side.

Compartmentalization (Sandboxing)
Originally considered a vanguard, nice-to-have feature, compartmentalization is becoming an inte-
gral part of the Apple landscape. The idea is a simple, yet principal tenet of application security: 
Untrusted applications must run in a compartment, effectively a quarantined environment wherein 
all operations are subject to restriction. Formerly known in Leopard as seatbelt, the mechanism has 
since been renamed sandbox, and has been greatly improved in Lion, touted as one of its stronger 
suits. A thorough discussion of the sandbox mechanism (as it was implemented in Snow Leopard) 
can be found in Dionysus Blazakis’s Black Hat DC 2011 presentation[11], though the sandbox has 
undergone signifi cant improvements since.

iOS — the Sandbox as a jail
In iOS, the sandbox has been integrated tightly since inception, and has been enhanced further to 
create the “jail” which the “jailbreakers” struggle so hard to break. The limitations in an App’s 
“jail” include, but are not limited to:

 ‰ Inability to break out of the app’s directory. The app effectively sees its own directory (/var/
mobile/Applications/<app-GUID>) as the root, similar to the chroot(2) system call. As a 
corollary, the app has no knowledge of any other installed apps, and cannot access system fi les.

 ‰ Inability to access any other process on the system, even if that process is owned by the same 
UID. The app effectively sees itself as the only process executing on the system.

 ‰ Inability to directly use any of the hardware devices (camera, GPS, and others) without going 
through Apple’s Frameworks (which, in turn, can impose limitations, such as the familiar 
user prompts).

 ‰ Inability to dynamically generate code. The low-level implementations of the mmap(2) and 
mprotect(2) system calls (Mach’s vm_map_enter and vm_map_protect, respectively, as 
discussed in Chapter 13) are intentionally modifi ed to circumvent any attempts to make writ-
able memory pages also executable. This is discussed in Chapter 11.

 ‰ Inability to perform any operations but a subset of the ones allowed for the user mobile. 
Root permissions for an app (aside for Apple’s own) are unheard of. 
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Entitlements (discussed later) can release some well-behaving apps from solitary confi nement, and 
some of Apple’s own applications do possess root privileges.

Voluntary Imprisonment
Execution in a sandbox is still voluntary (at least, in OS X). A process must willingly call sandbox_
init(3) to enter a sandbox, with one of the predefi ned profi les shown in Table 3-8. (This, however, 
can also be accomplished by a thin wrapper, which is exactly what the command line sandbox-
exec(1) is used for, along with the –n switch and a profi le name).

TABLE 3-8: Predefi ned Sandbox Profi les

KSBXPROFILE CONSTANT PROFILE NAME

(FOR sandbox-exec –n)

PROHIBITS

NoInternet no-internet AF_INET/AF_INET6 sockets

NoNetwork no-network socket(2) call

NoWrite no-write File system write operations

NoWriteExceptTemporary no-write-except-

temporary
File system write operations except tem-

porary directories

PureComputation pure-computation Most system calls

The sandbox_init(3) function in turn, calls the mac_execve system call (#380), and the profi le 
corresponds to a MAC label, as discussed earlier in this chapter. The profi le imposes a set of pre-
defi ned restrictions on the process, and any attempt to bypass these restrictions results in an error 
at the system-call level (usually a return code of –EPERM). The seatbelt may well have been renamed 
to “quicksand,” instead, because once a sandbox is entered, there is no way out. The benefi t of a 
tight sandbox is that a user can run an untrusted application in a sandbox with no fear of hidden 
malware succeeding in doing anything insidious (or anything at all, really), outside the confi nes of 
the defi ned profi le. The predefi ned profi les serve only as a point of departure, and profi les can be 
created on a per-application basis. 

Apple has recently announced a requirement for all Mac Store apps to be sandboxed, so the “vol-
untary” nature of sandboxing will soon become “mandatory,” by the time this book goes to print. 
Because it still requires a library call in the sandboxed program, averting the sandbox remains a trivial 
manner — by either hooking sandbox_init(3) prior to executing the process[12] or not calling it at all. 
Neither or these are really a weakness, however. From Apple’s perspective, the user likely has no incen-
tive to do the former, because the sandbox only serves to enhance his or her security. The developer 
might very well be tempted to do the latter, yet Apple’s review process will likely ensure that all 
submitted apps willingly accept the shackles in return for a much-coveted spot in the Mac store. 

Controlling the Sandbox
In addition to the built-in profi les, it is possible to specify custom profi les in .sb fi les. These fi les are 
written in the sandbox’s Scheme-like dialect. The fi les specify which actions to be allowed or denied, and 
are compiled at load-time by libSandbox.dylib, which contains an embedded TinySCHEME library. 
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You can fi nd plenty of examples in /usr/share/sandbox and /System/Library/Sandbox/Profiles
(or by searching for *.sb fi les). A full explanation of the syntax is beyond the scope of this book 
Listing 3-6, however, serves to demonstrate the key aspects of the syntax by annotating a sample profi le.

LISTING 3-6: A sample custom sandbox profi le, annotated

(version 1)
(deny default) ; deny by default – least privilege
(import "system.sb") ; include another profile as a point of departure

(allow file-read*) ; Allow all file read operations
(allow network-outbound) ; Allow outgoing network connections
(allow sysctl-read) 
(allow system-fsctl)
(allow distributed-notification-post)

(allow appleevent-send (appleevent-destination "com.apple.systempreferences"))

(allow ipc-posix-shm system-audit system-sched mach-task-name process-fork process-exec)

(allow iokit-open ; Allow the following I/O Kit calls
       (iokit-connection "IOAccelerator")
       (iokit-user-client-class "RootDomainUserClient")
       (iokit-user-client-class "IOAccelerationUserClient")
       (iokit-user-client-class "IOHIDParamUserClient")
       (iokit-user-client-class "IOFramebufferSharedUserClient")
       (iokit-user-client-class "AppleGraphicsControlClient")
       (iokit-user-client-class "AGPMClient"))
)

allow file-write* ; Allow write operations, but only to the following path:
       (subpath "/private/tmp")
       (subpath (param "_USER_TEMP"))
)

(allow mach-lookup ; Allow access to the following Mach services
       (global-name "com.apple.CoreServices.coreservicesd")
)

If a trace directive is used, the user-mode daemon sandboxd(8)will generate rules, allowing the 
operations requested by the sandboxed application. A tool called sandbox-simplify(1) may then 
be used in order to coalesce rules, and simplify the generated profi le.

Entitlements: Making the Sandbox Tighter Still
The sandbox mechanism is undoubtedly a strong one, and far ahead of similar mechanisms in other 
operating systems. It is not, however, infallible. The “black list” approach of blocking known danger-
ous operations is only as effective as the list is restrictive. As an example, consider that in November 
2011 researchers from Core Labs demonstrated that, while Lion’s kSBXProfileNoNetwork indeed 
restricts network access, it does not restrict AppleEvents.[13] What follows is that a malicious app can 
trigger AppleScript and connect to the network via a non-sandboxed proxy process.
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The sandbox, therefore, has been revamped in Lion, and will likely be improved still in Mountain 
Lion, where it has been rebranded as “GateKeeper” and is a combination of an already-existing 
mechanism: HFS+’s quarantine, with a “white list” approach (that is, disallowing all but that which 
is known to be safe) that aims to deprecate the “black list” of the current sandboxing mechanism. 
Specifi cally, applications downloaded will have the “quarantine” extended attribute set, which is 
responsible for the familiar “…is an application downloaded from the Internet” warning box, as 
before. This time, though, the application’s code signature will be checked for the publisher’s iden-
tity as well as any potential tampering and known reported malware. 

Containers in Lion
Lion introduces a new command line, asctl(1), which enables fi ner tuning of the sandbox mecha-
nism. This utility enables you to launch applications and trace their sandbox activity, building a 
profi le according to the application requirements. It also enables to establish a “container” for an 
application, especially those from the Mac Store. The containers are per-application folders stored in 
the Library/Containers directory. This is shown in the next experiment. 

It is more than likely that Mac Store applications will, sooner or later, only be allowed to execute 
according to specifi c entitlements, as is already the case in iOS. Entitlements are very similar in con-
cept to the declarative permission mechanism used in .NET and Java (which also forms the basis for 
Android’s Dalvik security).  The entitlements are really nothing more than property lists. In Lion (as 
the following experiment illustrates) the entitlements are part of the container’s plist. 

Experiment: Viewing Application Containers in Lion
If you have downloaded an app from the Mac Store, you can see that a container for it has likely 
been created in your Library/Containers/ directory. Even if you have not, two apps already thus 
contained are Apple’s own Preview and TextEdit, as shown in Output 3-8:

OUTPUT 3-8: Viewing the container of TextEdit, one of Apple’s applications

morpheus@Minion (~)$ asctl container path TextEdit 
~/Library/Containers/com.apple.TextEdit
morpheus@Minion (~)$ cd Library/Containers
morpheus@Minion (~/Library/Containers)$ ls
com.apple.Preview       com.apple.TextEdit
morpheus@Minion (~/Library/Containers)$ cd com.apple.TextEdit
morpheus@Minion (~/…Edit)$ find .
./Container.plist
./Data
./Data/.CFUserTextEncoding
./Data/Desktop
./Data/Documents
./Data/Downloads
./Data/Library
...
./Data/Library/Preferences
...
./Data/Library/Saved Application State
./Data/Library/Saved Application State
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./Data/Library/Saved Application State/com.apple.TextEdit.savedState

./Data/Library/Saved Application State/com.apple.TextEdit.savedState/data.data

./Data/Library/Saved Application State/com.apple.TextEdit.savedState/window_1.data

./Data/Library/Saved Application State/com.apple.TextEdit.savedState/windows.plist

./Data/Library/Sounds

./Data/Library/Spelling

./Data/Movies

./Data/Music

./Data/Pictures

The Data/ folder of the container forms a jail for the app, in the same way that iOS apps are lim-
ited to their own directory. If global fi les are necessary for the application to function, it is a simple 
matter to create hard or soft links for them. The various preferences fi les, for example, are symbolic 
links, and the fi les in Saved Application State/ (which back Lion’s Resume feature for apps) are 
hard links to fi les in ~/Library/Saved Application State.

The key fi le in any container is the Container.plist, This is a property list fi le, though in binary 
format. Using plutil(1) to convert it to XML will reveal its contents, as shown in Output 3-9:

OUTPUT 3-9: Displaying the container.plist of TextEdit

morpheus@Minion (~/Library/Containers)$ cp com.apple.TextEdit/Container.plist /tmp
morpheus@Minion (~/Library/Containers)$ cd /tmp
morpheus@Minion (/tmp)$ plutil –convert xml1 Container.plist
morpheus@Minion (/tmp)$ more !$ 
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" 
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
        <key>Identity</key>
        <array>
                <data>
                +t4MAAAAADAAAAABAAAABgAAAAIAAAASY29tLmFwcGxlLlRleHRFZGl0AAAA
                AAAD
                </data>
        </array>
        <key>SandboxProfileData</key>
        <data>
        AAD5AAwA9wD2APIA9wD3APcA9wDxAPEA8ADkAPEAjgCMAPgAiwDxAPEAfwB/AHsAfwB/
        AH8AfwB/AH8AfwB/AHoAeQD3AHgA9wD3AGsAaQD3APcA9wD4APcA9wD3APcA9wD3APgA
         ...  Base64 encoded compiled profile data ...
        AAACAAAALwAAAC8=
        </data>
        <key>SandboxProfileDataValidationInfo</key>
        <dict>
                <key>SandboxProfileDataValidationEntitlementsKey</key>
                <dict>
                        <key>com.apple.security.app-protection</key>
                        <true/>
                        <key>com.apple.security.app-sandbox</key>
                        <true/>

continues
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                        <key>com.apple.security.documents.user-selected.read-write</key>
                        <true/>
                        <key>com.apple.security.files.user-selected.read-write</key>
                        <true/>
                        <key>com.apple.security.print</key>
                        <true/>
                </dict>
                <key>SandboxProfileDataValidationParametersKey</key>
                <dict>
                        <key>_HOME</key>
                        <string>/Users/morpheus</string>
                        <key>_USER</key>
                        <string>morpheus</string>
                        <key>application_bundle</key>
                        <string>/Applications/TextEdit.app</string>
                        <key>application_bundle_id</key>
                        <string>com.apple.TextEdit</string>
                          ...
                </dict>
                <key>SandboxProfileDataValidationSnippetDictionariesKey</key>
                <array>
                       <dict>
                               <key>AppSandboxProfileSnippetModificationDateKey</key>
                               <date>2012-02-06T15:50:18Z</date>
                               <key>AppSandboxProfileSnippetPathKey</key>
                        <string>/System/Library/Sandbox/Profiles/application.sb</string>
                       </dict>
                </array>
                <key>SandboxProfileDataValidationVersionKey</key>
                <integer>1</integer>
        </dict>
        <key>Version</key>
        <integer>24</integer>
</dict>
</plist>

The property list shown above has been edited for readability. It contains two key entries:

 ‰ SandboxProfileData: The compiled profi le data. Since the output of the compilation is 
binary, the data is encoded as Base64. 

 ‰ SandboxProfileDataValidationEntitlementsKey: Specifying a dictionary of entitlements 
this application has been granted. Apple currently lists about 30 entitlements, but this list is 
only likely to grow as the sandbox containers are adopted by more developers. 

Mountain Lion’s version of the asctl(1) command contains a diagnose subcommand, which can 
be used to trace the sandbox mechanism. This functionality wraps other diagnostic commands — 
/usr/libexec/AppSandBox/container_check.rb (a Ruby script), and codesign(1) with the 
--display and --verify arguments. Although Lion does not contain the subcommand, these com-
mands may be invoked directly, as shown in Output 3-10:

OUTPUT 3-9 (continued)
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OUTPUT 3-10: Using codesign(1) --display directly on TextEdit:

morpheus@Minion (~)$ codesign --display --verbose=99 --entitlements=:-        \ 
/Applications/TextEdit.app
Executable=/Applications/TextEdit.app/Contents/MacOS/TextEdit
Identifier=com.apple.TextEdit
Format=bundle with Mach-O universal (i386 x86_64)
CodeDirectory v=20100 size=987 flags=0x0(none) hashes=41+5 location=embedded
Hash type=sha1 size=20
CDHash=7b9b2669bddfaf01291478baafd93a72c61eee99
Signature size=4064
Authority=Software Signing
Authority=Apple Code Signing Certification Authority
Authority=Apple Root CA
Info.plist entries=30
Sealed Resources rules=11 files=10

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" 
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
        <key>com.apple.security.app-sandbox</key>
        <true/>
        <key>com.apple.security.files.user-selected.read-write</key>
        <true/>
        <key>com.apple.security.print</key>
        <true/>
        <key>com.apple.security.app-protection</key>
        <true/>
        <key>com.apple.security.documents.user-selected.read-write</key>
        <true/>
</dict>
</plist>

Entitlements in iOS
In iOS, the entitlement plists are embedded directly into the application binaries and digitally signed 
by Apple. Listing 3-7 shows a sample entitlement from iOS’s debugserver, which is part of the 
SDK’s Developer Disk Image:

LISTING 3-7: A sample entitlements.plist for iOS’s debugserver

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" 
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
      <key>com.apple.springboard.debugapplications</key>
      <true/>
      <key>get-task-allow</key>
      <true/>
      <key>task_for_pid-allow</key>
      <true/>

continues
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      <key>run-unsigned-code</key>
      <true/>
</dict>
</plist>

The entitlements shown in the listing are among the most powerful in iOS. The task-related ones allow 
low-level access to the Mach task, which is the low-level kernel primitive underlying the BSD processes. As 
Chapter 10 shows, obtaining a task port is equivalent to owning the task, from its virtual memory down 
to its last descriptor. Another important entitlement is dynamic-codesigning, which enables code gen-
eration on the fl y (and creating rwx memory pages), currently known to be granted only to MobileSafari.

Apple doesn’t document the iOS entitlements (and isn’t likely to do so in the near future, at least those 
which pertain to their own system services), but fortunately the embedded plists remain unencrypted 
(at least, until the time of this writing). Using cat(1)on key iOS binaries and apps (like MobileMail, 
MobileSafari, MobilePhone, and others) will display, towards the end of the output, the entitlements 
they use. For example, consider Listing 3-8, which shows the embedded plist in MobileSafari:

LISTING 3-8: using cat(1) to display the embedded entitlement plist in MobileSafari

root@podicum (/)# cat –tv /Applications/MobileSafari.app/MobileSafari | tail -31 | more
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" 
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
^I<key>com.apple.coreaudio.allow-amr-decode</key>
^I<true/>
^I<key>com.apple.coremedia.allow-protected-content-playback</key>
^I<true/>
^I<key>com.apple.managedconfiguration.profiled-access</key>
^I<true/>
^I<key>com.apple.springboard.opensensitiveurl</key>
^I<true/>
^I<key>dynamic-codesigning</key> <!-- Required for Safari's Javascript engine !-->
^I<true/>
^I<key>keychain-access-groups</key>
^I<array>
^I^I<string>com.apple.cfnetwork</string>
^I^I<string>com.apple.identities</string>
^I^I<string>com.apple.mobilesafari</string>
^I^I<string>com.apple.certificates</string>
^I</array>
^I<key>platform-application</key>
^I<true/>
^I<key>seatbelt-profiles</key>
^I<array>
^I^I<string>MobileSafari</string> <!-- Safari has its own seatbelt/sandbox profile !-->
^I</array>
^I<key>vm-pressure-level</key>
^I<true/>
</dict>
</plist>

LISTING 3-7 (continued)
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iOS developers can only embed entitlements allowed by Apple as part of their developer license. 
The allowed entitles are themselves, embedded into the developer’s own certifi cate. Applications 
uploaded to the App Store have the entitlements embedded in them, so verifying application security 
in this way is a trivial matter for Apple. More than likely, this will be the case going forward for OS 
X, though at the time of this writing, this remains an educated guess. 

Enforcing the Sandbox
Behind the scenes, XNU puts a lot of effort into maintaining the sandboxed environment. Enforce-
ment in user mode is hardly an option due to the many hooking and interposing methods possible. 
The BSD MAC layer (described earlier) is the mechanism by which both sandbox and entitlements 
work. If a policy applies for the specifi c process,  it is the responsibility of the MAC layer to call-
out to any one of the policy modules (i.e. specialized kernel extensions). The main kernel extension 
responsible for the sandbox is sandbox.kext, common to both OS X and iOS. A second kernel 
extension unique to iOS, AppleMobileFileIntegrity (affectionately known as AMFI), enforces 
entitlements and code signing (and is a cause for ceaseless headaches to jailbreakers everywhere). 
As noted, the sandbox also has a dedicated daemon, /usr/libexec/sandboxd, which runs in user 
mode to provide tracing and helper services to the kernel extension, and is started on demand (as 
you can verify if you use sandbox-exec(1) to run a process). In iOS, AMFI also has its own helper 
daemon, /usr/libexec/amfid. The OS X architecture is displayed in Figure 3-2.

Sandboxed process

1. Process makes a system call

2. System call contains MAC callouts

3. MAC layer checks for any policy to

apply for this process

4. If there is a policy, the list of

registered policy modules is walked

5. If sandbox.kext registered a callback for

this particular operation, it is invoked

6. sandbox.kext calls on AppleMatch.kext

to perform regular expression matching

7. sandbox.kext may also send Mach 

messages to sandboxd, mostly for 

tracing purposes

8. sandbox.kext either approves

the request, or denies it (EPERM)

9. Additional policy modules (like iOS’s

AMFI) can be registered, in which case

they are also consulted in turn

10. System call returns to user

sandboxd

User mode

Kernel mode
System calls and Mach traps

Mandatory access control (MAC) layer

sandbox

kext

AppleMatch

kext

Additional policy

modules

FIGURE 3-2: The sandbox architecture
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Chapter 14 discusses the MAC layer in depth from the kernel perspective, and elaborates more on 
the enforcement of its policies, by both the sandbox and AMFI.

SUMMARY

This chapter gave a programmatic tour of the APIs that are idiosyncratic to Apple. These are spe-
cifi c APIs, either at the library or system-call level, providing the extra edge in OS X and iOS. From 
the features adopted from BSD, like sysctl and kqueue, OpenBSM and MAC, through fi le-system 
events and notifi cations, to the powerful and unparalleled automation of AppleEvents. This chapter 
fi nally discussed the security architecture of OS X and iOS from the user’s perspective, explaining 
the importance of code signing, and highlighting the use the BSD MAC layer as the foundation for 
the Apple-proprietary technologies of sandboxing and entitlements.

The next chapters delve deeper into the system calls and libraries, and focus on process internals 
and using specifi c APIs for debugging.
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4
Parts of the Process: Mach-O, 
Process, and Thread Internals

Operating systems are designed as a platform, on top of which applications may execute. 
Each instance of a running application constitutes a process. This chapter discusses the user 
mode perspective of processes, beginning with their executable format, through the process of 
loading them into memory, and the memory image which results. The chapter concludes with 
a discussion of virtual memory from a system-wide perspective, as it pertains to memory 
utilization and swapping.

A NOMENCLATURE REFRESHER

Before delving into the internals of how processes are implemented, it might be wise to spend a 
few minutes revising the basic terminology of processes and signals, as interpreted in UNIX. If 
you are well versed, feel free to skip this section.

Processes and Threads
Much like any other pre-emptive multi-tasking system, UNIX was built around the concept 
of a process as an instance of an executing program. Such an instance is uniquely defi ned by a 
Process ID (which will hence be referred to as a PID). Even though the same executable may be 
started concurrently in multiple instances, each will have a different PID. Processes may fur-
ther belong to process groups. These are primarily used to allow the user to control more than 
one process — usually by sending signals (see the following section) to a group, rather than a 
specifi c process. A process may join a group by calling setpgrp(2).

A process will also retain its kinship with its parent process — as kept in its Parent Process 
Identifi er, or PPID. This is needed because, in UNIX, it is actually the norm for the parent 
to outlive its children. A parent can fork (or posix_spawn) children, and actually expects 
them to die. UNIX processes, unlike some humans, have a very distinct and clear meaning in 
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life — to run, and then return a single integer value, which is collected by their parent process. This 
return value is what the process passes to the exit(2) system call (or, alternatively, returns from its 
main()).  

Modern operating systems no longer treat processes as the basic units of operation, instead work 
with threads. A thread is merely a distinct register state, and more than one can exist in a given 
process. All threads share the virtual memory space, descriptors and handles. The process abstrac-
tion remains as a container of one or more threads. When we next discuss “processes,” it is impor-
tant to remember that, more often than not, these can be multi-threaded. When a process is single 
threaded, the terms can be used interchangeably. When multiple threads exist in the same process, 
however, some things — such as execution state — are applicable separately to the individual 
threads. Threads are discussed in more detail towards the end of this chapter.  

The Process Lifecycle
The full lifecycle of a UNIX process, and therefore that of an OS X one, can be illustrated in the fol-
lowing fi gure. The SXXX constants refer to the ones defi ned in the kernel, and visible in 
<sys/proc.h> as shown in Figure 4-1: 

Quantum expired
or preemption

scheduled

I/O or resource wait

Signal

exit( )

mother wait( )s

SRUN
(executing)

SRUN
(queued)

SIDL
(forked)

SSLEEP
(sleeping)

SSTOP
(SIGSTP, TSTP)

Dead
(process has exited)

SZOMB
(In process exit)

FIGURE 4-1: The process lifecycle

A process begins its life in the SIDL state, which represents a momentarily idle process, that has just 
been created by forking from its parent. In this state, the process is still defi ned as “initializing,” 
and does not respond to any signals or perform any action while its memory layout is set up, and its 
required dependencies load. Once all is ready, the process can start executing, and does not return 
to SIDL. A process in SIDL is always single threaded, since threads can only be spawned later.

When a process is executing, it in the SRUN state. This state, however, is actually made up of two 
distinct states: runnable and running. A process is runnable if it is queued to run, but is not actually 
executing, since the CPU is busy with some other process. Only when the CPU’s registers are loaded 
with those belong to a process (technically, to one of its threads), is a process truly in the running 
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state. Since scheduling is volatile, however, the kernel doesn’t bother to differentiate between the 
two distinct states. A running process may also be “kicked out” of the CPU and back to the queue if 
its time slice has expired, or if another process of higher priority ousts it.

A process will spend its time in the running/runnable state of SRUN for as long as possible, unless it 
waits on a resource. In this context, a “resource” is usually I/O-related (such as a fi le or a device). 
Resources also include synchronization objects (such as mutexes or locks). When a process is wait-
ing, it makes no sense to occupy the CPU, or even consider it in the run queue. It is therefore “put to 
sleep” (the SSLEEP state). A process will sleep until the resource becomes available, at which point 
it will be queued again for execution — usually immediately after the current process, or some-
times even in place of it. A sleeping process can also be woken up by a signal (discussed next in this 
chapter).

The main advantage of multithreading is that individual thread states may diverge from one 
another. Thus, while one thread may be sleeping, another can be scheduled on the CPU. The threads 
will spend their time between the runnable/running and sleeping (or “blocked”) state.

Using a special signal (TSTOP or TOSTOP), it is possible to stop a process. This “freezes” the process 
(i.e. simultaneously suspending all of its threads), essentially putting it into a “deep sleep” state. The 
only way to resume such a process is with another signal (CONT), which puts the process back into a 
runnable state, enabling once more the scheduling of any of its threads.

When a process is done, either by a return from its main(), or by calling exit(2), it is cleared from 
memory, and is effectively terminated. Doing so will terminate all of its threads simultaneously. 
Before this can be done, however, the process must briefl y spend time in the zombie state.

The Zombie State
Of all process states, the one which is least understood is the zombie state. Despite the undead con-
text, it is a perfectly normal state, and every process usually spends an infi nitesimal amount of time, 
just before it can rest in peace.

Recall, that the “meaning of life” for a process is to return a value to its parent. Parent processes 
bear no responsibility to rear and care for their children. The only thing that is requested of them, 
however, is to wait(2) for them, so their return value is collected. There is an entire family of 
wait() calls, consisting of wait(2), waitpid(2), wait3(2), and wait4(2). All expect an integer 
pointer amongst their parameters in which the operating system will deliver the dying child’s last 
(double or quad) word.  

In cases where the child process does outlive the parent, it is “adopted” by its great ancestor, PID 
1 (in UNIX and pre-Tiger OS X, init, now reborn as launchd), which is the one process that out-
lives all others, persisting from boot to shutdown. Parents who outlive, yet forsake their children 
and move on to other things, will damn the children to be stuck in the quasi-dead state of a zombie.
Zombies are, for all intents and purposes, quite dead. They are the empty shells of processes, which 
have released all resources but still cling to their PID and show up on the process list as <defunct>
or with a status of Z. Zombies will rest in peace only if their parent eventually remembers to wait 
for them — and collect their return value — or if the parent dies, granting them rest by allowing 
them to be adopted, albeit briefl y, by PID 1.
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The code in Listing 4-1 artifi cially creates a zombie. After a while, when its parent exits, the zombie 
disappears.

LISTING 4-1: A program to artifi cially create a zombie

#include <stdio.h>
int main (int argc, char **argv)
{
    int rc = fork(); // This returns twice
    int child = 0;
    switch (rc)
     {
         case -1:

/**
            * this only happens if the system is severely low on resources,
            * or the user's process limit (ulimit -u) has been exceeded
            */
            fprintf(stderr, "Unable to fork!\n");
           return (1);
          case 0:
            printf("I am the child! I am born\n");
             child++;
             break;
          default: 
             printf ("I am the parent! Going to sleep and now wait()ing\n");
            sleep(60);
       }
       printf ("%s exiting\n", (child?"child":"parent"));
        return(0);
}

OUTPUT 4-1: Output of the sample program from Listing 4-1

Morpheus@Ergo (~)$ cc a.c –o a        # compiling the program
cc a.c -o a
Morpheus@Ergo (~)$ ./a &              # running the program in the background
[2] 3620
I am the parent! *Yawn* Going to sleep..
I am the child! I am born!
child exiting

Morpheus@Ergo (~)$ ps a              # ps "a" shows the STAT column.
  PID   TT  STAT      TIME COMMAND
  264 s000  Ss     0:00.03 login -pf morpheus
  265 s000  S      0:00.10 -bash
 3611 s000  T      0:00.03 vi a.c
 3620 s000  S      0:00.00 ./a
 3621 s000  Z      0:00.00 (a)
 3623 s000  R+     0:00.00 ps a 3601 s000  R+     0:00.00 ps a
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pid_suspend and pid_resume
OS X (and iOS) added two new system calls in Snow Leopard for process control: pid_suspend and 
pid_resume. The former “freezes” a process, and the latter “thaws” it. The effect, while similar to 
sending the process STOP/CONT signals, is different. First, the process state remains SSLEEP, seem-
ingly a normal “sleep,” though in effect a much deeper one. This is because the underlying suspen-
sion is performed at a lower level (of the Mach task) rather than that of the process. Second, these 
calls can be used multiple times, incrementing and decrementing the process suspend count. Thus, 
for every call to pid_suspend, there needs to be a matching call to pid_resume. A process with a 
non-zero suspend count will remain suspended. 

The system calls calls are private to Apple, and their prototypes are not published in header fi les, 
save for a mention of the system call numbers in <sys/syscall.h>. These numbers, however, must 
not be relied upon, as they have changed between Snow Leopard (wherein they were #430 and #431, 
respectively) and Lion/iOS (wherein they are #433 and #434). The previous system call numbers are 
now used by the fileport mechanism. The system calls are also largely unused in OS X, but iOS’s 
SpringBoard makes good use of them (as some processes are suspended when the user presses the 
i-Device’s home button).

iOS further adds a private system call, which does not exist in OS X, called pid_shutdown_sockets
(#435). This system call enables shutting down all of a process’s sockets from outside the process. 
The call is used exclusively by SpringBoard, likely when suspending a process.

UNIX Signals
While alive, processes usually mind their own business and execute in a sequential, sometimes 
parallelized sequential, manner (the latter, if using threads). They may, however, encounter signals,
which are software interrupts indicating some exception made on their part, or an external event. 
OS X, like all UNIX systems, supports the concept of signals — asynchronous notifi cations to a pro-
gram, containing no data (or, some would argue, containing a single bit of data). Signals are sent to 
processes by the operating system, indicating the occurrence of some condition, and this condition 
usually has its cause in some type of hardware fault or program exception.

There are 31 defi ned signals in OS X (signal 0 is supported, but unused). They are defi ned in 
<sys/signal.h>. The numbers are largely the same as one would expect from other UNIX systems. 
Table 4-1 summarizes the signals and their default behavior.

TABLE 4-1: UNIX signals in OS X, with scope and default behaviors

# SIG ORIGIN MEANING P/T DEFAULT

1 HUP Tty Terminal hangup (for daemons: reload conf). P K

2 INT Tty Generated by terminal driver on stty intr. P K

3 QUIT Tty Generated by terminal driver on stty quit. P K,C

4 ILL HW Illegal instruction. T K,C

5 TRAP HW Debugger trap/assembly ("int 3"). T K,C

(continues)
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# SIG ORIGIN MEANING P/T DEFAULT

6 ABRT OS abort() P K,C

7 POLL OS If _POSIX_C_SOURCE — pollable event. P K,C

Else, emulator trap. T K,C

8 FPE HW Floating point exception, or zero divide. T K,C

9 KILL User, OS (rare) The 9mm bullet. Kills, no saving throw. Usually 

generated by user (kill -9). 

P K

10 BUS HW Bus error. T K,C

11 SEGV HW Segmentation violation/fault — NULL dereference, 

or access protection or other memory.

T K,C

12 SYS OS Interrupted system call. T K,C

13 PIPE OS Broken pipe (generated when P on read of a pipe 

is terminated).

T K

14 ALRM HW Alarm. P K

15 TERM OS Termination. P K

16 URG OS Urgent condition. P I

17 STOP User Stop (suspend) process. Send by terminal on stty

stop.

P S

18 TSTP Tty Terminal stop (stty tostop, or full screen in bg). P S,T

19 CONT User Resume (inverse of STOP/TSTOP). P I

20 CHLD OS Sent to parent on child’s demise. P I 

21 TTIN Tty TTY driver signals pending input. P S,T

22 TTOU Tty TTY driver signals pending output. P S,T

23 IO OS Input/output. P I

24 XCPU OS ulimit –t exceeded. P K

25 XFSZ OS ulimit –f exceeded. P K

26 VTALRM OS Virtual time alarm. P K

27 PROF OS Profi ling alarm. P K

28 WINCH Tty Sent on terminal window resize. P I

29 INFO OS Information. P I

30 USR1 User User-defi ned signal 1. P K

31 USR2 User User-defi ned signal 2. P K

TABLE 4-1 (continued)
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Legend:

Origin — Signal originates from:

 ‰ HW: A hardware exception or fault (for example, MMU trap)

 ‰ OS: Operating system, somewhere in kernel code

 ‰ Tty: Terminal driver

 ‰ User: User, by using kill(1) command (user can also use this command to emulate all other 
signals)

Default — actions to take upon a signal, if no handler is registered:

 ‰ C — SA_CORE: Process will dump core, unless otherwise stated.

 ‰ I — SA_IGNORE: Signal ignored, even if no signal handler is set.

 ‰ K — SA_KILL: Process will be terminated unless caught.

 ‰ S — SA_STOP: Process will be stopped unless caught

 ‰ T — SA_TTYSTOP: As SA_STOP, but reserved for TTY.

Signals were traditionally sent to processes, although POSIX does allow sending signals to indi-
vidual threads. 

A process can use several system calls to either mask (ignore) or handle any of the signals in Table 4-1, 
with the exception of SIGKILL. LibC exposes the legacy signal(3) function, which is built over 
these system calls.

Process Basic Security
UNIX has traditionally been a multi-user system, wherein more than one user can run more than 
one process concurrently. To provide both security and isolation, each process holds on to two pri-
mary credentials: its creator user identifi er (UID) and primary group identifi er (GID). These are also 
known as the real UID and real GID of the process, but are only part of a larger set of credentials, 
which also includes any additional group memberships and the effective UID/GID. The latter two 
are commonly equal to the real UID, unless invoked by an executable marked setuid (+s, chmod
4xxx) or setgid (+g, 2xxx) on the fi le system.

Unlike Linux, there is no support for the setfsuid/setfsgid system calls in XNU, both of which 
set the above IDs selectively, only for fi le system checks — but maintain the real and effective IDs 
otherwise. This call was originally introduced to deal with NFS, wherein UIDs and GIDs needed to 
be carried across host boundaries, and often mismatched.

Also, unlike Linux, OS X does not support capabilities. Capabilities are a useful mechanism for 
applying the principle of least privilege, by breaking down and delegating root privileges to non-root 
processes. This alleviates the need for a web server, for example, to run as root just to be able to get a 
binding on the privileged port 80. Capabilities made a cameo appearance in POSIX but were removed 
(and therefore are not mandated to be supported in OS X), although Linux has eagerly adopted them.

In place of capabilities, OS X and iOS support “entitlements,” which are used in the sandbox compart-
mentalization mechanism. These, along with code signing, provide a powerful mechanism to contain 
rogue applications and malware (and, on iOS, any jailbreaking apps) from executing on the system.
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EXECUTABLES

A process is created as a result of loading a specially crafted fi le into memory. This fi le has to 
be in a format that is understood by the operating system, which in turn can parse the fi le, set 
up the required dependencies (such as libraries), initialize the runtime environment, and begin 
execution.

In UNIX, anything can be marked as executable by a simple chmod +x command. This, however, 
does not ensure the fi le can actually execute. Rather, it merely tells the kernel to read this fi le into 
memory and seek out one of several header signatures by means of which the exact executable 
format can be determined. This header signature is often referred to as a “magic,” as it is some 
predefi ned, often arbitrarily chosen constant value. When the fi le is read, the “magic” can provide 
a hint as to the binary format, which, if supported, results in an appropriate loader function being 
invoked. Table 4-2 provides a list of executable formats.

TABLE 4-2: Executable formats, their signatures, and native OSes

EXECUTABLE FORMAT MAGIC USED FOR

PE32/PE32+ MZ Portable executables: The native format in Win-

dows and Intel’s Extensible Firmware Interface 

(EFI) binaries. Although OS X does not support this 

format, its boot loader does and loads boot.efi.

ELF \x7FELF Executable and Library Format: Native in Linux 

and most UNIX fl avors. ELF is not supported 

on OS X.

Script #! UNIX interpreters, or script: Used primarily for 

shell scripts, but also common for other inter-

preters such as Perl, AWK, PHP, and so on. The 

kernel looks for the string following the #!, and 

executes it as a command. The rest of the fi le 

is passed to that command via standard input 

(stdin).

Universal (fat) 

binaries

0xcafebabe (Little-Endian)

0xbebafeca (Big-Endian)

Multiple-architecture binaries used exclusively 

in OS X.

Mach-O 0xfeedface (32-bit)

0xfeedfacf (64-bit)

OS X native binary format.

Of these various executable formats, OS X currently supports the last three: interpreters, univer-
sal binaries, and Mach-O. Interpreters are really just a special case of binaries, as they are merely 
scripts pointing to the “real” binary, which eventually gets executed. This leaves us to discuss two 
formats, then — Universal binaries, and Mach-O.
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UNIVERSAL BINARIES

With OS X, Apple has touted its rather novel concept of “Universal Binaries.” The idea is to provide 
one binary format that would be fully portable and could execute on any architecture. OS X, which 
was originally built on the PowerPPC architecture, was ported to the Intel architecture (with Tiger, 
v10.4.7).  Universal binaries would allow binaries to execute on both PPC and x86 processors.

In practice, however, “Universal” binaries are nothing more than archives of the respective archi-
tectures they support. That is, they contain a fairly simple header, followed by back-to-back copies 
of the binary for each supported architecture. Most binaries in Snow Leopard contain only Intel 
images but still use the universal format to support both 32- and 64-bit compiled code. A few, how-
ever, still contain a PowerPC image as well. Up to and including Snow Leopard, OS X contained an 
optional component, called “Rosetta,” which allowed PowerPC emulation on Intel-based proces-
sors. With Lion, however, support for PowerPC has offi cially been discontinued, and binaries no 
longer contain any PPC images.

As the following example in Output 4-2 shows, /bin/ls contains two architectures: the 32-bit Intel 
version (i386), and the 64-bit Intel version (x86_64). A few binaries in Snow Leopard — such as 
/usr/bin/perl — further contain a PowerPC version (ppc). 

OUTPUT 4-2: Examining universal binaries using the fi le(1) command

morpheus@Ergo (/) % file /bin/ls    # On snow leopard
/bin/ls:                                    Mach-O universal binary with 2 architectures
/bin/ls (for architecture x86_64):          Mach-O 64-bit executable x86_64
/bin/ls (for architecture i386):            Mach-O executable i386
morpheus@Ergo (/) % file /usr/bin/perl
/usr/bin/perl:                              Mach-O universal binary with 3 architectures
/usr/bin/perl (for architecture x86_64):    Mach-O 64-bit executable x86_64
/usr/bin/perl (for architecture i386):      Mach-O executable i386
/usr/bin/perl (for architecture ppc7400):   Mach-O executable ppc

#
# Some fat binaries, like gdb(1) from the iPhone SDK, can contain different
# architectures, e.g. ARM and intel, side by side
#
morpheus@Ergo (/) cd /Developer/Platforms/iPhoneOS.platform/Developer/usr/libexec/gdb
morpheus@Ergo (.../gdb)$ gdb-arm-apple-darwin
gdb-arm-apple-darwin: Mach-O universal binary with 2 architectures
gdb-arm-apple-darwin (for architecture i386):        Mach-O executable i386
gdb-arm-apple-darwin (for architecture armv7):       Mach-O executable arm

Containing multiple copies of the same binaries in this way obviously greatly increases the size 
of the binaries. Indeed, universal binaries are often quite bloated, which has earned them the less 
marketable, but more catchy, alias of “fat” binaries. The universal binary tool is, thus, aptly named 
lipo. It can be used to “thin down” the binaries by extracting, removing, or replacing specifi c 
architectures. It can also be used to display the fat header details (as you will see in an upcoming 
experiment).

This universal binary format is defi ned in <mach-o/fat.h> as is shown in Figure 4-2.
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magic

nfat_arch

cputype

Fixed value (0xCAFEBABE), identifying this as a universal binary

Number of architectures present in this universal binary

fat_header

cpusubtype

offset

align

size

fat_arch

Cpu type from <mach/machine.h>

Machine specifier from <mach/machine.h>

Offset of this architecture inside the universal binary

Size of the inner binary

Alignment–Page boundary (4 K), specified as a power of 2 (i.e. 12)

FIGURE 4-2: Fat header format

While universal binaries may take up a lot of space on disk, their structure enables OS X to auto-
matically pick the most suitable binary for the underlying platform. When a binary is invoked, the 
Mach loader fi rst parses the fat header and determines the available architectures — much as the 
lipo command demonstrates. It then proceeds to load only the most suitable architecture. Architec-
tures not deemed as relevant, thus, do not take up any memory. In fact, the images are all optimized 
to fi t on page boundaries so that the kernel need only load the fi rst page of the binary to read its 
header, effectively acting as a table of contents, and then proceed to load the appropriate image.

The system picks the image with the cputype and cpusubtype most closely matching the processor. 
(This can be overridden with the arch(1) command.) Specifi cally, matching the binary to the archi-
tecture is handled by functions in <mach-o/arch.h>. Architectures are stored in an NXArchInfo 
struct, which holds the CPU type, cpusubtype, and byteordering (as well as a textual descrip-
tion). NXGetLocalArchInfo() is used to obtain the host’s architecture, and NXFindBestFatArch() 
returns the best matching architecture (or NULL, if none match). The code in Listing 4-2 demon-
strates some of these APIs.

LISTING 4-2: Handling multiple architectures and universal (fat) binaries

#include <stdio.h>
#include <mach-o/arch.h>

const char *ByteOrder(enum NXByteOrder BO)
{
        switch (BO)
        {
                case NX_LittleEndian: return ("Little-Endian");
                case NX_BigEndian:    return ("Big-Endian");
                case NX_UnknownByteOrder: return ("Unknown");
                default: return ("!?!");
        }

}
int main()
{
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   const NXArchInfo *local = NXGetLocalArchInfo();
   const NXArchInfo *known = NXGetAllArchInfos();

while (known && known->description)
{
        printf ("Known: %s\t%x/%x\t%s\n", known->description,
                                        known->cputype, known->cpusubtype,
                                        ByteOrder(known->byteorder));
        known++;

}
if (local) {
printf ("Local - %s\t%x/%x\t%s\n", local->description,
                                     local->cputype, local->cpusubtype,
                                     ByteOrder(local->byteorder));
}

  return(0);

}

Experiment: Displaying Universal Binaries with lipo(1) and arch(1)
Using the lipo(1) command, you can inspect the fat headers of the various binaries, in this exam-
ple, Snow Leopard’s Perl interpreter:

morpheus@Ergo (/) % lipo -detailed_info /usr/bin/perl  # Display specific information. 
                                                       # Can also use otool -f 
Fat header in: /usr/bin/perl
fat_magic 0xcafebabe
nfat_arch 3
architecture x86_64
    cputype CPU_TYPE_X86_64
    cpusubtype CPU_SUBTYPE_X86_64_ALL
    offset 4096
    size 26144
    align 2^12 (4096)
architecture i386
    cputype CPU_TYPE_I386
    cpusubtype CPU_SUBTYPE_I386_ALL
    offset 32768
    size 25856
    align 2^12 (4096)
architecture ppc7400
    cputype CPU_TYPE_POWERPC
    cpusubtype CPU_SUBTYPE_POWERPC_7400
    offset 61440
    size 24560
    align 2^12 (4096)

Using the arch(1) command, you can force a particular architecture to be loaded from the binary:

morpheus@Ergo (/) % arch -ppc /usr/bin/perl   # Force perl binary to be loaded
You need the Rosetta software to run perl. The Rosetta installer is in Optional Installs
on your Mac OS X installation disc.
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The Rosetta installer was indeed included in the Optional Installs on the Mac OS X installation disc 
up to Snow Leopard, but was fi nally removed in Lion. If you’re trying this on Lion, you won’t see 
any PPC binaries — but looking at the iPhone SDK’s gdb will reveal a mixed platform gdb:

morpheus@minion (/)$ cd /Developer/Platforms/iPhoneOS.platform/Developer/usr/libexec/gdb
morpheus@minion (.../gdb)$ lipo -detailed_info gdb-arm-apple-darwin 
Fat header in: gdb-arm-apple-darwin
fat_magic 0xcafebabe
nfat_arch 2
architecture i386
    cputype CPU_TYPE_I386
    cpusubtype CPU_SUBTYPE_I386_ALL
    offset 4096
    size 2883872
    align 2^12 (4096)
architecture armv7
    cputype (12)
    cpusubtype cpusubtype (9)
    offset 2891776
    size 2537600
    align 2^12 (4096)

Mach-O Binaries
UN*X has largely standardized on a common, portable binary format called the Executable and 
Library Format, or ELF. This format is well documented, has a slew of binutils to maintain and 
debug it, and even allows for binary portability between UN*X of the same CPU architecture (say, 
Linux and Solaris — and, indeed, Solaris x86 can execute some Linux binaries natively). OS X, 
however, maintains its own binary format, the Mach-Object (Mach-O), as another legacy of its 
NeXTSTEP origins.[2]

The Mach-O format (explained in Mach-O(5)) and in various Apple documents[3,4] begins with a 
fi xed header. This header, detailed in <mach-o/loader.h>, looks like the example in Figure 4-3.

0xFEEDFACE for a 32-bit binary, 0xFEEDFACF for a 64-bit binary

CPU type and subtype, from <mach/machine.h> (as in fat binaries)

File type (Executable, Library, Core dump, Kernel Extension, etc..)

Number and size of loader “load commands” (see below)

Flags for dynamic linker (dyld)

64-bit only: Reserved, FFU

magic

cputype

cpusubtype

filetype

ncmds

sizeofncmds

flags

Reserved

mach_header

FIGURE 4-3: Mach-O header
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The header begins with a magic value that enables the loader to quickly determine if it is intended 
for a 32-bit (MH_MAGIC, #defined as 0xFEEDFACE) or 64-bit architecture (0xFEEDFACF, #defi ned 
as MH_MAGIC_64). Following the magic value are the CPU type and subtype fi eld, which serve the 
same functionality as in the universal binary header — and ensure that the binary is suitable to be 
executed on this architecture. Other than that, there are no real differences in the header structure 
between 32 and 64-bit architectures: while the 64-bit header contains one extra fi eld, it is currently 
reserved, and is unused.

Because the same binary format is used for multiple object types (executable, library, core fi le, or 
kernel extension), the next fi eld, filetype, is an int, with values defi ned in <mach-o/loader.h> as 
macros. Common values you’ll see in your system include those shown in Table 4-3.

TABLE 4-3: Mach-O fi le types

FILE TYPE USED FOR EXAMPLE

MH_OBJECT(1) Relocatable object fi les: inter-

mediate compilation results, 

also 32-bit kernel extensions.

(Generated with gcc –c)

MH_EXECUTABLE(2) Executable binaries. Binaries in /usr/bin, and application 

binary fi les (in Contents/MacOS)

MH_CORE(4) Core dumps. (Generated in a core dump)

MH_DYLIB(6) Dynamic Libraries. Libraries in /usr/lib, as well as frame-

work binaries

MH_DYLINKER(7) Dynamic Linkers. /usr/lib/dyld

MH_BUNDLE(8) Plug-ins: Binaries that are not 

standalone but loaded into 

other binaries. These diff er 

from DYLIB types in that they 

are explicitly loaded by the 

executable, usually by 

NSBundle (Objective-C) or 

CFBundle (C).

(Generated with gcc –bundle)

QuickLook plugins at /System/Library

/QuickLook

Spotlight Importers at /System

/Library/Spotlight

Automator actions at /System/Library

/Automator

MH_DSYM(10) Companion symbol fi les and 

debug information.

(Generated with gcc –g)

MH_KEXT_BUNDLE(11) Kernel extensions. 64-bit kernel extensions

The header also includes important fl ags, which are defi ned in <mach-o/loader.h> as well (see 
Table 4-4).
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TABLE 4-4: Mach-O Header Flags

FILE TYPE USED FOR

MH_NOUNDEFS Objects with no undefi ned symbols. These are mostly static binaries, 

which have no further link dependencies

MH_SPLITSEGS Objects whose read-only segments have been separated from read-

write ones.

MH_TWOLEVEL Two-level name binding (see “dyld features,” discussed later in the 

chapter).

MH_FORCEFLAT Flat namespace bindings (cannot occur with MH_TWOLEVEL).

MH_WEAK_DEFINES Binary uses (exports) weak symbols.

MH_BINDS_TO_WEAK Binary links with weak symbols.

MH_ALLOW_STACK_EXECUTION Allows the stack to be executable. Only valid in executables, but 

generally a bad idea. Executable stacks are conducive to code injec-

tion in case of buff er overfl ows. 

MH_PIE Allow Address Space Layout Randomization for executable types 

(see later in this chapter).

MH_NO_HEAP_EXECUTION Make the heap non-executable. Useful to prevent the “Heap spray” 

attack vector, wherein hackers overwrite large portions of the heap 

blindly with shellcode, and then jump blindly into an address therein, 

hoping to fall on their code and execute it.  

As you can see in the preceding table, there are two fl ags dealing with “execu-
tion”: MH_ALLOW_STACK_EXECUTION and MH_NO_HEAP_EXECTION. Both of these 
relate to data execution prevention, commonly referred to as NX (Non-eXecut-
able, referring to the page protection bit of the same name). By making memory 
pages associated with data non-executable, this (supposedly) thwarts hacker 
attempts at code injection, as the hacker cannot readily execute code that relies 
in a data segment. Trying to do so results in a hardware exception, and the pro-
cess is terminated — crashing it, but avoiding the execution of the injected code.

Because the common technique of code injection is by stack (or automatic) variables, the stack is marked 
non-executable by default, and the fl ag may be (dangerously) used to override that. The heap, by default, 
remains executable. It is considered harder, although far from impossible, to inject code via the heap.

Both settings can be set on a system-wide basis, by using sysctl(8) on the variables vm.allow_
stack_exec and vm.allow_heap_exec. In case of confl ict, the more permissive setting (i.e. false 
before true) applies. In iOS, the sysctls are not exposed, and the default is for neither heap nor 
stack to be executable.

The main functionality of the Mach-O header, however, lies in the load commands. These are speci-
fi ed immediately after the header, and the two fi elds — ncmds and sizeofncmds — are used to parse 
them. I describe those next. 
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Experiment: Using otool(1) to Investigate Mach-O Files
The otool(1) command (part of Darwin’s cctools) is the native utility to manipulate Mach-O 
fi les — and serves as the replacement for the functionality obtained in other UN*X through ldd
or readelf, as well as specifi c functionality that is only applicable to Mach-O fi les. The following 
experiment, using only one of its many switches, -h, shows the mach_header discussed previously:

morpheus@Ergo(/)% otool -hV /bin/ls
/bin/ls:
Mach header
      magic cputype cpusubtype  caps filetype ncmds sizeofcmds    flags
MH_MAGIC_64   X86_6       ALL  LIB64  EXECUTE    13       1928 NOUNDEFS DYLDLINK TWOLEVEL
morpheus@Ergo(/)% otool –arch i386 -hV /bin/ls  # force otool to show the 32-bit header
/bin/ls:
Mach header
   magic cputype cpusubtype  caps    filetype ncmds sizeofcmds    flags
MH_MAGIC    I386        ALL  0x00     EXECUTE    13       1516 NOUNDEFS DYLDLINK TWOLEVEL 

morpheus@Ergo(/)% gcc –g a.c –o a   # Compile any file, but use “-g”
morpheus@Ergo(/)% ls -ld a.*
-rw-r--r--  1 morpheus  staff   16 Jan 22 08:29 a.c
drwxr-xr-x  3 morpheus  staff  102 Jan 22 08:29 a.dSYM

morpheus@Ergo(/)% otool -h a.dSYM/Contents/Resources/DWARF/a
a.dSYM/Contents/Resources/DWARF/a:
Mach header
      magic cputype cpusubtype  caps    filetype ncmds sizeofcmds      flags
 0xfeedfacf 16777223          3  0x00         10     7       1768 0x00000000

# Sample using otool on a quick look plugin, which is an MH_BUNDLE:
morpheus@Ergo(/)% otool -h /System/Library/QuickLook/PDF.qlgenerator/Contents/MacOS/PDF
/System/Library/QuickLook/PDF.qlgenerator/Contents/MacOS/PDF:
Mach header
      magic cputype cpusubtype  caps    filetype ncmds sizeofcmds      flags
 0xfeedfacf 16777223          3  0x00          8    13       1824 0x00000085

# Of course, we could have used the verbose mode here..
morpheus@Ergo(/) % otool -hV /System/Library/QuickLook/PDF.qlgenerator/Contents/MacOS/PDF
/System/Library/QuickLook/PDF.qlgenerator/Contents/MacOS/PDF:
Mach header
      magic cputype cpusubtype  caps    filetype ncmds sizeofcmds      flags
MH_MAGIC_64  X86_64        ALL  0x00      BUNDLE    13       1824   NOUNDEFS 
DYLDLINK TWOLEVEL

otool(1) is good in analyzing load commands and text segments, but leaves 
much to be desired in analyzing data segments, and other areas. The book’s com-
panion website features an additional binary, jtool, which aims to improve on 
otool’s functionality. The tool can handle all objects up to and including those 
of iOS 5.1 and Mountain Lion. It integrates features from nm(1), strings(1),
segedit(1), size(1), and otool(1) into one binary, especially suited for 
scripting, and adds several new features, as well.

Note the –g, which usually embeds symbols 
inside the binary in other UN*X systems, does 
so on OS X in a companion fi le
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Load Commands
The Mach-O header contains very detailed instructions, which clearly direct how to set up and load 
the binary, when it is invoked. These instructions, or “load commands,” are specifi ed immediately 
after the basic mach_header. Each command is itself a type-length-value: A 32-bit cmd value speci-
fi es the type, a 32-bit value cmdsize (a multiple of 4 for 32-bit, or 8 for 64-bit), and the command 
(of arbitrary len, specifi ed in cmdsize) follows. Some of these commands are interpreted directly by 
the kernel loader (bsd/kern/mach_loader.c). Others are handled by the dynamic linker.

There are over 30 such load commands. Table 4-5 describes those the kernel uses. (We discuss the 
rest, which are used by the link editor, later.)

TABLE 4-5: Mach-O Load Commands Processed by the Kernel

# COMMAND KERNEL HANDLER FUNCTION 

(BSD/KERN/MACH/LOADER.C)

USED FOR

0x01

0x19

LC_SEGMENT

LC_SEGMENT_64

load_segment Maps a (32- or 64-bit) segment of the 

fi le into the process address space. 

These are discussed in more detail 

in “process memory map.”

0x0E LC_LOAD_DYLINKER load_dylinker Invoke dyld (/usr/lib/dyld).

0x1B LC_UUID Kernel copies UUID into 

internal mach object 

representation

Unique 128-bit ID. This matches a 

binary with its symbols

0x04 LC_THREAD load_thread Starts a Mach Thread, but does not 

allocate the stack (rarely used out-

side core fi les).

0x05 LC_UNIXTHREAD load_unixthread Start a UNIX Thread (initial stack 

layout and registers). Usually, all reg-

isters are zero, save for the instruc-

tion pointer/program counter. This 

is deprecated as of Mountain Lion, 

replaced by dyld’s LC_MAIN.

0x1D LC_CODE_SIGNATURE load_code_signature Code Signing. (In OS X — occasion-

ally used. In iOS — mandatory.)

0x21 LC_ENCRYPTION_INFO set_code_unprotect() Encrypted binaries. Also largely 

unused in OS X, but ubiquitous in iOS.

The kernel portion of the loading process is responsible for the basic setup of the new pro-
cess — allocating virtual memory, creating its main thread, and handling any potential code signing/
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encryption. For dynamically linked (read: the vast majority of) executables, however, the actual 
loading of libraries and resolving of symbols is handled in user mode by the dynamic linker specifi ed 
in the LC_LOAD_DYLINKER command. Control will be transferred to the linker, which in turn further 
processes other load commands in the header. (Loading of libraries is discussed later in this chapter)

A more detailed discussion of these load commands follows.

LC_SEGMENT and the Process Virtual Memory Setup
The main load command is the LC_SEGMENT (or LC_SEGMENT64) commands, which instructs the ker-
nel how to set up the memory space of the newly run process. These “segments” are directly loaded 
from the Mach-O binary into memory. 

Each LC_SEGMENT[_64] command provides all the necessary details of the segment layout (see 
Table 4-6).

TABLE 4-6: LCSEGMENT or LC_SEGMENT_64 Parameters

PARAMETER USE

segname load_segment

vmaddr Virtual memory address of segment described

vmsize Virtual memory allocated for this segment

fileoff Marks the segment beginning off set in the fi le

filesize Specifi es how many bytes this segment occupies in the fi le

maxprot Maximum memory protection for segment pages, in octal (4=r, 2=w, 1=x)

initprot Initial memory protection for segment pages

nsects Number of sections in segment, if any

flags Miscellaneous bit fl ags

Setting up the process’s virtual memory thus becomes a straightforward operation of following the 
LC_SEGMENT commands. For each segment, the memory is loaded from the fi le: filesize bytes from 
offset fileoff, to vmsize bytes at address vmaddr. Each segment’s pages are initialized according 
to initprot, which specifi es the initial page protection in terms of read/write/execute bits. 
A segment’s protection may be dynamically changed, but cannot exceed the values specifi ed in 
maxprot. (In iOS, specifying +x is mutually exclusive to +w.) 

LC_SEGMENTs are provided for __PAGEZERO (NULL pointer trap), _TEXT (program code), _DATA (pro-
gram data), and _LINKEDIT (symbol and other tables used by linker). Segments may optionally be 
further broken up into sections. Table 4-7 shows some of these sections.
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TABLE 4-7: Common segments and sections in Mach-O executables

SECTION USE

__text Main program code

__stubs, __stub_helper Stubs used in dynamic linking

__cstring C hard-coded strings in the program

__const const keyworded variables and hard coded constants 

__TEXT.__objc_methname Objective-C method names

__TEXT.__objc_methtype Objective-C method types

__TEXT.__objc_classname Objective-C class names

__DATA.__objc_classlist Objective-C class list

__DATA.__objc_protolist Objective-C prototypes

__DATA.__objc_imginfo Objective-C image information

__DATA.__objc_const Objective-C constants

__DATA.__objc_selfrefs Objective-C Self (this) references

__DATA.__objc_protorefs Objective-C prototype references

__DATA.__objc_superrefs Objective-C superclass references

__DATA.__cfstring Core Foundation strings (CFStringRefs) in the program

__DATA.__bss BSS

Segments may also have certain fl ags set, defi ned in <mach/loader.h>. One such fl ag used by 
Apple is SG_PROTECTED_VERSION_1 (0x08), denoting the segment pages are “protected” — i.e., 
encrypted. Apple encrypts select binaries using this technique — for example, the Finder, as shown 
in Output 4-3.

OUTPUT 4-3: Using otool(1) on the Finder, displaying the encrypted section

morpheus@ergo (/) otool –lV /System/Library/CoreServices/Finder.app/Contents/MacOS
 /Finder
/System/Library/CoreServices/Finder.app/Contents/MacOS/Finder:
Load command 0
      cmd LC_SEGMENT_64
..
  segname __PAGEZERO
 ..
Load command 1
      cmd LC_SEGMENT_64
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  cmdsize 872
  segname __TEXT
   vmaddr 0x0000000100000000
   vmsize 0x00000000003ad000
  fileoff 0
 filesize 3854336
  maxprot rwx
 initprot r-x
   nsects 10
    flags PROTECTED_VERSION_1

To enable this code encryption, XNU — the kernel — contains a specifi c a custom (external) vir-
tual memory manager called “Apple protect,” which is discussed in Chapter 12, “Mach Virtual 
Memory.”

XCode’s ld(1) can be instructed to create segments when constructing Mach-O objects, by using 
the –segcreate switch. XCode likewise, contains a special tool, segedit(1), which can be used to 
extract or replace segments from a Mach-O fi le. This can be useful for extracting embedded textual 
information, like the sections PRELINK_INFO of the kernel, as will be demonstrated in chapter 17. 
Alternatively, the book’s companion tool — jtool — offers this functionality as well. The jtool also 
provides the functionality of a third XCode tool, size(1), which prints the sizes and addresses of 
the segments.

LC_UNIXTHREAD
Once all the libraries are loaded, dyld’s job is done, and the LC_UNIXTHREAD command is respon-
sible for starting the binary’s main thread (and is thus always present in executables, but not in 
other binaries, such as libraries). Depending on the architecture, it will list all the initial register 
states, with a particular fl avor that is i386_THREAD_STATE, x86_THREAD_STATE64, or — in iOS 
binaries — ARM_THREAD_STATE. In any of the fl avors, most of the registers will likely be initialized to 
zero, save for the Instruction Pointer (on Intel) or the Program Counter (r15, on ARM), which hold 
the address of the program’s entry point. 

Before Apple completely abandoned the PPC platform in Lion, there was also a 
PPC_THREAD_STATE. This is still visible on some of the PPC-code containing fat 
binaries (try otool –arch ppc –l /mach_kernel on Snow Leopard. Register 
srr0 is the code entry point in this case.

LC_THREAD
Similar to LC_UNIXTHREAD, LC_THREAD is used in core fi les. The Mach-O core fi les are, in essence, a 
collection of LC_SEGMENT (or LC_SEGMENT_64) commands that set up the memory image of the (now 
defunct) process, and a fi nal LC_THREAD. The LC_THREAD contains several “fl avors,” for each of the 
machine states (i.e. thread, fl oat, and exception). You can confi rm that easily by generating a core 
dump (which is, alas, all too easy), and then inspecting it with otool –l.
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LC_MAIN
As of Mountain Lion, a new load command, LC_MAIN supersedes the LC_UNIXTHREAD command. 
This command is used to set the entry point address and stack size of the main thread of the 
program. This makes more sense than using LC_UNIXTHREAD, as in any case all the registers save 
for the program counter are set to zero. With no LC_UNIXTHREAD, it is impossible to run Moun-
tain Lion binaries that use LC_MAIN on previous OS X versions (causing dyld(1) to crash on 
loading). 

LC_CODE_SIGNATURE
An interesting feature of Mach-O binaries is that they can be digitally signed. In OS X this is still 
largely unused, although it is gaining popularity as code signing ties into the newly improved sand-
box mechanism. In iOS, code signing is mandatory, in another attempt by Apple to lock down the 
system as much as it possibly can: The only signature recognized in iOS is that of Apple. In OS X, 
the codesign(1) utility may be used to manipulate and display code signatures. The man page, as 
well as Apple’s code signing guide and Mac OS X Code Signing In Depth[1] all detail code signing 
from the administrator’s perspective. 

The LC_CODE_SIGNATURE contains the code signature of the Mach-O binary, and — if it does not 
match the code (or, in iOS, does not exist) — the process is killed immediately by the kernel with 
a SIGKILL. No questions asked, no saving throw. Prior to iOS 4, it was possible to disable code 
signature checks with two sysctl(8) commands, to overwrite the kernel variables responsible for 
enforcement, using the kernel’s MAC (Mandatory Access Control) component:

sysctl -w security.mac.proc_enforce=0  // disable MAC for process
sysctl -w security.mac.vnode_enforce=0 // disable MAC for VNode

In later iOSes, however, Apple realized that — upon getting root — jailbreakers would also be able 
to overwrite the variables. So the variables were made read-only. The “untethered” jailbreaks are 
able to set the variables anyway due to a kernel-based exploit. The variable default value, however, 
is enabled, and so the “tethered” jailbreaks result in the non–Apple-signed applications crash-
ing — unless the i-Device is booted in a tethered manner.

Alternatively, a fake code signature can be embedded in the Mach-O, using a tool like Saurik’s ldid.
This tool, an alternative to OS X’s codesign(1), enables the generation of fake signatures with self-
signed certifi cates. This is especially important in iOS, as signatures are tied to the sandbox model’s 
application “entitlements,” which are mandatory in iOS. Entitles are declarative permissions (in 
plist form), which must be embedded in the Mach-O and sealed by signing, in order to allow run-
time privileges for security-sensitive operations. 

Both OS X and iOS contain a special system call, csops (#169), for code signing operations. Code 
signatures and MAC are explained in detail from the kernel’s perspective in Chapter 12.
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Experiment: Observing Load Commands and Dynamic Loading — Stage I
Recall /bin/ls in the previous experiment, and that otool -h reported 13 load commands. To dis-
play them, we use otool –l (some commands have been omitted from this sample). As before, we 
examine a 64-bit binary (see Figure 4-4). You are encouraged to examine a 32-bit binary by specify-
ing –arch i386 to otool.

DYNAMIC LIBRARIES

As discussed in the previous chapter, executables are seldom standalone. With the exception of very 
few statically linked ones, most executables are dynamically linked, relying on pre-existing libraries, 
supplied either as part of the operating system, or by third parties. This section turns to discussing 
the process of library loading: During application launch, or runtime.

Launch-Time Loading of Libraries
The previous section covered the setup performed by the kernel loader (in bsd/kern/mach_
loader.c) to initialize the process address space according to the segments and other directives. 
This suffi ces for very few processes, however, as virtually all programs on OS X are dynamically 
linked. This means that the Mach-O image is fi lled with “holes” — references to external librar-
ies and symbols — which are resolved when the program is launched. This is a job for the dynamic 
linker. This process is also referred to as symbol “binding.”

The dynamic linker, you’ll recall, is started by the kernel following an LC_DYLINKER load command. 
Typically, it is /usr/lib/dyld — although any program can be specifi ed as an argument to this 
command. The linker assumes control of the fl edgling process, as the kernel sets the entry point of 
the process to that of the linker.

The linker’s job is to, literally, “fi ll the holes” — that is, it must seek out any symbol and library 
dependencies and resolve them. This must be done recursively, as it is often the case that libraries 
have dependencies on other libraries still. 

dyld is a user mode process. It is not part of the kernel and is maintained as a 
separate open source project (though still part of Darwin) by Apple at 
http://www.opensource.apple.com/source/dyld. As far as the kernel is con-
cerned, dyld is a pluggable component and it may be replaced with a 
third-party linker. Despite (and, actually, because of) being in user mode, the 
link editor plays an important part in loading processes. Loading libraries from 
kernel mode would be much harder because fi les as we see them in user mode do 
not exist in kernel mode.

The linker scans the Mach-O header for specifi c load commands of interest (see Table 4-8).
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Ergo (/) % otool -l /bin/ls

Load command 0

cmd LC_SEGMENT_64

cmdsize 72

segname __PAGEZERO

vmaddr 0x0000000000000000

vmsize 0x0000000100000000

fileoff 0

maxprot 0x00000000

filesize 0

initprot 0x00000000

nsects 0

flags 0x0

Load command 1

cmd LC_SEGMENT_64

cmdsize 632

segname __TEXT

vmaddr 0x0000000100000000

vmsize 0x0000000000006000

fileoff 0

filesize 24576

maxprot 0x00000007

initprot 0x00000005

nsects 7

flags 0x0

Section

sectname __text

segname __TEXT

addr 0x0000000100001478

size 0x00000000000038ef … …

... (other sections omitted) ..

......

Load command 7

cmd LC_LOAD_DYLINKER

cmdsize 32

name /usr/lib/dyld (offset 12)

maxprot: Maximum protection for this segment (rwx)

initprot: Initial protection for this segment (r-x)

Seven sections follow in this segment (omitted). Note,

though, the __text segment, starting at 0x0100001478.

The reference to /usr/lib/dyld, which

loads and parses the other headers

The linker can be instructed to trace LC_SEGMENT commands by setting the

DYLD_PRINT_SEGMENTS to some non-zero value

Ergo% export DYLD_PRINT_SEGMENTS=1

Ergo ( ) % ls

dyld: Main executable mapped /bin/ls

__PAGEZERO at 0x00000000->0x100000000

__TEXT at 0x100000000->0x100006000

__DATA at 0x100006000->0x100007000

__LINKEDIT at 0x100007000->0x10000A000

<.. rest of setup performed by dyld for loading libraries, etc ..>

Note PAGEZERO didn’t take up any space on disk (filesize:0). Other segments

are loaded mmap()ed from their offset in the file directly into memory
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Load command 9

cmd LC_UNIXTHREAD

cmdsize 184

flavor x86_THREAD_STATE64

count x86_THREAD_STATE64_COUNT

rax 0x0000000000000000 rbx 0x0000000000000000 rcx 0x0000000000000000

rdx 0x0000000000000000 rdi 0x0000000000000000 rsi 0x0000000000000000

rbp 0x0000000000000000 rsp 0x0000000000000000 r8 0x0000000000000000

r9 0x0000000000000000 r10 0x0000000000000000 r11 0x0000000000000000

r12 0x0000000000000000 r13 0x0000000000000000 r14 0x0000000000000000

r15 0x0000000000000000 rip 0x0000000100001478

rflags 0x0000000000000000 cs 0x0000000000000000 fs 0x0000000000000000

gs 0x0000000000000000

Load command 10

cmd LC_LOAD_DYLIB

cmdsize 56

name /usr/lib/libncurses.5.4.dylib (offset 24)

Load command 11

cmd LC_LOAD_DYLIB

cmdsize 56

name /usr/lib/libSystem.B.dylib (offset 24)

time stamp 2 Wed Dec 31 19:00:02 1969

current version 125.2.0

compatibility version 1.0.0

Load command 12

cmd LC_CODE_SIGNATURE

cmdsize 16

dataoff 34160

datasize 5440

Ergo (/) % otool -tV /bin/ls

/bin/ls:

(__TEXT,__text) section

0000000100001478 pushq $0x00

000000010000147a movq %rsp,%rbp

000000010000147d andq $0xf0,%rsp

..

These are the libraries this binary

depends on — to be loaded by dyld

RIP will point to the binary’s entry.

As in this case, it commonly also

happens to be the address of the

text section

FIGURE 4-4: Load Commands of a simple binary
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TABLE 4-8: Load Commands Processed by dyld

LOAD COMMAND USED FOR

0x02

0x0B

LC_SYMTAB

LC_DSYMTAB
Symbol tables. The symbol tables and string tables are pro-

vided separately, at an off set specifi ed in these commands.

0x0C LC_LOAD_DYLIB Load additional dynamic libraries. This command super-

sedes LC_LOAD_FVMLIB, used in NeXTSTEP. 

0x20 LC_LAZY_LOAD_DYLIB As LC_LOAD_DYLIB, but defer actual loading until use of 

fi rst symbol from library

0x0D LC_ID_DYLIB Found in dylibs only. Specifi es the ID, the timestamp, ver-

sion, and compatibility version of the dylib.

0x1F LC_REEXPORT_DYLIB Found in dynamic libraries only. Allows a library to re-export 

another library’s symbols as its own. This is how Cocoa and 

Carbon serve as umbrella frameworks for many others, as 

well as libSystem (which exports libraries in /usr/lib/

system).

0x24

0x25

LC_VERSION_MIN_IPHONEOS

LC_VERSION_MIN_MACOSX

Minimum operating system version expected for this binary. 

As of Lion, many binaries are set to 10.7 at a minimum.

0x26 LC_FUNCTION_STARTS Compressed table of function start addresses. New in 

Mountain Lion

0x2A LC_SOURCE_VERSION Version of source code used to build this binary. Informa-

tional only and does not aff ect linking in any known way.

0x2B ?? (Name unknown) Code Signing sections from dylibs

The library dependencies can be displayed by using otool –L (the OS X equivalent to the function-
ality provided in other UN*X by ldd). As in other operating systems, however, the nm command 
can be used to display the symbol table of a Mach-O binary, as you will see in the upcoming experi-
ment. The OS X nm(1) supports a -m switch, which allows to not only display the symbols, but also 
to follow their resolution. Alternatively, the dyldinfo(1) command (part of XCode) may be used 
for this purpose. Using this command, you can also display the opcodes used by the linker when 
loading the libraries, as shown in Output 4-4:

OUTPUT 4-4: Displaying dyld’s binding opcodes

morpheus@ergo (/)$ dyldinfo -opcodes /bin/ls | more
...
lazy binding opcodes:
0x0000 BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB(0x02, 0x00000014)
0x0002 BIND_OPCODE_SET_DYLIB_ORDINAL_IMM(2)
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0x0003 BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM(0x00, ___assert_rtn)
0x0012 BIND_OPCODE_DO_BIND()
0x0013 BIND_OPCODE_DONE
0x0014 BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB(0x02, 0x00000018)
0x0016 BIND_OPCODE_SET_DYLIB_ORDINAL_IMM(2)
0x0017 BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM(0x00, ___divdi3)
0x0022 BIND_OPCODE_DO_BIND()
0x0023 BIND_OPCODE_DONE

Binaries that use functions and symbols defi ned externally have a section ( __stubs) in their text 
segment, with placeholders for the undefi ned symbols. The code is generated with a call to the sym-
bol stub section, which is resolved by the linker during runtime. The linker resolves it by placing 
a JMP instruction at the called address. The JMP transfers control to the real function’s body, but 
without modifi cation of the stack in any way. The real function can thus return normally, as if it 
had been called directly.

LC_LOAD_DYLIB commands instruct the linker where the symbols can be found. Each library speci-
fi ed is loaded and searched for the matching symbols. The library to be linked has a symbol table, 
which links the symbol names to the addresses. The address can be found in the Mach-O object 
at the symoff specifi ed by the LC_SYMTAB load command. The corresponding symbol names are at 
stroff, and there are a total of nsyms.

Like all other UN*X, Mach-O libraries can be found in /usr/lib (there is no /lib in OS X or iOS). 
There are two main differences, however:

 ‰ Libraries are not “shared objects” (.so), as OS X is not ELF-compatible, and this concept 
does not exist in Mach-O. Rather, they are “dynamic library” fi les, with a .dylib extension.

 ‰ There is no libc. Developers may be familiar with the C Runtime library on other UN*X (or 
MSVCRT, on Windows). But the corresponding library, /usr/lib/libc.dylib, exists only 
as a symbolic link to libSystem.B.dylib. libSystem provides LibC functionality, as well 
as additional functions, which in UN*X are provided by separate libraries — for example, 
mathematical functions (-lm), hostname resolution (-lnsl), and threads (-lpthread).

libSystem is the absolute prerequisite of all binaries on the system, C, C++, Objective-C, or oth-
erwise. This is because it serves as the interface to the lower-level system calls and kernel services, 
without which nothing would get done. It actually serves as an umbrella library for the various 
libraries in /usr/lib/system, which it re-exports (using the LC_REEXPORT_LIB load command). In 
Snow Leopard, only eight or so libraries are re-exported. The number increases dramatically in Lion 
and iOS to well over 20.

Experiment: Viewing Symbols and Loading
Consider the following simple “hello world” program.  It calls on printf() twice, then exits:

morpheus@Ergo (~) % cat a.c
void main (int argc, char **argv) {
printf ("Salve, Munde!\n");
printf ("Vale!\n");
exit(0);
}
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Using Xcode’s dyldinfo(1) nm(1) you can resolve the binding and fi gure out which symbols are 
exported, and what libraries they are linked against. 

morpheus@Ergo (~) % dyldinfo -lazy_bind a
lazy binding information (from lazy_bind part of dyld info):
segment section          address    index  dylib            symbol
__DATA  __la_symbol_ptr  0x100001038 0x0000 libSystem        _exit
__DATA  __la_symbol_ptr  0x100001040 0x000C libSystem        _puts

Using XCode’s otool(1), you can go “under the hood” and actually see things at the assembly level 
(Output 4-5A and 3-5B):

OUTPUT 4-5A: Demonstrating otool’s disassembly of a simple binary

morpheus@Ergo (~) % otool -p _main -tV a # use otool to disassemble, starting at _main:
a:
(__TEXT,__text) section
_main:
0000000100000ed0        pushq   %rbp
0000000100000ed1        movq    %rsp,%rbp
0000000100000ed4        subq    $0x20,%rsp
0000000100000ed8        movl    %edi,%eax
0000000100000eda        movl    $0x00000000,%ecx
0000000100000edf        movl    %eax,0xfc(%rbp)
0000000100000ee2        movq    %rsi,0xf0(%rbp)
0000000100000ee6        leaq    0x00000057(%rip),%rax
0000000100000eed        movq    %rax,%rdi
0000000100000ef0        movl    %ecx,0xec(%rbp)
0000000100000ef3        callq   0x100000f18     ; symbol stub for: _puts
0000000100000ef8        leaq    0x00000053(%rip),%rax
0000000100000eff        movq    %rax,%rdi
0000000100000f02        callq   0x100000f18     ; symbol stub for: _puts
0000000100000f07        movl    0xec(%rbp),%eax
0000000100000f0a        movl    %eax,%edi
0000000100000f0c        callq   0x100000f12     ; symbol stub for: _exit

OUTPUT 4-5B: Disassembling the same program, in its iOS form

Podicum:~ root# otool -tV -p _main a.arm
a.arm:
(__TEXT,__text) section
_main:
00002f9c            b580        push    {r7, lr}
00002f9e            466f        mov     r7, sp
00002fa0            b084        sub     sp, #16
00002fa2            9003        str     r0, [sp, #12]
00002fa4            9102        str     r1, [sp, #8]
00002fa6        f2400032        movw    r0, 0x32
00002faa        f2c00000        movt    r0, 0x0
00002fae            4478        add     r0, pc
00002fb0        f000e812        blx     0x2fd8  @ symbol stub for: _puts
00002fb4            9001        str     r0, [sp, #4]
00002fb6        f2400030        movw    r0, 0x30
00002fba        f2c00000        movt    r0, 0x0

c04.indd 116c04.indd   116 10/1/2012 5:56:59 PM10/1/2012   5:56:59 PM



Dynamic Libraries x 117

00002fbe            4478        add     r0, pc
00002fc0        f000e80a        blx     0x2fd8  @ symbol stub for: _puts
00002fc4            9000        str     r0, [sp, #0]
00002fc6            2000        movs    r0, #0
00002fc8        f000e800        blx     0x2fcc  @ symbol stub for: _exit

As the example shows, calls to exit() and printf (optimized by the compiler to puts, because it 
prints a constant, newline-terminated string rather than a format string) are left unresolved, as a 
call to specifi c addresses. These addresses are the symbol-stub table and are left up to the Linker to 
initialize. You can next use the otool –l again to show the load commands, in particular focusing 
on the stubs section. Output 4-6 shows the output of doing so, aligning OS X with iOS:

OUTPUT 4-6: Running otool(1) on OS X and iOS, to display symbol tables

          Mac OS X  (x86_64)                               iOS 5.0 (armv7)

morpheus@Ergo (~) % otool –l –V a               morpheus@Ergo (~) % otool –l –V a.arm

Section
  sectname __stubs
   segname __TEXT
      addr 0x0000000100000f12
      size 0x000000000000000c
    offset 3880
     align 2^1 (2)
    reloff 0
    nreloc 0
      type S_SYMBOL_STUBS
attributes PURE_INSTRUCTIONS SOME_INSTRUCTIONS
 reserved1 0 (index into indirect symbol table)
 reserved2 6 (size of stubs)

Section
  sectname __stub_helper
   segname __TEXT
      addr 0x0000000100000f20
      size 0x0000000000000024
    offset 3872                                       No __stub_helper section
     align 2^2 (4)
    reloff 0
    nreloc 0
      type S_REGULAR
attributes PURE_INSTRUCTIONS SOME_INSTRUCTIONS
 reserved1 0
 reserved2 0
...

Section
  sectname __nl_symbol_ptr
   segname __DATA
      addr 0x0000000100001028
      size 0x0000000000000010
    offset 4136
     align 2^3 (8)

Section
  sectname __symbol_stub4
  segname __TEXT
      addr 0x0000209c
      size 0x00000018
    offset 4252
     align 2^2 (4)
    reloff 0
    nreloc 0
      type S_SYMBOL_STUBS
attributes PURE_INSTRUCTIONS SOME_INSTRUCTIONS
 reserved1 0 (index into indirect symbol table)
 reserved2 12 (size of stubs)

Section
  sectname __nl_symbol_ptr
   segname __DATA
      addr 0x0000301c
      size 0x00000008
    offset 8220
    align 2^2 (4)
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    reloff 0
    nreloc 0
      type S_NON_LAZY_
SYMBOL_POINTERS
attributes (none)
 reserved1 2 (index into indirect symbol table)
 reserved2 0

Section
  sectname __la_symbol_ptr
   segname __DATA
      addr 0x0000000100001038
      size 0x0000000000000010
    offset 4152
     align 2^3 (8)
    reloff 0
    nreloc 0
      type S_LAZY_SYMBOL_POINTERS
attributes (none)
 reserved1 4 (index into indirect symbol table)
 reserved2 0
...

Load command 5
     cmd LC_SYMTAB
 cmdsize 24
  symoff 8360
   nsyms 11
  stroff 8560
 strsize 112
...
Load command 10
          cmd LC_LOAD_DYLIB
      cmdsize 56
         name /usr/lib/libSystem.B.dylib (offset 24)
   time stamp 2 Wed Dec 31 19:00:02 1969
      current version 125.2.11
compatibility version 1.0.0

 Finally, you can use nm to display the unresolved symbols. These are the same in OS X and iOS.

morpheus@Ergo (~) % nm a | grep "U "     # and here are our three unresolved symbols
                 U _exit
                 U _puts
                 U dyld_stub_binder
morpheus@Ergo (~) % nm a | wc –l         # How many symbols in table, overall?
      11 # (12 on ARM - also__dyld_func_lookup)

And you can use gdb to dump the symbol stubs and the stub_helper. Note the stub is a JMP to a 
symbol table:

Section
  sectname __la_symbol_ptr
   segname __DATA
      addr 0x00003024
      size 0x00000008
    offset 8228
     align 2^2 (4)
    reloff 0
    nreloc 0
      type S_LAZY_SYMBOL_POINTERS
attributes (none)
 reserved1 4 (index into indirect symbol table)
 reserved2 0

Load command 4 
     cmd LC_SYMTAB 
 cmdsize 24
  symoff 12296
   nsyms 12
  stroff 1246
 strsize 148

    reloff 0
    nreloc 0
      type S_NON_LAZY_
SYMBOL_POINTERS
attributes (none)
 reserved1 2 (index into indirect symbol table)
 reserved2 0 

OUTPUT 4-6  (continued)
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morpheus@Ergo (~) % gdb ./a
GNU gdb 6.3.50-20050815 (Apple version gdb-1472) (Wed Jul 21 10:53:12 UTC 2010)
..
done

(gdb) x/2i 0x100000f12 # Dump the address as (2) instructions
0x100000f12 <dyld_stub_exit>: jmpq   *0x120(%rip)        # 0x100001038
0x100000f18 <dyld_stub_puts>: jmpq   *0x122(%rip)        # 0x100001040

(gdb) x/2g  0x100001038 # Dump the address as    (2) 64 bit pointers
0x100001038:   0x0000000100000f20    0x0000000100000f2a   // Both in __stub_helper

(gdb) x/2i 0x100000f20      # dump the stub code for exit
0x100000f20:   pushq  $0x0 // pushes "0" on the stack
0x100000f25: jmpq   0x100000f34

(gdb) x/2i 0x100000f2a                // dump the stub code for puts
0x100000f2a:   pushq  $0xc // pushes „12" on the stack
0x100000f2f:   jmpq   0x100000f34

# Both jump to 0x100000f34 – so let's inspect that:

(gdb) x/3i 0x100000f34                       // All stubs end up here
0x100000f34:   lea    0xf5(%rip),%r11        # 0x100001030
0x100000f3b:   push   %r11
0x100000f3d:   jmpq   *0xe5(%rip)            # 0x100001028  // dyld_stub_binder

// note the address we jump to is ... empty!
(gdb) x/2g 0x100001028 
0x100001028:   0x0000000000000000     0x0000000000000000

Setting a breakpoint on main() in gdb, and then running it, will break the program right after 
dynamic linkage is complete but before anything gets executed. This will give you a chance to see 
the address of dyld_stub_linker populated:

(gdb) b main  # set breakpoint
Breakpoint 1 at 0x100000ef3
(gdb) r       # We don't really want to run – we just dyld(1) to link
Starting program: /Users/morpheus/a 
Reading symbols for shared libraries +. done

Breakpoint 1, 0x0000000100000ef3 in main ()

(gdb) x/2g 0x100001028            // revisiting the mystery address:
0x100001028: 0x00007fff89527f94      0x0000000000000000

(gdb) disass 0x00007fff89527f94   // Address now contains dyld_stub_binder
Dump of assembler code for function dyld_stub_binder:
0x00007fff89527f94 <dyld_stub_binder+0>:     push   %rbp
0x00007fff89527f95 <dyld_stub_binder+1>:     mov    %rsp,%rbp
0x00007fff89527f98 <dyld_stub_binder+4>:     sub    $0xc0,%rsp
. . .
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DISASSEMBLY OF THE SAME SYMBOL, ON IOS:

(gdb) x/2i dyld_stub_exit
0x2fcc <dyld_stub_exit>:      ldr     r12, [pc, #0]  ; 0x2fd4 <dyld_stub_exit+8>
0x2fd0 <dyld_stub_exit+4>:    ldr     pc, [r12]

(gdb) x/2i dyld_stub_puts
0x2fd8 <dyld_stub_puts>:      ldr     r12, [pc, #0]  ; 0x2fe0 <dyld_stub_puts+8>
0x2fdc <dyld_stub_puts+4>:    ldr     pc, [r12]

(gdb) x/x 0x2fd4
0x2fd4 <dyld_stub_exit+8>:    0x00003024 
(gdb) x/x 0x2fe0
0x2fe0 <dyld_stub_puts+8>:    0x00003028

(gdb) x/2x 0x3024
0x3024: 0x00002f70     0x00002f70

(gdb) disass 0x2f70
Dump of assembler code for function dyld_stub_binding_helper:
0x00002f70 <dyld_stub_binding_helper+0>:   push   {r12}          ; (str r12, [sp, #-4]!)
0x00002f74 <dyld_stub_binding_helper+4>:   ldr    r12, [pc, #12] ; 0x2f88 
0x00002f78 <dyld_stub_binding_helper+8>:   ldr    r12, [pc, r12]
0x00002f7c <dyld_stub_binding_helper+12>:  push   {r12}         ; (str r12, [sp, #-4]!)
0x00002f80 <dyld_stub_binding_helper+16>:  ldr    r12, [pc, #4] ; 0x2f8c 
0x00002f84 <dyld_stub_binding_helper+20>:  ldr    pc, [pc, r12]
... # Following instructions irrelevant since "ldr pc" effectively jumps
End of assembler dump. 
(gdb) x/2x 0x2f88
0x2f88 <dyld_stub_binding_helper+24>: 0x000000ac     0x00000074

If you trace through the program, setting a breakpoint on the fi rst and second calls to dyld_stub_
puts (in their respective offsets in _main) will reveal an interesting trick: The fi rst time the stub is 
called, dyld_stub_binder is indeed called, and — through a rather lengthy process — binds all the 
symbols. The next time, however, dyld_stub_puts directly jumps to puts:

(gdb) break *0x0000000100000ef3      # as in Listing 4-xyz-a
Breakpoint 1 at 0x100000ef3
(gdb) break *0x0000000100000f02      # as in Listing 4-xyz-a
Breakpoint 2 at 0x100000f02
(gdb) r
Starting program: /Users/morpheus/a 
Reading symbols for shared libraries +. done
Breakpoint 1, 0x0000000100000ef3 in main ()
(gdb) disass 0x0000000100000f18      # again, q.v. Listing 4-xyz-a
Dump of assembler code for function dyld_stub_puts:
0x0000000100000f18 <dyld_stub_puts+0>:       jmpq   *0x122(%rip)        # 0x100001040
End of assembler dump.
(gdb) x/g 0x100001040
0x100001040:   0x0000000100000f2a # the path to dyld_stub_linked ..
(gdb) c
Continuing.
Salve, Munde!
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Breakpoint 2, 0x0000000100000f02 in main ()
(gdb) x/g 0x100001040
0x100001040:   0x00007fff894a5eca   # Now patched to link to puts

As the old adage goes, there is no knowledge that is not power. And — if you’ve followed this long 
experiment all the way here, the reward is at hand: by patching the stub addresses before the func-
tions are called, it is possible to hook functions. Although dyld(1) has a similar mechanism, func-
tion interposing, (which is described later in this chapter), patching the table directly is often more 
powerful.

Shared Library Caches
Another mechanism supported by dyld is that of shared library caches. These are libraries that are 
stored, pre-linked, in one fi le on the disk. Shared caches are especially important in iOS, wherein 
most common libraries are cached. The concept is somewhat similar to Android’s prelink-map, 
wherein libraries are pre-linked into fi xed offsets in the address space. 

If you search on iOS for most libraries, such as libSystem, you’ll be wasting your time. Although 
all the binaries have the dependency, the actual fi le is not present on the fi le system. To save time on 
library loading, iOS’s dyld employs a shared, pre-linked cache, and Apple has moved all the base 
libraries into it as of iOS 3.0. 

In OS X, the dyld shared caches are in /private/var/db/dyld. On iOS, the shared cache can be 
found in /System/Library/Caches/com.apple.dyld. The cache is a single fi le, dyld_shared_
cache_armv7. The OS X shared caches also have an accompanying .map fi le, whereas the iOS one 
does not. 

Figure 4-5 shows the cache header format, which is listed in the dyld source fi les.

magic

mappingOffset

mappingCount

imagesOffset

imagesCount

dyldBaseAddress

uint32 specifying offset of mappings

uint32 specifying how many mappings are in the cache

“dyldv1  i386” on 32-bit Intel

“dyldv1  x86_64” on 64-bit Intel

FIGURE 4-5: The dyld cache format

The shared caches, on both OS X on iOS, can grow very large. OS X’s contains well over 200 fi les. 
iOS’s contains over 500(!) and is some 200 MB in size. The jailbreaking community takes special 
interest in these fi les and has written various cache “unpackers” to extract the libraries and frame-
works inside them. The libraries in their individual form can be found in the iPhoneOS.platform 
directories of the iOS SDK.
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Runtime Loading of Libraries
Normally, developers declare the libraries and symbols they will use when they #include various 
headers and, optionally, specify additional libraries to the linker using -l. An executable built in 
this way will not load until all its dependencies are resolved, as you have seen earlier. An alternative, 
however, is to use the functions supplied in <dlfcn.h> to load libraries during runtime. This allows 
for greater fl exibility: The library name needs to be committed to, or known at compile time. In this 
way, the developer can prepare several libraries and load the most appropriate one based on the fea-
tures or requirements during runtime. Additionally, if a library load fails, an error code is returned 
and can be handled by the program.

The API for runtime dynamic library loading in OS X is similar to the one found in POSIX. Its 
implementation, however, is totally different:

 ‰ dlopen (const char *path) is used to fi nd and load the library or bundle specifi ed by 
path.

 ‰ dlopen_preflight(const char *path) is a Leopard and later extension that simulates the 
loading process of dlopen() but does not actually load anything.

 ‰ dlsym(void *handle, char *sym) is used to locate a symbol in a handle previously 
opened by dlopen().

 ‰ dladdr(char *addr, Dl_Info *info) populates the DL_Info structure with the name of 
the bundle or library residing at address addr. This is the same as the GNU extension.

 ‰ dlerror() is used to provide an error message in case of an error by any of the other 
functions.

Cocoa and Carbon offer higher-level wrappers for the dl* family of functions, as well as a 
CFBundle/NSBundle object, which can be used to load Mach-O bundle fi les.

One way to check loaded libraries and symbols — from within the program itself — is to use the 
low-level dyld APIs, which are defi ned in <mach-o/dyld.h>. The header also defi nes a mechanism 
for callbacks on image load and removal. The dyld APIs can also be used alongside the dl* APIs 
(specifi cally, dladdr(3)). This is shown in Listing 4-3:

LISTING 4-3: Listing all Mach-O Images in the process

#include <dlfcn.h> // for dladdr(3)
#include <mach-o/dyld.h> // for _dyld_ functions

void listImages (void)
{
        // List all mach-o images in a process
        uint32_t i;
        uint32_t ic = _dyld_image_count();

        printf ("Got %d images\n",ic);
        for (i = 0; i < ic; i++)
        {
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          printf ("%d: %p\t%s\t(slide: %p)\n", 
                  i, 
                  _dyld_get_image_header(i), 
                  _dyld_get_image_name(i),
                  _dyld_get_image_slide(i));
        }

}

void add_callback(const struct mach_header* mh, intptr_t vmaddr_slide)
{
  // Using callbacks from dyld, we can get the same functionality
  // of enumerating the images in a binary

  Dl_info info;
  // Should really check return value of dladdr here...
  dladdr(mh, &info);
  printf ("Callback invoked for image: %p %s (slide: %p)\n", 
            mh, info.dli_fname, vmaddr_slide);
void main (int argc, char **argv)
{
    // Calling listImages will enumerate all Mach-O objects loaded into
    // our address space, using the _dyld functions from mach-o/dyld.h
        listImages();

    // Alternatively, we can register a callback on add. This callback 
    // will also be invoked for existing images at this point.
        _dyld_register_func_for_add_image(add_callback);

}

The listImages() function is self-contained and can be inserted into any program, given the 
dyld.h fi le is included (dyld.h contains function for checking symbols, as well). If run as is, the 
program in Listing 4-3 yields the following in Output 4-7:

OUTPUT 4-7: Running the code from Listing 4-3

morpheus@Ergo (~) morpheus$ ./lsimg 
Got 3 images
0: 0x100000000         /Users/morpheus/./lsimg       (slide: 0x0)
1: 0x7fff87869000      /usr/lib/libSystem.B.dylib    (slide: 0x0)
2: 0x7fff8a2cb000      /usr/lib/system/libmathCommon.A.dylib       (slide: 0x0)

Callback invoked for image: 0x100000000 /Users/morpheus/./lsimg (slide: 0x0)
Callback invoked for image: 0x7fff87869000 /usr/lib/libSystem.B.dylib (slide: 0x0)
Callback invoked for image: 0x7fff8a2cb000 /usr/lib/system/libmathCommon.A.dylib (slide:
0x0)

The same, of course, works on iOS, although in this case many more dylibs are preloaded. There is 
also a non-zero “slide” value, due to Address Space Layout Randomization (ASLR), discussed later 
in this chapter.

Output 4-8 shows the output of the sample program, on an iOS 5 system. Libraries in bold are new 
to iOS 5.
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OUTPUT 4-8: Running the code from Listing 4-3 on iOS 5

root@Podicum (~)# ./lsimg
Got 24 images
0: 0x1000       /private/var/root/./lsimg       (slide: 0x0)
1: 0x304c9000   /usr/lib/libgcc_s.1.dylib       (slide: 0x353000)
2: 0x3660f000   /usr/lib/libSystem.B.dylib      (slide: 0x353000)
3: 0x362c6000   /usr/lib/system/libcache.dylib  (slide: 0x353000)
4: 0x33e60000   /usr/lib/system/libcommonCrypto.dylib   (slide: 0x353000)
5: 0x34a79000   /usr/lib/system/libcompiler_rt.dylib    (slide: 0x353000)
6: 0x30698000   /usr/lib/system/libcopyfile.dylib       (slide: 0x353000)
7: 0x3718d000   /usr/lib/system/libdispatch.dylib       (slide: 0x353000)
8: 0x34132000   /usr/lib/system/libdnsinfo.dylib        (slide: 0x353000)
9: 0x3660d000   /usr/lib/system/libdyld.dylib   (slide: 0x353000)
10: 0x321a3000  /usr/lib/system/libkeymgr.dylib (slide: 0x353000)
11: 0x360b4000  /usr/lib/system/liblaunch.dylib (slide: 0x353000)
12: 0x3473b000  /usr/lib/system/libmacho.dylib  (slide: 0x353000)
13: 0x362f6000  /usr/lib/system/libnotify.dylib (slide: 0x353000)
14: 0x3377a000  /usr/lib/system/libremovefile.dylib     (slide: 0x353000)
15: 0x357c7000  /usr/lib/system/libsystem_blocks.dylib  (slide: 0x353000)
16: 0x36df7000  /usr/lib/system/libsystem_c.dylib       (slide: 0x353000)
17: 0x33ccc000  /usr/lib/system/libsystem_dnssd.dylib   (slide: 0x353000)
18: 0x32aa9000  /usr/lib/system/libsystem_info.dylib    (slide: 0x353000)
19: 0x32ac7000  /usr/lib/system/libsystem_kernel.dylib  (slide: 0x353000)
20: 0x3473f000  /usr/lib/system/libsystem_network.dylib (slide: 0x353000)
21: 0x34433000  /usr/lib/system/libsystem_sandbox.dylib (slide: 0x353000)
22: 0x339d9000  /usr/lib/system/libunwind.dylib (slide: 0x353000)
23: 0x32272000  /usr/lib/system/libxpc.dylib    (slide: 0x353000)

... (callback output is same, and is omitted for brevity) ...

Weakly Defi ned Symbols
An interesting feature in Mac OS is its ability to defi ne symbols as “weak.” Typically, symbols 
are strongly defi ned, meaning they must all be resolved prior to starting the executable. Failure to 
resolve symbols in this case would lead to a failure to execute the program (usually in the form of a 
debugger trap).

By contrast, a weak symbol — which may be defi ned by specifying __attribute__((weak_import)
in its declaration — does not cause a failure in program linkage if it cannot be resolved. Rather, the 
dynamic linker sets it to NULL, allowing the programmer to recover and specify some alternative 
logic to handle the condition. This is similar to the modus operandi used in dynamic loading (the 
same effect as dlopen(3) or dlsym(3) returning NULL).

Using nm with the –m switch will display weak symbols with a “weak” specifi er. 

dyld Features
Being a proprietary loader, dyld offers some unique features, which other loaders can only envy. 
This section discusses a few of the useful ones.
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Two-Level Namespace
Unlike the traditional UN*X ld, OS X’s dyld sports a two-level namespace. This feature, intro-
duced in 10.1, means that symbol names also contain their library information. This approach 
is better, as it allows for two different libraries to export the same symbol — which would result 
in link errors in other UN*X. At times, it may be desirable to remove this behavior, restrict-
ing a fl at namespace (for example, if you want to inject a different library, with the same symbol 
name, commonly for function hooking). This can be accomplished by setting the DYLD_FORCE_
FLAT_NAMESPACE environment variable to a non-zero variable. An executable may also force a fl at 
namespace on all its loaded libraries by setting the MH_FORCE_FLAT fl ag in its header.

Function Interposing
Another feature of dyld that isn’t in the classic ld is function interposing. The macro DYLD_INTER-
POSE enables a library to interpose (read: switch) its function implementation for some other func-
tion. The snippet in Listing 4-4, from the source of dyld, demonstrates this:

LISTING 4-4: DYLD_INTERPOSE macro defi nition in dyld’s include/mach-o/dyld-interposing.h

#if !defined(_DYLD_INTERPOSING_H_) 
#define _DYLD_INTERPOSING_H_
/*  Example:
 *  static
 *  int
 *  my_open(const char* path, int flags, mode_t mode)
 *  {
 *    int value;
 *    // do stuff before open (including changing the arguments)
 *    value = open(path, flags, mode);
 *    // do stuff after open (including changing the return value(s))
 *    return value;
 *  }
 *  DYLD_INTERPOSE(my_open, open)
 */

#define DYLD_INTERPOSE(_replacment,_replacee) \
   __attribute__((used)) static struct{ const void* replacment; const void* replacee; } 
_interpose_##_replacee \
            __attribute__ ((section ("__DATA,__interpose"))) = { (const void*)(unsigned 
long)&_replacment, (const void*)(unsigned long)&_replacee };

#endif

Interposing simply consists of providing a new __DATA section, called __interpose, in which the 
interposing and the interposed are listed, back-to-back. The dyld takes care of all the rest.

A good example of a library that uses interposing is OS X’s GuardMalloc library (a.k.a /usr/lib/
libgmalloc.dylib). This library replaces malloc()-related functionality in libSystem.B.dylib
with its own implementations, which provide powerful debugging and memory error tracing 
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functionality (try man libgmalloc). The library can be forcefully injected into applications, a pri-
ori, by setting the DYLD_INSERT_LIBRARIES variable. You are encouraged to check the manual page 
for libgmalloc(3) for more details. 

Looking at libgmalloc with otool –l, you will see one of the load commands for the __DATA seg-
ment sets up a section called interpose (Output 4-9).

OUTPUT 4-9: Dumping the interpose section of libgmalloc

morpheus@Ergo (/)% otool -lV /usr/lib/libgmalloc.dylib 
/usr/lib/libgmalloc:
..
Load command 1
      cmd LC_SEGMENT_64
  cmdsize 632
  segname __DATA
..
Section
  sectname __interpose
   segname __DATA
      addr 0x0000000000005200
      size 0x0000000000000240
    offset 20992
     align 2^4 (16)
    reloff 0
    nreloc 0
      type S_INTERPOSING
attributes (none)
 reserved1 0
 reserved2 0

To examine the contents of this section, you can use another Mach-O command, pagestuff(1).
This command will show the symbols in the fi le’s logical pages. Output 4-10 is concerned with the 
interpose-related symbols, which are on logical page 6. (Note that you can also use the -a switch for 
all pages.)

OUTPUT 4-10: Running pagestuff (1) to show interpose symbols in libgmalloc.

morpheus@Ergo(/)% pagestuff/usr/lib/libgmalloc.dylib 6
File Page 6 contains contents of section (__DATA,__nl_symbol_ptr) (x86_64)
File Page 6 contains contents of section (__DATA,__la_symbol_ptr) (x86_64)
File Page 6 contains contents of section (__DATA,__const) (x86_64)
File Page 6 contains contents of section (__DATA,__data) (x86_64)
File Page 6 contains contents of section (__DATA,__interpose) (x86_64)
File Page 6 contains contents of section (__DATA,__bss) (x86_64)
File Page 6 contains contents of section (__DATA,__common) (x86_64)
Symbols on file page 6 virtual address 0x5000 to 0x6000
  . . .
  0x0000000000005200 __interpose_malloc_set_zone_name
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  0x0000000000005210 __interpose_malloc_zone_batch_free
  0x0000000000005220 __interpose_malloc_zone_batch_malloc
  0x0000000000005230 __interpose_malloc_zone_unregister
  0x0000000000005240 __interpose_malloc_zone_register
  0x0000000000005250 __interpose_malloc_zone_realloc
   . . .
  0x00000000000053b0 __interpose_free
  0x00000000000053c0 __interpose_malloc 

The interposing mechanism is extremely powerful. Function interposing can easily be used to inter-
cept functions such as open() and close() — for example, to monitor fi le system access and even 
provide a thin layer of virtualization (by redirecting the fi le during the open operation to some other 
fi le, as all other operations that follow use the fi le descriptor, anyway). Interposing will be used in 
this book to uncover “behind-the-scenes” operations, as in the following experiment.

Experiment: Using Interposing to Trace malloc()
Listing 4-5 shows a simple application of interposing to provide functionality similar to GLibC’s 
mtrace (2) (which OS X does not offer). This function provides a trace of malloc() and free()
operations, printing the pointer value in the operations. In fairness, libgmalloc has more powerful 
features, as do malloc zones (described later in this chapter), but this example demonstrates just how 
easy implementing those features, as well as others, can be.

LISTING 4-5: GLibC’s mcheck-like() functionality, via function interposing

#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>
#include <stdlib.h>
#include <malloc/malloc.h> // for malloc_printf()

// This is the expected interpose structure
typedef struct interpose_s {
    void *new_func;
    void *orig_func;
} interpose_t;

// Our prototypes - requires since we are putting them in
// the interposing_functions, below
void *my_malloc(int size); // matches real malloc()
void  my_free (void *);    // matches real free()

static const interpose_t interposing_functions[] \
    __attribute__ ((section("__DATA, __interpose"))) = {
        { (void *)my_free,  (void *)free  },
        { (void *)my_malloc,  (void *)malloc  },
    };

void *my_malloc (int size)
{
    // In our function we have access to the real malloc() -
    // and since we don't want to mess with the heap ourselves,

continues
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    // just call it.
    void *returned = malloc(size);

    // call malloc_printf() because the real printf() calls malloc()
    // internally - and would end up calling us, recursing ad infinitum
        malloc_printf ( "+ %p %d\n", returned, size);
        return (returned);
}

void my_free (void *freed)
{
     // Free - just print the address, then call the real free()
     malloc_printf ( "- %p\n", freed);
     free(freed);
}

Note the use of malloc_printf, rather than the usual printf. This is required because classic 
printf() uses malloc() internally, which would lead to a rather messy segmentation fault. In gen-
eral, when using function interposing on functions provided by libSystem, special caution must be 
taken when relying on libC functions, which are in turn provided by libSystem itself.

Using this simple library yields clear output, which is easily grep-able (matching + and -, respec-
tively) and enables the quick pinpointing of leaky pointers. To force-load it into an unsuspecting 
process, we use the DYLD_INSERT_LIBRARIES environment variable, as shown in Output 4-11:

OUTPUT 4-11: Running the program from Listing 4-5

morpheus@Ergo(~)$ cc -dynamiclib l.c -o libMTrace.dylib –Wall   // compile to dylib
morpheus@Ergo(~)$ DYLD_INSERT_LIBRARIES=libMTrace.dylib ls      // force insert into ls
ls(24346) malloc: + 0x100100020 88
ls(24346) malloc: + 0x100800000 4096
ls(24346) malloc: + 0x100801000 2160
ls(24346) malloc: - 0x100800000
ls(24346) malloc: + 0x100801a00 3312
... // etc.

Environment Variables
The OS X dyld is highly confi gurable and can be modifi ed using environment variables. Table 4-9 
lists all variables and how they modify the linker’s behavior.

TABLE 4-9: DYLD Environment variables and their use

ENVIRONMENT VARIABLE USE

DYLD_FORCE_FLAT_NAMESPACE Disable two-level namespace of libraries (for INSERT). Oth-

erwise, symbol names also include their library name.

DYLD_IGNORE_PREBINDING Disable prebinding for performance testing.

LISTING 4-5 (continued)

c04.indd 128c04.indd   128 10/1/2012 5:57:01 PM10/1/2012   5:57:01 PM



Dynamic Libraries x 129

DYLD_IMAGE_SUFFIX Search for libraries with this suffi  x. Commonly 

set to _debug, or _profile so as to load /usr

/lib/libSystem.B_debug.dylib or /usr/lib

/libSystem.B_profile instead of libSystem. 

DYLD_INSERT_LIBRARIES Force insertion of one or more libraries on program load-

ing — same idea as LD_PRELOAD on UN*X.

DYLD_LIBRARY_PATH Same as LD_LIBRARY_PATH on UN*X.

DYLD_FALLBACK_LIBRARY_PATH Used when DYLD_LIBRARY_PATH fails.

DYLD_FRAMEWORK_PATH As DYLD_LIBRARY_PATH, but for frameworks.

DYLD_FALLBACK_FRAMEWORK_PATH Used when DYLD_FRAMEWORK_PATH fails.

Additionally, the following control debug printing options in dyld:

 ‰ DYLD_PRINT_APIS: Dump dyld API calls (for example dlopen).

 ‰ DYLD_PRINT_BINDINGS: Dump symbol bindings.

 ‰ DYLD_PRINT_ENV: Dump initial environment variables.

 ‰ DYLD_PRINT_INITIALIZERS: Dump library initialization (entry point) calls.

 ‰ DYLD_PRINT_LIBRARIES: Show libraries as they are loaded.

 ‰ DYLD_PRINT_LIBRARIES_POST_LAUNCH: Show libraries loaded dynamically, after load.

 ‰ DYLD_PRINT_SEGMENTS: Dump segment mapping.

 ‰ DYLD_PRINT_STATISTICS: Show runtime statistics.

Further detail is well documented in the dyld(1) man page.

Example: DYLD_INSERT_LIBRARIES and Its Resulting Insecurities
Of all the various DYLD options in the last section, none is as powerful as DYLD_INSERT_
LIBRARIES. This environment variable is used for the same functionality that LD_PRELOAD offers on 
UNIX — namely, the forced injection of a library into a newly-created process’s address space.

By using DYLD_INSERT_LIBRARIES, it becomes a simple matter to defeat one of Apple’s key soft-
ware protection mechanisms — code encryption. Rather than brute force the decryption, it is trivial 
to inject the library into the target process and then read the formerly encrypted sections, in clear 
plaintext. The technique is straightforward and requires only the crafting of such a library. Then, 
insertion involves only a simple prefi xing of the variable to the application to be executed.

Noted researcher Stephan Esser (known more by his handle, i0n1c) has demonstrated this in a very 
simple library. The library (called dumpdecrypted, part of the Esser’s git repository at https://
github.com/stefanesser) is force loaded into a Mach-O executable, and then reads the executable, 
processes its load commands, and simply fi nds the encrypted section (from the LC_ENCRYPTION_
INFO) in its own memory. Because the library is part of process memory, and by that time process 
memory is decrypted, “decrypting” is a simple matter of copying the address range — which is now 
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plaintext — to disk. The same effect can be achieved from outside the process by using the Mach VM 
APIs, which this book explores in Chapter 10.

DYLD_INSERT_LIBRARIES and the function interposing feature of dyld twice played a key feature in 
the untethered jailbreak (“spirit” and “star”) of iOS, up to and including 4.0.x, by forcefully inject-
ing a fake libgmalloc.dylib into launchd, the very fi rst user mode process. The Trojan library 
interposes several functions (unsetenv and others) used by launchd, injecting a Return-Oriented-
Programming (ROP) payload. This means the interposing functions aren’t provided by the library 
(as its code cannot be signed, as is required by iOS), but — rather — by launchd itself. The inter-
posing function of dyld was patched in iOS 4.1 to ensure the interposing functions belong to the 
library, which helps mitigate the attack. 

PROCESS ADDRESS SPACE

One of the benefi ts of user mode is that of isolated virtual memory. Processes enjoy a private address 
space, ranging from 2-3GB (on iOS), through 4GB (on 32-bit OS X), and up to an unimaginable 16 
exabytes on 64-bit OS X. As the previous section has discussed, this address space is populated with 
segments from the executable and various libraries, using the various LC_SEGMENT[64] commands. 
This section discusses the address space layout, in detail.

The Process Entry Point
As with all standard C programs, executables in OS X have the standard entry point, by default 
named “main”. In addition to the usual three arguments, however — argc, argv and, envp — 
Mach-O programs can expect a fourth arguments, a char ** known as “apple.” 

The “apple” argument, up to and including Snow Leopard, only held a single string – the program’s 
full path, i.e. the fi rst argument of the execve() system call used to start it. This argument is used 
by dyld(1) during process loading. The argument is considered to be for internal use only.

Starting with Lion, the “apple” argument has been expanded to a full vector, which now contains 
two new additional parameters, likewise for internal use only: stack_guard and malloc_entropy.
The former is used by GCC’s “stack protector” feature (-fstack-protector), and the latter by 
malloc, which uses it to add some randomness to the process address space. These arguments are 
initialized by the kernel during the Mach-O loading (more on that in Chapter 12) with random 
values. 

The following example (Listing 4-6 and Output 4-12) will display these values, when compiled on 
Lion, or on iOS 4 and later:

LISTING 4-6: Printing the “apple” argument to Mach-O programs

void main (int argc, char **argv, char **envp, char **apple)
{

        int i = 0;
        for (i=0; i < 4; i++)
        printf ("%s\n", apple[i]);

}
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OUTPUT 4-12: Output of the program from the previous listing

Padishah:~ root# ./apple
./apple
stack_guard=0x9e9b3f22f9f1db64
malloc_entropy=0x2b655014ad0fa0c5,0x2f0c9c660cd3fed0
(null)

Cocoa applications also start with a standard C main(), although it is common practice to imple-
ment the main as a wrapper over NSApplicationMain(), which in turn shifts to the Objective-C pro-
gramming model. 

Address Space Layout Randomization
Processes start up in their own virtual address space. Traditionally, process startup was performed 
in the same deterministic fashion every time. This meant, however, that the initial process’ virtual-
memory image was virtually identical for a given program on a given architecture. The problem was 
further exacerbated by the fact that, even during the process lifetime, most allocations were per-
formed in the same manner, which led to very predictable addresses in memory.

While this offered an advantage for debugging, it provided an even bigger boon for hackers. The pri-
mary attack vector hackers use is code injection: By overwriting a function pointer in memory, they 
can subvert program execution to code they provide — as part of their input. Most commonly, the 
method used to overwrite is a buffer overfl ow (exceeding the bounds of an array on the stack due to 
an unchecked memory copy operation), and the overwritten pointer is the function’s return address. 
Hackers have even more creative techniques, however, including subverting printf() format strings 
and heap-based overfl ows. What’s more, any user pointer or even a structured exception handler 
enables the injection of code. Key here is the ability to determine what to overwrite the pointer 
with — that is, to reliably determine where the injected code will reside in memory.

The common hacking motto is, to paraphrase java, exploit once — hack everywhere. Whatever 
the vulnerability — buffer overfl ow, format string attack, or other — a hacker can invest (much) 
directed effort in dissecting a vulnerable program and fi nding its address layout, and then craft a 
method to reliably reproduce the vulnerability and exploit it on similar systems.

Address Space Layout Randomization (ASLR), a technique that is now employed in most operating 
systems, is a signifi cant protection against hacking. Every time the process starts, the address space 
is shuffl ed slightly — shaken, not stirred. The basic layout is still the same, text, data, libraries — as 
we discuss in the following pages. The exact addresses, however, are different — suffi ciently, it is 
hoped, to thwart the hacker’s address guesses. This is done by having the kernel “slide” the Mach-O 
segments by some random factor.

Leopard was the fi rst version of OS X to introduce address space layout randomization, albeit in a 
very limited form. The randomization only occurred on system install or update, and randomized 
only the loading of libraries. Snow Leopard made some improvements, but the heap and stack were 
both predictable — and the assigned address space persisted across reboots. 

Lion is the fi rst version of OS X to support full randomization in user space — including the text 
segments. Lion provides 16-bit randomization in the text segments and up to 20-bit randomization 
elsewhere, per invocation of the program. The 64-bit Mach-O binaries are fl agged with MH_PIE
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(0x00200000), specifying to the kernel that the binary should be loaded at a random address. 32-bit 
programs still have no randomization. Likewise, iOS 4.3 is the fi rst version of iOS to introduce 
ASLR in user space. For Apple, doing so in iOS is even more important, as code injection is the 
underlying technique behind jailbreaking the various i-Devices. ASLR can be selectively disabled (by 
setting _POSIX_SPAWN_DISABLE_ASLR in call to posix_spawnattr_setflags(), if using posix_
spawn() to create the process), but is otherwise enabled by default.  

Mountain Lion further improves on its predecessors and introduces ASLR into the kernel space. A 
new system call, kas_info (#439) is offered to obtain kernel address space information. At the time 
of this writing, iOS does not offer kernel space randomization. It is more than likely, however, that 
the next update of iOS will do so as well, in an attempt at thwarting jailbreakers from injecting code 
into the iOS kernel. The code has also been compiled with aggressive stack-checking logic in many 
function epilogs, just in case.

It should be noted that ASLR, while a signifi cant improvement, is no panacea. (Neither, for that 
matter, is the NX protection, discussed earlier.) Hackers still fi nd clever ways to hack. In fact, the 
now infamous “Star 3.0” exploit, which jailbroke iOS 4.3 on the iPad 2, defeated ASLR. This was 
done by using a technique called “Return-Oriented Programming,” (ROP), in which the buffer 
overfl ow corrupts the stack to set up entire stack frames, simulating calls into libSystem. The same 
technique was used in the iOS 5.0.1 “corona” exploit, which has been successfully used to break all 
Apple devices, including the latest and greatest iPhone 4S.[5]

The only real protection against attacks is to write more secure code and subject it to rigorous code 
reviews, both automated and manual.

32-Bit (Intel)
While no longer the default, 32-bit address spaces are still possible — in older programs or by specif-
ically forcing 32-bit (compiling with –arch i386). The 32-bit address space is capped at 4 GB (232 
= 4,294,967,296 bytes). Unlike other operating systems, however, all the 4 GB is accessible from 
user space — there is no reservation for kernel space. 

Windows traditionally reserves 2 GB (0x80000000-) and Linux 1 GB 
(0xC0000000-) for Kernel space. Even though this memory is technically 
addressable by the process, trying to access it from user mode generates a gen-
eral protection fault, and usually leads to a segmentation fault, which kills the 
process. OS X (in 32-bit mode) uses a different approach, assigning the kernel its 
own 4 GB address space, thereby freeing the top 1 GB for user space. So instead 
of Windows’ 2/2 and Linux’s 3/1, OS X gives a full 4 GB to both kernel and 
user spaces. This comes at a cost, however, of a full address space switch (CR3 
change and TLB fl ush). This is no longer the case in 64-bit, or on iOS.

64-Bit
64 bits allow for a huge address space of up to 16 exabytes (that is, 16 giga-gigabytes). While this 
is never actually needed in practice (and, in fact, most hardware architectures support only 48–52 
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bits for addressing), it does allow for a sparser address space. The layout is still essentially the same, 
except that now segments are much farther apart from one another.

It should be noted, that even 64-bit is not true 64-bit. Due to the overhead associated with virtual to 
physical address translation, the Intel architecture uses only 48 bits of the virtual address. This is a 
hardware restriction, which is imposed also on Linux and Windows. The highest accessible region 
of the user memory space, therefore, lies at 0x7FFF-FFFF-FFFF.

In 64-bit mode, there is such a huge amount of memory available anyway that it makes sense to fol-
low the model used in other operating systems, namely to map the kernel’s address space into each 
and every process. This is a departure from the traditional OS X model, which had the kernel in its 
own address space, but it makes for much faster user/kernel transition (by sharing CR3, the control 
register containing the page tables).

32-Bit (iOS)
The iOS address space is even more restricted than its 32-bit Intel counterpart.  For starters, unlike 
32-bit OS X, the kernel is mapped to 0xC0000000 (iOS 3), or 0x80000000 (iOS 4 and 5), consuming 
a good 1–2 GB of the space. Further, addresses over 0x30000000 are reserved for the various librar-
ies and frameworks.

A simple program to allocate 1 MB at a time will fail sooner, rather than later. For example, on an 
iPad, the program croaks at about 80 MB:

Root@Padishah:~ root# ./a
a(12236) malloc: *** mmap(size=1048576) failed (error code=12)
*** error: can't allocate region
*** set a breakpoint in malloc_error_break to debug
a(12236) malloc: *** mmap(size=16777216) failed (error code=12)
*** error: can't allocate region
*** set a breakpoint in malloc_error_break to debug
She won't hold, Cap'n! Total allocation was 801112064 MB

This low limit makes perfect sense, if one takes into account the fact the there is no swap space on
i-Devices. Swap and fl ash storage do not get along very well because of the former’s need for many 
write/delete operations and the latter’s limitations in doing so. So, while on a hard drive swap raises 
no issues (besides the unavoidable hit on performance), on a mobile device swap is not an option. 

As a consequence, virtual memory on mobile devices is, by its nature, limited. Tricks such as 
implicit sharing can give the illusion of more space than exists on a system-wide level, but any single 
process may not consume more than the available RAM, which is less than the device’s physical 
RAM because of memory used by other processes and by the kernel itself.

General Address Space Layout
Because of ASLR, the address space of processes is very fl uid. But while exact addresses may “slide” 
by some small random offsets, the rough layout remains the same. 

The memory segments are as follows:

 ‰ __PAGEZERO: On 32-bit systems, this is a single page (4 KB) of memory, with all of its 
access permissions revoked. On 64-bit systems, this corresponds to the entire 32-bit address 
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space — i.e. the fi rst 4 GB. This is useful for trapping NULL pointer references (as NULL is really 
“0”), or integer-as-pointer references (as all values up to 4,095 in 32-bit, or 4 GB in 64-bit, fall 
within this page). Because access permissions — read, write, and execute — are all revoked, 
any attempt to dereference memory addresses that lie within this page will trigger a hardware 
page fault from the MMU, which in turn leads to a trap, which the kernel can trap. The kernel 
will convert the trap to a C++ exception or a POSIX signal for a bus error (SIGBUS).

PAGEZERO is not meant to be used by the process, but it has become somewhat of 
a cozy breeding ground for malicious code. Attackers wishing to infect a Mach-
O with “additional” code often fi nd PAGEZERO to be convenient for that pur-
pose. PAGEZERO is normally not part of the fi le, (its LC_SEGMENT specifi ed fi lesize 
is 0), there is no strict requirement this be the case.

 ‰ __TEXT: This is the program code. As in all operating systems, text segments are marked as 
r-x, meaning read-only and executable. This not only helps protect the binary from modifi -
cation in memory, but optimizes memory usage by making the section shareable. This way, 
multiple instances of the same program use up only one __TEXT copy. The text segment usu-
ally contains several sections, with the actual code in _text. It can also contain other read-
only data, such as constants and hard-coded strings. 

 ‰ __LINKEDIT: For use by dyld, this section contains tables of strings, symbols, and other data.

 ‰ __IMPORT: Used for the import tables on i386 binaries.

 ‰ __DATA: Used for readable/writable data. 

 ‰ __MALLOC_TINY: For allocations of less than page size.

 ‰ __MALLOC_SMALL: For allocations of several pages.

 ‰ __MALLOC_LARGE: For allocations of over 1 MB.

Another segment which doesn’t show up in vmmap is the commpage. This is a set of pages 
exported by the kernel to all user mode processes, similar in concept to Linux’s vsyscall and 
vdso. The pages are shared (read-only) in all processes at a fi xed address: 0xffff0000 in i386, 
0x7fffffe00000 in x86_64, and 0x40000000 in ARM. They hold various CPU and platform 
related functions. 

The commpage is largely a relic of the days of Mach on the PPC, wherein it was used frequently. 
Apple is phasing it out, with scant remnants, like libSystem using it to accelerate gettimeofday() 
and (up until Lion and iOS 5) pthread_mutex_lock(). Code in the commpage has the unique prop-
erty that it can be made temporarily non-preemptible, if it resides in the Preemption Free Zone 
(PFZ). This is discussed further in Chapters 8 and 11.

We discuss the internals of memory management, from the user mode perspective, next. The kernel 
mode perspective is discussed in Chapter 12. Mach-O segment and section loading is covered in 
Chapter 13.
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Experiment: Using vmmap(1) to Peek Inside a Process’s 
Address Space

Using the vmmap(1) command, you can view the memory layout of a process. Carrying the pre-
vious experiment further, you use vmmap –interleaved, which dumps the address space in a 
clear way. The –interleaved switch sorts the output by address, rather than readable/writable 
sections.

Consider the following program in Listing 4-7:

LISTING 4-7: A sample program displaying its own address space

#include <stdlib.h>
int global_j;
const int ci = 24;
void main (int argc, char **argv)
{
        int local_stack = 0;
        char *const_data = "This data is constant";
        char *tiny = malloc (32);            /* allocate 32 bytes */
        char *small = malloc (2*1024);       /* Allocate 2K */
        char *large = malloc (1*1024*1024);  /* Allocate 1MB */

        printf ("Text is %p\n", main);
        printf ("Global Data is %p\n", &global_j);
        printf ("Local (Stack) is %p\n", &local_stack);
        printf ("Constant data is %p\n",&ci );
        printf ("Hardcoded string (also constant) are at %p\n",const_data );
        printf ("Tiny allocations from %p\n",tiny );
        printf ("Small allocations from %p\n",small );
        printf ("Large allocations from %p\n",large );
        printf ("Malloc (i.e. libSystem) is at %p\n",malloc );
        sleep(100); /* so we can use vmmap on this process before it exits */
}

Compiling it on a 32-bit system (or with –arch i386) and running it will yield the results shown in 
Figure 4-6.

The vmmap(1) output shows the region names, address ranges, permissions (current and maximum), 
and the name of the mapping (usually the backing Mach-O object), if any.

For example, __PAGEZERO is exactly 4 KB (0x00000000–0x00001000) and is empty (SM=NUL) and set 
with no permissions (current permissions: ---, max permissions: ---). 

Other regions are defi ned as COW — meaning copy-on-write. This makes them shareable, as long as 
they are not modifi ed — that is, up to the point where one of the sharing processes requests to write 
data to that page. Because that would mean that the two processes would now be seeing different 
data, the writing process triggers a page fault, which gets the kernel to copy that page. 
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Ergo:~ morpheus$ cc a.c -o a -arch i386

Ergo:~ morpheus$ ./a &

Ergo:~ morpheus$ Text is 0x1d72

Global Data is 0x2040

Local (Stack) is 0xbffffb1c

Constant data is 0x1e84

Tiny allocations from 0x100130

Small allocations from 0x800000

Large allocations from 0x200000

Malloc (i.e. libSystem) is at 0x946ba246

==== regions for process 6396 (non-writable and writable regions are interleaved)

Hardcoded string (also constant) are at 0x1e88

[1] 6331

__PAGEZERO 00000000-00001000 [    4K] ---/--- SM=NUL /Users/morpheus/a

__TEXT 00001000-00002000 [    4K] r-x/rwx SM=COW /Users/morpheus/a

__TEXT 8fe00000-8fe42000 [  264K] r-x/rwx SM=COW /usr/lib/dyld

__TEXT 946b7000-9485f000 [ 1696K] r-x/r-x SM=COW /usr/lib/libSystem.B.dylib

__TEXT 9496f000-94973000 [   16K] r-x/r-x SM=COW

__DATA 8fe42000-8fe6f000 [  180K] rw-/rwx SM=COW /usr/lib/dyld

__IMPORT 8fe6f000-8fe70000 [    4K] rwx/rwx SM=COW /usr/lib/dyld

__LINKEDIT 8fe70000-8fe84000 [   80K] r--/rwx SM=COW /usr/lib/dyld

__DATA 00002000-00003000 [    4K] rw-/rwx SM=PRV /Users/morpheus/a

__LINKEDIT 00003000-00004000 [    4K] r--/rwx SM=COW /Users/morpheus/a

STACK GUARD 00004000-00005000 [    4K] ---/rwx SM=NUL

MALLOC (admin) 00005000-00006000 [    4K] rw-/rwx SM=COW

MALLOC (admin) 00008000-00013000 [   44K] rw-/rwx SM=COW

MALLOC (admin) 00015000-00020000 [   44K] rw-/rwx SM=COW

MALLOC (admin) 00021000-00022000 [    4K] r--/rwx SM=COW

MALLOC_LARGE 00022000-00023000 [    4K] rw-/rwx SM=COW DefaultMallocZone_0x5000

MALLOC_LARGE 00200000-00300000 [ 1024K] rw-/rwx SM=NUL DefaultMallocZone_0x5000

MALLOC_SMALL 00800000-01000000 [ 8192K] rw-/rwx SM=COW DefaultMallocZone_0x5000

MALLOC_TINY 00100000-00200000 [ 1024K] rw-/rwx SM=COW DefaultMallocZone_0x5000

STACK GUARD 00006000-00008000 [    8K] ---/rwx SM=NUL

STACK GUARD 00013000-00015000 [    8K] ---/rwx SM=NUL

STACK GUARD 00020000-00021000 [    4K] ---/rwx SM=NUL

FIGURE 4-6: Virtual address space layout of a 32-bit process
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On a 64-bit system, the map is similar:

OUTPUT 4-13: Address space layout of a 64-bit binary

Listing …: Address space layout of a 64-bit binary

Virtual Memory Map of process 16565 (a)
Output report format:  2.2  -- 64-bit process

==== regions for process 16565  (non-writable and writable regions are interleaved)
__TEXT                 0000000100000000-0000000100001000 [    4K] r-x/rwx SM=COW
                                                               /Users/morpheus/a
__DATA                 0000000100001000-0000000100002000 [    4K] rw-/rwx SM=PRV
                                                               /Users/morpheus/a
__LINKEDIT             0000000100002000-0000000100003000 [    4K] r--/rwx SM=COW
                                                               /Users/morpheus/a
MALLOC guard page      0000000100003000-0000000100004000 [    4K] ---/rwx SM=NUL
MALLOC metadata        0000000100004000-0000000100005000 [    4K] rw-/rwx SM=COW
MALLOC guard page      0000000100005000-0000000100007000 [    8K] ---/rwx SM=NUL
MALLOC metadata        0000000100007000-000000010001c000 [   84K] rw-/rwx SM=COW
MALLOC guard page      000000010001c000-000000010001e000 [    8K] ---/rwx SM=NUL
MALLOC metadata        000000010001e000-0000000100033000 [   84K] rw-/rwx SM=COW
MALLOC guard page      0000000100033000-0000000100034000 [    4K] ---/rwx SM=NUL
MALLOC metadata        0000000100034000-0000000100035000 [    4K] r--/rwx SM=COW
MALLOC_LARGE metadata  0000000100035000-0000000100036000 [    4K] rw-/rwx SM=COW
                                                   DefaultMallocZone_0x100004000
MALLOC_TINY            0000000100100000-0000000100200000 [ 1024K] rw-/rwx SM=COW
                                                   DefaultMallocZone_0x100004000
MALLOC_LARGE (reserved 0000000100200000-0000000100300000 [ 1024K] rw-/rwx SM=NUL
                                                   DefaultMallocZone_0x100004000
MALLOC_SMALL           0000000100800000-0000000101000000 [ 8192K] rw-/rwx SM=COW
                                                   DefaultMallocZone_0x100004000
STACK GUARD            00007fff5bc00000-00007fff5f400000 [ 56.0M] ---/rwx SM=NUL
                                                        stack guard for thread 0
Stack                  00007fff5f400000-00007fff5fbff000 [ 8188K] rw-/rwx SM=ZER
                                                                        thread 0
Stack                  00007fff5fbff000-00007fff5fc00000 [    4K] rw-/rwx SM=COW
                                                                        thread 0
__TEXT                 00007fff5fc00000-00007fff5fc3c000 [  240K] r-x/rwx SM=COW
                                                                   /usr/lib/dyld
__DATA                 00007fff5fc3c000-00007fff5fc7b000 [  252K] rw-/rwx SM=COW
                                                                   /usr/lib/dyld
__LINKEDIT             00007fff5fc7b000-00007fff5fc8f000 [   80K] r--/rwx SM=COW
                                                                   /usr/lib/dyld
__DATA                 00007fff701b2000-00007fff701d5000 [  140K] rw-/rwx SM=COW
                                                      /usr/lib/libSystem.B.dylib
__TEXT                 00007fff8111b000-00007fff812dd000 [ 1800K] r-x/r-x SM=COW
                                                      /usr/lib/libSystem.B.dylib
__TEXT                 00007fff87d0f000-00007fff87d14000 [   20K] r-x/r-x SM=COW
                                           /usr/lib/system/libmathCommon.A.dylib
__LINKEDIT             00007fff8a886000-00007fff8cc7e000 [ 36.0M] r--/r-- SM=COW
                                           /usr/lib/system/libmathCommon.A.dylib
. . .
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Cydia packages for iOS do not have vmmap(1), but — as open source — it can be compiled for iOS. 
Alternatively, the same information can be obtained using gdb. By attaching to a process in gdb, you 
can issue one of three commands, which would give you the following information:

 ‰ Info mach-regions

 ‰ Maintenance info section 

 ‰ Show fi les

The same information can be obtained by walking through the load commands (otool –l)

Later in this book, we discuss Mach virtual memory and regions, and show an 
actual implementation of vmmap(1) from the ground up, using the underlying 
Mach trap, mach_vm_region. You will also be able to use it on iOS.

PROCESS MEMORY ALLOCATION (USER MODE)

One of the most important aspects of programming is maintaining memory. All programs rely on 
memory for their operation, and proper memory management can make the difference between a 
fast, effi cient program, and poor and faulty one.

Like all systems, OS X offers two types of memory allocations — stack-based and heap-based. 
Stack-based allocations are usually handled by the compiler, as it is the program’s automatic vari-
ables that normally populate the stack. Dynamic memory is normally allocated on the heap. Note, 
that these terms apply only in user mode. At the kernel level, neither user heap nor stack exists. 
Everything is reduced to pages. The following section discusses only the user mode perspective. 
Kernel virtual memory management is itself deserving of its own chapter. Apple also provides 
documentation about user mode memory allocation.[6]

The alloca() Alternative
Although the stack is, traditionally, the dwelling of automatic variables, in some cases a program-
mer may elect to use the stack for dynamic memory allocation, using the surprisingly little known 
alloca(3). This function has the same prototype as malloc(3), with the one notable excep-
tion — that the pointer returned is on the stack, and not the heap.

From an implementation perspective, alloca(3) is preferable to malloc(3) for two main reasons:

 ‰ The stack allocation is usually nothing more than a simple modifi cation of the stack pointer 
register. This is a much faster method than walking the heap and trying to fi nd a proper zone 
or free list from which to obtain a chunk. Additionally, the stack memory pages are already 
resident in memory, mitigating the concern of page faults — which, while unnoticeable in 
user mode, still have a noticeable effect on performance.

 ‰ Stack allocation automatically clears up when the function allocating the space returns. This 
is assured by the function prolog (which usually sets up the stack frame by saving the stack 
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pointer on entry), and epilog (which resets the stack pointer to its value from the entry). This 
makes dreaded memory leaks a non-issue. Given how happily programmers malloc()— yet 
how little they free()— addressing memory leaks automatically is a great idea.

All these advantages, however, come at a cost — and that is of stack space. Stack space is generally 
far more limited than that of the heap. This makes alloca(3) suitable for small allocations of 
relatively short-lived functions, but inadequate for code paths that involve deep nesting (or worse, 
recursion). Stack space can be controlled by setrlimit(3) on RLIMIT_STACK (or, from the com-
mand line, ulimit(1) –s). If the stack overfl ows, alloca(3) will return NULL and the process will 
be sent a SIGSEGV.

Heap Allocations
The heap is a user-mode data structure maintained by the C runtime library, which frees the pro-
gram from having to directly allocate pages. The term “heap” originated from the data structure 
used — a binary heap — although today’s heaps are far more complex. What’s more, every operat-
ing system has its own preference for heap management, with Windows, Linux, and Darwin taking 
totally different approaches. The approach  taken by Darwin’s LibC  is especially suited for use by 
its biggest client, the Objective-C runtime.

Darwin’s LibC uses a special algorithm for heap allocation, based on allocation zones. These are 
the tiny, small, large and huge areas shown in the output of vmmap(1) in Figure 4-6 and Out-
put 4-13. Each zone has its own allocator with different semantics, which are optimized for the 
allocation size.  Prior to Snow Leopard, the scalable allocator was used, which is now superseded by 
the magazine allocator. The allocation logic of both allocators is fairly similar, but allocation maga-
zines are thread-specifi c, and therefore less prone to locking or contention. The magazine allocator 
also does away with the huge zones. The Foundation.Framework encapsulates malloc zones with 
NSZones.

New zones can be added fairly easily (by calling NSCreateZone/malloc_create_zone, or directly 
initializing a malloc_zone_t and calling malloc_zone_register), and malloc can be redirected 
to allocated from a specifi c zone (by calling malloc_zone_malloc). Memory management func-
tions in a zone may be hooked. For debugging purposes, however, it suffi ces to use the introspect
structure and provide user-defi  ned callbacks. As shown in Figure 4-7, introspection allows detailed 
debugging of the zone, including presenting its usage, statistics, and all pointers. The <malloc
/malloc.h> header provides many other functions which are useful for debugging and diagnostics, 
the most powerful of which is malloc_get_all_zones(), which (unlike most others) can be called 
from outside the process for external memory monitoring.

Snow Leopard and later support purgeable zones, which underlie libcache and Cocoa’s 
NSPurgeableData. Lion further adds support for discharged pointers and VM pressure relief.  VM 
pressure is a concept in XNU (more accurately, in Mach), which signals to user mode that the sys-
tem is low on RAM (i.e. too many pages are resident).  The pressure relief mechanism then kicks in 
and attempts to automatically free a supplied goal of bytes. RAM is especially important in iOS, 
where the VM pressure mechanism is tied to Jetsam, a mechanism similar to Linux’s Out-Of-
Memory (OOM) killer. Most objective-C developers interface with the mechanism when they imple-
ment a didReceiveMemoryWarning, to free as much memory as possible and pray they will not be 
ruthlessly killed by Jetsam. 
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reserved1

reserved2

size

malloc

calloc

valloc

free

realloc

zone_name

batch_malloc

batch_free

introspect

version

memalign

free_definite_size

pressure_relief

enumerator

good_size

check

print

log

force_lock

force_unlock

statistics

zone_locked

discharge

enable_discharge_checking

enumerate_discharged…

disable_discharge_checking

malloc_zone_t

malloc_introspection_t

Returns size allocated by pointer, or 0 if not in zone

The implementation of malloc(3) for this zone

The implementation of calloc(3) (memset to 0) for this zone

The implementation of valloc(3) (calloc + page align) for this zone

The implementation of free(3) for this zone

The implementation of realloc(3) for this zone

String name of this zone

Allocate multiple buffers pointing to same size

Free array of pointers

Enumerates all malloc’ed pointers 

Returns minimal size for allocation without padding

Checks zone consistency

Prints out zone, potentially verbose 

Logs zone activity

Locks zone

Unlocks zone

Provides statistics

Returns true if zone is locked 

Check for discharged pointers 

Disable check for discharged pointers 

Force discharge of pointer 

If blocks support is compiled, show discharged pointers

Zone API version

Free ptr of given size

VM pressure handler

2k-aligned malloc

FIGURE 4-7: The structure of malloc zone objects

Virtual Memory — The sysadmin Perspective
It is assumed the reader is no stranger to virtual memory and the page lifecycle. Because the nomen-
clature used differs slightly with each operating system, however, the following serves both to 
refresh and adapt the terms to those used in Mach-dom:
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Page Lifecycle
Physical memory pages spend their lives in one of several states, as shown in Table 4-10 and 
Figure 4-8

TABLE 4-10: Physical Page States

PAGE STATE APPLIES WHEN

Free Physical page is not used for any virtual memory page. It may be instantly 

reclaimed, if the need arises.

Active Physical page is currently used for a virtual memory page and has been recently 

referenced. It is not likely to be swapped out, unless no more inactive pages 

exist. If the page is not referenced in the near future, it will be deactivated.

Inactive Physical page is currently used for a virtual memory page but has not been 

recently referenced by any process. It is likely to be swapped out, if the need 

arises. Alternatively, if the page is referenced at any time, it will be reactivated.

Speculative Pages are speculatively mapped. Usually this is the result of a guessed alloca-

tion about possibly needing the memory, but it is not active yet (nor really inac-

tive, as it might be accessed shortly).

Wired down Physical page is currently used for a virtual memory page but cannot be paged 

out, regardless of referencing.

Wired Active Inactive

Speculative

Page access

Page access

Timeout

Timeoutmlock, vm_wire

munlock, vm_unwire

FIGURE 4-8: Physical page state transitions

vm_stat(1)
The vm_stat(1) utility (not to be confused with the UNIX vmstat, which is different) displays the 
in-kernel virtual memory counters. The Mach core maintains these statistics (in a vm_statistics64 
struct), and so this utility simply requests them from the kernel and prints them out (how exactly it does 
so is shown in a more detailed example in Chapter 10). Its output looks something like the following:

morpheus@ergo (/)$ vm_stat
Mach Virtual Memory Statistics: (page size of 4096 bytes)
Pages free:                           5366.
Pages active:                       440536.
Pages inactive:                     267339.
Pages speculative:                   19096.
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Pages wired down:                   250407.
"Translation faults":             18696843.
Pages copy-on-write:                517083.
Pages zero filled:                 9188179.
Pages reactivated:                   98580.
Pageins:                            799179.
Pageouts:                            42569.

The vm_stat utility lists the counts of pages in various lifecycle stages, and additionally displays 
cumulative statistics since boot, which include:

 ‰ Translation faults: Page fault counts

 ‰ Pages copy-on-write: Number of pages copied as a result of a COW fault

 ‰ Pages zero fi lled: Pages that were allocated and initialized

 ‰ Pageins: Fetches of pages from

 ‰ Pageouts: Pushes of pages to swap

sysctl(8)
The sysctl(8) command, which is a UNIX standard command to view and toggle kernel variables, 
can also be used to manage virtual memory settings. Specifi cally, the vm namespace holds the fol-
lowing variables shown in Table 4-11:

TABLE 4-11: sysctl variables to control virtual memory settings

VARIABLE USED FOR

vm.allow_stack_exec Executable stacks. Default is 0.

vm.allow_data_exec Executable heaps. Default is 1.

vm.cs_* Miscellaneous settings related to code signing. These are 

discussed under “Code Signing” in Chapter 12.

vm.global_no_user_wire_amount

vm.global_user_wire_limit

vm.user_wire_limit

Global and per user settings for wired (mlocked) memory.

vm.memory_pressure Is system low on virtual memory?

kern.vm_page_free_target

page_free_wanted
Target number of pages that should always be free. 

shared_region_* Miscellaneous settings pertaining to shared memory regions.

dynamic_pager(8)
OS X is unique in that, following Mach, swap is not managed directly at the kernel level. Instead, a 
dedicated user process, called the dynamic_pager(8) handles all swapping requests. It is started at 
boot by launchd, from a property list fi le called com.apple.dynamic_pager.plist (found amidst 
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the other startup programs, in /System/Library/LaunchDaemons, as discussed in Chapter 6). It is 
possible to disable swapping altogether, by unloading (or removing) the property list from launchd,
but this is not recommended.

The dynamic_pager is responsible for managing the swap space on the disk. The launchd starts the 
pager with the swap set to /private/var/vm/swapfile. This can be changed with the –F switch, 
to specify another fi le path and prefi x. Other settings the pager responds to are shown in 
Table 4-12:

TABLE 4-12: Switches used by dynamic_pager(8)

SWITCH USED FOR

-F Path and prefi x of swap fi les. Default set by launchd is /private/var/vm/swapfile.

-S File size, in bytes, for additional swap fi le. 

-H High water mark: If there are fewer pages free than this, swap fi les are needed.

-L Low water mark: If there are more pages free than this, the swap fi les may be coalesced. 

For obvious reasons, it must hold that -L >= -S + H, as the coalescing will free a swap 

fi le of S bytes.

The dynamic_pager has its own property list fi le (Library/Preferences/com.apple.virtual-
Memory.plist). The only key defi ned, at present, is a Boolean — prior to Lion, useEncryptedSwap
(default, no), and as of Lion, disableEncryptedSwap (default, yes). Because the encrypted swap fea-
ture follows the hard-coded default (true for laptops, false for desktops/servers), this fi le should be cre-
ated if the default is to be changed — which may be accomplished with the defaults(1) command. 

The above mentioned sysctl(8) command can be used to view (among other things) the swap utili-
zation, by vm.swapusage.

THREADS

Processes as we know them are a thing of the past. Modern operating systems, OS X and iOS 
included, see only threads. Apple raises the notch a few levels higher by supporting far richer APIs 
than other operating systems, to facilitate the work with multiple threads. This section reviews the 
ideas behind threads, then discusses the OS X/iOS-specifi c features.

Unraveling Threads
Originally, UNIX was designed as a multi-processed operating system. The process was the funda-
mental unit of execution, and the container of the various resources needed for execution: virtual 
memory, fi le descriptors, and other objects. Developers wrote sequential programs, starting with the 
entry point — main — and ending when the main function returned (or when exit(2) was called. 
Execution was thus serialized, and easy to follow.

This, however, soon proved to be too rigid an approach, offering little fl exibility to tasks which 
needed to be executed concurrently. Chief among those was I/O: calls such as read(2) and 
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write(2) could block indefi nitely — especially when performed on sockets. A blocking read meant 
that socket code, for example, could not keep on sending data while waiting to read. The select(2)
and poll(2) system calls provided somewhat of workaround, by enabling a process to put all its fi le 
descriptors into one array, thereby facilitating I/O multiplexing. Coding in this way is neither scal-
able nor very effi cient, however. 

Another consideration was that most processes block on I/O sooner rather than later. This means 
that a large portion of the process timeslice is effectively lost. This greatly impacts performance, 
because the cost of process context switching is considered expensive.

Threads were thus introduced, at the time, primarily as a means of maximizing the process 
timeslice: By enabling multiple threads, execution could be split into seemingly concurrent subtasks. 
If one subtask would block, the rest of the timeslice could be allocated to another subtask. Addition-
ally, polling would no longer be required: One thread could simply block read and wait for data 
indefi nitely, while another would be free to keep on doing other things, such as write(2), or any 
other operation. 

CPUs at the time were still limited, and even multi-threaded code could only run one thread at a 
time. The thread preemption of a process was a smaller-scale rendition of the preemptive multitask-
ing the system did for processes. At that point, it started making more sense for most operating 
systems to switch their scheduling policies to threads, rather than processes. The cost of switching 
between threads is minimal — merely saving and restoring register state. Processes, by contrast, 
involve switching the virtual memory space as well, including low-level overhead such as fl ushing 
caches, and the Translation Lookaside Buffer (TLB). 

With the advent of multi-processor, and — in particular — multi-core architectures, threads took 
a life of their own. Suddenly, it became possible to actually run two threads in a truly concurrent 
manner. Multiple cores are especially hospitable to threads because cores share the same caches 
and RAM – facilitating the sharing of virtual memory between threads. Multiple processors, 
by contrast, can actually suffer due to non-uniform memory architecture, and cache coherency 
considerations.

UN*X systems adopted the POSIX thread model. Windows chose its own API. Mac OS X natu-
rally followed in the UN*X footsteps, but has taken a few steps further with its introduction 
of higher-level APIs — those of Objective-C and (as of Snow Leopard) — the Grand Central 
Dispatcher.

POSIX Threads
The POSIX thread model is effectively the standard threading API in all systems but Windows 
(which clings to the Win32 Threading APIs). OS X and iOS actually support more of pthread than 
other operating systems. A simple man –k pthread will reveal the extent of functions supported, as 
will a look at <pthread.h>.

The pthread APIs, as in other systems, are mapped to native system calls which direct the kernel 
to create the threads. Table shows this mapping. Unlike other operating systems, XNU also con-
tains specifi c system calls meant to facilitate pthread’s synchronization objects to be managed in 
kernel mode (collectively known as psynch). This makes thread management more effi cient, than 
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leaving the objects in user mode. These calls, however, are not necessarily enabled (being condition-
ally compiled in the kernel). libSystem dynamically checks, and — if supported — uses internal 
new _pthread_* functions in place of the “old” pthread ones (e.g. new_pthread_mutex_init,
new_pthread_rwlock_rdlock, and the like). Note that the psynch APIs (shown in table 4-13) aren’t 
necessarily supported.

TABLE 4-13: Some pthread APIs and their corresponding system calls in XNU. 

PTHREAD API UNDERLYING SYSTEM CALL

pthread_create bsdthread_create

pthread_sigmask pthread_sigmask

pthread_cancel pthread_markcancel

pthread_rwlock_rdlock psynch_rw_rdlock

pthread_cond_signal psynch_cvsignal

pthread_cond_wait psynch_cvwait

pthread_cond_broadcast psynch_cvbroad

Grand Central Dispatch
Snow Leopard introduces a new API for multi-processing called the Grand Central Dispatch (GCD). 
Apple promotes this API as an alternative to threads. This presents a paradigm shift: Rather than 
think about threads and thread functions, developers are encouraged to think about functional 
blocks. GCD maintains an underlying thread pool implementation to support the concurrent and 
asynchronous execution model, relieving the developer from the need to deal with concurrency 
issues, and potential pitfalls such as deadlocking. This mechanism can also deal with other asyn-
chronous notifi cations, such as signals and Mach messages. Lion further extends this to support 
asynchronous I/O. Another advantage of using GCD is that the system automatically scales to the 
number of available logical processors.

The developer implements the work units as either functions, or functional block. A functional 
block, quite like a C block, is enclosed in curly braces, but — like a C function — can be pointed to 
(albeit with a caret (^) rather than an asterisk (*)). The dispatch APIs can work well with either. 

Work is performed by one of several dispatch queues:

 ‰ The global dispatch queues: are available to the application by calling dispatch_get_
global_queue(), and specifying the priority requested: DISPATCH_QUEUE_PRIORITY_
DEFAULT, _LOW, or _HIGH.

 ‰ The main dispatch queue: which integrates with Cocoa applications’ run loop. It can be 
retrieved by a call to dispatch_get_main_queue().
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 ‰ Custom queues: Created manually by a call to dispatch_queue_create(), can be used to 
obtain greater control over dispatching. These can either be serial queues (in which tasks are 
executed FIFO) or concurrent ones.

The APIs of the Grand Central Dispatch are all declared in <dispatch/dispatch.h>, and imple-
mented in libDispatch.dylib, which is internal to libSystem. The APIs themselves are built over 
pthread_workqueue APIs, which XNU supports with its workq system calls (#367, #368). 
Chapter 14 discusses these system calls in more detail. A good documentation on the user mode 
perspective can be found in Apple’s own GCD Reference[7] and Concurrency Programming Guide.[8]

It should be noted that Objective-C further wraps these APIs by those exposed by the NSOperation-
related objects.
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5
Non Sequitur: 
Process Tracing and Debugging

Sooner or later, any developer — and often, the system administrator as well — are required to 
call on debugging skills. Whether it is their own code, an installed application, or sometimes 
the system itself, and whether they are just performing diagnostics or trying to reverse engi-
neer, debugging techniques prove invaluable. 

Debugging can quickly turn into a quagmire, and often requires that you unleash the might 
of GDB — the GNU Debugger, and go deep into the nether regions of architecture-specifi c 
assembly. OS X contains a slew of debugging tools and enhancements, which can come in very 
handy, and help analyze the problem before GDB is invoked. Apple dedicates two TechNotes 
for what they call “Debugging Magic”[1,2], but there are even more arcane techniques worth 
discussing. We examine these next.

DTRACE

First and foremost mention amongst all debugging tools in OS X must be given to DTrace. 
DTrace is a major debugging platform, which was ported from Sun’s (Oracle’s) Solaris. Out-
side Solaris, OS X’s adoption of DTrace is the most complete. Detailing the nooks and cran-
nies of DTrace could easily fi ll up an entire book, and in fact does[3], and therefore merits the 
following section.  

The D Language
The “D” in Dtrace stands for the D language. This is a complete tracing language, which 
enables the creation of specialized tracers, or probes.

D is a rather constrained language, with a rigorous programming model, which follows that 
of AWK. It lacks even the basic fl ow control, and loops have been removed from the language 
altogether. This was done quite intentionally, because the D scripts are compiled and executed 
by kernel code, and loops run the risk of being too long, and possibly infi nite. Despite these 
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constraints, however, DTrace offers spectacular tracing capabilities, which rival — and in some cases 
greatly exceed — those of ptrace(2). This is especially true in OS X, where the implementation of the 
latter is (probably intentionally) crippled, and hence deserves little mention in this book. 

Both the DTrace and ptrace(2) facilities in OS X are not operating at their 
full capacity. Quite likely, this is due to Apple’s concerns about misuse of the 
tremendous power these mechanisms provide, which could give amateurs and 
hackers the keys to reverse engineer functionality. This holds even stronger in 
iOS, wherein DTrace functionality is practically non-existent.

The ptrace(2) functionality is especially impaired: Unlike its Linux counter-
part, which allows the full tracing and debugging of a process (making it the 
foundation of Linux’s strace, ltrace, and gdb), the OS X version is severely 
crippled, not supporting any of the PT_READ_* or PT_WRITE_* requests, leaving 
only the basic functions of attachment and stopping/continuing the process.

Apple’s protected processes, such as iTunes, make use of a P_LNOATTACH fl ag to 
completely deny tracing (although this could be easily circumvented by recompil-
ing the kernel). 

DTrace forms the basis of XCode’s Instruments tool, which is, at least in this author’s opinion, the best 
debugging and profi ling tool to come out of any operating system. Instruments allow the creation of 
“custom” instruments, which are really just wrappers over the raw D scripts, as shown in Figure 5-1.

FIGURE 5-1: Instruments’ custom instrument dialog box, a front-end to DTrace
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Many of Solaris’s D scripts have been copied verbatim (including the Solaris-oriented comments) to 
OS X. They are generally one of two types:

 ‰ Raw D scripts: These are clearly identifi able by their .d extension and are set to run under 
/usr/sbin/dtrace –s, using the #! magic that is common to scripts in UNIX. When the 
kernel is requested to load them, the #! redirects to the actual DTrace binary. These scripts 
accept no arguments, although they may be tweaked by direct editing and changing of some 
variables.

 ‰ D script wrappers: These are shell scripts (#!/bin/sh), that use the shell functionality to 
process user arguments and embed them in an internal D script (by simple variable interpo-
lation). The actual functionality is still provided by DTrace (/usr/sbin/dtrace –n) but is 
normally invisible.

Because of the .d extension, it is easy to fi nd all raw scripts in a system (try find / -name "*.d" 
2>/dev/null). The wrapped scripts, however, offer no hint as to their true nature. Fortunately, both 
types of scripts have corresponding man pages, and a good way to fi nd both types is to search by the 
dtrace keyword: they all have “Uses DTrace” in their description, as shown in Output 5-1:

OUTPUT 5-1: Displaying DTrace related programs on OS X using the man “–k” switch

morpheus@ergo (/) man –k dtrace
bitesize.d(1m)           - analyse disk I/O size by process. Uses DTrace
cpuwalk.d(1m)            - Measure which CPUs a process runs on. Uses DTrace
creatbyproc.d(1m)        - snoop creat()s by process name. Uses DTrace
dappprof(1m)             - profile user and lib function usage. Uses DTrace
dapptrace(1m)            - trace user and library function usage. Uses DTrace
diskhits(1m)             - disk access by file offset. Uses DTrace
dispqlen.d(1m)           - dispatcher queue length by CPU. Uses DTrace
dtrace(1)                - generic front-end to the DTrace facility
dtruss(1m)               - process syscall details. Uses DTrace
errinfo(1m)              - print errno for syscall fails. Uses DTrace
execsnoop(1m)            - snoop new process execution. Uses DTrace
fddist(1m)               - file descriptor usage distributions. Uses DTrace
filebyproc.d(1m)          - snoop opens by process name. Uses DTrace
hotspot.d(1m)            - print disk event by location. Uses DTrace
httpdstat.d(1m)          - realtime httpd statistics. Uses DTrace
iofile.d(1m)              - I/O wait time by file and process. Uses DTrace
iofileb.d(1m)             - I/O bytes by file and process. Uses DTrace
iopattern(1m)            - print disk I/O pattern. Uses DTrace
iopending(1m)            - plot number of pending disk events. Uses DTrace
iosnoop(1m)              - snoop I/O events as they occur. Uses DTrace
iotop(1m)                - display top disk I/O events by process. Uses DTrace
kill.d(1m)               - snoop process signals as they occur. Uses DTrace
lastwords(1m)            - print syscalls before exit. Uses DTrace
loads.d(1m)              - print load averages. Uses DTrace
newproc.d(1m)            - snoop new processes. Uses DTrace
opensnoop(1m)            - snoop file opens as they occur. Uses DTrace
pathopens.d(1m)          - full pathnames opened ok count. Uses DTrace
pidpersec.d(1m)          - print new PIDs per sec. Uses DTrace
plockstat(1)             - front-end to DTrace to print statistics about POSIX mutexes
                           and read/write locks

continues
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priclass.d(1m)           - priority distribution by scheduling class. Uses DTrace
pridist.d(1m)            - process priority distribution. Uses DTrace
procsystime(1m)          - analyse system call times. Uses DTrace
runocc.d(1m)             - run queue occupancy by CPU. Uses DTrace
rwbypid.d(1m)            - read/write calls by PID. Uses DTrace
rwbytype.d(1m)           - read/write bytes by vnode type. Uses DTrace
rwsnoop(1m)              - snoop read/write events. Uses DTrace
sampleproc(1m)           - sample processes on the CPUs. Uses DTrace
seeksize.d(1m)           - print disk event seek report. Uses DTrace
setuids.d(1m)            - snoop setuid calls as they occur. Uses DTrace
sigdist.d(1m)            - signal distribution by process. Uses DTrace
syscallbypid.d(1m)       - syscalls by process ID. Uses DTrace
syscallbyproc.d(1m)      - syscalls by process name. Uses DTrace
syscallbysysc.d(1m)      - syscalls by syscall. Uses DTrace
topsyscall(1m)           - top syscalls by syscall name. Uses DTrace
topsysproc(1m)           - top syscalls by process name. Uses DTrace
weblatency.d(1m)         - website latency statistics. Uses DTrace

The (hopefully intrigued) reader is encouraged to check out these scripts on his or her own. 
Although not all work perfectly, those that are functional offer a staggering plethora of information. 
The potential uses (for tracing/debugging) and misuses (reversing/cracking) are equally vast. 

dtruss
Of the many DTrace-enabled tools in OS X, one deserves an honorable mention. The dtruss(1)
tool is a DTrace-powered equivalent of Solaris’s longtime truss tool (which is evident by its man 
page, which still contains references to it). The truss tool may be more familiar to Linux users by 
its counterpart, strace.  Both enable the tracing of system calls by printing the calls in C-like form, 
showing the system call, arguments, and return value. This is invaluable as a means of looking 
“under the hood” of user mode, right down to the kernel boundary.

Unlike Linux’s strace, dtruss isn’t smart enough to go the extra step and dereference pointers to 
structures, providing detailed information on fi elds. It is, however, powerful enough to display char-
acter data, which makes it useful for most system calls that accept fi le names or string data. There 
are three modes of usage:

 ‰ Run a process under dtruss: By specifying the command and any arguments after those of 
dtruss

 ‰ Attach to a specifi c instance of a running process: By specifying its PID as an argument to 
dtruss –p

 ‰ Attach to named processes: By specifying the name as an argument to dtruss –n

Another useful feature of dtruss is its ability to automatically latch onto subprocesses (specify –f). 
This is a good idea when the process traced spawns others.

It is possible to use dtruss as both a tracer and a profi ler. The default use will trace all system calls, 
presenting a very verbose output. Output 5-2 shows a sample, truncated for brevity.

OUTPUT 5-1 (continued)
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OUTPUT 5-2: A sample output of dtruss

SYSCALL(args)           = return
getpid(0x7FFF5FBFF970, 0x7FFFFFE00050, 0x0)            = 5138 0

... // Loading the required libraries

bsdthread_register(0x7FFF878A2E7C, 0x7FFF87883A98, 0x2000)           = 0 0
thread_selfid(0x7FFF878A2E7C, 0x7FFF87883A98, 0x0)           = 69841 0
open_nocancel("/dev/urandom\0", 0x0, 0x7FFF70ED5C00)         = 3 0

    // read random data from /dev/urandom

    // various sysctls…

getrlimit(0x1008, 0x7FFF5FBFF520, 0x7FFF8786D2EC)            = 0 0
open_nocancel("/usr/share/locale/en_US.UTF-8/LC_CTYPE\0", 0x0, 0x1B6)             = 3 0
  // read various locale (language) settings
read_nocancel(0x3, "RuneMagAUTF-8\0", 0x1000)                = 4096 0
read_nocancel(0x3, "\0", 0x1000)              = 4096 0
  // …
read_nocancel(0x3, "@\004\211\0", 0xDB70)             = 56176 0
close_nocancel(0x3)            = 0 0

  // open the file in question

open("/etc/passwd\0", 0x0, 0x0)               = 3 0
fstat64(0x1, 0x7FFF5FBFF9D0, 0x0)             = 0 0
mmap(0x0, 0x20000, 0x3, 0x1002, 0x3000000, 0x0)              = 0x6E000 0
mmap(0x0, 0x1000, 0x3, 0x1002, 0x3000000, 0x0)               = 0x8E000 0

  // read the data

read(0x3, „##\n# User Database\n# \n# Note that this file is consulted directly only
when the system is running\n# in single-user mode.  At other times this information
is provided by\n# Open Directory.\n#\n# This file will not be consulted for
authentication unless the BSD", 0x20000)
         = 3662 0
..

The various system calls can be quickly looked up in the man (section 2). Even more valuable output 
can be obtained from adding -s, which offers a stack trace of the calls leading up to the system call. 
This makes it useful to isolate which part of the executable, or a library thereof, was where the call 
originated. If you have the debugging symbols (that is, compiled with –g, and have the companion 
.dSym fi le), this can quickly pinpoint the line of code, as well.

For profi ling, the –c, -d, -e, and –o switches come in handy. The fi rst prints the summary of system 
calls, and the others print various times spent in the system call. Note that sifting through so much 
information is no mere feat by itself. The primary advantages of using DTrace scripts and dtruss
are remote execution and textual format, which is relatively easily grep(1)-pable. If a Graphical User 
Interface (GUI) is preferable, the Instruments application provides a superb GUI, which enables a 
timeline-based navigation and arbitrary levels of zooming in and out on the data.
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How DTrace Works
DTrace achieves its debugging magic by enabling its probes to execute in the kernel. The user mode 
portion of DTrace is carried out by /usr/lib/dtrace.dylib, which is common to both Instru-
ments and /usr/sbin/dtrace, the script interpreter. This is the runtime system that compiles the D 
script. For most of the useful scripts, however, the actual execution, is in kernel mode. The DTrace 
library uses a special character device (/dev/device) to communicate with the kernel component.

Snow Leopard has some 40 DTrace providers and Lion has about 55, although only a small part 
of them are in the kernel. Using dtrace –l will yield a list of all providers, but those include PID 
instances, with multiple instances for function names. To get a list of the actual provider names, it 
makes sense to strip the PID numbers and then fi lter out only unique matches. A good way to do so 
is shown in Output 5-3. 

OUTPUT 5-3: Displaying unique DTrace providers

root@ergo(/)# dtrace -l |       # List all providers 
              tr -d '[0-9]'  |  # Remove numbers (pids , etc)
              tr -s ' ' |       # Squeeze spaces (so output can be cut)
              cut -d' ' -f2 |   # isolate second field (provider)
              sort –u           # Sort, and only show unique providersCalAlarmAgentProbe
Cocoa_Autorelease
CoreData
CoreImage
ID
JavaScriptCore
MobileDevice
PrintCore
QLThumbnail
QuickTimeX
RawCamera
..

The key registered DTrace providers in the kernel are shown in Table 5-1:

TABLE 5-1: Registered DTrace providers in OS X (partial list)

PROVIDER PROVIDERS

dtrace DTrace itself (used for BEGIN, END, and ERROR).

fbt Function boundary tracing: low-level tracing of function entry/exit.

mach_trap Mach traps (entry and return).

proc Process provider: Enables monitoring a process by PID.

profile Profi ling information. Used to provide a tick in scripts that require periodic sampling.

sched The Mach scheduler.

syscall BSD system calls (entry and return).

vminfo Virtual memory information.
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Exercise: Demonstrating deep kernel system call tracing
As another great example of just how powerful DTrace is, consider the script in Listing 5-1:

LISTING 5-1: A D script to trace system calls — all the way into kernel space

#pragma D option flowindent /* Auto-indent probe calls */

syscall::open:entry
{
        self->tracing = 1; /* From now on, everything is traced */
        printf("file at: %x  opened with mode %x", arg0, arg1);
}

fbt:::entry
/self->tracing/
{
   printf("%x %x %x", arg0, arg1,arg2); /* Dump arguments */
}

fbt::open:entry
/self->tracing/
{
  printf ("PID %d (%s) is opening \n"  ,
     ((proc_t)arg0)->p_pid , ((proc_t)arg0)->p_comm);
}

fbt:::return
/self->tracing/
{
   printf ("Returned %x\n", arg1);
}
syscall::open:return
/self->tracing/
{
        self->tracing = 0; /* Undo tracing */
        exit(0); /* finish script */
}

The script begins with a syscall probe, in this case probing open(2) — you can modify the script eas-
ily by simply replacing the system call name. On entry, the script sets a Boolean fl ag — tracing. The 
use of the “self” object makes this fl ag visible in all other probes, effectively serving as a global variable.

From the moment open(2) is called, the script activates two fbt probes. The fi rst simply dumps 
up to three arguments of the function. The second is a specialized probe, exploiting the fact we 
know exactly which arguments open(2) expects in kernel mode — in this case, the fi rst argument 
is a proc_t structure. By casting the fi rst argument, we can access its subfi elds — as is shown by 
printing out the value of p_pid and p_comm. This is possible because the argument is in the provid-
ing module’s address space (in this case, the kernel address space, since the providing module is 
mach_kernel).

Finally, on return from any function, its return value — accessible in arg1 — is printed. When the 
open function fi nally returns, the tracing fl ag is disabled, and the script exits. 
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Running this script will produce an output similar to Output 5-4:

OUTPUT 5-4: Running the example from Listing 5-1

CPU FUNCTION
  3  => open                                  file at: 10f80bdf0  openeed with mode 4
  3    -> open                                PId 69 (mds) is opening 

  3     | open:entry                          ffffff801561aa80 ffffff80158ac6d4
                                              ffffff801837a608
  3      -> __pthread_testcancel              1 ffffff80158ac6d4 ffffff801837a608
  3      <- __pthread_testcancel              Returned ffffff801837a5c0

  3      -> vfs_context_current               ffffff8015fe0ec0 ffffff80158ac6d4 0
  3      <- vfs_context_current               Returned ffffff801837a718

  3      -> vfs_context_proc                  ffffff801837a718 ffffff80158ac6d4 0
  3        -> get_bsdthreadtask_info          ffffff8015fe0ec0 ffffff80158ac6d4 0
  3        <- get_bsdthreadtask_info          Returned ffffff801561aa80
  3      <- vfs_context_proc                  Returned ffffff801561aa80
...
   (output truncated for brevity)
...
  3      -> proc_list_unlock                  ffffff8013ed5970 10 ffffff8013ed5970
  3      <- proc_list_unlock                  Returned ffffff80008d91b0

  3      -> lck_mtx_unlock                    ffffff8013ed5970 10 ffffff8013ed5970
  3      <- lck_mtx_unlock                    Returned 1f0000

  3    <- open                                Returned 0

As an exercise, try adapting the D-Script from Listing 5-1 to intercept Mach traps, rather than BSD 
system calls.

OTHER PROFILING MECHANISMS

DTrace is fast becoming the tracing mechanism of choice in OS X, but it is not the only one. Other 
alternatives exist, which is especially important in iOS, wherein DTrace does not exist.

The Decline and Fall of CHUD
OS X and iOS had a framework called CHUD (Computer Hardware Understanding and Devel-
opment). This framework, made private in Snow Leopard and apparently removed as of Lion, 
was an exceptionally powerful framework, which could be used to register callbacks at various 
points in the kernel. The CHUD APIs were used by many of the XCode profi ling tools back 
when OS X was primarily PPC-based, chiefl y the now obsolete applications such as Reggie_SE 
and Shark (made extinct by Instruments). The APIs were utilized by specialized kernel exten-
sions, which still exist in Snow Leopard (CHUDKernLib, CHUDProf, and CHUDUtils). These no 
longer appear in public as of Lion. CHUD still has a dedicated system call (#185), but it returns 
EINVAL unless a callback has been registered (usually by the CHUDProf kext), and CHUD has 
been enabled.
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Before the move to Intel, XNU had architecture-specifi c calls for PPC to enable CHUD. It seems 
that, with the fall from grace of PPC, so too has CHUD lost its charm. The APIs are now reserved 
for Apple’s internal use, mostly in iOS. The CHUD.Framework, required to access CHUD functional-
ity from user space, is private in Snow Leopard, and has disappeared completely from OS X in Lion. 
The framework still exist in in the iOS SDK DiskDeveloperImage  (/Developer/Library/Private-
Frameworks), and some tools, notably chudRemoteCtrl, rely on it. Additionally, both the iOS and 
OS X kernels contain the CHUD symbols, but the APIs are not made public in any way. It is likely 
that Apple still uses CHUD privately, especially in iOS.

AppleProfi leFamily: The Heir Apparent
CHUD may have gone missing, but its essence remains. Profi ling in both OS X and iOS is taken over by 
the private AppleProfileFamily.framework (and the CoreProfile.framework, which builds on it). 
This framework is quite similar to CHUD, in that it makes use of the latter’s abandoned kernel callbacks, 
and communicates with various dedicated profi ling kexts. The kexts, shown in Table 5-2, resided with 
their ilk in /System/Library/Extensions in Snow Leopard, but have since been moved (in Lion) into 
the AppleProfileFamily.Framework/resources in OS X. Putting kexts into a framework is a rather 
curious decision, but likely help keeps them private. In iOS these kexts are pre-linked into the kernel. 

TABLE 5-2: AppleProfi leFamily kexts common to OS X and iOS

KEXT DESCRIPTION

AppleProfi leFamily Provides foundation and base class  for other extensions. This kext 

also apparently claims the CHUD callbacks in XNU.

AppleProfi leCallstackAction Traces function call stacks. 

Registers the appleprofile.actions.callstack sysctls.

AppleProfi leKEventAction Traces kevents. 

Registers appleprofile.actions.kevent sysctls.

AppleProfi leReadCounterAction Reads performance Monitor counters. 

Registers appleprofile.pmcs sysctls.

AppleProfi leRegisterStateAction Saves register state during profi ling. 

Registers appleprofile.actions.register_state sysctls.

AppleProfi leTimestampAction Handles accurate timestamps during events. 

Registers appleprofile.actions.timestamp sysctls.

AppleProfi leThreadInfoAction Profi les threads. 

Registers appleprofile.actions.threadinfo sysctls.

OS X has an additional kext for Intel (or IntelPenryn) profi ling. As shown above, the kexts register 
several sysctl MIBs under the appleprofile parent (triggers, actions, and pmcs), mostly to con-
trol buffer and memory sizes. None are, at present, documented, though sysctl appleprofile can 
display them, and using strings(1) on the AppleProfileFamily kext provides a rough description 
for them. Another component, /usr/libexec/appleprofilepolicyd, remains in user mode and 
serves as the arbiter and policy decision maker. 
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PROCESS INFORMATION

In addition to DTrace, which is powerful enough, OS X provides two key mechanisms to obtain 
detailed process information, such as open handles, memory utilization, and other statistics, the 
likes of which are used by ps(1), lsof(1), netstat(1), and friends.

sysctl
The sysctl mechanism, which has already been discussed in the previous chapters, offers variables to 
display statistics pertaining to processes. This mechanism is crucial in order to obtain the list of the 
process IDs (and is, in fact, the means by which this list is obtained in ps(1) and top(1)). 

The kern namespace exposes the KERN_PROCARGS and KERN_PROCARGS2 MIBs under CTL_KERN.
These may be used with the third level MIB value of any PID on the system, in order to retrieve the 
argument and environment of that process. 

proc_info
OS X and iOS both offer the proc_info system call. This undocumented system call (#336) is 
fundamental for many system utilities, such as lsof(1) and fuser(1). Though it merits its own 
include fi le (<sys/proc_info.h>), the system call remains well hidden, and should be accessed via 
<libproc.h>, the header fi le for libproc.dylib, which is part of Darwin’s LibC (and therefore 
part of libSystem)

 Using proc_info, it is possible to query many aspects of processes and their threads. Chief among 
those is their use of fi le descriptors and sockets (hence the importance for lsof(1)-like tools). This 
is cardinal in systems wherein /dev/kmem is not available (which, by default, is all systems), as 
sysctl(8) can show addresses in kernel space, but cannot read them. 

The proc_info system call accepts a callnum argument, and a flavor. Each callnum results in dif-
ferent functionality, according to one of the unnamed integer values in Table 5-3. These values are 
wrapped in <libproc.h> by functions:

TABLE 5-3: callnum values accepted by proc_info

CALLNUM USED FOR

1 List all PIDs. Wrapped by proc_listpids() and others. In this 

case, the PID argument is taken to be one of the following:

#define PROC_ALL_PIDS           1

#define PROC_PGRP_ONLY          2

#define PROC_TTY_ONLY           3

#define PROC_UID_ONLY           4

#define PROC_RUID_ONLY          5
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CALLNUM USED FOR

2 Return PID information for a specifi c PID. Wrapped by proc_

pidinfo(). In this case, the fl avor argument is taken to be one of 

the following:

PROC_PIDLISTFDS: for fi le descriptors

PROC_PIDTBSDINFO: for BSD task information info 

PROC_PIDTASKINFO: for Mach task information info

PROC_PIDTASKALLINFO: Both Mach and BSD information

PROC_PIDTHREADINFO: list of task’s threads

PROC_PIDWORKQUEUEINFO: kernel work queues held by task

PROC_PIDREGIONINFO: list of memory regions (q.v. vmmap(1))

Lion further adds:

PROC_BSDSHORTINFO: summary information of BSD attributes

PROC_PIDVNODEPATHINFO: list of vnodes held by this PID

PROC_PIDLISTFILEPORTS: List of fi leports

3 Return fi le descriptor information for a specifi c PID. Wrapped by 

proc_pidfdinfo(). In this case, fl avor is:

PROC_PIDFDVNODEINFO: VNodes

PROC_PIDFDVNODEPATHINFO: VNodes, with path

PROC_PIDFDSOCKETINFO: Socket information

PROC_PIDFDPSHMINFO: Shared memory descriptors

PROC_PIDFDPIPEINFO: Pipes

PROC_PIDFDKQUEUEINFO: Kernel queues

PROC_PIDFDATALKINFO: AppleTalk descriptors

4 Return the kernel message buff er. Wrapped by proc_kmsgbuf()

5 Set process control parameters. Wrapped by 

proc_setpcontrol();

6 New in Lion and iOS 4.3: Return information about fi leports for a 

specifi c PID. Wrapped by proc_pidfileportinfo().

All of these values, save for the fi fth, are informational only. The fi fth callnum, however, can be 
used to set process control parameters.

LibProc wraps proc_info with several useful functions, as shown in Table 5-4:

TABLE 5-4: Functions in <libproc.h>

FUNCTION PROTOTYPE USAGE

int proc_listpids

    (uint32_t type,

     uint32_t typeinfo,

void *buffer,

int buffersize);

Returns in buffer a list of all PIDs in the system. Used as the basis 

for other functions.

continues
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FUNCTION PROTOTYPE USAGE

int proc_listpidspath

 (uint32_t type,

  uint32_t typeinfo,

  const char *path,

  uint32_t      pathflags,

  void *buffer,

  int buffersize);

Returns in buffer all PIDs holding a reference to path according to 

pathflags. 

(essentially, fuser(1) in a library call version).

Return value is amount of bytes used in buff er.

int proc_pidfdinfo

(int pid,

        int fd,

      int flavor,

void *buffer,

     int buffersize);

Return in buffer a proc_xxx_info structure corresponding to the 

fi le descriptor fd of process with PID pid. The exact type of infor-

mation is determined by fl avor, which is as in callnum 3 (which this 

function wraps).

Return value is amount of bytes used in buff er.

proc_name(int pid,

    void *buffer,

uint32_t buffersize);

proc_path(int pid,

    void *buffer,

    uint32_t buffersize);

Return in buffer the name (proc_name) or the full path (proc_path) 

of the process matching pid.

Return value is amount of bytes used in buffer.

int proc_regionfilename

   (int pid,

    uint64_t address,

    void *buffer,

    uint32_t buffersize);

Return in buffer the name of the fi le mapping (if any) to which the 

address in the process matching pid belongs. 

Return value is amount of bytes used in buffer.

int proc_kmsgbuf 

    (void *buffer,

     uint32_t buffersize);

Return up to buff ersize bytes from the kernel ring buff er in buff er. 

This is the same output as one gets from the dmesg(8) command 

(which, in fact, is built around this function). Wraps callnum 4.

Return value is amount of bytes actually returned.

TABLE 5-4 (continued)
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Lion and iOS add several more informational wrappers, such as proc_listallpids, proc_list-
pgrppids (list processes according to process group), and proc_listchildpids (for process chil-
dren) — but these are all nothing more than simple fi lters around the basic listpids call. 

The book’s companion website contains a tool, psleuth, demonstrating the many uses of proc_info
for diagnostics.

PROCESS AND SYSTEM SNAPSHOTS

In addition to DTrace and Instruments, there are several tools in OS X which enable taking “snap-
shots” of the system or process state. 

system_profi ler(8)
The system_profiler(8) utility is the command line version of the graphical System Profiler.app,
which most users know as About This Mac  More Info. Whereas the graphical version is useful (and 
provides the memorable Speak Serial Number option), it is not as handy as its command-line counter-
part, which can be run from a terminal and generate what is, essentially, the same output, albeit with 
greater fi ltering options. The report can be saved to either plain text or XML.

sysdiagnose(1)
New in Lion, sysdiagnose(1) is a one-stop comprehensive diagnostics utility. It generates a bar-
rage of logiles, which are compressed and archived into a gzipped tar. The tool is meant to provide 
Apple with a complete diagnostics of the system, and produce a report which can be sent to Apple. 

In reality, sysdiagnose(1) is really nothing more than a wrapper, which runs several other utilities 
(of which the important ones are described in this book) one after the other, and collects ASL logs 
and other fi les, as shown in Output 5-5:

OUTPUT 5-5: Running sysdiagnose(1):

root@simulacrum (/)# sysdiagnose
This diagnostic tool generates files that allow Apple to investigate issues with your 
computer and help Apple to improve its products. The generated files may contain some 
of your personal information, which may include, but not be limited to, the serial 
number or similar unique number for your device, your user name, or your computer name. 
The information is used by Apple in accordance with its privacy policy (www.apple.com
/privacy)and is not shared with any third party. By enabling this diagnostic tool and 
sending a copy of the generated files to Apple, you are consenting to Apple?s use of 
the content of such files.

Please press 'Enter' to continue # If you want the output, you don't have a choice, 
# do you?

Helpful Hint: If a single process appears to be slowing down the system, pass in the 

continues
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process ID or name as the argument: sysdiagnose [pid | process_name]
Gathering time sensitive information
====================================
Running fs_usage, spindump and top

Done gathering time sensitive information. Proceeding to gather non time sensitive data
=======================================================================================
Running zprint
Running kextstat
Collecting BootCache Statistics
Running netstat
Running lsof
Running pmset diagnostics
Running allmemory. This will take a couple of minutes
Running system profiler
Copying kernel and system logs
Copying spin and crash reports
Running df
Running ioreg
sysdiagnose results written to /var/tmp/sysdiagnose_Apr.26.2012_03-40-56.tar.gz 

A handy feature of this tool is that it can be run from Finder, by a key-chord (Control-Option-
Command-Shift-Period, for which you’ll likely need both hands!). Running from the command line 
offers the advantages of specifying a PID or process name (to run vmmap(1) and other memory tracing 
tools, discussed later in this chapter under “Memory Leaks”). Additionally, thorough mode may be spec-
ifi ed (using the –t switch) in which it provides a full kernel trace and unfl attered allmemory(1) data.

allmemory(1)
The allmemory(1) tool is used to capture a snapshot of all memory utilization by user mode pro-
cesses. When run, the tool iterates over each and every process in the system, and dumps their mem-
ory maps into fi les in /tmp/allmemoryfiles (or elsewhere, as may be specifi ed by the –o switch). 
The dumps are in a simple plist format, making them suitable for parsing by third party tools, or by 
allmemory(1) itself, when run in “diff” mode, to compare snapshots. Unlike the process-specifi c 
vmmap(1), allmemory(1) can display a system wide view of memory utilization, by comparing the 
utilization of similar memory segments by different processes, and focuses on shared memory. 

After all process memory snapshots have been acquired, allmemory(1) goes on to display the aggre-
gate statistics for each process, as well as for framework memory utilization, as shown in Output 5-6:

stackshot(1)
A little-known, but very useful feature in OS X and iOS is the ability to take a snapshot of the pro-
cess execution state. Both systems offer a private and undocumented system call, stack_snapshot
(#365), which can be used to capture the state of all the threads of a given process. 

The main user of this system call is the stackshot(1) command, technically an on-demand daemon, 
which is hidden away in /usr/libexec. The command is meant to be run by launchd(1)
(from com.apple.stackshot.plist), but is even more useful when run manually. It is possible to 
either single out a specifi c PID (with -p), or take on all the processes in the system. The default log fi le 

OUTPUT 5-5 (continued)
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is saved to /Library/Logs/stackshot.log, unless overridden with a –f switch. It is also possible to 
send the log to a remote server by specifying a Trace Server key in the daemon’s plist. Any number 
of snapshots can be taken (with the –n switch), though the common use is to use the –i switch to take 
an immediate snapshot and exit. Incidentally, the man page erroneously states “-u” as a switch to 
enable symbolifi cation of the output, even though that switch is not supported from the command line.

The stackshot(1) command has been enhanced in Lion by integrating it with the sysdiagnose(1)
command. This command, discussed above, collects the stack snapshots of all processes along with 
the myriad other data and logs. Stackshot also has its own keychord, to run independently of 
sysdiagnose(1). iOS used to include stackshot(1), but it has mysteriously disappeared in iOS 5. 
The system call, however, is still available, and can be used as is shown next.

The stack_snapshot System Call
XNU’s stack_snapshot system call only gets an obligatory mention in <sys/syscall.h>, by vir-
tue of its being system call number 365. Otherwise, it remains an undocumented system call. Even 
the stackshot(1) command invokes it via the syscall wrapper (which you can easily verify using 
dtruss(1) and/or disassembly). The following exercise demonstrates using the system call, by mim-
icking the functionality of stackshot(1).

Exercise: Using stack_snapshot
Even though stack_snapshot is undocumented in user mode, not all is lost. XNU remains open 
source, and looking at XNU’s sources, (in particular, bsd/kern/kdebug.c) reveals the system call 
expects a pid (or –1, for all), a buffer to put the snapshot in, a buffer size, and some options. The actual 
implementation of the snapshot mechanism is tucked deep within the Mach microkernel. Specifi cally, 
osmfk/kern/debug.h reveals the structures and constants used by the logic. The APIs are declared 
private and unstable, but have been around for quite a while, and are also present in iOS. Because they 
are part of the kernel sources and not the standard #includes, the following example copies them.

Listing 5-2 should compile cleanly on either OS X or iOS, and bring back to iOS the missing 
stackshot(1) functionality.

LISTING 5-2: Do-it-yourself stackshot for OS X and iOS

#include <stdlib.h> // for malloc
#include <stdio.h>
#include <string.h>

struct frame {
        void *retaddr;
        void *fp;
};

// The following are from osfmk/kern/debug.h 
#define STACKSHOT_TASK_SNAPSHOT_MAGIC 0xdecafbad
#define STACKSHOT_THREAD_SNAPSHOT_MAGIC 0xfeedface
#define STACKSHOT_MEM_SNAPSHOT_MAGIC  0xabcddcba

struct thread_snapshot {
        uint32_t                snapshot_magic;
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        uint32_t                nkern_frames;
        uint32_t                nuser_frames;
        uint64_t                wait_event;
        uint64_t                continuation;
        uint64_t                thread_id;
        uint64_t                user_time;
        uint64_t                system_time;
        int32_t                 state;
        char                    ss_flags;
} __attribute__ ((packed));

struct task_snapshot {
        uint32_t                snapshot_magic;
        int32_t                 pid;
        uint32_t                nloadinfos;
        uint64_t                user_time_in_terminated_threads;
        uint64_t                system_time_in_terminated_threads;
        int                     suspend_count;
        int                     task_size;    // pages
        int                     faults;         // number of page faults
        int                     pageins;        // number of actual pageins
        int                     cow_faults;     // number of copy-on-write faults
        char                    ss_flags;
        char                    p_comm[17];
} __attribute__ ((packed));

int stack_snapshot(int pid, char *tracebuf, int bufsize, int options)
{
        return syscall (365, pid, tracebuf, bufsize, options);
}

int dump_thread_snapshot(struct thread_snapshot *ths)
{

   if (ths->snapshot_magic != STACKSHOT_THREAD_SNAPSHOT_MAGIC)
        {
             fprintf(stderr,"Error: Magic %p expected, Found %p\n", 
                     STACKSHOT_TASK_SNAPSHOT_MAGIC, ths->snapshot_magic);
              return;
        }

    printf ("\tThread ID: 0x%x ", ths->thread_id) ;
    printf ("State: %x\n" , ths->state);
    if (ths->wait_event) printf ("\tWaiting on: 0x%x ", ths->wait_event) ;
    if (ths->continuation) {
    printf ("\tContinuation: %p\n", ths->continuation);

        }
    if (ths->nkern_frames || ths->nuser_frames)
    printf ("\tFrames:    %d kernel %d user\n", ths->nkern_frames, ths->nuser_frames);

continues
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        return (ths->nkern_frames + ths->nuser_frames);
}

void dump_task_snapshot(struct task_snapshot *ts)
{
   if (ts->snapshot_magic != STACKSHOT_TASK_SNAPSHOT_MAGIC)        {
               fprintf(stderr,"Error: Magic %p expected, Found %p\n", 
               STACKSHOT_TASK_SNAPSHOT_MAGIC, ts->snapshot_magic);
                return;
        }
   fprintf(stdout, "PID: %d (%s)\n", ts->pid, ts->p_comm);

}

#define BUFSIZE 50000 // Sufficiently large..

int main (int argc, char **argv)
{
    char buf[BUFSIZE];
    int rc = stack_snapshot(-1, buf, BUFSIZE,100);
    struct task_snapshot *ts;
    struct thread_snapshot *ths;
    int off = 0;
    int warn = 0;
    int nframes = 0;

    if (rc <0) { perror ("stack_snapshot"); return (-1); }

    while (off< rc) {
// iterate over buffer, which is a contiguous dump of snapshot structures

     ts = (struct task_snapshot *) (buf + off);
     ths = (struct thread_snapshot *) (buf + off);

     switch (ts->snapshot_magic)
        {
           case STACKSHOT_TASK_SNAPSHOT_MAGIC:
                dump_task_snapshot(ts);
                off+= (sizeof(struct task_snapshot));
                warn = 0;
                break;
           case STACKSHOT_THREAD_SNAPSHOT_MAGIC:
                nframes = dump_thread_snapshot(ths);
                off+= (sizeof(struct thread_snapshot));
                off+=8;
                if (nframes)
                  { printf("\t\tReturn Addr\tFrame Ptr\n");}
                while (nframes)
                  {
                    struct frame *f = (struct frame *) (buf + off);
                    printf ("\t\t%p\t%p\n", f->retaddr, f->fp);
                    off += sizeof(struct frame);
                    nframes--;
                  }

LISTING 5-2 (continued)
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                warn = 0;
                break;
          case STACKSHOT_MEM_SNAPSHOT_MAGIC:
                printf ("MEM magic – left as an exercise to the reader\n");
                break;
           default:
                if (!warn) {
                warn++;
                fprintf(stdout, "Magic %p at offset %d?"
                                "Seeking to next magic\n", 
                                ts->snapshot_magic, off);}
                 off++;;

        } // end switch

    } // end while
}

KDEBUG

XNU contains a built-in kernel trace facility called kdebug. This very powerful, yet poorly docu-
mented facility is present in both OS X and iOS, though it is often disabled by default, unless 
enabled by a sysctl(8) setting. At various points throughout, the kernel is laced with special 
KERNEL_DEBUG_CONSTANT macros. These macros enable the tracing of noteworthy events, such 
as system calls, Mach traps, fi le system operations and IOKit traces, albeit in compressed form, 
described later. This means that very little extra information besides the event occurrence itself can 
be recorded in this manner.

kdebug-based Utilities
OS X provides three utilities which utilize the kdebug facility. The tools — fs_usage(1),
sc_usage(1), and latency(1), all require root privileges to operate, but provide valuable debug-
ging and tracing information. Since kdebug messages are in compressed, encoded form, these utilities 
(in particular sc_usage(1)) rely on the existence of a “code” fi le, /usr/share/misc/trace.codes.
This fi le does not exist in iOS, but can be copied.

sc_usage
The sc_usage(1) tool is used to display system call information on a per-process basis. The com-
mand can attach to an existing process (specifi ed as a PID or process name), or can execute a new 
one (when invoked with –E). The tool can run in “watch” style mode, continuously updating the 
screen, or (if invoked with –l) display output continuously.

fs_usage
Much like its sister utility, fs_usage(1) can be used to display system calls, but in this case ones 
relating to fi les, sockets, and directories. Unlike its sibling, it can display calls performed system-
wide (if invoked with a PID or command argument). 

latency
The latency(1)  tool displays latency values of interrupts and scheduling. It shows context switches and 
interrupt handlers falling within thresholds, which can be set with the –it or –st switches, respectively.
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kdebug codes
kdebug uses kernel buffers for logging, and buffer space is extremely limited. Every debug “mes-
sage,” therefore, uses a 32-bit integer code, into which a class, a subclass, and a code must be 
squeezed. The format is defi ned in <sys/kdebug.h> as shown in Listing 5-3:

LISTING 5-3: The kdebug message format

/* The debug code consists of the following 
*
* ----------------------------------------------------------------------
*|              |               |                               |Func   |
*| Class (8)    | SubClass (8)  |          Code (14)            |Qual(2)|
* ----------------------------------------------------------------------
* The class specifies the higher level 
*/

The kdebug message classes correspond to kernel subsystems, and have, in turn, subclasses which 
are specifi c. These are also defi ned in <sys/kdebug.h>, though the header fi le also has some sub-
classes which are unused in practice. Key classes and subclasses are shown in Table 5-5:

TABLE 5-5: kdebug classes and subclasses. Shaded classes are for user space:

KDEBUG CLASS (DBG_) SUBCLASSES

(.. DENOTES CLASS #DEFINE)

USED FOR

MACH (1) …_EXCP_* Kernel hardware exceptions and traps

…_VM(0x30) Virtual memory subsystem

…_MACH_LEAKS(0x31) Memory allocations

…_SCHED (0x40) Scheduler subsystem

NETWORK (2) DBG_NETIP (1)

DBG_NETARP (2)

DBG_NETUDP (3)

DBG_NETTCP (4)

…

Various networking protocols supported 

in XNU (IP, TCP, UDP, IPSEC, etc). Calls 

are wrapped with a 

NETDBG_CODE macro

FSYSTEM (3) These messages are fi ltered by 

fs_usage(1)

DBG_FSRW (1)

DBG_DKRW (2)

DBG_FSLOOOKUP (4)

DBG_JOURNAL (5)

DBG_IOCTL (6)

…

Various fi lesystem operations. Calls are 

wrapped with an FSDBG_CODE macro. 

FileSystem drivers can register additional 

subclasses (e.g. DBG_HFS, DBG_EXFAT, 

etc).
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KDEBUG CLASS (DBG_) SUBCLASSES

(.. DENOTES CLASS #DEFINE)

USED FOR

BSD (4) The BSD Subsystem. Calls wrapped with 

BSDDBG_CODE

…_PROC (1) BSD Processes. Tracks process exit and 

forced exit events

…_EXCP_SC (0x0C) BSD System calls. These are fi ltered by 

sc_usage(1)

…_AIO (0x0D) Asynchronous I/O

…_SC_EXTENDED_INFO (0x0E)

…_SC_EXTENDED_INFO2 (0x0F)

Extended information on system calls such 

as mmap(2), pread(2), and pwrite(2), 

encoding sizes and pointers

IOKIT (5) IOKit Drivers. Codes up to 32 are internal to 

IOKit. Other IOKit classes defi ne 32 and up. 

IOKit is described in detail in chapter 19.

DRIVERS (6) Used by drivers of various buses. Not 

used in the kernel proper.

TRACE (7) Various debug trace messages. Subcodes 

are _DATA(0), _STRING(1), and _INFO(2).

DLIL (8) Used by the Data Link Interface Layer 

(Layer II support, in bsd/net/dlil.c). Calls 

wrapped with DLILDBG_CODE.

SECURITY (9) Reserved for security modules and sub-

systems. Calls wrapped with 

SECURITYDBG_CODE, but not used in ker-

nel proper

CORESTORAGE (10) New in Lion, to support CoreStorage logi-

cal volume management. Undocumented, 

not used in kernel proper.

CG (11) New in Mountain Lion. Undocumented. 

Possibly CoreGraphics

MISC (20) Reserved for miscellaneous uses. 

Undocumented.

DYLD(31) Reserved for dyld(1) use.

QT(32) Reserved for QuickTime. Undocumented.

DBG_APPS(33) Used by Applications.

continues

c05.indd 167c05.indd   167 10/5/2012 4:15:37 PM10/5/2012   4:15:37 PM



168 x CHAPTER 5  NON SEQUITUR: PROCESS TRACING AND DEBUGGING 

KDEBUG CLASS (DBG_) SUBCLASSES

(.. DENOTES CLASS #DEFINE)

USED FOR

LAUNCHD(34) Used exclusively by launchd(1).

DBG_PERF(37) New in Mountain Lion. Undocumented, 

likely for performance

DBG_MIG(255) Used by the the Mach Interface Generator 

to trace sending and receiving of mes-

sages. MIG is described in chapter 9.

When used for function tracing, the last two bits of the code are defi ned for a “qualifi er,” which can 
specify DBG_FUNC_START or DBG_FUNC_END.

Writing kdebug messages
The kdebug facility is extensively used in XNU, but applications can also use it to log their own 
messages, as in fact some of Apple’s own applications do. The kdebug_trace system call (#180), 
however, is purposely undocumented: Even those open source applications which do use it, do so by 
invoking syscall directly. This can be seen in launchd(1), for example, as in Listing 5-3:

LISTING 5-3: Using kdebug through syscall directly.

void
runtime_ktrace1(runtime_ktrace_code_t code)
{
        void *ra = __builtin_extract_return_addr(__builtin_return_address(1));

/* This syscall returns EINVAL when the trace isn’t enabled. */
        if (do_apple_internal_logging) {
                syscall(180, code, 0, 0, 0, (long)ra);
        }
}

The kdebug_trace system call can actually use up to six arguments (the maximum for a system 
call). The KERNEL_DEBUG_CONSTANT pre-initializes some of these arguments, namely the fi fth, with 
the identity of the current thread. The system call implementation and the KERNEL_DEBUG_CONSTANT
code paths both eventually end up at kernel_debug_internal(), which performs the actual debug-
ging. In both cases, though, the path to actual kdebugging fi rst checks if the global kernel variable 
kdebug_enable  is set, which is optimized by a gcc “improbable,” as this variable is zero, unless 
manually set). The kernel_debug_internal() function takes the six arguments and writes them 
into a struct kd_buf, along with a timestamp, where they await to be read. If CHUD is enabled, a 
callback can be registered, to be invoked on every kdebug event.

TABLE 5-5 (continued)
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Reading kdebug messages
Applications can enable kdebug and read messages from user mode using sysctl(2) calls. Before 
kdebug can be used, kdebug_enable must be set to a non-zero value. This variable is not visible 
from user mode, but sysctl(2) can be used here, as well, as shown in Listing 5-4:

LISTING 5-4: Enabling or disabling kdebug_enable from user mode via sysctl

int set_kdebug_enable(int value)
{
    int rc;
    int mib[4];

     mib[0] = CTL_KERN; 
     mib[1] = KERN_KDEBUG; 
     mib[2] = KERN_KDENABLE; 
     mib[3] = value; 
     if ((rc = sysctl(mib, 4, NULL, &oldlen, NULL, 0) < 0) {perror("sysctl");}
      return (rc);
}

The KERN_KDENABLE operation(3) is only one of the control codes which may be passed in the CTL_
KERN.KERN_KDEBUG sysctl. The currently defi ned operations are listed in Table 5-6:

TABLE 5-6: Defi ned operations for KERN_KD*

KERN_KD* OPERATION USAGE

EFLAGS(1) Enable user fl ags specifi ed (bitwise OR).

DFLAGS(2) Disable user fl ags specifi ed (bitwise AND-NOT).

ENABLE(3) Enable/disable kdebug, as per above example.

SETBUF(4)

GETBUF(5)

Set or get the number of kdebug buff ers. The number of buff ers should be 

called prior to KD_ENABLE.

SETUP(6) Used to reinitialize kdebug.

REMOVE(7) Clear kdebug buff ers.

SETREG(8)

GETREG(9)

Set values used for checking and fi ltering kdebug messages. Can 

KDBG_CLASSTYPE, KDBG_SUBCLSTYPE, KDBG_RANGETYPE, or 

KDBG_VALCHECK. KD_GETREG is #ifdef’ed out.

READTR(10) Read trace buff er from kernel.

PIDTR(11) Set only a particular PID for kdebug traces.

THRMAP(12) Read thread map. Thread maps contain thread information, and the execut-

able command (argv[0]).

continues
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KERN_KD* OPERATION USAGE

PIDEX(14) Exclude a given PID from kdebug traces, but enable system-wide tracing.

SETRTCDEC(15) Set a decrement value.

KDGETENTROPY(16) Request system entropy. This is used by security software to generate 

stronger pseudo-random numbers (independent of /dev/random and 

/dev/urandom).

APPLICATION CRASHES

An unfortunate fact of life is that, sooner or later, most applications crash. In UNIX, a crash is 
associated with a signal. The true reason for the crash lies in the kernel code, which generates the 
signal as a last resort, after determining the process simply cannot continue execution. (Kernel crash 
reports, or “panics,” are somewhat similar in concept, but contain different contents. They are dis-
cussed in Chapter 9.)

Core Dumps
When a process crashes, a core dump may optionally be generated. This is dependent on the pro-
cess’s RLIMIT_CORE resource limit. Processes may restrict this value using setrlimit(2), although 
it is more common for the user to do so by means of the ulimit(1) command. A value of 0 reported 
by ulimit –c means no core dump will be created. Otherwise, a core fi le of up to the specifi ed size 
will be created, usually in the /cores directory. The core can then be debugged with gdb, as shown 
in Listing 5-5.

LISTING 5-5: Demonstrating program crashes, with and without core.

morpheus@Ergo (~)$ cat test.c
#include <stdio.h>
int main ()
{
        int j = 24;
        printf ("%d\n",j/0);
        return (0); // not that we ever get here.. 
}
morpheus@Ergo (~)$ cc test.c –o test
test.c: In function 'main':
test.c:5: warning: division by zero # just in case it's not clearly obvious J

morpheus@Ergo (~)$ ulimit –c
0
morpheus@Ergo (~)$ ./test                  # first run: signal kill, no core
Floating point exception

morpheus@Ergo (~)$ ulimit –c 99999999999   # ulimit increased
morpheus@Ergo (~)$ ./test
Floating point exception (core dumped) # second run: core generated

TABLE 5-6 (continued)
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morpheus@Ergo (~)$ ls -l /cores/           # and can be found in /cores
total 591904
-r--------  1 morpheus  admin  303054848 Nov 19 00:30 core.6267

morpheus@Ergo (~)$ file /cores/core.6267 # The file is of type Mach-O core
/cores/core.6267: Mach-O 64-bit core x86_64
morpheus@Ergo (~)$ cd ~/Library/Logs/CrashReporter  # Go to where all logs are located
morpheus@Ergo (~)$ ls –l test*                      # and note both examples generated

# reports
-rw-------  1 morpheus  staff  1855 Nov 19 00:59 test_2011-11-19-005918_Ergo.crash
-rw-------  1 morpheus  staff  1855 Nov 19 01:09 test_2011-11-19-010917_Ergo.crash

Core fi le creation is usually disabled at the user level by default, that is, ulimit –c is set to 0. This 
is for good reason: As the example in Listing 4-2 shows, even a three-line program produces a core 
of close to 300 MB! It can be re-enabled on a global basis by setting launchd’s limits — as all pro-
cesses in the system are its eventual descendants.

At the system level, core fi les may be controlled by sysctl(8). The settings shown in Table 5-7 are 
applicable:

TABLE 5-7: sysctl settings relating to core fi les

SYSCTL SETTING DEFAULT USED FOR

kern.corefile /cores/

core.%P
Name of core generated. %P is a placeholder for the PID, 

which allows multiple core fi les to be collected in /cores.

kern.coredump 1 Enabling/disabling core dumps, system-wide. 

Note: RLIMIT_CORE limit must hold per process.

kern.

sugid_coredump

0 Dump core for setuid and setgid programs. Set to 0 because 

these programs often contain sensitive information.

Crash Reporter
Rather than deal with huge core fi les, both iOS and OS X contain a CrashReporter, which is trig-
gered automatically on a process abend (abnormal end, i.e. crash), and generate a detailed crash 
log. This mechanism performs a quick, rudimentary analysis on the process before its quietus, and 
records the highlights in a crash log. The crash reporter is key for application developers, especially 
on iOS, and Apple dedicates several TechNotes to its documentation.[4,5]

In both iOS and OS X, CrashReporter logs are sent to the user’s Library/Logs/CrashReporter,
or the system-wide /Library/Logs/CrashReporter. In recent version of OS X, these directories 
are a symbolic link to ../DiagnosticReports. In iOS, the logs are made available to the host when 
the device is connected. The report name follows a convention of process _name _YYYY-MM-DD-

HHMMSS_hostname.crash.

The crash report provides a basic, but oftentimes suffi cient, analysis of what went wrong. Depend-
ing on architecture — i386, x86_64, or ARM — the format may be different, but it always follows 
the same basic structure, shown in Output 5-7. The output is from an iOS process crash, and the 
fi elds in italics are specifi c to iOS.
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OUTPUT 5-7: A sample crash report.

Incident Identifier: C15D9ACD-DD6E-4124-857F-24FBBCC18C10
CrashReporter Key: 0941d515f2e15ef3202751ef6776efc732ce4713
Hardware Model: iPod4,1
Process:         MobileNotes [9123]      // process name, with [PID]
Path:            /Applications/MobileNotes.app/MobileNotes
Identifier:      MobileNotes
Version:         ??? (???)
Code Type: ARM (Native)            // or i386 or X86-64
Parent Process:  launchd [1]

Date/Time:       2011-11-19 10:16:00.896 +0800
OS Version: iPhone OS 5.0 (9A334)   //  Mac OS X 10.6.8 (10K549) , etc..
Report Version:  104

Exception Type:  EXC_CRASH (SIGFPE) // Mach exception code (UNIX signal)
Exception Codes: 0x00000000, 0x00000000 // Exception code, if any
Crashed Thread:  0 // Thread number of faulting thread

// Thread call stacks follow. Faulting thread (in this case, 0) is specified:
Thread 0 name:  Dispatch queue: com.apple.main-thread
Thread 0 Crashed:
0   libsystem_kernel.dylib            0x327ea010 0x327e9000 + 4112
1   libsystem_kernel.dylib            0x327ea206 0x327e9000 + 4614
// ..
8   MobileNotes                       0x00016c14 0x15000 + 7188
9   MobileNotes                       0x000163f8 0x15000 + 5112

..

  // faulting thread register state is presented:
  // State is architecture specific. For iOS(ARM), r0-r15 and CPSR are shown:
  // OS X would have x86_64 or i386 thread state, similar to LC_UNIXTHREAD
Thread 0 crashed with ARM Thread State:

r0: 0x00000000 r1: 0x07000006 r2: 0x00000000 r3: 0x00000c00
r4: 0x00001203 r5: 0xffffffff r6: 0x00000000 r7: 0x2fe1306c
r8: 0x00000000 r9: 0x0011b200 r10: 0x07000006 r11: 0xffffffff
ip: 0xffffffe1 sp: 0x2fe13030 lr: 0x327ea20d pc: 0x327ea010

cpsr: 0x400f0010

Binary Images:
  // Listing of process memory space, with all binaries loaded
   0x15000 -    0x43fff +MobileNotes armv7  <53ff805c06ec3aa785e0c0e98b5900b1> 
/Applications/MobileNotes.app/MobileNotes
0x2fe14000 - 0x2fe35fff  dyld armv7  <be7c0b491a943054ad12eb5060f1da06> /usr/lib/dyld
0x300b9000 - 0x300c6fff  libbsm.0.dylib armv7  <a6414b0a5fd53df58c4f0b2f8878f81f> 
/usr/lib/libbsm.0.dylib
0x301eb000 - 0x301ebfff  libgcc_s.1.dylib armv7  <69d8dab7388b33d38b30708fd6b6a340> 
/usr/lib/libgcc_s.1.dylib
......
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The stack trace of the faulting thread often pinpoints the problem. Even if there are no debugging 
symbols to tie directly to the source code, it is possible to use a disassembler such as otool –tV to 
fi gure out the sequence of events leading up to the call trace.

It’s interesting to note that Absinthe, the 5.0.1 jailbreak, makes use of the crash log to deduce the 
address space layout. Because of ASLR, libraries “slide” on iOS, so calling library functions from 
shellcode can be diffi cult. The jailbreak intentionally crashes the iOS BackupAgent, inspects its 
crash log, and deduces the address of libcopyfile.dylib.

Changing Crash Reporter Preferences
If you have Xcode, you will fi nd that /Developer/Applications/Utilities contains a small 
application called CrashReporterPrefs. You will see the dialog box shown in Figure 5-2 when you 
start it.

FIGURE 5-2: Crash Reporter preferences

Alternatively, you can use OS X’s defaults(1) utility to achieve the same purpose, by toggling the 
DialogType property to basic, developer, or server.

At this point, you might be asking yourself, “How is it possible to run an appli-
cation automatically when another crashes?” Doing so in UN*X is hardly 
trivial, as the parent process would be the only one to receive notifi cation of its 
child’s untimely demise. The mechanism which enables this in OS X and iOS is 
tied to the exception ports of the Mach task, which underlies the BSD-layer pro-
cess. This is discussed, along with tasks, in Chapter 11, “Mach Scheduling.”

Application Hangs and Sampling
Sometimes applications don’t crash — they merely hang, indefi nitely. Oftentimes, this is more frus-
trating, as the user is left in a state of limbo, gazing at the Spinning Rainbow Wheel of Death (or, 
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more adequately, of paralysis), totally at the mercy of the application, which may or may not choose 
to become responsive again. 

The GUI offers the Force Quit option, which is really just sending a signal to the errant application. 
Optionally, the user may opt for a “report.” The report in question is generated using spindump(8),
which probes each and every process on the system and obtains its current call stack (this tool is 
also part of Lion’s sysdiagnose(1) tools). The log is then written to the user’s (or the system’s) 
Library/Logs/DiagnosticReports, similar to CrashReporter logs, but with an extension 
of .hang.

The root user can execute spindump manually. Alternatively, it is possible to use sample(1) to take 
a snapshot for a specifi c process. This tool (which takes the same arguments as spindump) can be 
run by non-root users if the sampling is performed on the user’s own processes. The sample log is 
also in CrashReporter format, providing detailed stack traces and loaded dylib information. 

In both cases, the sampling method is similar — the processes are suspended, their stack trace is 
recorded (spindump(8) uses the stack_snapshot syscall, described above), and then they are 
resumed. The sampling interval is usually about 10 milliseconds, and the sampling takes place over 
a span of 10 seconds. Both settings are confi gurable.

XCode offers another tool — Spin Control. This small app performs sampling automatically each 
time the rainbow wheel is displayed (via CoreGraphics). Its only advantage is its call-graph browser, 
which is somewhat more intuitive than following the textual report. There exists, however, another 
utility called filtercalltree(1), whose only reason for being is to process call trace logs such as 
those of sample(1) or malloc_history(1), which is a tool we discuss next.

Memory Corruption Bugs
Memory corruption is a common cause for bugs in programs. The main causes of application 
crashes are buffer overfl ows (both stack and heap) and heap corruptions. The problem is that, in 
many cases, the cause and effect are many lines of code apart, and it can sometimes take minutes or 
more before the bug causes a crash.

Memory Safeguards in LibC
OS X’s LibC is highly confi gurable, and its memory allocation can be controlled by any one of sev-
eral environment variables, documented in the malloc(3) page, as shown in Table 5-8.

TABLE 5-8: LibC’s malloc(3) Features

ENVIRONMENT VARIABLE USED FOR

MallocLogFile Set the malloc debugging to write to a fi le.

MallocCheckHeapStart

MallocCheckHeapEach

MallocCheckHeapSleep/Abort

Periodically (every ...Each allocations) check heap 

after ...Start allocations. If a heap is inconsistent, 

either sleep (allowing debugging) or abort(3) 

(crashing with SIGABRT).
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ENVIRONMENT VARIABLE USED FOR

MallocErrorAbort

MallocCorruptionAbort

Call abort(3) (SIGABRT) on any error, or just mem-

ory corruption errors

MallocGuardEdges

MallocDoNotProtectPrelude

MallocDoNotProtectPostlude

Add guard pages before (unless MallocDoNot-

ProtectPrelude is set) and after (unless Malloc-

DoNotProtectPostlude is set) large blocks.

MallocScribble Fill allocated memory with 0xAA and freed memory 

with 0x55.

MallocStackLogging

MallocStackLoggingNoCompact

MallocStackLoggingDirectory

Log all stack traces during malloc operations to /tmp 

(or to MallocStackLoggingDirectory). Programs 

such as leaks(1) or malloc_history(1) can then 

be called. The latter requires NoCompact.

Because the environment variables affect all processes launched when they are set (including the 
commands that process their output), I recommend that you prefi x the traced command with the 
setting of the variable, rather than export the variable. What’s more, exporting variables such as 
MallocStackLogging can only be countered with “unset,” as LibC doesn’t really care about its 
value, so much as it being set. 

OS X’s memory-leak detection tools, described later, build on these features of LibC to provide 
extensive capabilities for tracking down memory allocations.

LibGMalloc
If the memory protection features so far do not suffi ce, OS X offers a special library, libgmalloc
.dylib, which can be used to intercept and debug memory allocations. This powerful library works 
by interposing the allocation functions of LibSystem (as discussed under the “Function Interposing” 
feature of dyld(1), in Chapter 4). Once the functions are hooked, it becomes easy to replace them 
with verbose counterparts, which also set more constraints on memory allocation, in the hope of 
making any slight transgression result in a crash.

Specifi cally, libgmalloc uses the following techniques:

 ‰ Adding its own custom header to each allocated chunk, which contains debug information 
recording important allocation details: The header records the thread ID and backtrace at the 
time of allocation, along with a constant value (“magic number”) of 0xDEADBEEF, which is 
useful in detecting errors in allocations and reallocations of the same buffer. The header can 
be seen in Figure 5-3.

 ‰ Allocating chunks on their own pages, making the neighboring page unwritable (if 
MALLOC_ALLLOW_READS is set), or wholly inaccessible: The allocated chunk is also pushed 
to the end of its page (unless MALLOC_PROTECT_BEFORE is set). As a consequence, read/write 
operations past the end of the buffer automatically become read/write operations past the 
page boundary, and cause an unhandled page fault, crashing the process on the spot with 
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a bus error (SIGBUS). Setting the MALLOC_PROTECT_BEFORE environment variable fl ips this 
behavior to protect against buffer underruns, rather than overruns.

 ‰ Freeing chunks deallocates memory: The library deallocates its pages on free(), once again 
causing a bus error if a read or write operation is performed on the freed buffer.

size

Allocating TID

0xDEADBEEF

Padding to
Alignment
boundary

0x60 + sizeof (buffer) + sizeof(padding)

Backtrace of up to 20 frames (or 0s)

Magic number used for header checks

Backtrace (1)

. . .

. . .

Backtrace (20)

Thread ID of thread performing allocation

FIGURE 5-3: The GuardMalloc header

The bus faults that occur automatically reveal the presence of a memory handling bug, as it hap-
pens, and make debugging relatively simple. By attaching gdb, you can pinpoint the crash, and — by 
inspecting the custom header — work back to the allocation, and either change the buffer allocation 
parameters or remove the offending operation.

MEMORY LEAKS

Another common application bug is leaking memory. Memory leaks occur when a programmer allo-
cates memory or some object, but neglects to call free() or delete. Memory leaks are hard to fi nd 
because they don’t constitute a critical bug. Rather, they slowly weigh on the process’ address space, 
as — once a pointer is lost — there is no way to reclaim the memory.

In 32-bit processes, this can turn into a serious problem because, sooner or later, the leaks can 
exhaust the available process memory. In 64-bit processes, with their huge address space, it is less 
of an exigent concern, but can still take a noticeable toll on physical memory (especially in mobile 
devices) or swap.

In addition to the tools described in this section, XCode’s Instruments provide 
an interactive, much more detailed way to sift through the vast amounts of sam-
pling output with a timeline-based GUI. Instruments contain tools for pretty 
much everything, including specialized tools for tracking memory allocations 
and leaks (shown in Figure 5-4). The command-line tools, however, do offer the 
advantage of being lighter and can be run in a terminal.
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Allocations Leaks

FIGURE 5-4: Instruments specifi cally designed for memory debugging

heap(1)
The heap(1) tool lists all the allocated buffers in a given process’s heap. The tool is very easy to 
use — just pass a PID or partial process name. The tool is particularly useful for Objective-C com-
piled binaries or CoreFoundation-dependent libraries, as it can discern the class names. 

leaks(1)
The leaks(1) tool walks the process heap to detect suspected memory leaks. It samples the process 
to produce a report of pointers, which have been allocated but not freed. For example, consider the 
program in Listing 5-6.

LISTING 5-6: A simple memory leak demonstration

#include <stdio.h>
int f()
{
    char *c = malloc(24);
}
void main() 
{
    f();
    sleep(100);
}

Running leaks on the program produces an output similar to Output 5-8. Note the part in italic, 
which is displayed if MallocStackLogging is set.

OUTPUT 5-8: A leaks(1) generated report for the program from the previous listing

morpheus@ergo (/tmp)$ MallocStackLogging=1 ./m &
[1] 8368 # Run process in background to get PID.
m(8368) malloc: recording malloc stacks to disk using standard recorder
m(8368) malloc: stack logs being written into /tmp/stack-logs.8368.m.KaQPVh.index
morpheus@ergo (/tmp) $ leaks 8368
Process:         m [8368]
Path:            /tmp/m

continues
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Load Address:    0x100000000
Identifier:      m
Version:         ??? (???)
Code Type:       X86-64 (Native)
Parent Process:  bash [6519]

Date/Time:       2011-11-22 07:27:49.322 -0500
OS Version:      Mac OS X 10.6.8 (10K549)
Report Version:  7

leaks Report Version:  2.0
Process 8311: 3 nodes malloced for 1 KB
Process 8311: 1 leak for 32 total leaked bytes.
Leak: 0x100100080  size=32  zone: DefaultMallocZone_0x100004000
       0x00000000 0x00000000 0x00000000 0x00000000 ................
       0x00000000 0x00000000 0x00000000 0x00000000 ................
Call stack: [thread 0x7fff70ed8cc0]: | 0x1 | start | main | f | malloc | 
malloc_zone_malloc

Binary Images:
0x100000000 - 0x100000ff7 +m (??? - ???) 

<18B7E067-D1EB-30CB-8097-04ED600B3628>
/Users/morpheus/m

0x7fff5fc00000 - 0x7fff5fc3bdef dyld (132.1 - ???) <DB8B8AB0-0C97-B51C-BE8B-
B79895735A33> /usr/lib/dyld
...

malloc_history(1)
The malloc_history(1) tool, which requires MallocStackLogging or MallocStackLoggingNo-
Compact to be set, provides a detailed account of every memory allocation that occurred in the pro-
cess, including the initial ones made by dyld(1). Its report format is very similar to those discussed 
in sample(1) and leaks(1), previously. In fact, using the –callTree arguments generates a report 
that is exactly like sample(1)’s, and can be further processed with filtercalltree(1). Additional 
arguments when displaying the call tree include –showContent, which can even peek inside the 
memory allocated, similar to the leaks(1) output shown previously.

This tool can be used to show all allocations in the process (using –allBySize or –allByCount) and 
even deallocations (-allEvents), demonstrating that there really can be too much of a good thing. 
A more useful form for tracking memory leaks, however, is to specify just the addresses in question 
as an argument.

STANDARD UNIX TOOLS

In addition to its proprietary tools, OS X provides the standard UNIX utilities found on other sys-
tems, albeit sometimes “tweaked” to deal with OS X idiosyncrasies. This section briefl y describes 
these tools.

OUTPUT 5-8 (continued)
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Process listing with ps(1)
The standard UNIX command ps(1), used to display the process listing, is naturally available in 
OS X (and in iOS, when installed as part of the adv–cmds package). The term “standard,” when 
applied to ps(1), is somewhat fl uid, since the command actually has three versions (BSD, System V, 
and GNU’s). Darwin’s ps(1), unsurprisingly enough, closely follows that of BSD, though offers 
some compatibility with System V’s. As in just about any UNIX, ps(1) uses most letters of the 
alphabet (in mixed case) as switches. The useful ones are described in Table 5-9:

TABLE 5-9: Useful switches for ps(1)

SWITCH USAGE

–A/–e All/every process

–f “full” information, including start time, CPU time, and TTY.

–M Shows threads

–l Long information – including priority/nice, user mode address (paddr)

and kernel mode wait address (wchan)

u Classic “top” like display, including CPU and MEM %, virtual size, and 

resident set size.

–v Similar to “u”, but also includes text size and memory limit, among 

other things.

–j Job information  —  including session leader

System-Wide View with top(1)
The UNIX top(1) command, a key tool for obtaining an ongoing system-wide view, is present in 
OS X (and iOS), with some modifi cations. The changes all stem from the adaptation of the tool to 
the underlying Mach architecture, as it is able to present both the UNIX terms (from XNU’s BSD 
layer) and those of Mach. As top(1) is part of Darwin’s open source, it can be compiled for iOS as 
well (and a binary version can be found on Cydia).

top dynamically adapts to the terminal window size (via a SIGWINCH signal handler) and requires 
about 210 column terminals for its full splendor. On a standard terminal, you are likely to see some-
thing like Output 5-9.

OUTPUT 5-9: top(1) on a standard terminal (82x25)

Processes: ## total, # running, ## sleeping, ## threads HH:MM:SS
Load Avg: 0.72, 0.60, 0.53  CPU usage: 15.56% user, 8.49% sys, 75.94% idle
SharedLibs: 6404K resident, 4900K data, 0B linkedit.
MemRegions: 11835 total, 761M resident, 18M private, 1238M shared.

continues
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PhysMem: 1224M wired, 1709M active, 1034M inactive, 3968M used, 128M free.
VM: 171G vsize, 1043M framework vsize, 796984(0) pageins, 42562(0) pageouts.
Networks: packets: 3041149/3182M in, 2416182/525M out.
Disks: 423708/12G read, 233719/12G written.

PID   COMMAND      %CPU TIME     #TH  #WQ  #POR #MREG RPRVT  RSHRD  RSIZE  VPRVT
5558  top          5.4  00:01.39 1/1  0    24   33    1432K  244K   2012K  17M
5348  Xcode        0.0  00:27.79 9    2    233  873   61M    88M    155M   356M
5346  Image Captur 0.0  00:00.24 2    1    81   74    2184K  10M    7104K  31M
5328  ssh          0.0  00:00.18 1    0    22   24    576K   244K   1844K  17M
5263  vim          0.0  00:00.01 1    0    17   36    520K   244K   1704K  19M
5131  bash         0.0  00:00.11 1    0    17   24    408K   764K   1064K  17M
5128  bash         0.0  00:00.00 1    0    17   25    368K   764K   1064K  9656K
5127  login        0.0  00:00.06 1    0    22   53    536K   312K   1644K  19M
5111  bash         0.0  00:00.04 1    0    17   24    392K   764K   1020K  17M
3206  AppleSpell   0.0  00:00.24 2    1    36   49    608K   5728K  4204K  21M
3194- soffice      0.1  01:27.29 5    1    111  767   38M    19M    88M    83M
2348  iTunesHelper 0.0  00:00.30 3    1    52   74    1068K  4268K  3320K  30M
2077  bash         0.0  00:00.49 1    0    17   24    328K   764K   848K   17M
1167  vmware-vmx   6.0  75:11.73 10   1    142  562   17M    57M    894M   46M
507   Preview      0.0  00:13.68 3    2    112+ 154+  13M+   25M    28M+   38M+
425   bash         0.0  00:00.08 1    0    17   25    280K   764K   624K   9648K
424   login        0.0  00:00.01 1    0    22   53    536K   312K   1548K  19M

The OS X top(1) is slightly different from the standard GNU top, in that it is adapted not only 
to the BSD nomenclature — PID, UID, PGRP, SYSBSD, and so on — but also the Mach one; spe-
cifi cally, Mach regions (MREG), messages sent (MSGSENT) and received (MSGRECV), and Mach traps 
(SYSMACH) are also viewable. Additionally, because top(1) feeds on kernel-provided statis-
tics, it also allows viewing page faults and copy-on-write faults, which the kernel maintains per 
task.

File Diagnostics with lsof(1) and fuser(1)
Sooner or later, it becomes interesting to see which fi les are used by a certain processes, or which 
processes use a certain fi le. The now ubiquitous utilities of lsof(1) and fuser(1) can accomplish 
these, respectively.

lsof(1) provides a complementary service to fs_usage, described earlier because the latter will 
see only new fi le operations and not any existing open fi les. lsof(1) displays a mapping of all fi le 
descriptors (including sockets!) owned by a process (or processes). On the other hand, fs_usage(1)
can run continuously, whereas lsof usually generates a single snapshot. 

fuser(1) provides a reverse mapping — from the fi le to the process owning it. Its main use is to 
diagnose fi le locks or “in use” problems, which most often manifest themselves as a “fi le system 
busy” message, which fails a umount(8) operation. Using fuser (-c on mount points) enables you 
to see exactly which processes are holding fi les in the fi le system and must be dealt with prior to 
unmounting.

The lsof package provided on Cydia for iOS at the time of this writing (33-4) does not work prop-
erly, due to incorrect invocation of the underlying proc_info system call. The tool accompanying 
this book, however, works properly.

OUTPUT 5-9 (continued)
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USING GDB

The GNU Debugger’s rich syntax and powerful capabilities have made it the de facto standard debug-
ging tool on all UN*X platforms. Apple has offi cially ported GDB to Darwin, and it is available for 
both OS X and iOS, as part of XCode or (in source form) as a tarball from Apple’s open source site. 

Apple’s GDB port, however, is derived from a rather outdated version of GDB  —  6.3.50, in 
2005. GDB has since long progressed, with the latest version at the time of this writing being 7.4. 
Apple’s GDB fork is also regularly updated with new releases of XCode, resulting in two concur-
rent branches of GDB: The GNU version, and the Apple offi cial one. The GNU version is, by many 
reports, “broken,” in a sense that many of the Mach-O features, such as fat binaries and PIE, are 
improperly handled. This section, therefore, focuses on the offi cial Apple port. We assume the 
reader is familiar with GDB, and discusses the Darwin specifi c extensions.

GDB Darwin extensions
As discussed throughout this book, while XNU presents a UNIX-compatible persona with full 
POSIX APIs to user mode, the underlying implementation of the most basic primitives is that of 
Mach. GDB is aware of the underlying Mach structures, and contains commands suited specifi cally 
to display them. The info command contains the options shown in Table 5-10:

TABLE 5-10: Options for the info Command

COMMAND USAGE

info mach-tasks

info mach-task <task>
Displays a list of all Mach tasks on the system. Roughly speaking, each 

task corresponds to a PID. Further information can be obtained per 

task, though this information (TASK_BASIC_INFO) is largely useless.

info mach-threads <task>

info mach-thread 

<thread>

Obtain a list of all Mach threads in a given task. Likewise, further infor-

mation can be obtained per thread (THREAD_BASIC_INFO), which is a 

little bit more useful than the corresponding TASK_BASIC_INFO.

info mach-regions

info mach-region 

<address>

A vmmap(1) like display of all the memory regions in the current 

debuggee. Alternatively, an address may be specifi ed to seek a par-

ticular region.

info mach-ports <task>

Info mach-port <task> 

<port>

Obtain a list of all Mach ports in a given task. Likewise, further obtain 

information on a specifi c port. This command prints out the raw hex 

values, however, and is therefore less usable.

get/set inferior-auto-

start-dyld
Controls debugging of dyld(1) shared libraries.

get/set inferior-bind-

exception-port
Controls whether or not GDB takes over the task’s exception port. 

Doing so enables controlling Mach exceptions, even before they are 

converted to UNIX signals.

get/set inferior-

ptrace[-on-attach]
Controls the use of the ptrace(2) API to attach to the debuggee.

Ports are explained in Chapter 9. Tasks and Threads are discussed in Chapter 10.
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GDB on iOS
The Cydia supplied port of GDB for ARM and iOS is an extremely unstable one, and often crashes. 
Apple’s own GDB works well, and is actually a fat binary, containing an ARM Mach-O side-by-
side the i386 one. If you try it on iOS, however, it will fail, complaining, “Unable to access task for 
process-id xxx,” even if used on non-privileged processes. This is because debugging requires access 
to the low level Mach task structure, underlying the BSD process. 

On a jail broken device, however, just about anything is possible, including working around this 
annoyance. The call required, task_for_pid, can be enabled if the executable requesting it is digi-
tally signed with entitlements (as discussed in Chapter 3), or if The AppleMobileFileSecurity kext 
is disabled. When debugging through XCode, an intermediary process, debugserver (found on the 
Developer Disk Image), is signed and contains the necessary entitlements (which were demonstrated 
in Listing 3-7, in that chapter). If the same entitlements are copied onto gdb, and it is signed (using a 
pseudo-signing tool such as Saurik’s ldid), the result is a fully functional GDB on iOS.    

LLDB
With Apple’s shift to LLVM-gcc, it has also introduced LLDB as an alternative to GDB. LLDB is, 
for the most part, similar in syntax to GDB, but is considered more advanced in its debugging capa-
bilities. As GDB is still the more widely known and used of the two, the book relies on it, rather 
than LLDB, for examples and illustrations. 

SUMMARY

This chapter provided an overview of debugging techniques in OS X and iOS, which can be 
employed to deal with the common issues and troubles plaguing developers: system call and func-
tion tracing, memory bugs, sampling the call stack, application hangs, and crashes. The poorly 
documented system calls of proc_info and stack_snapshot have been detailed, as have their appli-
cations in the OS X debugging tools. The chapter also served as a refresher to the common UNIX 
tools that are included in Darwin.
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6
Alone in the Dark: 
The Boot Process: EFI and iBoot

The previous chapters have covered the basic aspects of system operation. We now turn our 
attention to the boot process. Booting is that often overlooked aspect of system startup, which 
occurs from the moment the machine is powered on, until the CPU starts executing the oper-
ating system code. At this most nascent stage, the CPU executes standard startup code. The 
code is meant to probe the devices around it, fi nd the most likely operating system, and start it 
up, with any user-defi ned arguments.

Whereas other operating systems rely on default, or generic boot loaders, both OS X and iOS 
use custom boot loaders of their own. In this chapter, we describe in detail the operation of 
the OS X boot loader, which operates in the pre-boot fi rmware environment.

Another aspect, closely tied to boot is installation and upgrade. This chapter therefore devotes 
a section to explaining the installation images of both OS X and iOS.

TRADITIONAL FORMS OF BOOT

Prior to its Intel days, the architecture of choice for Mac OS computers was PowerPC. The 
PowerPC architecture differs in many ways from Intel, not the least of which being the boot 
process. Intel-based machines traditionally relied on a Basic Input Output System — a BIOS, 
whereas PowerPC, like many other systems, employed fi rmware. 

Most PCs, at the time of this writing, still use BIOS, as is evident when a special startup 
key — usually DEL or F2 — is pressed. The BIOS provides a set of simple menus by means 
of which the user can toggle board parameters, boot device order, and other settings. This is 
the BIOS User Interface. From its other end, a BIOS has a processor interface, which is usu-
ally accessible by means of a specialized machine instruction (commonly Int 13h). Using this 
instruction, the CPU can invoke specifi c BIOS-provided functions for device I/O.
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Firmware can be thought of as software, which has been put into a chip, hence it is “fi rm.” The 
fi rmware code itself can reside in Read-Only Memory (ROM), or — as is more commonly the 
case — Programmable Read Only Memory (PROM), or Electronically-Erasable (EEPROM). The lat-
ter form makes the fi rmware read-only, but allows its updating by a process known as fl ashing,
in which the ROM as a whole is reinitialized and updated with newer versions. 

Firmware and BIOS exist to serve the same underlying task: to load the CPU with some basic boot-
strap code. This code is responsible for the Power On Self Test phase, in which the CPU “reaches 
out” to the various hardware buses, and probes them for whatever devices are present. When a com-
puter is fi rst turned on the CPU is, quite literally, in the dark and needs to “prod” its buses to see 
what devices are reported there. It is the bootstrap code — BIOS or Firmware — which is respon-
sible for locating the boot device, and execute a boot loader program, which in turn fi nds the oper-
ating system of choice, and passes its kernel any necessary command-line arguments.

Technically, BIOS is a type of fi rmware, but a distinction is drawn between the two, as fi rmware 
is generally perceived to be more advanced and more feature-capable than BIOS. Firmware 
interfaces — both user and processor — are generally richer than those of a BIOS. The standard 
PC BIOS is wracked with legacy pains. Its origins are in the old days of XTs and ATs, and thus 
BIOS is still 16-bit compatible. 

BIOS — true to its name — is very basic. Most BIOS supports a very simple partitioning 
scheme — called Master Boot Record partitioning. The name refl ects the fact that virtually all parti-
tioning and boot logic resides in one record — the fi rst 512 bytes of the boot disk. When the system 
is started, BIOS fi nds the boot disk — as preconfi gured by the user — and starts executing code 
directly from logical block 0, or cylinder 0, head 0, sector 0. It expects to fi nd exactly 440 bytes of 
loader code there. Usually, these 440 bytes are very simple and directed. They are:

 ‰ Read the partition table (at offset 446 of the very same sector, i.e. 6 bytes later).

 ‰ The partition table contains exactly four records, each 16 bytes. One of them should be desig-
nated as bootable, or active (marked by the most signifi cant bit of the fi rst byte in the record). 

 ‰ The loader then reads the fi rst sector of the active partition, called the partition boot record 
(PBR), wherein it expects to fi nd the operating system loader code. In Windows’ case, this is 
where the familiar NTLDR (or, post-Vista, BootMGR) can be found.

This type of scheme is hardly scalable. If you’ve ever tried to install more than one operating sys-
tem side by side on a BIOS based system, you have no doubt run into problems which affect the 
bootability of one, or both of the systems. Only one system can be marked as active, which leads to 
the need of a boot loader, which is often third party software. Probably the most famous example of 
a boot loader is GNU’s Grand and Unifi ed Bootloader, affectionately referred to as GRUB, which is 
the de facto standard in UNIX and BSD. GRUB itself is a BIOS-based program (i.e. running before 
the operating system has been loaded), that takes over, to offer a boot menu. Boot loaders offer 
some reprieve, but still cannot get past highly restrictive BIOS limitations. 

Traditional BIOS can only access about 1 MB of memory. Even this 1 MB is segmented, as 16-bit can 
only access 64 K of memory. By using the CPU’s segment registers, 64 K can be expanded — but the 1 
MB serves as a hard limit, and places severe restrictions on code execution. In fact, of the 1 MB, only 
the lower 640 K (10 segments) were for general purpose RAM, with the top 384 K usually used for 
shared video memory. 
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Additionally, traditional BIOS can’t interface with today’s advanced graphics. If you’ve ever paid 
close attention to the way Windows or Linux boot, you see that they start in text mode, then go 
into graphics mode — but a limited, VGA mode, wherein the screen resolution is usually 640¥480, 
before the screen resets to a higher resolution. This is because, at fi rst, these operating systems draw 
on the BIOS to access the graphics card. Only when the processor switches to protected mode, and 
specifi c device drivers are loaded, is BIOS no longer necessary.

BIOS is also far from extensible, as is probably evident to PC users who add improved bus control-
lers, like FireWire and USB 3.0 to their systems. The manufacturer BIOS is very rigid, and — while 
it is possible to “fl ash” BIOS, much in the same manner as fi rmware — this is generally a potentially 
risky operation, and requires specifi c updates for various BIOS versions. BIOS has no concept of a 
driver which could be plugged in, much like a kernel driver is to a running operating system.

If all those limitations are not enough, throw in that BIOS is tightly coupled with the MBR parti-
tioning scheme, which allows for only four bootable, or primary partitions in a disk. Due to the 
fi xed format of the boot sector, BIOS cannot split a disk into more than four partitions. A work-
around exists in the form of extended partitions (A trick which enables repartitioning of a primary 
partition), but extended partitions are unbootable. Another restriction, which is becoming more 
serious at the time of writing, is BIOS’s limitations for disks of up to 2 TB. While, back in the day, 2 
TB might have seemed an unimaginably large number, let’s also not forget the paradigm at the time 
was “640 K ought to be enough for everybody.” With today’s hard drives already offering 2 TB, the 
partitioning scheme itself is becoming a backward-compatibility induced limitation, which does not 
scale well to today’s, much less tomorrow’s standards.

It is these limitations of BIOS, and others, which led Apple to adopt a newer 32- or 64-bit compat-
ible standard of the Extensible Firmware Interface — or EFI. Contrary to BIOS, EFI is a full fl edged 
runtime environment, which offers a far more capable interface during boot, and even later during 
runtime. XNU, the OS X kernel, relies on many of EFI’s features, as is discussed next. 

EFI DEMYSTIFIED

With the transition to Intel-based architectures, Mac OS X opted to deviate away from the main-
stream BIOS architecture, and be the fi rst major OS to adopt EFI. EFI is more complicated, and was 
initially more costly than BIOS. Apple’s tight control and integration with its hardware, however, 
allowed it to adopt EFI. Given that OS X on PPC relied on OpenFirmware and its rich feature-set, 
it was only natural for Apple to seek similar capabilities for use with Intel processors; it found those 
capabilities in EFI.

EFI started as an initiative by Intel, which carried it forward to version 1.10[1], but later merged it 
with an open standard called Universal EFI — UEFI. The current version of UEFI (at the time of 
writing) is 2.3.1[2]. Apple’s EFI implementation, however, differs somewhat from both standards, 
and Apple — as Apple — makes little effort to document its changes. Apple’s EFI is mostly compli-
ant with EFI 1.10, but also implements some features from UEFI.

Much of the detail this book leaves off can be found in either of the standards. The reader is encour-
aged to peruse the standards, though the following sections will cover the basics required for under-
standing EFI as implemented on Macs. 
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UEFI is processor-agnostic, and has implementations on Intel platforms (naturally), but also on 
ARM, as well. In iOS, however, Apple employs a custom boot-loader, called iBoot, which is not 
EFI-based.

Basic Concepts of EFI
Whereas BIOS is a set, usually closed program, EFI is an interface. It can be thought more of as 
a runtime environment, specifying a set of application programming interfaces which EFI-aware 
programs can draw on and use. EFI programs are generally boot loaders (like Linux’s GRUB, or 
Apple’s boot.efi, and Boot Camp, both discussed next), but can be diagnostics routines (like 
Apple’s Hardware Test), or even user programs which were compiled to link with EFI APIs, as you 
will see later in this chapter. Figure 6-1 shows a view of the EFI architecture:

Software

EFI 
Binaries

Firmware

Hardware

Operating System 
Kernel

EFI Program

EFI Program

EFI Boot Loader

Loader Protocol

EFI Configuration TableEFI System Table

EFI Boot Services

Memory Timer Image

Protocol Registration/Lookup Services

Console In/Out Protocol

RAM Console NVRAM 3rd Party Device

Devices (disks, 
mice, etc)

Device Protocols Bus Protocols

Protocol Virtual Mem ...... Variables

EFI Runtime services

FIGURE 6-1: The EFI Architecture
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From the developer’s perspective, an EFI program — be it application, boot loader, or driver — is a 
binary, much like any other binary program. Unlike OS X’s Mach-O or Linux’s ELF, however, EFI 
binaries are all PEs — Portable Executables, adhering to the Microsoft adopted executable format, 
which is native to Windows.

Apple is slightly different in their EFI implementation. For one, Apple wraps their EFI binary with 
a custom header, not unlike the fat header discussed in the previous chapters. This way, the same 
binary can be used for 32-bit and 64-bit architectures.

Additionally, Most EFI implementations provide a shell — i.e. a command line interface. Apple’s 
implementation, however, does not. It only responds to specifi c key presses, which the user 
should input after the system startup sound (the chime heard when Macs of all kinds boot). 
Apple, instead, provides their own custom EFI loader, called boot.efi, which is a closed-source 
program.

An EFI binary has a main() —  just like any old C program, but instead of the familiar command 
line arguments, EFI binaries all implement the same prototype:

typedef EFI_STATUS     (EFIAPI *EFI_IMAGE_ENTRY_POINT)
     (IN EFI_HANDLE ImageHandle,
      IN EFI_SYSTEM_TABLE SystemTable);

This is really just to say that EFI binaries accept two parameters from the EFI environment: 

 ‰ The EFI Handle — To the image itself, by means of which it can query the runtime for vari-
ous details.

 ‰ The EFI System Table — which is a pointer to a master table, from which all EFI standard 
handles and runtime API pointers can be obtained.

EFI binaries, like normal C programs, return a status code — an integer, cast as an EFI_STATUS.
The meaning of this status code, however, is different than in C. Returning EFI_SUCCESS clears 
the program from memory upon exit, whereas returning a non success value leaves it resident in 
memory.

The handle to the image itself is generally of little use to a program, but the important parameter 
lies in the EFI_SYSTEM_TABLE pointer, which is a structure defi ned as shown in Listing 6-1:

LISTING 6-1: The EFI system table

typedef struct { 

 EFI_TABLE_HEADER 
 { UINT64 Signature; // Constant 
   UINT32 Revision; 
   UINT32 HeaderSize; // Sizeof the entire table; 
   UINT32 CRC32;      // CRC-32 of table
   UINT32 Reserved;   // set to 0
  } Hdr;
 CHAR16 *FirmwareVendor;                    // For Apple EFI, "Apple"

continues
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 UINT32 FirmwareRevision;        // Model dependent
 EFI_HANDLE ConsoleInHandle;  // stdin handle for binary
 EFI_SIMPLE_TEXT_INPUT_PROTOCOL *ConIn;     // output operations
 EFI_HANDLE ConsoleOutHandle;  // stdout handle for binary 
 EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL*ConOut;      // output operations
 EFI_HANDLE StandardErrorHandle;  // stderr handle for binary
 EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL *StdErr;  // output operations (q.v ConOut)
 EFI_RUNTIME_SERVICES *RuntimeServices // Pointer to Runtime servers
 EFI_BOOT_SERVICES*BootServices  // Pointer to boot time services
 UINTN NumberOfTableEntries;  // entries in configuration table
 EFI_CONFIGURATION_TABLE*ConfigurationTable // system configuration table
} EFI_SYSTEM_TABLE;

The EFI_SYSTEM_TABLE allows a binary to obtain handles for what every C program takes for 
granted — standard input, standard output, and standard error. Unlike C, however, there is no 
<stdio.h>, or even <unistd.h>, with which to process input and output operations. For this, EFI 
defi nes various protocols. A protocol is nothing more than a struct of function pointers, each 
defi ning an operation. EFI uses such protocols for input and output on the console, as well as on 
more complicated devices.

In addition to the handles and their respective protocols, the system table defi nes a confi guration 
table, which points to vendor specifi c data, and two other important tables for the various services. 
These are discussed next.

The EFI Services 
As an interface, EFI provides just that — APIs for EFI binaries to use, in order to access basic 
hardware primitives. These services are classifi ed into two groups — Boot Services, and Runtime 
Services.

EFI Boot Services
Boot Services are available while the system is still within the environment of EFI, and up to the 
point where a special function, aptly called ExitBootServices() is called. Boot Services provide 
access to memory and various hardware, as well as launching EFI programs, when these resources 
are considered to be “owned” by the fi rmware. Once ExitBootServices() is called, however, Boot 
services cease to be accessible. Usually, this function is called right before control — and ownership 
of these resources — is transferred to an operating system kernel.

The boot environment is surprisingly rich — well above and beyond what one would have expected 
of BIOS. The environment is rich, supporting multi-tasking with preemption, event notifi cation, 
memory management, and hardware access. 

The Boot Services are stored in a BOOT_SERVICES_TABLE, a pointer of which is obtained from the 
EFI_SYSTEM_TABLE. The services in this table can generally be classifi ed into several categories, as 
shown in Table 6-1:

LISTING 6-1 (continued)

c06.indd 188c06.indd   188 9/29/2012 5:23:25 PM9/29/2012   5:23:25 PM



EFI Demystifi ed x 189

TABLE 6-1: Boot services provided by EFI

CATEGORY SERVICE CALLS USED  FOR

Memory 

management

AllocatePages

FreePages

GetMemoryMap

AllocatePool

FreePool

Allocate/free physical memory, either directly 

as physical pages or as a more generic allo-

cation from a pool.

Timer/Event 

functions

CreateEvent

SetTimer

WaitForEvent

CloseEvent

CheckEvent

SignalEvent

CreateEventEx

Event handling functions which allow to cre-

ate, wait-on or destroy an event. A “Timer,” 

in this context, is an event which fi res auto-

matically after a certain timeout. Events can 

also be set with specifi c priorities.

Task priorities RaiseTPL

RestoreTPL

Tasks execute at several levels, and using 

Raise/Restore can modify task priorities 

dynamically. Events will get masked or deliv-

ered, based on task priority.

Hardware access InstallProtocolInterface

ReinstallProtocolInterface

UninstallProtocolInterface

HandleProtocol

RegisterProtocolNotify

LocateHandle

OpenProtocol

CloseProtocol

Access devices by means of specifi c pro-

tocols. (Protocols are a key mechanism for 

hardware access, and are covered in the 

following section.)

Of particular importance in the Boot Services is access to hardware. Just like the simple input and 
output from the EFI_SYSTEM_TABLE, EFI further defi nes the notion of a protocol, to encompass the 
API associated with a particular device, or device class. Protocols are uniquely defi ned by 128-bit 
GUIDs, and may be obtained during runtime. The following tables illustrate some of these proto-
cols. Here, too, there are several classes, including:

Console Protocols

These protocols deal with the console device i.e., the peripheral user input/output devices directly 
connected to the machine: keyboard, mouse, serial port, and screen, but also more sophisticated 
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devices such as touchscreens and graphics adapters. Table 6-2 lists protocols known to be used by 
Apple in Lion’s EFI loader:

TABLE 6-2: Console protocols supported by Apple’s EFI loader

EFI_ PROTOCOL NOTES

SIMPLE_TEXT_INPUT_PROTOCOL Console-based input. Contains the methods Reset() —  

to reset console, ReadKeyStroke(), and a 

WaitForKey event to delay execution until user presses a key

SIMPLE_TEXT_OUTPUT_PROTOCOL Console-based output. Contains various methods to output 

strings, EGA (4-bit) colors, rudimentary cursor control and 

textual screen setting capabilities

SIMPLE_POINTER_PROTOCOL Basic interface to a mouse. Somewhat akin to TEXT_INPUT, 

provides a Reset(), GetState() —  for mouse x/y/z and 

button state — and a WaitForInput event to delay execution 

until the user moves the mouse

GRAPHICS_OUTPUT_PROTOCOL Basic graphics display, backward and forward compatible with 

any display adapter, eff ectively replacing the VGA standard

UGA_DRAW_PROTOCOL An older version of the GRAPHICS_OUTPUT_PROTOCOL

Media Access

These protocols deal with fi les and fi le systems, as well as various devices upon which the fi le sys-
tems may be overlaid including tape devices(!). The ones used in Apple’s EFI are listed in Table 6-3:

TABLE 6-3: Media access protocols supported by Apple’s EFI loader

EFI_ PROTOCOL NOTES

LOAD_FILE_PROTOCOL Contain only one method (LoadFile), to load a fi le from a device 

path into a buff er.

SIMPLE_FILE_SYSTEM_PROTOCOL Basic fi le system access for FAT-based fi le systems.

Apple extends fi le system support for HFS+, which is the fi les sys-

tem of choice for OS X.

This protocol contains only one method — OpenVolume() —  

which returns a FILE_PROTOCOL to traverse the fi le system.

FILE_PROTOCOL Returned from EFI_SIMPLE_FILE_SYSTEM.OpenVolume(), this 

allows the basic fi le operations — Open/Close/Delete/Read/Write, 

and the like.

DISK_IO_PROTOCOL Provides ReadDisk/WriteDisk to access disks by logical 

block I/O.

BLOCK_IO_PROTOCOL Raw block device abstraction.
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Miscellaneous Protocols

Table 6-4 lists miscellaneous protocols used in Apple’s EFI.

TABLE 6-4: Miscellaneous Protocols supported by Apple’s EFI loader

PROTOCOL NOTES

DATA_HUB_PROTOCOL A protocol defi ned by Intel for data store and access. Used by EFI producers 

to fi ll in data on devices, and is used by boot.efi in the construction of the 

device tree.

UEFI, true to its universal nature, includes protocols for myriad devices and types, including SCSI, 
iSCSI, USB, ACPI, debuggers. Apple uses only a very small subset of these in their fi rmware, includ-
ing some specifi c ones, which remain private (see Table 6-5):

TABLE 6-5: Protocol GUIDs for proprietary Apple protocols in UEFI

PROTOCOL GUID USED FOR

4FE1FC56C32332DFh-

0CD249B520DBA5893
Apple BeepGen protocol. This is used in CoreStorage, and has 

one known method — AppleBeepGenBeep.

4A6D89C933BE0EF1h-

0B916D58DDC699FBBh
Apple Event protocol.

45EEC4E30DFCE9F6-

7A5983B61A86AA0h
Image conversion protocol. Used in rendering bitmap images 

from the various PNGs used, for example, in the CoreStorage 

GUI.

EFI Runtime Services
Runtime services, like Boot Services, are available while the system is in EFI mode, but — unlike 
Boot Services — can persist afterwards. This means that they are still accessible after an operating 
system has loaded. Indeed, XNU — the kernel — sometimes draws on the runtime services.

The runtime services are more limited in scope, as it is assumed that whatever functionality they do 
not provide is either provided by the BootServices, or by whomever assumed direct control of the 
devices.

As Table 6-6 shows, runtime services include accessing the system time, as well as the environment 
variables stored in the NVRAM. One good example is the nvram(8) command, which communi-
cates with EFI services from the command line (albeit through a system call and, in turn, the I/O kit 
NVRAM driver). NVRAM variables are used primarily during the system boot, as well as to store 
persistent data across reboots (like Panic data).
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TABLE 6-6: EFI Runtime services

CATEGORY SERVICE CALLS USED FOR

Time management GetTime

SetTime

Get/Set the local time and date

Alarm clock GetWakeupTime

SetWakeupTime

Get/Set the system built-in wakeup timer

Firmware variables GetVariable

GetNextVariableName

SetVariable

Get/Set variables by name, or walk variables by 

calling GetNext()

Miscellaneous ResetSystem Perform a soft reset of the system

NVRAM Variables
NVRAM are a powerful feature of the fi rmware interface, and certainly another advantage it holds 
over the legacy BIOS. They are semantically the same as the environment variables you know from 
the shell environment, but they exist in a system-wide scope, and are accessible by both the operat-
ing system, and the fi rmware itself.

Generally, NVRAM variables can be classifi ed into the following categories:

 ‰ Boot-related variables: are used to fi gure out which kernel and root fi lesystem to boot, as well 
as pass any arguments to the kernel.

 ‰ Firmware internal variables: are used by the fi rmware, but generally ignored by the operating 
system

 ‰ Transient variables: are set and cleared based on a need, but generally do not survive across 
reboots.

Each variable has associated attributes. The fi rmware itself is agnostic as to the format or data of 
the variables — they are nothing more than named containers. In order to mitigate the chance of 
confl ict between variable names, variables can be associated with specifi c GUIDs. Apple’s boot.efi
uses several such GUIDS (see Table 6-7):

TABLE 6-7: EFI GUIDs present in Apple’s boot.efi 

GUID PURPOSE

EFI_GLOBAL_VARIABLE_GUID

8BE4DF61-93CA-11D2-AA0D-

00E098032B8C

(defi ned in <pexpert/i386/efi.h>)

Generic EFI global variables, defi ned in section 3.2 of the UEFI 

spec. The kernel hibernation logic (IOHibernateIO.cpp) sets 

BootNext — the boot choice to be used in the next boot, and 

Boot%04X (where %04X are four hex digits). Boot.efi queries 

BootCurrent, Boot0081 and BootNext.
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APPLE_VENDOR_NVRAM_GUID

4D1EDE05-38C7-4A6A-9CC6-

4BCCA8B38C1

Used for fi rmware internal variables, such as Firmware

FeaturesMask, gfx-saved-config-restore-status, 

PickerEntryReason, and others.

APPLE_BOOT_GUID

7C436110-AB2A-4BBB-A880-

FE41995C9F8

Apple specifi c private GUID used for boot variables. This is also 

the only GUID which is visible through the nvram(8) command.

4AADBD3C8D63D4FE-

0DFC14B97FD861D88
Used for Lion’s Core Storage (And therefore not available 

before 10.7). Used internally with variables like "DirtyHalt-

FromRevertibleCSFDE", and "last-oslogin-ident"

which handle Core Storage disk encryption conversion 

errors, and "corestorage-passphrase".

<pexpert/i386/efi.h> also defi ned APPLE_VENDOR_GUID - {0xAC39C713, 0x7E50, 0x423D, 
{0x88, 0x9D, 0x27,0x8F, 0xCC, 0x34, 0x22, 0xB6} } —  but there are no references to it in 
the kernel, nor apparently in the boot.efi.

The list of all variables is far more extensive than these meager pages can contain. Table 6-8, how-
ever, lists some variables of specifi c interest.

TABLE 6-8: EFI variables in the APPLE_BOOT_GUID space

EFI VARIABLE 

(APPLE_BOOT_GUID)

PURPOSE

SystemAudioVolume Last setting of volume on Mac. EFI needs this in order to sound the familiar 

boot chime at just the right volume. Try changing the volume setting, and 

use 'nvram –p'. 

boot-args Arguments that will be passed to the kernel proper, upon invocation. 

These are appended to any Kernel Flags in com.apple.Boot.plist.

efi-boot-file-data

efi-boot-kernel-

cache-data

efi-boot-mkext-data

efi-boot-device

efi-boot-device-data

The names of the kernel, kernel cache, and Multi Kext cache used in the 

boot process. (Useful for booting alternate kernel images). These are all 

set by bless(8), as discussed later.

aapl,panic-info Set by kernel on crash, to save panic information in a packed format to the 

only safe place — the NVRAM. Unpacked upon next reboot by Core

Services' DumpPanic. This variable is ignored by boot.efi. 

boot-image

boot-image-key

boot-signature

Used when setting hibernation parameters. Defi ned in iokit/IOKit/

IOHibernatePrivate.h and used in IOHibernateIO.cpp. The former 

header fi le also defi nes other memory-related keys, but those are left unused.

fmm-hostname The machine host name, if set. 
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Using the nvram(8) command will give you access to the fi rmware’s variables from user mode. 
The only visible variables, however, are the ones in Apple’s Boot GUID. To get a better view as to 
the specifi c NVRAM variables in your Mac, you can download the EFIVars.efi utility from the 
book’s website. Bear in mind, however, that in order to run EFI binaries on your Mac, you will need 
to fi rst drop into a custom EFI shell (using an alternate booter like rEFIT, described later in the sec-
tion titled “Count Your Blessings”). 

An alternative way to see the NVRAM variables is via the I/O Registry Explorer, or the command 
line utility ioreg. Again, this will only display those in the APPLE_BOOT_GUID.

If you peek at the XNU source code, in iokit/Kernel/IONVRAM.cpp you can fi nd an array, 
gOFVariables, containing many of the legacy variables that were previously used in OpenFirm-
ware. This array is also present in iOS kernels.

OS X AND BOOT.EFI

Even though Apple’s EFI implementation is closed source, because it is still an EFI binary, it can be 
inspected quite easily. In addition, it is fi lled with meaningful debugging information, from which 
one can fi gure out its stages of operation.

Recall that Apple deviates from the verbatim EFI standard — and, indeed, one can see the very fi rst 
deviation in the very format of Apple’s EFI executable. Whereas a normal EFI binary begins with a 
PE header, an Apple EFI binary has a fat like header.

Consider the boot.efi  from a Lion boot volume — /System/Library/CoreServices/boot
.efi — looks something like Output 6-1:

OUTPUT 6-1: A hex dump of Lion’s boot.efi 

morpheus@minion (/)> od -A x -t x4 /System/Library/CoreServices/boot.efi
0000000          0ef1fab9        00000002        01000007        00000003
0000010          00000030        0006c840        00000000        00000007
0000020          00000003        0006c870        00064e40        00000000
---------------------------------------------------------------------------
0000030          00905a4d        00000003        00000004        0000ffff
...
0000070          0eba1f0e        cd09b400        4c01b821        685421cd
0000080          70207369        72676f72        63206d61        6f6e6e61
0000090          65622074        6e757220        206e6920        20534f44
...
...
006c860          624de04e        bd2b36a3        238d05f5        29d04881
--------------------------------------------------------------------------
006c870          00905a4d        00000003        00000004        0000ffff
006c880          000000b8        00000000        00000040        00000000
006c890          00000000        00000000        00000000        00000000

To decipher the header, we consult Table 6-9:
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TABLE 6-9: EFI binary header fi elds

OFFSET FIELDS (LITTLE ENDIAN!) VALUE

0x00 Signature EFI Magic value (constant 0xEF1FAB9)

0x04 NumArchs Number of architectures in this fat binary

Arch+0 Arch type Type of processor

(0x00000007 = CPU_TYPE_X86)

(0x01000007 = CPU_TYPE_x86_64)

Arch+4 Arch subtype Subtype of processor

(0x00000003 = CPU_SUBTYPE_I386_ALL)

Arch+8 Off set to executable Off set to executable’s PE header, from beginning of this fi le

Arch+C Length of executable Length of the executable’s binary

Arch+10 Alignment Alignment, if any

In the example from Output 6-2, the EFI binary contains two architectures, which are concatenated 
one after the other (no alignment padding necessary). The 00905a4d you can see corresponds to the 
PE signature — MZ (4d5a, but remember Intel endian-ness).

Flow of boot.efi 
Apple meticulously stripped their boot.efi  binary, so a disassembly only reveals one exported func-
tion — start. A disabled debug feature, however, has consistently (or, at least until the time of writ-
ing) been providing a fairly good idea of its fl ow. This is discussed next

Get EFI Services Pointers, Query CPUID
The fi rst step of boot.efi, like any EFI program, is to obtain and hold in global variables a pointer 
to the EFI RuntimeServices. Then, using the cpuid assembly instruction, it checks for the presence of 
the AESNI bit.

InitializeConsole
The next step, initializeConsole, uses the RunTimeServices pointer to query the Background 
Clear NVRAM variable (from the APPLE_VENDOR_NVRAM_GUID). Then, after getting a call to Locate-
Protocol() CONSOLE_CONTROL_PROTOCOL, it calls its GetMode() to obtain the current console mode.

Lion Specifi c Initializations
Lion calls an Apple proprietary protocol with the Mac OS X 10.7 argument, and gets/sets the ROM 
and MLB variables in the APPLE_VENDOR_NVRAM_GUID.
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InitDeviceTree
The next step in the boot process is the initialization of a hierarchical, tree-based representation of 
the devices in the system. This representation, hence called the Device Tree, is later passed to the 
kernel in one of the members of the argument structure. XNU itself doesn’t care much about this 
tree, but the IOKit subsystem relies heavily on it.

The device tree is visible in IOKit through a special “plane” called the IODeviceTree plane. The 
concept of device planes will be explained in depth in the chapter dealing with IOKit. But — for a 
quick idea — you can show the device tree using the ioreg(8) command, telling it to focus on said 
plane, as shown in Listing 6-2:

LISTING 6-2: A dump of the OS X device tree

# Using ioreg to dump the device tree:
# -p: focus on the IODeviceTree plane
# -w 0: don't clip output.
# –l: list properties
# grep –v \"IO : discard occurrences of "IO in the output – 
#                i.e. disregard I/O kit properties

morpheus@Ergo (/)$ ioreg –w 0 –l -p IODeviceTree | grep -v \"IO
+-o Root  <class IORegistryEntry, id 0x100000100, retain 11>
  | {
  |   … the Root entry is the IO Plane root, not the device tree root … 
  |     I/O Kit planes are discussed in depth in the chapter dealing with I/O Kit
  | }
  | 
  +-o /  <class IOPlatformExpertDevice, id 0x10000010f, registered, matched, active,
 busy 0 (155183 ms), retain 25>
    | {
    |   "compatible" = <"MacBookAir3,2">
    |   "version" = <"1.0">
    |   "board-id" = <"Mac-942C5DF58193131B">
    |   "serial-number" = <…..>
    |   "clock-frequency" = <005a6b3f>
    |   "manufacturer" = <"Apple Inc.">
    |   "product-name" = <"MacBookAir3,2">
    |   "system-type" = <02>
    |   "model" = <"MacBookAir3,2">
    |   "name" = <"/">
    | }
    | 
    +-o chosen  <class IOService, id 0x100000101, !registered, !matched, active, busy 0,
 retain 5>
    | | {
    | |   "boot-file-path" = <04045000… >
    | |   "boot-args" = <"arch=x86_64">
    | |   "machine-signature" = <00100000>
    | |   "boot-uuid" = <"55799E60-4F79-2410-0401-1734FF9D9E90">
    | |   "boot-kernelcache-adler32" = <aa19789d>
    | |   "boot-file" = <"mach_kernel">
    | |   "name" = <"chosen">
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    | |   "boot-device-path" =  < .. >
    | | }
    | | 
    | +-o memory-map  <class IOService, id 0x100000102, !registered, !matched, active,
 busy 0, retain 6>
    |     {
    |       "name" = <"memory-map">
    |       "BootCLUT" = <00a0100200030000>
    |       "Pict-FailedBoot" = <00b0100220400000>
    |     }
    |
    +-o efi  <class IOService, id 0x100000103, !registered, !matched, active, busy 0, 
retain 7>
    | | {
    | |   "firmware-revision" = <0a000100>
    | |   "device-properties" = <5d09..0000010000000  …06d00650000000500000057>
    | |   "firmware-abi" = <"EFI64">
    | |   "name" = <"efi">
    | |   "firmware-vendor" = <4100700070006c0065000000>
    | | }
    | | 
    | +-o runtime-services  <class IOService, id 0x100000104, !registered, !matched, 
active, busy 0, retain 4>
    | |   {
    | |     "name" = <"runtime-services">
    | |     "table" = <18ae99bf00000000>
    | |   }
    | |
    | +-o configuration-table  <class IOService, id 0x100000105, !registered, !matched, 
active, busy 0, retain 12>
    | | | {
    | | |   "name" = <"configuration-table">
    | | | }
    | | | 
    | | +-o EB9D2D31-2D88-11D3-9A16-0090273FC14D  <class IOService, id 0x100000106, 
!registered, !matched, active, busy 0, retain 4>
    | | |   {
    | | |     "name" = <"EB9D2D31-2D88-11D3-9A16-0090273FC14D">
    | | |     "guid" = <312d9deb882dd3119a160090273fc14d>
    | | |     "table" = <00a071bf00000000>
    | | |   }
    | | |
    | | +-o 8868E871-E4F1-11D3-BC22-0080C73C8881  <class IOService, id 0x100000107, 
!registered, !matched, active, busy 0, retain 4>
    | | |   {
    | | |     "alias" = <"ACPI_20">
    | | |     "name" = <"8868E871-E4F1-11D3-BC22-0080C73C8881">
    | | |     "table" = <14a096bf00000000>
    | | |     "guid" = <71e86888f1e4d311bc220080c73c8881>
    | | |   }
    | | |
    | | +-o EB9D2D30-2D88-11D3-9A16-0090273FC14D  <class IOService, id 0x100000108, 
!registered, !matched, active, busy 0, retain 4>
    | | |   {

continues
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    | | |     "alias" = <"ACPI">
    | | |     "name" = <"EB9D2D30-2D88-11D3-9A16-0090273FC14D">
    | | |     "table" = <00a096bf00000000>
    | | |     "guid" = <302d9deb882dd3119a160090273fc14d>
    | | |   }
...

Allocate Memory for Kernel Call Gate
The kernel needs to be loaded from the boot-device into memory, and in order to do that, memory 
has to be allocated. The address of the kernel call gate resides in a global variable.

Several Additional Initializations
InitMemoryConfig, InitSupportedCPUTypes, and several other functions are called here.

Check for Hibernation Resume
CheckHibernate is a function which resumes the system from hibernation, if previously hibernated. 
If this is the case, this overrides the rest of the fl ow.

Process Boot Keys
ProcessOptions is a key function in the boot loader, responsible for fi guring out all the various 
boot options, and eventually consolidating them into the kernel command line.

ProcessOptions checks the keyboard for any input keys. Apple’s HT1533[3] lists the startup key 
combinations supported, and shown in Table 6-10:

TABLE 6-10: Intel Mac Boot-Time Keystrokes

KEYSTROKE PURPOSE

C Boot from CD/DVD

D Run diagnostics — Apple Hardware Test

N Netboot

T Target disk mode

Option (ALT) Display “picker” (Startup manager boot device selections)

SHIFT Safe mode (equivalent to boot-args –x)

Command-R Recovery mode (Lion only)

Command-S Single user mode (equivalent to boot-args –s)

Command-V Verbose mode (equivalent to boot-args –v)

3+2/6+4 Boot in 32-bit/64-bit mode

LISTING 6-2 (continued)
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The main fi le used by ProcessOptions is com.apple.Boot.plist. This fi le, located in /Library/
Preferences/SystemConfiguration, is the main property list used by boot.efi, and its man page 
(com.apple.Boot.plist(5)) provides the only documentation of note provided by apple for the 
boot loader, at all. 

Apple documents the following parameters in the man page, as shown in Table 6-11:

TABLE 6-11: Documented boot parameters for com.apple.Boot.plist

PARAMETER PURPOSE

Kernel The name of the kernel image (by default, mach_kernel)

Kernel Cache The path to a prelinked kernel — both kernel and kernel extensions in one 

big fi le

Kernel Flags Arguments merged with "boot-args" from the NVRAM and passed to 

kernel as command line

Kernel Architecture Either i386 or x86_64. Can also be set as a Kernel Flag (arch=)

MKext Cache The path to a MultiKExt cache, containing packaged kernel extensions 

(mostly drivers) to be loaded with the kernel

Root UUID Unique identifi er of fi lesystem to mount as root

The documentation neglects to mention the following, more colorful parameters, as shown in 
Table 6-12:

TABLE 6-12: Undocumented boot parameters for com.apple.Boot.plist

PARAMETER PURPOSE

Background

Color
Set background color for boot

Boot Logo Path to an image for boot. This can be any PNG — Apple’s EFI contains a special-

ized protocol for BMP conversion

Boot Logo 

Scale
Scale factor for boot logo

RAM Disk Ram Disk Image. Like many UNIX kernels, XNU can be set to boot up with a fi le-

system image loaded into RAM, which functions as an initial root-fi le system. OS 

X rarely uses this option, but iOS relies on it when booting in recovery or update 

modes. 

Path names in NVRAM variables are all specifi ed with backslashes (\) instead of slashes (/) — as 
these arguments are processed by EFI, not the kernel.

c06.indd 199c06.indd   199 9/29/2012 5:23:28 PM9/29/2012   5:23:28 PM



200 x CHAPTER 6  ALONE IN THE DARK: THE BOOT PROCESS: EFI AND IBOOT 

Lion: Check CPU Is Not 32-bit Only
In Lion and later, the boot loader calls a function whose sole work is ensuring the CPU is 64-bit 
capable. By using the Intel cpuid assembly instruction, the function makes sure the CPU is not 
32-bit mode only. If the CPU cannot handle 64-bit mode as well, EFI boot fails with a message stat-
ing, “this version of OS X is not supported on this platform.”

This is really an artifi cial restriction, and the real reason Apple says Lion will not run on 32-bit only 
CPUs. The Lion binaries themselves are fat binaries, and even the kernel contains a 32-bit image. 
Starting with Mountain Lion, however, it seems that the kernel will be 64-bit only.

Lion: Check Core Storage
Lion also introduces support for CoreStorage, Apple’s logical volume partitioning.  If core storage 
is detected, the boot loader gets the partition ID and EFI handle, and then calls LoadCoreStorage-
Configuration() to obtain the Core Storage parameters, and UnlockCoreStorageVolumeKey(), in 
case the Core Storage volume is encrypted.

SetConsoleMode
This function initializes the console to graphics mode.

DrawBootGraphics
Draws the familiar boot logo, and the animated circle. A call to an internal function, Draw
Animation, handles the latter by creating an EFI timer event, set to fi re every 100 ms and installing 
a draw function as a callback.

LoadKernelCache
This function is responsible for locating and loading the pre-linked kernel, if any. This function 
internally calls LoadKernel, which can load a standard (i.e. non-pre-linked) kernel, as well. Internal 
functions here deal with the Mach-O format of the kernel, and parse the various load commands.

InitBootStruct
The kernel only accepts one argument — a pointer to a boot structure, which is a fairly hefty 
struct containing all the parameters the kernel needs to know — from its command line arguments 
(from the boot-args and com.apple.Boot.plist), to the device tree and other EFI-borne argu-
ments. This structure is described in detail in the following section, “Booting the Kernel.” Init-
BootStruct allocates and initializes this structure, which occupies a single page (4 K) in memory.

LoadDrivers
This function loads the various device drivers — KEXTs — into the kernel from /System/Library/
Extensions.mkext, if found.

LoadRamDisk
If XNU was loaded with a RAMDisk, this function loads the RAMDisk into memory, so it is avail-
able to the kernel without the need for any drivers. It also sets the /chosen/memory-map RAMDisk
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attribute, which signals to XNU that a RAMDisk is ready for loading. If a RAMDisk is used, Init-
BootStruct, called previously, also sets the boot-ramdmg-size and boot-ramdmg-extents proper-
ties, which in turn are used by IOKit to detect the RAMDisk.

StopAnimation
Stops the EFI boot animation, by closing the Animation event set when the animation was started, 
and clearing the progress animation (by drawing a rectangle over it). 

FinalizeBootStruct
This function wraps up the boot struct argument to the kernel (by fi lling in fi nal details like the 
video parameters). Just before returning, this function also exits the Boot Services.

Jump to Kernel Entry Point
Finally, Start attempts to jump to the kernel gate (the same one which was allocated in the begin-
ning). If it succeeds, this will never return. Otherwise, it exits with error 8xxxx15h, and sleeps for 
10 seconds before exiting Boot Services.

Booting the Kernel
After loading the kernelcache or the kernel proper, boot.efi exits the BootServices, and trans-
fers control to the kernel. The kernel is passed a single argument — a page containing the Boot-
Struct, which was fi nalized in the last stage, from which the kernel can extract all the data required 
for its operation. This massive structure in the kernel sources (pexpert/pexpert/i386/boot.h), 
but also defi ned in the user-mode include fi le <pexpert/i386/boot.h>, shown in Listing 6-3:

LISTING 6-3: Boot_args (version 2.0) structure from Lion

typedef struct boot_args {
    uint16_t Revision;/* Revision of boot_args structure (Lion: 2, SL: 1) */
    uint16_t Version; /* Version of boot_args structure  (Lion: 0, SL: 6) */

    uint8_t  efiMode;    /* 32 = 32-bit, 64 = 64-bit */
    uint8_t  debugMode;  /* Bit field with behavior changes */
    uint8_t  __reserved1[2];

    char     CommandLine[BOOT_LINE_LENGTH];  /* Passed in command line */

    uint32_t MemoryMap;  /* Physical address of memory map */
    uint32_t MemoryMapSize;
    uint32_t MemoryMapDescriptorSize;
    uint32_t MemoryMapDescriptorVersion;

    Boot_Video  Video;          /* Video Information */

    uint32_t deviceTreeP; /* Physical address of flattened device tree */

continues
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    uint32_t deviceTreeLength; /* Length of flattened tree */

    uint32_t kaddr;       /* Physical address of beginning of kernel text */
    uint32_t ksize;       /* Size of combined kernel text+data+efi */

    uint32_t efiRuntimeServicesPageStart;
                           /* physical address of defragmented runtime pages */
    uint32_t efiRuntimeServicesPageCount;
    uint64_t efiRuntimeServicesVirtualPageStart; 
                          /* virtual address of defragmented runtime pages */

    uint32_t efiSystemTable; /* phys. Addr. of system table in runtime area */
    uint32_t __reserved2;      // defined in the user-mode header as efimode (32,64)

    uint32_t performanceDataStart; /* physical address of log */
    uint32_t performanceDataSize;

    uint32_t keyStoreDataStart; /* physical address of key store data */
    uint32_t keyStoreDataSize;
    uint64_t bootMemStart;
    uint64_t bootMemSize;
    uint64_t PhysicalMemorySize;
    uint64_t FSBFrequency;
    uint32_t __reserved4[734]; // padding to a page (2,936 bytes)

} boot_args;

The boot_args structure changes in between kernel versions, and its fi eld locations are often shuf-
fl ed around. A kernel version is therefore closely tied to a corresponding EFI loader version. Apple 
thus distributes, from time to time, EFI updates, which in part address the compatibility with the 
kernel. To ensure compatibility, the boot_args begin with Revision and Version fi elds. Versions 
up to Snow Leopard used 1.x (Snow Leopard used 1.6), and Lion uses version 2.0

Using DTrace, it is possible to peek at this structure. The D script in Listing 6-4 relies on the boot_
args being accessible as a fi eld of a global kernel variable, PE_State, and prints them out:

LISTING 6-4: Using dtrace(1) to dump the boot_args structure

#! /usr/sbin/dtrace -C  -s
#pragma D option quiet

BEGIN
{
    self->boot_args = ((struct boot_args*)(`PE_state).bootArgs);
    self->deviceTreeHead = ((struct boot_args*)(`PE_state).deviceTreeHead);
    self->video = ((PE_Video ) (`PE_state).video);

LISTING 6-3 (continued)
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    printf("EFI: %d-bit\n", self->boot_args->efiMode);
    printf("Video: Base Addr: %p\n", self->video.v_baseAddr);
    printf("Video is in %s mode\n", (self->video.v_display == 1 ? "Graphics" : "Text"));
    printf("Video resolution: %dx%dx%d\n", self->video.v_width, 
            self->video.v_height, self->video.v_depth);

    printf ("Kernel command line : %s\n", self->boot_args->CommandLine);

    printf ("Kernel begins at physical address 0x%x and spans %d bytes\n",
           self->boot_args->kaddr, self->boot_args->ksize);
    printf ("Device tree begins at physical address 0x%x and spans %d bytes\n",
           self->boot_args->deviceTreeP, self->boot_args->deviceTreeLength);

    printf ("Memory Map of %d bytes resides in physical address 0x%x",
            self->boot_args->MemoryMapSize,
            self->boot_args->MemoryMap);

#ifdef LION
    printf("Physical memory size: %d\n",self->boot_args->PhysicalMemorySize);
    printf("FSB Frequency: %d\n",self->boot_args->FSBFrequency);
#endif
}

As you can see, the script doesn’t install any probes. In fact, the only reason to use DTrace, to begin 
with, is that it provides the simplest way to enter kernel memory, where the boot_args resides. 
Note, that the addresses in the boot_args structure are mostly physical addresses. 

Kernel Callbacks into EFI
Recall, that the purpose of EFI is to load the kernel. Yet the kernel still has to interface with EFI, in 
particular with the runtime services.

The code in XNU handling EFI is in osfmk/i386/AT386/model_dep.c.  In it, are defi ned three 
functions:

 ‰ efi_init() — This obtains the EFI runtime services from the kernel’s boot arguments. This 
function in turn calls the next function.

 ‰ efi_set_tables_[32|64] (EFI_SYSTEM_TABLE *) — This function, in either a 32- or 
64-bit version, takes as an argument a pointer to the EFI system table, validates its signature 
and CRC, and retrieves a pointer to the Runtime Services, which it places int gPEEFIRun-
TimeServices, a global variable.

 ‰ hibernate_newruntime_map (void *map, vm_size_t map_size, uint32_t sys-

tem_table_offset) — This reinitializes the runtime services table following a wakeup from 
hibernation.

The Mach core, however barely uses EFI — and BSD is totally oblivious to it. It is I/O Kit, on the 
other hand, which makes extensive use of EFI (and its device tree), as will be discussed later.
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Boot.efi  Changes in Lion
EFI’s role has been signifi cantly enhanced in Lion, with the advent of CoreStorage, and other 
changes. These include the following:

 ‰ Dropped Features: Despite Apple’s offi cial announcements, kernels in OS X up to and including 
Snow Leopard kept on maintaining a PPC image along a (very) fat binary. As a consequence, 
EFI in Snow Leopard still supports a “Kernel Interpreter.” This has been dropped in Lion. 

 ‰ Core Storage Changes: Lion brings a major change to storage devices — and to EFI — with 
its Core Storage services. A key feature of Core Storage is full disk encryption (FDE), which 
encrypts the entire disk and makes its data inaccessible without a special pass phrase. Because 
this full disk encryption affects everything — including the OS X kernel itself — Lion’s 
boot.efi has been revised to add support for Core Storage password authentication. Lion’s 
EFI boasts a full aqua-like interface to query users for their passwords, including support for 
VoiceOver(!). To achieve this, it utilizes a private framework, from which it obtains the PNG
fi les it renders in the graphic controls. If the user authenticates with EFI (as he or she must, in 
order to boot), the credentials are carried forward to enable auto-login.

Boot Camp
Another important feature, which is implemented by Apple’s EFI, is Boot Camp. This is the 
name given to Apple’s dual boot solution, which allows running non-Apple operating systems 
(primarily, Windows) on Mac hardware. Because Apple uses its proprietary hardware and relies on 
EFI — whereas Windows is largely still bogged down in BIOS — Apple made in Boot Camp a com-
plete driver package, to support its specifi c hardware, and modifi ed its boot.efi to allow multi-OS 
boot. Multi-OS boot can be enabled independently by using a third party EFI boot loader, such 
rEFIt (shown in an experiment later in this chapter).

Count Your Blessings
OS X has traditionally allowed very little access to the fi rmware — be it the PPC’s OpenFirmware 
or Intel’s EFI. Aside from the nvram(8) command, the only other tool provided which touches upon 
the fi rmware is the bless(8) utility.

The bless(1) command is a utility meant to control and modify the boot characteristics of the sys-
tem — essentially, defi ne where and how the system would boot from. It has no less than six modes 
of operation, shown in Table 6-13.

TABLE 6-13: bless(1) modes of operation

MODE USED FOR

Folder Designate a specifi c directory as the system boot directory

Mount Designate a fi le system (volume), rather than a directory. The fi le system argument is a 

mounted fi le system, hence the name.
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Device Designate a volume by /dev notation, i.e. when the fi le system it contains is unmounted.

NetBoot Set server to boot from, using –server bsdp://[interface@]a.b.c.d, where 

a.b.c.d specifi es the address of the server, and — optionally — interface specifi es the 

local interface, in case of a multi-homed system. 

BSDP — the Apple “BootStrap Discovery Protocol” is an extension of DHCPv4 not used or 

implemented anywhere outside Apple.

Unbless Revoke the “blessing” from a particular folder, mount, device or network boot.

Info Merely display information.

Apple keeps bless open source, and it is recommended to get the source from Apple’s Open Source 
site, if you want to get more insights as to how bless works in each of these modes. The following 
example shows a quick usage of bless:

# set bless to demonstrate net boot. Note this is just for a demonstration. 
# Real netboot would require a netboot server (and a real IP address)
bash-3.2# bless --netboot --server bsdp://1.2.3.4
bash-3.2# nvram -p
efi-boot-device <array><dict><key>IOMatch</key><dict><key>IOProviderClass</key><string>
IONetworkInterface</string><key>BSD Name</key><string>en0</string></dict><key>
BLMACAddress</key><data>WFXK9EhZ</data></dict><dict><key>IOEFIDevicePathType</key>
<string>MessagingIPv4</string><key>RemoteIpAddress</key><string>1.2.3.4</string></dict>
</array>
efi-boot-device-data
     %02%01%0c%00%d0A%03%0a%00%00%00%00%01%01%06%00%00%15%01%01%06%00%00%00%03%0b%%00XU
%ca%f4HY%00%00%00%00%00%00%00%00%00%00%00%00%00%00%00%00%00%00%00%00%00%00%00%00%00%00
%00%03%0c%13%00%00%00%00%00%01%02%03%04%00%00%00%00%00%00%00%7f%ff%04%00
# Quickly set bless back to the safe default!
root@Ergo (/)# bless --setBoot –-folder /
root@Ergo (/)# nvram –p
efi-boot-device <array><dict><key>IOMatch</key><dict><key>IOProviderClass</key><string>
IOMedia</string><key>IOPropertyMatch</key><dict><key>UUID</key><string>DADF1195-482F-
423D-B635-CD19BAA4EE47</string></dict></dict><key>BLLastBSDName</key><string>disk0s2
</string></dict></array>
efi-boot-device-data
     %02%01%0c%00%d0A%03%0a%00%00%00%00%01%01%06%00%00%0a%03%12%0a%00%00%00%00%00%00%00
%04%01*%00%02%00%00%00(@%06%00%00%00%00%000#.%1d%00%00%00%00%95%11%df%da/H=B%b65%cd%19
%ba%a4%eeG%02%02%7f%ff%04%00

As the example shows, bless(8) sets the efi-boot-device and efi-boot-device-data variables. 
You can see that these are binary encoded variables (the %xx being hexadecimal escape sequences). 
If these variables are set, boot.efi will attempt to boot from them. Otherwise, it will seek the fi rst 
HFS+ bootable partition it can fi nd. Using bless in its informational mode displays the finderInfo
fi eld of the HFS+ volume, which is an array of eight pointers defi ning fi lesystem bootable param-
eters, shown in Table 6-14,
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TABLE 6-14: The FinderInfo fi eld in HFS+

FINDERINFO NOTES

0 Directory ID of bootable system folder. This is an HFS+ catalog node identifi er (and 

inode #), and is usually "2", indicating the root folder (/)

1 Catalog Node ID of the bootable fi le. On OS X Intel-based systems, this will be the 

Catalog Node ID (and inode #) of boot.efi

2 This is the Catalog Node ID of a folder that Finder will automatically open a window to 

browse (similar to Windows autorun)

3 Reserved for compatibility with OS 8, or 9. On those systems, it is the same as 

finderInfo[0]

4 Unused

5 On OS X, the same as finderInfo[0]

6-7 Both these fi elds are used together to form a unique, 64 bit volume identifi er

morpheus@Ergo (/) $ bless –info /
finderinfo[0]:      2 => Blessed System Folder is /
finderinfo[1]: 4600322 => Blessed System File is /System/Library/CoreServices/boot.efi
finderinfo[2]:      0 => Open-folder linked list empty
finderinfo[3]:      0 => No alternate OS blessed file/folder
finderinfo[4]:      0 => Unused field unset
finderinfo[5]:      2 => OS X blessed folder is /
64-bit VSDB volume id:  0x2410197504017D3E
root@Ergo (/)# ls -i /System/Library/CoreServices/boot.efi 
4600322 /System/Library/CoreServices/boot.efi

Normally, bless(8) is one of those utilities that is best left untouched. After all, if it isn’t broken, 
why fi x it? Indeed, improper use of bless(8) can rend the system unbootable. However, given 
an EFI binary, even a non-Apple one, it is possible to use bless to bestow the holy power of boot-
ing upon it. This is especially useful if you want to inspect your Mac at the fi rmware level. This is 
shown in the next experiment.

Experiment: Running EFI Programs on a Mac
Recall, that whereas most EFI vendors provide an EFI shell, Apple does not. Fortunately, it is a sim-
ple matter to install a third party shell. There are generally two shells you can consider:

 ‰ Intel’s EFI toolkit contains a shell, as well as many other EFI binaries which can be used to 
explore devices, and the fi rmware itself

 ‰ The open source project rEFIt contains a shell — but also a simple installer for OS X, which 
invokes bless(8) so that the fi rmware prefers the rEFIt EFI loader over the default 
boot.efi. This program functions as an alternate boot loader, which either lets you proceed 
normally to boot OS X (the default), or drop to the EFI shell.
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The sequence carries a small, but non-negligible risk of making your system 
unbootable. Installing an alternate EFI boot handler can provide you with more 
insights about EFI, along the lines presented in this chapter, and is generally a 
simple and safe operation. That said, exercise some caution. You might want to 
try this in a VM environment fi rst.

To use the following program, you will need an EFI compiler. This is generally the same as the 
standard GCC, albeit with different headers, to refl ect the EFI dependencies (and not the standard 
libc). GNU has an EFI toolkit you can use for this purpose. Because the programs are compiled to 
EFI, you can choose any version of the toolkit (for example, Linux, which is easiest to use).

After downloading and installing the GNU EFI Toolkit, you will see that it has an apps/ directory. 
This directory of sample applications also contains the Makefi le you need to create your own appli-
cations, such as the one shown in Listing 6-5: 

LISTING 6-5: A sample program to print all the NVRAM variables on a Mac

#include <efi.h>
#include <efilib.h>

#define PROTOCOL_ID_ID  \
    { 0x47c7b226, 0xc42a, 0x11d2, {0x8e, 0x57, 0x0, 0xa0, 0xc9, 0x69, 0x72, 0x3b} }

static EFI_GUID SProtId                = PROTOCOL_ID_ID;

  // Simple EFI app to dump all variables, derived from one of the GNU EFI Samples

EFI_STATUS
efi_main (EFI_HANDLE image, EFI_SYSTEM_TABLE *systab)
{
        EFI_STATUS status;
        CHAR16 name[256], *val, fmt[20];
        EFI_GUID vendor;
        UINTN size;

        InitializeLib(image, systab);

        name[0] = 0;
        vendor = NullGuid;

        Print(L"GUID                                Variable Name        Value\n");
        Print(L"=================================== ==================== ========\n");
        while (1) {
                StrCpy(fmt, L"%.-35g %.-20s %s\n");
                size = sizeof(name);
                status = uefi_call_wrapper(RT->GetNextVariableName, 3, &size, name, 
                                               &vendor);
                if (status != EFI_SUCCESS)
                        break;

continues
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                val = LibGetVariable(name, &vendor);
                if (CompareGuid(&vendor, &SProtId) ==0)
                {
                        StrCpy(fmt, L"%.-35g %.-20s %.-35g\n");
                        Print (fmt, &vendor, name , &val);
                }
                else
                Print(fmt, &vendor, name, val);
                FreePool(val);
        }
        return EFI_SUCCESS;
}

To compile this program, simply add it to the Makefi le in the apps/ directory (or overwrite one of 
the existing samples). The resulting binary should distinctly be an EFI binary:

[root@Forge gnu-efi-3.0/apps]# make
/usr/bin/gcc -I. -I./../inc -I./../inc/x86_64 -I./../inc/protocol   -O2 -fpic -Wall -
fshort-wchar -fno-strict-aliasing -fno-merge-constants -mno-red-zone -DCONFIG_x86_64 -
D__KERNEL__ -I/usr/src/sys/build/include -c printenv.c -o printenv.o
/usr/bin/ld -nostdlib -T ./../gnuefi/elf_x86_64_efi.lds -shared -Bsymbolic -L../lib -
L../gnuefi ../gnuefi/crt0-efi-x86_64.o printenv.o -o printenv.so -lefi -lgnuefi 
/usr/lib/gcc/x86_64-redhat-linux/4.6.0/libgcc.a
/usr/bin/objcopy -j .text -j .sdata -j .data -j .dynamic -j .dynsym -j .rel \
           -j .rela -j .reloc --target=efi-app-x86_64 printenv.so printenv.efi
rm printenv.so printenv.o

[root@Forge gnu-efi-3.0/apps]# file printenv.efi
printenv.efi: PE32+ executable (EFI application) x86-64 (stripped to external PDB), for 
MS Windows

Take this binary and drop it into your Mac’s EFI partition. The easiest way to do so is to mount the 
partition while OS X is still running:

root@Ergo (/)# mount -t msdos /dev/disk0s1 /mnt   # Mount as a DOS (Fat) filesystem

root@Ergo (/)# ls /mnt                            # Indeed, mount is succesful
.Trashes      .fseventsd         EFI

root@Ergo (/)# du /mnt/EFI                # Show directories
30723   /mnt/EFI/APPLE/EXTENSIONS
8323    /mnt/EFI/APPLE/FIRMWARE # Apple "Firmware update" .scap files are here
39047   /mnt/EFI/APPLE
39048   /mnt/EFI

root@Ergo (/)# cp efitest.efi /mnt/        # Copy over file to root of partition

To run this program, you will need to fi rst install rEFIt[4], as otherwise Apple’s boot.efi will 
just boot into OS X. The installation is a straightforward one, and should not in any way hamper 
your ability to boot normally into OS X. It will, however, give you an option to drop into an EFI 
shell. 

LISTING 6-5 (continued)
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The EFI shell greatly resembles the old fashioned DOS prompt, wherein you can execute the pro-
gram amidst nostalgic PC EGA 4-bit colors. Rather than use drive letters, use fs0: and fs1: to 
access the EFI and the system partitions, respectively (and remember a backslash instead of a slash 
for directory separators). Running the program from Listing 6-4 will show you all the environment 
variables your NVRAM contains, as shown in Output 6-2:

OUTPUT 6-2: A dump of the EFI Variables from a Mac Mini:

Shell> dir fs0: # either ls or dir work
Directory of: fs0:\

 04/01/12   09:30a                   48,354    printenv.efi
 03/23/10   01:07a <DIR>  r            352     EFI

Shell> fs0:\printenv.efi
GUID                                Variable Name        Value
=================================== ==================== ========
E6C2F70A-B604-4877-85BA-DEEC89E117E PchInit              <B0><FF><8E><D0>A^C

Efi                                 MemoryConfig         RLEX^K
4DFBBAAB-1392-4FDE-ABB8-C41CC5AD7D5 Setup
05299C28-3953-4A5F-B7D8-F6C6A7150B2 SetupDefaults
Efi                                 Timeout              ^E<FF><8E><D0>A^C

AF9FFD67-EC10-488A-9DFC-6CBF5EE22C2 AcpiGlobalVariable   P<FE><8E>
Efi                                 Lang                 eng<8E>
Efi                                 BootFFFF             ^A
Efi                                 BootOrder            <80>
Efi                                 epid_provisioned     ^A
Efi                                 lock_mch_s3          ^A
7C436110-AB2A-4BBB-A880-FE41995C9F8 SystemAudioVolume    h
36C28AB5-6566-4C50-9EBD-CBB920F8384 preferred-networks
36C28AB5-6566-4C50-9EBD-CBB920F8384 preferred-count      ^A
36C28AB5-6566-4C50-9EBD-CBB920F8384 current-network
4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C1 AAPL,PathProperties0 R^A
7C436110-AB2A-4BBB-A880-FE41995C9F8 aht-results
<dict><key>_name</key><string>spdiags_aht_value</string><key>spdiags_last_run_key</key>
<date>4011-09-16T18:36:02Z</date><key>spdiags_result_key</key><string>
spdiags_passed_value</string><key>spdiags_version_key</key><string>3A224</string>
</dict>7C436110-AB2A-4BBB-A880-FE41995C9F8 fmm-computer-name    Minion
Efi                                 Boot0080             ^A
7C436110-AB2A-4BBB-A880-FE41995C9F8 efi-boot-device-data ^B^A^L<D0>A^C

7C436110-AB2A-4BBB-A880-FE41995C9F8 efi-boot-device
<array><dict><key>IOMatch</key><dict><key>IOProviderClass</key><string>IOMedia</string>
<key>IOPropertyMatch</key><dict><key>UUID</key><string>50DD0659-0F10-4307-860B-
6908BD051907</string></dict></dict><key>BLLastBSDName</key><string>disk0s2</string>
</dict></array>
ShellAlias                          copy                 cp
...

The nvram(8) command only displays the variables associated with the Apple GUID (7C436110-
AB2A-4BBB-A880-FE41995C9F8, as shown in Table 6-7). 
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You can use the other examples in the GNU EFI toolkit to explore EFI further. Additionally, you 
can use the EFI programs bundled with rEFIt (which should be accessible as fs1:\efi\tools), for 
example dumpprot.efi, which will dump all EFI protocols by GUID, and dumpfv.efi, which will 
dump the fi rmware image into the EFI system partition. 

IOS AND IBOOT 

Apple’s i-Devices do not support EFI, and have a totally different boot process than that described 
above for OS X. The iOS boot process is custom built by Apple using components not found in any 
other system, and specifi cally designed to be hack-proof, so as to discourage “evil” jailbreakers from 
installing any operating system other than iOS.

The boot process is a multi-stage one, as is shown in Figure 6-2:

Boot ROM DFU?

LLB

OS Upgrade (iTunes)

Kernel

Recovery
Ramdisk

Recovery mode

iBoot

iBSS iBEC
Update
Ramdisk

FIGURE 6-2: The iOS Boot process (high-level)

With the exception of the Boot ROM, all these steps are encrypted and digitally signed. This forms 
a chain of trust right up to the kernel, so that it is (theoretically) impossible to interfere with the 
boot process and inject any other type of code. 

It appears all boot components share a common code base. The NAND FTL (Flash Translation 
Layer), IMG3 loading, cryptography support, USB support, and ARM low-level exception handling 
code are all largely identical in them. Each is, in effect, fully self-contained, and rightfully so: They 
precede the iOS kernel, and therefore cannot rely on its services. 

Precursor: The Boot ROM
i-Devices boot using a custom ROM, which is responsible for initializing the device, and loading the 
Low Level Bootloader, commonly referred to as the LLB. Key in the loading operation is the verifi -
cation of the digital signature by Apple which ensures the LLB has not been tampered with.
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The ROM is part of the device itself and cannot be updated. This works both in Apple’s favor and 
against it: It is extremely diffi cult to “dump” the ROM in order to reverse-engineer it, and it cannot 
be tampered with in any way. On the other hand, if it does contain a vulnerability (i.e. a buffer over-
fl ow or other code injection vector), there is nothing Apple can do to update it.

In the older generation of Apple’s i-Devices — those pre-dating the A5 chip, the bootrom indeed 
contains an (as yet) undisclosed vulnerability. The “limera1n” exploit, due to the famous hacker 
geohot, has been successfully used to jailbreak all those devices, in what are known as “untethered” 
jailbreaks: By exploiting the vulnerability, the check for Apple’s signature can be easily bypassed, 
enabling the uploading of custom iOS images (.ipsw fi les), and even non-iOS images (giving rise to 
the peculiar movement of iDroid, to install Android on i-Devices in place of iOS). Older bootrom 
are therefore forward-jailbreakable, as irrespective of any iOS vulnerabilities, the OS image itself 
can always be patched.

A5-based devices, by contrast, have a newer ROM, one in which the limera1n vulnerability, though 
undisclosed, was patched. As a consequence, they remain (as of yet) impervious to jailbreaking 
attempts. 

From the boot ROM, two roads diverge: One is the path to normal boot (the default startup of the 
device) and/or Recovery mode (“Connect to iTunes”). The other is the Device Firmware Update 
(DFU), which is used to update the iOS image. 

Normal Boot
Unless otherwise stated, with no user interaction the device will proceed to boot normally. This is a 
two-staged process, consisting of the LLB, and iBoot, both of which are responsible for eventually 
loading the iOS kernel.

Stage I: The Low Level Bootloader
The Low Level Bootloader is the fi rst updateable component of the boot process. It is part of the iOS 
image, not the device itself, and if you peek at the image you will see it is a fi le called LLB.xxxx.
RELEASE.img3 in the Firmware/all_flash/all_flash.xxxap.production/ directory. “xxx” is 
the model number of the i-Device, shown in Table 6-19, later in this chapter.

The LLB, like all fi les in the iOS image, is in the IMG3 format. As described under “iOS Software 
Images,” in this chapter, this is an encrypted fi le format which is also digitally signed by Apple. Fol-
lowing the IMG3 header (64 bytes) is the actual raw code of the LLB. It is loaded by the bootrom 
into a predefi ned address, usually 0x84000000.

LLB will locate its second stage, iBoot, and will attempt to load it. This is done by seeking the image 
in memory with the tag “ibot.” If this fails, LLB contains code to drop to DFU mode, and load 
iBEC.

Stage II: iBoot
The main boot loader is called iBoot. It is this loader which locates, prepares, and loads the 
kernelcache. Older versions of iBoot also allowed passing command line arguments (from the 
boot-args variable), but due to the obvious potential for abuse, this has been removed.
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Using various jailbreaking utilities, it is possible to choose a tethered boot on pre 
A5 devices, and — by patching iBoot — pass command-line arguments using 
custom boot-args. 

iBoot gets loaded at address 0x5FF00000. It is a fairly sophisticated boot loader. In addition to 
the common code shared by all components, it contains a built-in HFS+ driver, which enables it to 
access the iOS fi lesystem. iBoot is also multi-threaded, and normally spawns at least two threads: 

 ‰ A “main” thread, which displays the familiar Apple logo, and proceeds to boot the system, as 
specifi ed by the auto-boot and boot-command environment variables. The latter can be set 
to fsboot (normal fi le system boot, with or without ramdisk), diags (diagnostics) or upgrade. 
The boot may be delayed by a bootdelay environment variable, in which the user may inter-
vene and abort the process. 

 ‰ A “uart reader” thread, which Apple likely uses for debugging purposes. The serial ports on 
i-Devices are present, though require quite a bit of work to enable.[5] This thread is therefore 
normally idle. 

During normal operation, iBoot calls its fsboot() function, which mounts the iOS system parti-
tion, locates the kernel, prepares its device tree, and boots it. If the boot fails (or is aborted), how-
ever, iBoot falls into recovery mode, wherein the main thread spawns several concurrent tasks:

 ‰ The idleoff task: Times-out after suffi cient user inactivity and power off the device

 ‰ The poweroff task: Forces the device to power off on critical battery

 ‰ The usb-req task: Handles USB requests from iTunes

 ‰ The usb-high-current and usb-no-current tasks: Responds to USB charge (these are respon-
sible for changing the battery glyph when the device is connected or disconnected).

 ‰ The command task: Enables a command-line, console interface over the serial port (that is, 
assuming you have a serial port connection).

Recovery Mode
Recovery mode is essentially the same as normal boot, with one important difference: The system boots 
using a ramdisk, rather than the fl ash based fi le system that contains the standard iOS image. The ram-
disk is a complete in-memory fi le system, which can be used as an alternate root fi le system. The fl ash 
based fi le system can then be mounted as a secondary, and system fi les can be modifi ed or updated.

You can check out the ramdisk for yourself, if you have an iOS image (IPSW). As discussed in the sec-
tion “iOS Software Images” in this chapter, it is fairly straightforward to unzip and decrypt the ramdisk 
image. The fi le is usually the third DMG fi le in the update. It is not, however, a classic DMG in the sense 
of one that can be readily mounted by OSX. Rather, it is a raw fi lesystem image. If you have successfully 
decrypted it, running the file(1) command on it should produce something like the following:

morpheus@Ergo (…./iOS)$ file 5.1.restore.ramdisk.dmg 
5.1.restore.ramdisk.dmg: Macintosh HFS Extended version 4 data last mounted by: '10.0', 
created: Wed Feb 15 05:26:23 2012, last modified: Wed Feb 15 09:10:50 2012, last 
checked: Wed Feb 15 08:26:23 2012, block size: 4096, number of blocks: 4218, free 
blocks: 0
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You can also mount the ramdisk easily on OS X by using hdiutil(1) with the imagekey
diskimage-class=CRawDiskImage (this is discussed in Chapter 15, and shown in Output 15-2).

Using various jailbreaking utilities, you can boot iOS with an alternate ram-
disk (for example, using redsn0w –r). This is an extremely useful feature for 
forensics, data recovery and hacking, and hours of fun and profi t. It effectively 
exposes the entire i-Device’s fi lesystem. A good discussion on this can be found 
in Jonathan Zdziarski’s book.[6]

Device Firmware Update (DFU) Mode
i-Devices have an additional, albeit lesser used boot mode: Device Firmware Update or DFU mode. 
In this mode, the fi rmware itself, in NAND fl ash, is updated. This occurs when a new version of iOS 
is installed on the device, or during jailbreaking. 

iTunes can enable this mode over USB (when you select to upgrade your device), though you can do 
so as well. To try this, connect your device over USB, and do the following:

 ‰ Turn off the i-Device

 ‰ Press the power button, and hold. The device should appear to boot, with the Apple logo

 ‰ After three seconds, press and hold the home button (while holding the power button). The 
device screen should clear.

 ‰ After ten seconds, let go of the power button, but keep on holding the home button. 

 ‰ Wait a few more seconds and let go.

If you did this properly, the device screen should remain blank. Otherwise, you might end up in 
recovery mode (“Connect to iTunes”). If the screen is indeed blank and you connect it over USB, 
you will see it identify itself as “Apple Mobile Device (DFU Mode).” Getting out of DFU mode is 
easy — all you need to do is power-cycle the device.

DFU mode involves two images — iBSS and iBEC. The fi rst loads at 0x84000000 (on iOS 5), and 
is responsible for low-level initialization, and the loading of iBEC. iBEC, like its big brother iBoot, 
loads at 0x85000000, and is responsible for handling iTunes upgrade commands over USB.

Downgrade and Replay Attacks
A potential vulnerability in the iOS update process which Apple invests many resources into pre-
venting is in cases where a user might want to install an older version of iOS on the i-Device. As iOS 
versions progress, Apple plugs and seals various jailbreak openings. From Apple’s perspective, all 
users should consistently upgrade to the latest and greatest versions.

When updating an i-Device, it is not enough to possess a valid iOS image. During the system 
upgrade (or downgrade) process, a request is made to Apple’s secure server, with a Secure Hash 
value — often referred to as a SHSH. The request includes the device’s unique chip id (the ECID 
value). Though the request is made over plain HTTP (to gs.apple.com), the reply is digitally signed. 
The SHSH is used in the BBTicket (required for base band, or phone logic upgrade) or the APTicket 
(required for upgrading the iOS fi rmware).
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Prior to iOS 5, it was possible to capture the session, and extract the SHSH blob to save it locally 
(using TinyUmbrella), or by Cydia. Since then, however, Apple has improved the protocol, by adding 
a random nonce generated by the device. A random nonce means that now every upgrade autho-
rization request is unique, and therefore saving the SHSH has no effect. This makes downgrading 
impossible once Apple closes the window on a particular iOS version and confi gures their server to 
deny signatures. For this reason, users try to get their hands on new releases of i-Devices sooner, 
rather than later — as Apple keeps updating iOS on devices with new shipments to their stores.

INSTALLATION IMAGES

Apple pre-installs OS X and iOS on all its hardware. Because both systems are carefully installed 
with all the required defaults, the average user doesn’t bother much with re-installing the system. 
Hackers and other enthusiasts, however, often perform system wide changes, or careless mishaps as 
root, which can render the system unbootable. In those cases, the installation media or image needs 
to be dug up, and the system needs to be installed.

This section covers the installation image format of both OS X and iOS. It is of particular interest 
to anyone who wants to pick apart the images, extracting specifi c fi les or even modifying them to 
customize the installation image. 

OS X Installation Process
The OS X installation begins when an installation DVD or thumb drive is inserted. The Finder auto-
matically shows the root folder, which contains the installation app. If the user chooses to activate 
the application, things proceed as follows: 

Step I: InstallXXX.app
The installation utility for OS X is itself an OS X application. As such, it contains a small executable 
responsible for the UI, and for starting the installation process. The actual system fi les in the instal-
lation process are shown in Table 6-15:

TABLE 6-15: Files involved in the OS X installation process

FILE LOCATION CONTAINS

boot.efi Install media EFI bootloader for updated kernel

kernelcache Install media Updated kernel for installed OS

InstallESD.dmg Install media

(SharedSupport)

The OS X installation fi le system image

BaseSystem.dmg InstallESD.dmg The base system image to be copied over to the 

target system

/var/log/install.log Target system Detailed installation log
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The executable brings up the familiar Wizard-like interface of the installation (In Mountain Lion, 
it also dispatches an OpenCL program to the GPU, responsible for GUI effects). The GUI collects 
the user input choices (e.g. which volume to install on) and also validates the installation with Apple 
(osrecovery.apple.com). Assuming all went well, it proceeds to copy the kernelcache, boot.efi,
and InstallESD.dmg to a special directory, /Mac OS X Install Data. It then edits com.apple
.Boot.plist to inform the kernel it is booting with a DMG fi le, as can be seen in /var/log/
install.log (Listing 6-6):

LISTING 6-6: Excerpt from install.log detailing the Installation App’s work:

Sep 25 22:36:49 localhost Install Mac OS X Lion[343]: Extracting files from 
/Volumes/Macintosh HD/Mac OS X Install Data/InstallESD.dmg
Sep 25 22:36:50 localhost Install Mac OS X Lion[343]: Extracting Boot Bits from Outer 
DMG:
Sep 25 22:36:50 localhost Install Mac OS X Lion[343]: Copied kernelcache
Sep 25 22:36:50 localhost Install Mac OS X Lion[343]: Copied Boot.efi
Sep 25 22:36:50 localhost Install Mac OS X Lion[343]: Ejecting disk image
Sep 25 22:36:50 localhost Install Mac OS X Lion[343]: Generating the 
                                                    : com.apple.Boot.plist file
Sep 25 22:36:50 localhost Install Mac OS X Lion[343]: com.apple.Boot.plist: {
            "Kernel Cache" = "/Mac OS X Install Data/kernelcache";            "Kernel 
Flags" = "container-dmg=file:///Mac%20OS%20X%20Install%20Data/InstallESD.dmg root-
dmg=file:///Base
System.dmg";
        }
Sep 25 22:36:50 localhost Install Mac OS X Lion[343]: Done generating the 
com.apple.Boot.plist file
Sep 25 22:36:50 localhost Install Mac OS X Lion[343]: Blessing /Volumes/Macintosh HD -- 
/Volumes/Macintosh HD/Mac OS X Install Data
Sep 25 22:36:50 localhost Install Mac OS X Lion[343]: Blessing Mount 
Point:/Volumes/Macintosh HD Folder:/Volumes/Macintosh HD/Mac OS X Install Data 
plist:com.apple.Boot.plist
Sep 25 22:36:50 localhost Install Mac OS X Lion[343]: ***************************** 
Setting Startup Disk *****************************
Sep 25 22:36:50 localhost Install Mac OS X Lion[343]: ******           Path: 
/Volumes/Macintosh HD
Sep 25 22:36:50 localhost Install Mac OS X Lion[343]: ******     Boot Plist: 
/Volumes/Macintosh HD/Mac OS X Install Data/com.apple.Boot.plist
Sep 25 22:36:50 localhost Install Mac OS X Lion[343]: /usr/sbin/bless -setBoot -folder 
/Volumes/Macintosh HD/Mac OS X Install Data -bootefi /Volumes/Macintosh HD/Mac OS X 
Install Data/boot.efi -options config="\Mac OS X Install Data\com.apple.Boot" -label Mac 
OS X Installer
Sep 25 22:36:51 localhost Install Mac OS X Lion[343]: Bless on /Volumes/Macintosh HD 
succeeded

The kernel fl ags — by another name, command line arguments — specify to the kernel that it is to 
mount InstallESD.dmg as a container image, which it needs to mount in order to fi nd the actual 
image to use as a root fi le system — the BaseSystem.dmg. It then blesses the boot disk so as to 
make the system boot from InstallESD.dmg. Once the bless operation completes successfully, the 
system reboots automatically, and starts from the new image.
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Step II: OSInstaller
OSInstaller is the executable responsible for the unattended portion of installation which 
occurs once the system reboots. The system by this point has booted into the new OS, and 
runs its  kernelcache. The image instructs launchd(8) to run OSInstaller, which proceeds 
to load  minstallconfig.xml from which it can obtain the installation data. It also brings up 
diskmanagementd(8), which is used in case any disk “surgery” (i.e. repartitioning) is required.

Once any repartitioning is done, OSInstaller can proceed to install the system, which comes bun-
dled in the form of several packages, as shown in Table 6-16. All these fi les are in the /Packages
directory:

TABLE 6-16: OS X installation packages (all in installESD.dmg)

FILE CONTAINS

BaseSystemBinaries.pkg KEXTs, binaries, and some application binaries

BaseSystemResources.pkg Resources for apps in BaseSystem

OSInstall.mkpg Internationalization resources for Install

Essentials.pkg Most Applications, CoreServices

Bootcamp.pkg Boot-Camp (for dual boot with Windows)

BSD.pkg The BSD subsystem fi les

MediaFiles.pkg Pictures, Screensavers, etc.

JavaTools.pkg The OS X bundled Java implementation

RemoteDesktop.pkg Remote desktop tools

SIUResources.pkg System Image Utility resources

AdditionalEssentials.pkg More applications, help fi les, and Widgets

AdditionalSystemVoices.pkg For those users who just can’t do without “Princess” and 

“Deranged”

AsianLanguagesSupport.pkg Specifi c support for Asian Languages

<app>.pkg Miscellaneous applications, such as Automator, Mail, iChat, 

DVDPlayer, iTunes, Safari, etc.

<language>.pkg Miscellaneous language support fi les (anything but English)

X11User.pkg The X/11 Subsystem

OSInstall.pkg Pre and post install scripts (no fi les)
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Before installing, OSInstaller runs an fsck(1) on the target volume. As of Lion it also calls on dis-
kmanagementd to prepare a recovery volume, which is essentially the BaseSystem.dmg from which 
OSInstaller can boot. 

Once the recovery volume is set, OSInstaller uses the PackageKit  and Install frameworks to open 
the package fi les one by one.

Installing .pkg fi les
OS X packages, listed in Table 6-17, are descendants of NextSTEP packages. The packages 
are archives in xar(1), which is an archive format similar to tar(1), but natively supporting 
compression.

TABLE 6-17: OS X packages

FILE CONTAINS

Bom Package “Bill Of Materials.” Viewable with lsbom(1) and can be created with 

mkbom(1)

PackageInfo A property list fi le specifying the package manifest

Payload The actual package contents, usually compressed with bzip(1) 

Scripts Pre- and Post-install scripts, usually archived with cpio(1) and compressed with 

gzip(1) 

The following experiment illustrates working with packages.

Experiment: Unpackaging Packages
Using the OS X installation CD or USB medium, locate the InstallESD.dmg fi le. This fi le is in the 
SharedSupport/ folder of the Installation app. Mount the DMG, using the commands shown in 
Output 6-3:

OUTPUT 6-3: Locating and mounting the InstallESD.dmg

morpheus@Ergo (/Volumes/OS X Mountain Lion)$ cd "Install OS X Mountain Lion.app"
morpheus@Ergo (...OS X Mountain Lion.app)$ cd SharedSupport
morpheus@Ergo (.../SharedSupport)$ open InstallESD.dmg   # could also use hdid(1)

Once the dmg is mounted, you can cd to its Packages/ directory, and locate all the packages shown 
previously, in Table 6-16. Pick a package to continue this experiment with (in our example, we use 
BSD.pkg — you are encouraged to pick another).

Query the package of choice with the xar(1) command. Its usage is very similar to tar(1). Create 
a temporary directory, and extract the package contents to it, as shown in Output 6-4:
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OUTPUT 6-4: Extracting a package

morpheus@Ergo(/tmp/pkgDemo)$ xar –xvf /Volumes/Mac\ OS\ X\ Install\ ESD\Packages/BSD.pkg
Bom
PackageInfo
Payload
Scripts

The bill of materials (bom) can be viewed with lsbom(1):

morpheus@Ergo (/tmp/pkgDemo)$ lsbom Bom
.       40755   0/0
./Library       40755   0/0
./Library/Python        40755   0/0
./Library/Python/2.3    40755   0/0
./Library/Python/2.3/site-packages      40755   0/0
./Library/Python/2.3/site-packages/Extras.pth   100644  0/0     75      316297377
./Library/Python/2.3/site-packages/README       100644  0/0     119     3290955062
./Library/Python/2.5    40755   0/0
./Library/Python/2.5/site-packages      40755   0/0
./Library/Python/2.5/site-packages/README       100644  0/0     119     3290955062
./Library/Python/2.6    40755   0/0
./Library/Python/2.6/site-packages      40755   0/0
./Library/Python/2.6/site-packages/README       100644  0/0     119     3290955062
./Library/Python/2.7    40755   0/0
./Library/Python/2.7/site-packages      40755   0/0
./Library/Python/2.7/site-packages/README       100644  0/0     119     3290955062
./System        40755   0/0
...

The PackageInfo is an XML fi le, which is rather self explanatory, as shown in Output 6-5:

OUTPUT 6-5: The PackageInfo fi le of the BSD.pkg

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<pkg-info format-version="2" relocatable="true" deleteObsoleteLanguages="true" 
overwrite-permissions="true" identifier="com.apple.pkg.BSD" useHFSPlusCompression="true"
auth="root" version="10.8.0.1.1.1306847324">
  <payload installKBytes="736770" numberOfFiles="33989"/>
  <scripts>
    <preinstall file="preinstall"/>
    <postinstall file="postinstall"/>
  </scripts>
  <groups>
    <group>com.apple.snowleopard-repair-permissions.pkg-group</group>
    <group>com.apple.FindSystemFiles.pkg-group</group>
  </groups>
  <bundle-version>
     <bundle CFBundleVersion="10.8" CFBundleShortVersionString="10.8" 
SourceVersion="6001000000000" id="com.apple.xsanmgr-filebrowser" 
path="./usr/libexec/xsanmgr/bundles/xsanmgr_filebrowser.bundle"/>
     <bundle CFBundleVersion="1" CFBundleShortVersionString="1.0" 
SourceVersion="6001000000000" id="com.apple.xsanmgr-sharing" 

Permissions

UID/GID

Filesize

CRC-32
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path="./usr/libexec/xsanmgr/bundles/xsanmgr_sharing.bundle"/>
    ...
       </bundle-version>
</pkg-info>

The installation scripts — in this case preinstall and postinstall — are packaged in the 
Scripts fi le, and can be viewed using zcat(1) and cpio(1):

morpheus@Ergo (/tmp/pkgDemo)$ cat Scripts | zcat > A
morpheus@Ergo (/tmp/pkgDemo)$ file A
A: ASCII cpio archive (pre-SVR4 or odc)
morpheus@Ergo (/tmp/pkgDemo)$ cpio -ivd < A
.
./postinstall                                # Perl script to run after install
./postinstall_actions                        # Various shell scripts
./postinstall_actions/dumpemacs.sh
./postinstall_actions/fixnortinst.sh
./postinstall_actions/postfixChrooted
./preinstall                                 # Perl script to prep install
./Tools

You can use the installer(8) command to install a package automatically. Other package manip-
ulation commands are pkgutil(1), which is somewhat like the Linux rpm command (e.g. pkgutil
--pkgs as the equivalent to Linux’s rpm –qa) , and pkgbuild(1), which builds packages. 

iOS File System Images (.ipsw)
Apple distributes updates to its various iOS devices via iTunes — and, as of iOS 5, over the air as 
well. If you have ever peeked at iTunes’ directory (~/Library/iTunes), you no likely got to see 
directories called <device> Software Updates, where <device> is the iOS device — iPad, iPhone, 
or iPod. These directories usually contain the iOS updates for the device, fi les with an .ipsw exten-
sion, and the following naming convention:

Model Generation_Major.Minor_Build_Restore.ipsw

The fi le itself, aside from the unusual extension, is nothing more than a simple .zip fi le. It can be 
opened easily from the command line, or by renaming its extension from .ipsw to .zip. It contains 
the fi les shown in Table 6-18:

TABLE 6-18: Files in an iOS software image

TYPE FILE NAME FILE PURPOSE

bat0

bat1

batterylow0*.img3

batterylow1*.img3

Battery low icons. The fi rmware alternates between these 

two fi les to produce the low battery animation.

batF batteryfull*.img3 Battery full icon.

chg0 batterycharging0*.img3 Battery Charging, 1/3.

chg1 batterycharging1*.img3 Battery Charging, 2/3.

Dtree DeviceTree.<board>.img3 Device tree for this iDevice, used by iBoot and passed to 

the kernel. 

continues
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TYPE FILE NAME FILE PURPOSE

glyC glyphcharging*.img3 The glyph for the battery charging.

glyP glyphplugin*.img3 The glyph for the battery, plugged in.

Ibot iBoot.<device>ap.

RELEASE.img3
iBoot — the stage two bootloader.

Illb LLB.<device>ap.RELEASE.

img3
Low level boot loader (LLB).

Krnl kernelcache.

release.<device>
The packed kernel and kernel extensions (KEXTs).

Logo applelogo*.img3 The familiar apple logo.

Recm recoverymode*.img Recovery Mode image.

-- xxx-<<lowest 

numbered>>-yyy.dmg
Root fi lesystem. (Not an img3, but decrypted using 

vfdecrypt)

Rdsk xxx-<<middle 

numbered>>-yyy.dmg
Update fi le Ramdisk.

Rdsk xxx-<<highest 

numbered>>-yyy.dmg
Recovery mode Ramdisk.

As you can see in the table, each fi le contains a type. This is an embedded four letter (32-bit) 
magic value used to identify and load the fi le. In addition, device specifi c fi les of iOS (such as the 
kernelcache and fi rmware fi les) often contain a variable identifi er for the device. The identifi ers are 
shown in the Table 6-19:

TABLE 6-19: Device identifi ers

MODEL DEVICE IDENTIFIER

iPod 2,1 n72 

iPod 3,1 n18

iPod 4,1 n81

iPhone 2,1 n88

iPad 1,1 k48

iPhone 4,1 n90

iPad 2,1 k93

iPad 3,1 j1

TABLE 6-18 (continued)
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Apple, however, has tried hard to discourage eager developers from getting their hands on those 
fi les, and therefore these fi les are all encrypted. This encryption — and how to defeat it — is 
described next.

The Img3 File Format
Apple really doesn’t want anyone messing with iOS, and is making a genuinely noble effort to keep 
the fi les from prying eyes. While the ipsw is a simple zip archive, all its individual fi les are in a 
custom encrypted format, known as IMG3 — each with its own keys, with varying keys between 
devices! And “all” means — all fi les: Even the boot logos and the other various graphic images and 
glyphs are encrypted. Further, the keys to the kingdom are on the device itself — i-Devices contain 
on-board AES encryption modules, which are meant to discourage key recovery attempts. 

The best laid schemes of mice and (Apple)-men, however, gang aft agley. As such, a certain publicly-
available iPhone Wiki site contains a page with all the encryption keys readily available, at least for 
the pre-A5 devices (as they were obtained using the bootrom exploit). Likewise, many open source 
tools, most notably xpwntool[7] can be downloaded to decrypt the fi les, and vfdecrypt[8] for the fi le 
system images. A simple Internet search would quickly yield both the utilities and the keys. Once 
decrypted, the DMGs can be mounted easily on an OS X system (or converted to ISOs and mounted 
on Windows). The binaries can then be statically analyzed by the Mach-O tools (which we explored 
in Chapter 4), with certain caveats — most notably, attention to little-endian (Intel) vs. big-endian 
(ARM) format. As an alternative to jailbreaking iOS, downloading an .ipsw and decrypting its fi les 
is a close second for reverse engineering and investigating this operating environment.

The IMG3 format itself is pretty simple. It is comprised of a small header, followed by tagged fi elds. 
The tags are any of the following, shownin Table 6-20:

TABLE 6-20: Known IMG3 tags

TAG DENOTES

TYPE The type of the fi le

DATA The actual payload of the fi le

KBAG “Keybag”: The key and IV for the fi le, to be used with the device’s built-in (GID) key. 

Encrypted with AES256, usually

CHIP The CPU identifi er this fi le is for

ECID Exclusive Chip ID (CPU unique identifi er)

MODS Security Domain

PROD Production Mode

VERS Version of the data fi le format

SEPO Security Epoch

SHSH The secure hash — The SHA-1 encrypted with Apple’s RSA private key 

CERT Certifi cate — Apple’s certifi cate, trusted by the device’s hard coded certifi cate
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The example shown here is the iOS 5 kernel cache of an iPod. The fi elds are, naturally, ARM-
endian. Fields in bold are constant.

morpheus@Ergo (...)$ od -t x1 kernelcache.release.n81 |more

0000000    33  67  6d  49  c4  e3  5d  00  b0  e3  5d  00  78  db  5d  00
3   G   M   I    (File Size)  (Size,no header) (size of data)

0000020    6c  6e  72  6b  45  50  59  54  20  00  00  00  04  00  00  00
            l   n   r   k E   P   Y   T      length       tag data len

0000040    6c  6e  72  6b  00  00  00  00  00  00  00  00  00  00  00  00
            l   n   r   k        ( padding to length )

0000048    00  00  00  00  41  54  41  44  70  da  5d  00  64  da  5d  00
A   T   A   D  (data+data hdr) (actual data)

The header size is usually 64-bytes, though its exact size can always be determined by following the 
fi elds. The actual fi le data is tagged by DATA.

The book’s companion website contains a tool, imagine, which can be used to dump the contents of 
an IMG3 fi le. It contains built-in parsers for the fi le format, and can also parse custom data formats 
like the device tree. Executing it will produce results similar to Output 6-6:

OUTPUT 6-6: Running the imagine tool on iBoot

morpheus@ergo (iOS/Tools)$ ./imagine iBoot.k48ap.RELEASE.img3 
Ident: ibot
Tag: TYPE (54595045) Length 0x20
        Type: ibot (iBoot)
Tag: DATA (44415441) Length 0x2d00c
        Data length is 184320 bytes
Tag: VERS (56455253) Length 0x2c
        Version: iBoot-1219.62.8
Tag: SEPO (5345504f) Length 0x1c
        Security Epoch: 02 00 00 00 
Tag: BORD (424f5244) Length 0x1c
        Board: 02 00 00 00 
Tag: SEPO (5345504f) Length 0x1c
        Security Epoch: 02 00 00 00 
Tag: CHIP (43484950) Length 0x1c
        Chip: 30 89 00 00 
Tag: BORD (424f5244) Length 0x1c
        Board: 02 00 00 00 
Tag: KBAG (4b424147) Length 0x4c
        Keybag: AES 256
Tag: KBAG (4b424147) Length 0x88
        Keybag: AES 256
Tag: SHSH (53485348) Length 0x8c
Tag: CERT (43455254) Length 0x7ac

The following experiment will walk you through the stages of unpacking and decrypting an 
IMG3 fi le.
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Experiment: Decrypting the iOS 5 Kernel Cache
This exercise demonstrates decrypting an IMG3 fi le using two publicly available tools — xpwn, and 
lzssdec. The fi le in question is the iOS 5 kernel cache, but this can be tried on any fi le. The point of 
departure is the iOS 5 ipsw for iPod touch, but you can try this on any .ipsw, provided you can get 
your hands on the (also publicly available) decryption keys.

When decrypted, the IMG3 fi les stay in the same format, albeit with a decrypted payload. The 
kernelcache is particularly important, and is in a compressed payload, with a very simple Lempel-
Ziv (UNIX compress(1)-like) format. The lzssdec (or similar utility) can be used to decompress 
the fi le. So, assuming you found the key in some iPhone Wiki site or elsewhere, the steps shown in 
Listing 6-6a would end up with the actual kernel cache:

LISTING 6-6A:  Decompressing the iOS 5 kernelcache with xpwntool. Given the right IV and 
KEY, you can use this for any iOS image and any fi le therein.

morpheus@Ergo (...)$ export IV=... # Set the IV, if we hypothetically knew it
morpheus@Ergo (...)$ export KEY=... # Set key, if hypothetically we knew, too..

# Run xpwntool, specifying the in file 
# (in this case, kernelcache.release.n81) to be decrypted 
morpheus@Ergo (...)$ xpwntool kernelcache.release.n81 kernelcache.decrypted –iv 
$IV  -k $KEY -decrypt

# The resulting file is still an Img3 — but, if you squint hard, makes sense
morpheus@Ergo (...)$ more kernelcache.decrypted
3gmI... ... ... ... ... ... .....lnrkEPYT...lnrk.....complzss... ... ... ....
... ... ...<CE><FA><ED><FE>................................................
... ... ... ... ..._TEXT... ... ... ... ... ... ...cstring... ... ... ... ...

Because the kernelcache is compressed — and even uncompressed, would still be binary — it takes some 
sifting to pick out the meaningful Mach-o header and some section/segment names. Using od(1) makes 
life somewhat easier, and certainly spares you the effort of parsing the IMG3 header (Listing 6-6b):

LISTING 6-6B (CONTINUED): Using od(1) to fi nd the beginning of the actual data

morpheus@Ergo (...)$ od -A d –t x1 kernelcache.decrypted |more
0000000    33  67  6d  49  f8  e2  5d  00  e4  e2  5d  00  ac  da  5d  00
0000016    6c  6e  72  6b  45  50  59  54  20  00  00  00  04  00  00  00
0000032    6c  6e  72  6b  00  00  00  00  00  00  00  00  00  00  00  00
0000048    00  00  00  00  41  54  41  44  70  da  5d  00  64  da  5d  00

      ---------- End of IMG3 Header ----------
            ---------- Beginning of complzss Header ----------
0000064    63  6f  6d  70  6c  7a  73  73  b9  05  fc  53  00  a7  00  00
0000080    00  5d  d8  e4  00  00  00  00  00  00  00  00  00  00  00  00
0000096    00  00  00  00  00  00  00  00  00  00  00  00  00  00  00  00
*

     ---------- CompLZSS data begins ----------
0000448    ff ce  fa  ed  fe  0c  00  00  00  d5  09  f3  f0  02  f3  f0
0000464    0b  f3  f0  1c  08  a7  00  00  01  f3  f0  06  01  14  fa  f0
0000480    5f  9f  5f  54  45  58  54  f3  f0  18  05  10  9f  00  80  00

c06.indd 223c06.indd   223 9/29/2012 5:23:35 PM9/29/2012   5:23:35 PM



224 x CHAPTER 6  ALONE IN THE DARK: THE BOOT PROCESS: EFI AND IBOOT 

The IMG3 payload starts at offset 64, and is a compressed fi le (as indicated by the “complzss” sig-
nature). The Adler-32 compression actually leaves the fi rst couple of bytes uncompressed, and you 
can see the Mach-O 32-bit header (0xFEEDFACE), at offset 448. One last step remains: to decompress 
the fi le. If this works, you end up with a perfectly plaintext ARM Mach-O fi le — the iOS kernel 
cache (Listing 6-6c):

LISTING 6-6C (ENDED):  Arriving at the goal — the kernel Cache has been decompressed and 
decrypted.

morpheus@Ergo (...)$ lzssdec -o 448 < kernelcache.decrypted  > mach_kernelcache.arm
# If we have this right, the resulting file should start with 0xFEEDFACE
morpheus@Ergo (...)$ file mach_kernelcache.arm 
mach_kernelcache.arm: Mach-O executable arm # Success!

You are encouraged to try this on other fi les, as well. Files such as the DeviceTree, iBEC, iBSS, and 
iBoot are not compressed, and their data starts right at offset 0x40.

The iOS Device Tree
Similar to EFI and OS X on Intel, iBoot and iOS on ARM use a device tree. The device tree is part 
of the fi rmware fi les, and you can get it by decrypting the DeviceTree.<model>.img3 fi le from the 
ipsw.

The format is obviously undocumented, but — given that the kernel needs to parse it — it isn’t far 
off from the device tree format prepared by EFI. The ioreg command on a jailbroken device will 
display the tree, as will the imagine tool, if applied to a decrypted tree. This is shown in Listing 6-7:

LISTING 6-7: The device tree from the author’s iPod, as shown by the imagine tool

morpheus@Ergo (/tmp)$ imagine –d iOS/DeviceTree.n81ap.img3
Device Tree has 15 properties and 13 children
Properties:
device-tree
|  +--compatible Length 23
|  +--secure-root-prefix Length 3
|  +--AAPL,phandle Length 4
|  +--config-number Length 32
|  +--model-number Length 32
|  +--platform-name Length 32
|  +--serial-number Length 32
|  +--device_type Length 8
|  +--#size-cells Length 4
|  +--clock-frequency Length 4
|  +--mlb-serial-number Length 32
|  +--#address-cells Length 4
|  +--region-info Length 32
|  +--model Length 8
|  +--name Length 12
   +--chosen
|  |  +--firmware-version Length 256
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|  |  +--display-scale Length 4
|  |  +--system-trusted Length 4
|  |  +--AAPL,phandle Length 4
|  |  +--production-cert Length 4
... (output truncated for brevity) 

SUMMARY

This chapter presented, in depth, the EFI stage of booting OS X — the precursor to booting the ker-
nel. EFI is the successor to the PowerPC’s OpenFirmware architecture, and follows similar concepts, 
albeit a different implementation.

Similar to EFI, but much less documented, is Apple’s iOS boot-loader, iBoot, on the various 
i-Devices. The chapter discussed, as much as is possible, the stages of iOS boot: from the Bootrom, 
through the Low Level Bootloader (LLB), the main bootloader (iBoot), and the DFU mode loaders 
(iBEC and iBSS). 

Additionally, OS X and iOS installation images were described in great detail. OS X uses packages, 
and iOS uses an .ipsw archive, containing all the components of the operating system.

The chapter deliberately left out what happens next — booting the kernel. The kernel boot process 
is complicated and lengthy — and well deserves a dedicated chapter. Likewise, what follows the 
kernel — user mode startup — is long enough for a chapter of its own. You are encouraged to 
choose your own adventure:

 ‰ Fall through to the next chapter (default) — describing the user mode startup. 

 ‰ Skip to Chapter 8, describing the kernel’s life, and often premature demise (i.e. panics). 

REFERENCES AND FURTHER READING

1. Intel’s EFI 1.10 specifi cation  — www.intel.com/content/www/us/en/architecture-and-
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2. The UEFI standard — www.uefi.org/specs/

3. Apple Support — Startup key combinations for Intel-based Macs (HT1533):
http://support.apple.com/kb/ht1533

4. rEFIt — http://refit.sourceforge.net

5. Esser, Stephen (i0nic). “Targeting the iOS Kernel” — a presentation for Syscan 2011,
Singapore: www.syscan.org

6. Zdziarski, Jonathan. Hacking and Securing iOS Applications: Stealing Data, Hijacking
Software, and How to Prevent It (New York: O’Reilly, 2012)

7. The xpwn tool — downloadable from http://theiphonewiki.com/
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7
The Alpha and the Omega — 
launchd

When you power on your Mac or i-Device, the boot loader (OS X: EFI, iOS: iBoot), described 
in the previous chapter is responsible for fi nding the kernel and starting it up. The kernel boot 
is described in detail in Chapter 7. The kernel, however, is merely a service provider, not an 
actual application. The user mode applications are those which perform the actual work in a 
system, by building on kernel primitives to provide the familiar user environment rich with 
fi les, multimedia, and user interaction. It all has to start somewhere, and in OS X and iOS — 
it starts with launchd.

LAUNCHD

launchd is OS X’s and iOS’s idea of what other UN*X systems call init. The name may be dif-
ferent, but the general idea is the same: It is the fi rst process started in user mode, which is 
responsible for starting — directly or indirectly — every other process in the system. In addi-
tion, it has OS X and iOS idiosyncratic features. Even though it proprietary, it still falls under 
the classifi cation of Darwin, and so it is fully open source[1].

Starting launchd
launchd is started directly by the kernel. The main kernel thread, which is responsible for 
loading the BSD subsystem, spins off a thread to execute the bsdinit_task. The thread 
assumes PID 1, with the temporary name of “init,” a legacy of its BSD origins. It then 
invokes load_init_program(), which calls the execve() system call (albeit from kernel 
space) to execute the daemon. The name — /sbin/launchd — is hard coded as the variable 
init_program_name.

The daemon is designed to be started in this way, and this way only; It cannot be started by 
the user. If you try to do so, it will complain, as shown in Listing 7-1.
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LISTING 7-1: Attempting to start launchd will result in failure

root@Minion (/)# /sbin/launchd
launchd: This program is not meant to be run directly. 

Although launchd cannot be started, it can be tightly controlled. The launchctl(1) command may 
be used to interface with launchd, and direct it to start or stop various daemons. The command is 
interactive, and has its own help.

launchd is usually started with no arguments, but does optionally accept a single command line 
argument: -s. This argument is propagated to it by the kernel, if the latter was started with -s,
either through its boot-args, or by pressing Option-S during startup. 

launchd can be started with several logging and debugging features, by creating special dot fi les in 
[/private]/var/db. The fi les include .launchd_log_debug, .launchd_log_shutdown (output 
to /var/tmp/launchd-shutdown.log), and .launchd_use_gmalloc (enabling libGMalloc, as 
discussed in Chapter 3).  launchd also checks for the presence of the /AppleInternal fi le (on the 
system root) for some Apple internal logging. 

launchd’s loading of libGMalloc on iOS (if /var/db/.launchd_use has been 
used by the jailbreaker comex in what is now known as the interposition exploit. 
launchd executes with root privileges, and by crafting a Trojan library, code can 
be injected into userland root — one step closer to subverting the kernel.

System-Wide Versus Per-User launchd
If you use ps(1) or a similar command on OS X, you will see more than one instance of launchd: 
The fi rst is PID 1, which was started by the kernel in the manner described previously. If anyone is 
logged on, there will be another launchd, forked from the fi rst, and owned by the logged in user, 
shown in Listing 7-2. You may also see other instances, belonging to system users (e.g. spotlight - 
uid 89).

LISTING 7-2: Two instances of launchd

morpheus@ergo (/)$ ps -ef | grep sbin/launchd
    0     1     0   0   6:32.43 ??         6:37.98 /sbin/launchd
  501    95     1   0   0:06.44 ??         0:11.07 /sbin/launchd

The per-user launchd is executed whenever a user logs in, even remotely over SSH (though once per 
logged in user). On iOS there is only one instance of launchd, the system-wide instance.

It is impossible to stop the system-wide launchd (PID 1). In fact, launchd is the only immortal pro-
cess in the system. It cannot be killed, and that makes sense. There is absolutely no reason to termi-
nate it. In most UN*X, if the init process dies unexpectedly the result is a kernel panic. launchd is 
also the last process to exit, when the system is shut down. 

c07.indd 228c07.indd   228 10/5/2012 4:16:46 PM10/5/2012   4:16:46 PM



launchd x 229

Daemons and Agents
The core responsibility of launchd is, as its name implies, launching other processes, or jobs, on a 
scheduled or on-demand basis. launchd makes a distinction between two types of background jobs:

 ‰ Daemons are, like the traditional UNIX concept, background services that normally have no 
interaction with the user. They are started automatically by the system, whether or not any 
users are logged on.

 ‰ Agents are special cases of daemons that are started only when a user logs on. Unlike 
daemons, they may interface with the user, and may in fact have a GUI.

 ‰ iOS does not support the notion of a user login, which is why it only has LaunchDaemons 
(though an empty /Library/LaunchAgents does exist).

 ‰ Both daemons and agents are declared in their individual property list (.plist) fi les. As 
described in Chapter 2, these are commonly XML (in OS X) or binary (in iOS). A detailed 
discussion of the valid plist entries in the verbose man page — launchd.plist(5), though 
it should be noted the man page does leave out a few undocumented keys. The rest of this 
chapter demonstrates the plist format through various examples. The complete list of job 
keys (including useful keys for sandboxing jobs) can be found in launchd’s launch_priv.h
file.

The list of daemons and agents can be found in the locations noted in Table 7-1.

TABLE 7-1: Launch Daemon locations

DIRECTORY USED FOR

/System/Library/LaunchDaemons Daemon plist fi les, primarily those belonging to the sys-

tem itself.

/Library/LaunchDaemons Daemon plist fi les, primarily third party.

/System/Library/LaunchAgents Agent plist fi les, primarily those belonging to the system 

itself.

/Library/LaunchAgents Other agent plist fi les, primarily third party. Usually 

empty.

~/Library/LaunchAgents User-specifi c launch agents, executed for this user only.

launchd uses the /private/var/db directory for its runtime confi guration, creating com.apple
.launchd[.peruser.%d] fi les for runtime override and disablement of daemons. 

The Many Faces of launchd
launchd is the fi rst process to emerge to user mode. When the system is at its nascent stage, it is 
(briefl y) the only process. This means that virtually every aspect of system startup and function is 
either directly or indirectly dependent on it. In OS X and iOS, launchd serves multiple roles, which 
in other UN*X are traditionally delegated to several daemons. 
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init 
The fi rst, and chief role played by launchd is that of the daemon init. The job description of the lat-
ter involves setting up the system by spawning its myriad daemons, then fading to the background, 
and ensuring these daemons are alive. If one dies, launchd can simply respawn it. 

Unlike traditional init, however, the launchd implementation is somewhat different, and consider-
ably improved, as shown in Table 7-2:

TABLE 7-2: init vs. launchd

RESPONSIBILITY TRADITIONAL INIT LAUNCHD

Function as PID 1, 

great ancestor of all 

processes

init is the fi rst process to emerge 

into user mode, and forks other pro-

cesses (which in turn may fork others). 

Resource limits it sets for itself are 

inherited by all of its descendants.

Same. launchd also sets Mach 

exception ports, which are used 

by the kernel internally to handle 

exception conditions and gener-

ate signals (see Chapter 8).

Support “run levels” Traditional init supports run levels:

0 – poweroff 

1 – single user

2 – multi-user

3 – multi-user + NFS

5 – halt

6 – reboot

launchd does not recognize run 

levels and allows only for indi-

vidual per-daemon or per-agent 

fi les. There is, however, a distinc-

tion for single-user mode.

Start system services init runs services in order, per fi les 

listed in /etc/rc?.d (corresponding to 

run level), in lexicographic order.

launchd runs both system ser-

vices (daemons), and per-user 

services (agents).

System service 

specifi cation

init runs services as shell scripts, 

unaware and oblivious to their contents.

launchd processes property list 

fi les, with specifi c keywords.

Restart services on exit init recognizes the respawn keyword in 

/etc/inittab for restart.

launchd allows a KeepAlive key 

in the daemon or agent’s prop-

erty list.

Default user Root. Root, but launchd allows a user-

name key in the property list.

Per-User Initialization
Traditional UN*X has no mechanism to run applications on user login. Users must resort to shell 
and profi le scripts, but those quickly get confusing since each shell uses different fi les, and not all 
shells are necessarily login shells. Additionally, in a GUI environment it is not a given that a shell 
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would be started, at all (as is indeed the case with most OS X users, who remain unaware of the 
Terminal.app).

By using LaunchAgents, launchd enables per-user launching of specifi c applications. Agents can 
request to be loaded by default in all sessions, or only in GUI sessions, by specifying the LimitLoad-
ToSessionType key with values such as  LoginWindow or Aqua, or Background.

atd/crond
UN*X traditionally defi nes two daemons — atd and crond — to run scheduled jobs, as in 
executing a specifi ed command at a given time. The fi rst daemon, atd, serves as the engine 
allowing the at(1) command for one-time jobs, whereas the second, crond, provides recurring 
job support.

Apple is gradually phasing out atd and crond. The atd is no longer a stand-alone daemon, but is 
now started by launchd. This service, defi ned in com.apple.atrun.plist, (shown in Listing 7-3) is 
usually disabled:

LISTING 7-3: The com.apple.atrun.plist

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN" 
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
    <key>Label</key>
    <string>com.apple.atrun</string>
    <key>ProgramArguments</key>
    <array>
            <string>/usr/libexec/atrun</string>
    </array>

    <key>StartInterval</key>
    <integer>30</integer>

    <key>Disabled</key>
    <true/>
</dict>
</plist>

The atrun plist must be enabled to allow the at(1) family of commands to work. Otherwise, it will 
schedule jobs, but they will never happen (as the author learned the hard way, once relying on it to 
set a wake-up alarm).

The crond service is still supported (in com.vix.crond.plist), although launchd has its own set of 
StartCalendarInterval keys to replace it. Apple supplies periodic(8) as a replacement. Listing 
7-4 shows com.apple.periodic-daily, one of the several cron-substitutes (along with –weekly
and –monthly):

launchd starts atrun(8) every 30 
seconds, if enabled

Disabled by default. Setting Disabled:false 
(or removing key) enables 
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LISTING 7-4: com.apple.periodic-daily.plist 

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"
  "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
        <key>Label</key>
        <string>com.apple.periodic-daily</string>
        <key>ProgramArguments</key>
        <array>
                <string>/usr/sbin/periodic</string>
                <string>daily</string>
        </array>
        <key>LowPriorityIO</key>
        <true/>
        <key>Nice</key>
        <integer>1</integer>
        <key>StartCalendarInterval</key>
        <dict>
                <key>Hour</key>
                <integer>3</integer>
                <key>Minute</key>
                <integer>15</integer>
        </dict>
        <key>AbandonProcessGroup</key>
        <true/>
</dict>
</plist>

In iOS, an alternate method of specifying periodic execution is with the StartInterval key. The 
/usr/sbin/daily service, for example, specifi es a value of 86,400 seconds (24 hours). Other ser-
vices, such as itunesstored and softwareupdateservicesd also use this method.

inetd/xinetd:
In UN*X, inetd (and its successor, xinetd) is used to start network servers. The daemon is respon-
sible for binding the port (UDP or TCP), and — when a connection request arrives — it starts the 
server on demand, and connects its input/output descriptors (stdin, stderr, and stdout) to the 
socket. 

This approach is highly benefi cial to both the network server, and the system. The system does not 
need to keep the server running if there are no active requests to be serviced, thereby reducing sys-
tem load. The server, on its part, remains totally agnostic of the socket handling logic, and can be 
coded to use only the standard descriptors. In this way, an administrator can whimsically reassign 
port numbers to services, and essentially run any CLI command, even a shell, over a network port.

launchd integrates the inetd functionality into itself*, by allowing daemons and agents to request a 
particular socket. All the daemon has to do is ask, using a Sockets key in its plist. Listing 7-5 shows 
an example of requesting TCP/IP socket 22, from ssh.plist:

* Technically, the inetd functionality is handled by launchproxy(8), also part of the launchd project. The 
  manual page has been promising the two would be merged eventually, but it has yet to happen.
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LISTING 7-5: ssh.plist, demonstrating IP socket registration

<plist version="1.0">
<dict>
     <key>Disabled</key>
     <true/>

     <key>Label</key>
     <string>com.openssh.sshd</string>

     <key>Program</key>
     <string>/usr/libexec/sshd-keygen-wrapper</string>
     <key>ProgramArguments</key>
     <array>
         <string>/usr/sbin/sshd</string>
         <string>-i</string>
     </array>

     <key>Sockets</key>
     <dict>
        <key>Listeners</key>
        <dict>
           <key>SockServiceName</key>
           <string>ssh</string>

           <key>Bonjour</key>
           <array>
             <string>ssh</string>
             <string>sftp-ssh</string>
           </array>
        </dict>
     </dict>
     <key>inetdCompatibility</key>
     <dict>
          <key>Wait</key>
          <false/>
     </dict>

     <key>StandardErrorPath</key>
     <string>/dev/null</string>

     <key>SHAuthorizationRight</key>
     <string>system.preferences</string>
</dict>
</plist>

Unlike inetd, the socket the daemon is requesting may also be a UNIX domain socket. Listing 7-6, 
an excerpt from com.apple.syslogd.plist, demonstrates this:

Disabled by default. Setting 
Disabled:false (or removing key) enables 

"Label" defines the service 
internally (for launchctl(8))

"Program" specifies path to execute.
Command line arguments are specified in 
an array

SockServiceName refers to /etc/services: 
ssh 22/tcp # SSH Remote Login Protocol

Bonjour advertises the 
service(s) over multicast

inetdCompatibility allows porting from 
the legacy inetd.conf (here, "nowait", 
allowing multiple instances)

StandardErrorPath redirects 
stderr to /dev/null. 
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LISTING 7-6: com.apple.syslogd.plist, demonstrating UNIX socket registration

...
<key>ProgramArguments</key>
        <array>
                <string>/usr/sbin/syslogd</string>
        </array>
        <key>Sockets</key>
        <dict>
                <key>AppleSystemLogger</key>
                <dict>
                        <key>SockPathMode</key>
                        <integer>438</integer>
                        <key>SockPathName</key>
                        <string>/var/run/asl_input</string>
                </dict>
                <key>BSDSystemLogger</key>
                <dict>
                        <key>SockPathMode</key>
                        <integer>438</integer>
                        <key>SockPathName</key>
                        <string>/var/run/syslog</string>
                        <key>SockType</key>
                        <string>dgram</string>
                </dict>
        </dict>

The two socket families — UNIX and INET — are not mutually exclusive, and may be specifi ed in 
the same clause. The previous syslogd plist, for example, can easily be modifi ed to allow syslog to 
accept messages from UDP 514 by adding a SockServiceName:syslog key (and optionally append-
ing –udp_in and 1 to the ProgramArguments array). The iOS daemon lockdownd listens in this way 
on TCP port 62078 and the UNIX socket /var/run/lockdown.sock.

mach_init
True to its NEXTStep origins and before the advent of launchd in OS X 10.4, the system startup 
process was called mach_init. This daemon was actually responsible for later spawning the BSD 
style init, which was a separate process. The two were fused into launchd, and it has assumed mach_
init’s little documented, but chief role of the bootstrap service manager.

Mach’s IPC services rely on the notion of “ports” (vaguely akin to TCP and UDPs), which serve as 
communication endpoints. This is described (in great detail) in Chapter 10. For the moment, how-
ever, it is suffi cient to consider a port as an opaque number that can also be referenced by a fully 
qualifi ed name. Servers and clients alike can allocate ports, but servers either require some type of 
locator service to allow clients to fi nd them, or otherwise need to be “well-known.” 

Enter: the bootstrap server. This server is accessible to all processes on the system, which may 
communicate with it over a given port — the bootstrap_port. The clients can then request, over 
this port, that the server lookup a given service by its name and match them with its port. (UNIX 
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has a similar function in its RPC portmapper, also known as sunrpc. The mapper listens on a well-
known port (TCP/UDP 111) and plays matchmaker for other RPC services)1.

Prior to launchd, mach_init assumed the role of bootstrap_server. launchd has since taken over 
this role and claims the port (aptly named bootstrap_port) during its startup. Since all processes 
in the system are its progeny, they automatically inherit access to the port. bootstrap_port is 
declared as an extern mach_port_t in <servers/bootstrap.h>.

Servers wishing to register their ports with the bootstrap server can use the port to do so, using 
functions defi ned in <servers/bootstrap.h>. These functions (bootstrap_create_server and 
bootstrap_create_service) are still supported, but long deprecated. Instead, the service can 
be registered with launchd in the server’s plist, and a simpler function — bootstrap_check_in()
— remains to allow the server to request launchd to hand over the port when it is ready to service 
requests:

kern_return_t bootstrap_check_in(mach_port_t bp, // bootstrap_port
                                 const name_t service_name, // name of service
                                 mach_port_t *sp); // out: server port

launchd pre-registers the port when processing the server’s plist. The server port is usually ephem-
eral, but can also be well known if the key HostSpecialPort is added. (This is discussed in more 
detail in Chapter 10, under “Host Special Ports”). launchd can be instructed to wait for the server’s 
request, as is shown in Listing 7-7. com.apple.windowserver.active will be advertised to clients 
only after WindowServer checks in with launchd using functions from <launch.h>.

LISTING 7-7: com.apple.WindowServer.plist

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" 
  "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
        <key>Label</key>
        <string>com.apple.WindowServer</string>
        <key>ProgramArguments</key>
        <array>

           <string>/System/Library/Frameworks/ApplicationServices.framework/Frameworks/
            CoreGraphics.framework/Resources/WindowServer</string>
           <string>-daemon</string>
        </array>
        <key>MachServices</key>
        <dict>
                <key>com.apple.windowserver</key>
                <true/>
                <key>com.apple.windowserver.active</key>
                <dict>

1Readers familiar with Android will note the similarity to its Binder mechanism, which (among other IPC 
related tasks) also allows system services to be published, albeit using a character device, /dev/binder, rather 
than a port.

continues
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                        <key>HideUntilCheckIn</key>
                        <true/>
                </dict>
        </dict>
</dict>
</plist>

Any clients wishing to connect to a given service, can then look up the server port using a similar 
function:

kern_return_t bootstrap_look_up(
                mach_port_t bp,             // always bootstrap_port
                const name_t service_name,  // name of service
                mach_port_t *sp);           // out: server port

If the server’s port is available and the server has checked in, it will be returned to the client, which 
may then send and receive messages (using mach_msg(), also discussed in Chapter 10). The Mach 
messages for the bootstrap protocol are defi ned in the launchd source in .defs fi les, which are pre-
processed by the Mach Interface Generator (MIG) (also discussed in Chapter 10). You can view a 
list of the active daemons using the bslist subcommand of launchctl(1). The list prints out a 
fl attened view of the hierarchical namespace of bootstrap servers visible in the current context. The 
bstree subcommand displays the full hierarchical namespace (but requires root privileges). In Lion 
and later, bstree also shows XPC namespaces (discussed later in this chapter).  

The bootstrap mechanism is now implemented over launchd’s vproc, a new library introduced in 
Snow Leopard, which also provides for the next feature, transactions. 

Transaction Support
launchd is smarter than the average init. Unlike init, which can just start or stop its daemons, 
launchd supports transactions, a useful feature exported by launchd’s vproc, which daemons can 
access through the public <vproc.h>. Daemons using this API can mark pending transactions by 
encapsulating them between vproc_transaction_begin, which generates a transaction handle, and 
vproc_transaction_end on that handle, when the transaction completes. A transaction-enabled 
daemon can also indicate the EnableTransactions key in its plist, which enables launchd to check 
for any pending transactions when the system shuts down, the user logs out, or after a specifi ed 
timeout. If there are no outstanding transactions (the process is clean), the daemon will be shot 
down (with a kill -9) instead of gracefully terminated (kill -15), speeding up the shutdown or 
logout process, or freeing system resources after suffi cient inactivity.

Resource Limits and Throttling
launchd can enforce self-imposed resource limits on its jobs. A job (daemon or agent) can specify 
HardResourceLimits or SoftResourceLimits dictionaries, which will cause launchd to call 
setrlimit(2). The Nice key can be used to set the job’s nice value, as per nice(1). Additionally, 
a job can be marked with the LowPriorityIO key which causes launchd to call iopolicysys (sys-
tem call #322, discussed in Chapter 14) and lower the job’s I/O priority. Lastly, launchd is integrated 
with iOS’s Jetsam mechanism (also known as memorystatus, and discussed in Chapter 14), which 

LISTING 7-7 (continued)
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can enforce virtual memory utilization limitations, a feature that is especially important in iOS, 
which has no swap space. 

Autorun Emulation and File System Watch
One of Windows’ most known (and often annoying) features is autorun, which can automati-
cally start a program when removable media (such as a CD, USB storage, or hard disk) is attached. 
launchd offers the StartOnMount key, which can trigger a daemon to start up any time a fi le system 
is mounted. This can not only emulate the Windows functionality, but is actually safer, as the auto-
run feature in Windows has become a vector for malware propagation. launchd’s daemon are run 
from the permanent fi le system, rather than the removable one. 

launchd can also be made to watch a particular path, not necessarily a mount point, for changes, 
using the WatchPaths or the QueueDirectories keys. This is very useful, as it can react in real time 
to fi le system changes. This functionality is achieved by listening on kernel events (kqueues), as dis-
cussed in Chapter 3. Daemons may be further extended to support FSEvents as well (described in 
Chapter 4), by specifying a LaunchEvents dictionary with a com.apple.fsevents.matching dict 
of matching cases.

I/O Kit Integration
A new feature in Lion is the integration of launchd with I/O Kit. I/O Kit is the runtime environment 
of device drivers. Launch daemons or agents can request to be invoked on device arrival by specify-
ing a LaunchEvents dictionary containing a com.apple.iokit.matching dictionary. For the spe-
cifi cs of I/O Kit and its matching dictionaries, turn to Chapter 19. A high-level example, however, 
can be seen in Listing 7-8, which shows an excerpt from the com.apple.blued.plist launch dae-
mon, which is triggered by the to handle Bluetooth SDP transactions. 

LISTING 7-8: com.apple.blued.plist, demonstrating I/O Kit triggers

<plist version="1.0">
<dict>
        <key>EnableTransactions</key>
        <true/>
        <key>KeepAlive</key>
        <dict>
                <key>SuccessfulExit</key>
                <false/>
        </dict>
        <key>Label</key>
        <string>com.apple.blued</string>
        <key>MachServices</key>
        <dict>
                <key>com.apple.blued</key>
                <true/>
                <key>com.apple.BluetoothDOServer</key>
                <dict>
                        <key>ResetAtClose</key>
                        <true/>
                </dict>

continues
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        </dict>
        <key>Program</key>
        <string>/usr/sbin/blued</string>
  <key>LaunchEvents</key>
        <dict>
                <key>com.apple.iokit.matching</key>
                <dict>
                        <key>com.apple.bluetooth.hostController</key>
                        <dict>
                                <key>IOProviderClass</key>
                                <string>IOBluetoothHCIController</string>
                                <key>IOMatchLaunchStream</key>
                                <true/>
                        </dict>
                </dict>
        </dict>
</dict>
</plist>

Experiment: Setting up a Custom Service
One of the niftiest features of UNIX inetd was its ability to run virtually any UNIX utility on any 
port. The combination of the inetd’s handling of socket logic on the one hand, and the ability to 
treat a socket as any other fi le descriptor on the other, provides this powerful functionality.

This is also possible, if a little more complicated with launchd. First, we need to create a launchd 
plist for our program. Fortunately, this is a simple matter of copy, paste, and modify, as Listing 7-5 
can do just fi ne if you change the Label, Program, ProgramArguments, and Sockets keys to what-
ever you wish.

But here, we encounter a problem: launchd does allow the running of any arbitrary program in 
response to a network connection, but supports only the redirection of stdin, stdout, and stderr
to fi les. We want the application’s stdin, stdout, and stderr to be connected to the socket that 
launchd will set up for us. This means the program we launch has to be launchd-aware and request 
the socket handoff.

To solve this, we need to create a generic wrapper, as is shown in Listing 7-9.

LISTING 7-9: A generic launchd wrapper

#include <stdio.h>
#include <sys/socket.h>
#include <launch.h> // LaunchD related stuff
#include <stdlib.h> // for exit, and the like
#include <unistd.h> 
#include <netinet/in.h>
#include <sys/socket.h>
#include <netdb.h> // for getaddrinfo
#include <fcntl.h>

LISTING 7-8 (continued)
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#define JOBKEY_LISTENERS "Listeners"
#define MAXSIZE 1024
#define CMD_MAX 80

int main (int argc, char **argv)
{
  launch_data_t checkinReq, checkinResp;
  launch_data_t  mySocketsDict;
  launch_data_t  myListeners;

  int fdNum;
  int fd;
  struct sockaddr sa;
  unsigned int    len = sizeof(struct sockaddr);
  int    fdSession ;

  /* First, we must check-in with launchD.  */
  checkinReq = launch_data_new_string(LAUNCH_KEY_CHECKIN);
  checkinResp = launch_msg(checkinReq);

  if (!checkinResp) {
// Failed to checkin with launchd - this can only be because we are run outside
// its context. Print a message and exit

        fprintf (stderr,"This command can only be run under launchd\n");
        exit(2);
    }

  mySocketsDict = launch_data_dict_lookup(checkinResp, LAUNCH_JOBKEY_SOCKETS);

  if (!mySocketsDict)
   { fprintf (stderr, "Can't find <Sockets> Key in plist\n"); exit(1); }

  myListeners = launch_data_dict_lookup(mySocketsDict, JOBKEY_LISTENERS);

  if (!myListeners)
   {fprintf (stderr, "Can't find <Listeners> Key inside <Sockets> in plist\n");
   exit(1);

   fdNum = launch_data_array_get_count(myListeners);
   if (fdNum != 1)  {
        fprintf (stderr,"Number of File Descriptors is %d - should be 1\n", fdNum);
        exit(1);
   }

   // Get file descriptor (socket) from launchd
   fd = launch_data_get_fd(launch_data_array_get_index(myListeners,0));

   fdSession = accept(fd, &sa, &len);

   launch_data_free(checkinResp); // be nice..

continues
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// Print to stderr (/var/log/system.log) before redirecting..

   fprintf (stderr, "Execing %s\n", argv[1]);

   dup2(fdSession,0);     // redirect stdin
   dup2(fdSession,1);     // redirect stdout
   dup2(fdSession,2);     // redirect stderr
   dup2(fdSession,255);   // Shells also like FD 255.

// Quick and dirty example – assumes at least two arguments for the wrapper,
// the first being the path to the program to execute, and the second (and later)
// being the argument to the launchd program

   execl(argv[1], argv[1], argv[2], NULL);

// If we're here, the execl failed.
   close(fdSession);

   return (42);
}

As the listing shows, the wrapper uses launchd_ APIs (all clearly prefi xed with launch_ and defi ned 
in <launch.h>) to communicate with launchd and request the socket. This is done in several stages:

 ‰ Checking in with launchd — This is done by sending it a special message, using the launch_
msg() function. Since checking in is a standard procedure, it’s a simple matter to craft the 
message using launch_data_new_string(LAUNCH_KEY_CHECKIN) and then pass that mes-
sage to launchd.

 ‰ Get our plist parameters — Once launchd has replied to the check-in request, we can use its 
APIs to get the various settings in the plist. Note that there are two ways to pass parameters 
to the launched daemons, either as command-line arguments (the ProgramArguments array), 
or via environment variables, which are passed in an EnvironmentVariables dictionary, 
and read by the daemon using the standard getenv(3) call.

 ‰ Get the socket descriptor — Getting any type of fi le descriptor is a little tricky, since it’s not 
as straightforward to pass between processes as strings and other primitive data types are. 
Still, any complexity is well hidden by launch_data_get_fd.

Once we have the fi le descriptor (which is the socket that launchd opened for us), we call accept() on 
it, as any network server would. This will yield a connected socket with our client on the other end. 
All that’s left to do is to use the dup2() system call to replace our stdin, stdout, and stderr with 
the accepted socket, and exec() the real program. Because exec() preserves fi le descriptors, the new 
program receives these descriptors in their already connected state, and its read(2) and write(2)
will be redirected over the socket, just as if it would have called recv(2) and send(2), respectively. 

To test the wrapper, you will need to drop its plist in /System/Library/LaunchDaemons (or another 
LaunchDaemons directory) and use launchctl(1) to start it, as shown in Output 7-1. The wrapper 
in this example was labeled com.technologeeks.wrapper, and was placed in an eponymous plist. 
Note in the output, that launchctl(1) isn’t the chatty type and no comment implies the commands 
were successful.

LISTING 7-9 (continued)
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OUTPUT 7-1: Using launchctl(1) to start a LaunchDaemon

root@Minion (~)# launchctl
launchd% load /System/Library/LaunchDaemons/com.technologeeks.wrapper.plist
launchd% start com.technologeeks.wrapper
launchd% exit

Because the wrapper is intentionally generic, you can specify any program you want, assuming 
this program uses stdin, stdout, and stderr (which all command line utilities do, anyway). This 
enables nice backdoor functionality, as you can easily set up a root shell on any port you want. Set-
ting the command line arguments to your wrapper to /bin/zsh -i will result in output similar to 
Output 7-2:

OUTPUT 7-2: Demonstrating a launchd-wrapped root shell

root@Minion (~)# telnet localhost 1024 # or whereever you set your SockServiceName
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
zsh# id;
uid=0(root) gid=0(wheel) groups=0(wheel),401(com.apple.access_screensharing),
402(com.apple.sharepoint.group.1),1(daemon),
2(kmem),3(sys),4(tty),5(operator),8(procview),9(procmod),12(everyone),
20(staff),29(certusers),
33(_appstore),61(localaccounts)80(admin),98(_lpadmin),100(_lpoperator),
204(_developer)
zsh: command not found: ^M
zsh# whoami;
root
zsh: command not found: ^M

Note that a semicolon must be appended to shell commands. This is because you are working 
directly over the shell’s stdin, and not a terminal, so the enter key is sent out as a literal Ctrl-M. 
The semicolon added terminates the command so the shell can parse it, making the Ctrl-M into a 
separate, invalid command. A minor annoyance in exchange for remote root capabilities.

LISTS OF LAUNCHDAEMONS

There are an inordinate amount of LaunchDaemons in OS X and iOS. Indeed, many sites devote 
countless HTML pages and SMTP messages to debating the purpose and usefulness of the daemons 
and agents, especially in iOS, where unnecessary CPU cycles not only impact performance, but also 
dramatically shorten battery life. The following section aims to elucidate the purpose of these dae-
mons and agents. 

iOS and OS X share some common LaunchDaemons. All plists (and their Mach service entries) 
have the com.apple prefi x, and usually run their binaries from /usr/libexec. They are shown in 
Table 7-3:
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TABLE 7-3: Daemons common to iOS and OS X

LAUNCHDAEMON

(/USR/LIBEXEC)

MACH SERVICES

(COM.APPLE.*)

NOTES

DumpPanic

(CoreServices)

DumpPanic When kernel boots, collects 

any leftover panic data from 

a previous panic. Runs with 

RunAtLoad=true.

appleprofilepolicyd appleprofilepolicyd System profi ling. Communicates 

with profi ling kernel extensions. 

Registers HostSpecialPort 16.

aslmanager --- Apple system Llog. Runs /usr/

bin/aslmanager, and sets a 

WatchPath on /var/log/asl/

SweepStore.

Backupd

(MobileBackup framework)

Backupd RunAtLoad = true.

chud.chum Runs /Developer/usr/

libexec/chum, the CHUD 

helper daemon allowing access 

to privileged kernel interfaces 

from user mode.

configd SCNetworkReachability

Configd

KeepAlive = true.

AppleIDAuthAgent

(CoreServices)

coreservices.appleid

.authentication

coreservices.appleid

.passwordcheck

Handles AppleID-related 

requests. Whereas iOS has both 

services, OS X version only has 

the second service, which runs 

with a –checkpassword switch.

cvmsServer cvmsServ Internal to OpenGL(ES) 

framework.

fseventsd FSEvents In OS X, fseventsd is run from 

the CarbonCore framework, 

which is internal to CoreServices.

locationd locationd.registration

locationd.simulation (i)

locationd.spi (i)

locationd.synchronous (i)

locationd.agent (SL)

locationd.services(SL)

Location services.

c07.indd 242c07.indd   242 10/5/2012 4:16:50 PM10/5/2012   4:16:50 PM



Lists of LaunchDaemons x 243

LAUNCHDAEMON

(/USR/LIBEXEC)

MACH SERVICES

(COM.APPLE.*)

NOTES

mDNSResponder mDNSResponder Multicast DNS listener. Core part 

of Apple’s “Bonjour.”

mDNSResponderHelper mDNSResponderHelper Provides privilege separation for 

mDNSResponder.

notifyd

(/usr/sbin)

system.

notification_center
System notifi cation center: 

handles kernel and other 

notifi cations.

racoon

(/usr/sbin)

Racoon Open source VPNd. Thanks to 

this daemon iOS5 proved jail-

breakable (twice).

ReportCrash

(/System/Library/

CoreServices)

ReportCrash.*

(OS X has ReportCrash., iOS 

has JetSam, SafetyNet, Simu-

lateCrash, and StackShot.)

The default crash handler, which 

intercepts all application crashes. 

Runs automatically on crash by 

setting job’s Mach exception 

ports (discussed in Chapter 11).  

sandboxd Sandboxd Also uses HostSpecialPort 14.

securityd Securityd

SecurityServer (SL)
Handles key access and authori-

zation. Written by Perry the Cynic, 

apparently. 

OnDemand.

syslogd system.logger Passes messages to ASL via the 

asl_input socket (discussed in 

Chapter 4).

A list of OS X specifi c LaunchDaemons (and a host of LaunchAgents), is too large and tedious to fi t 
in these pages, but is maintained on the book’s companion website.

iOS launchdaemons
Table 7-4 details some of the daemons specifi c to iOS, in alphabetical order:
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TABLE 7-4: Some of the iOS daemons in /System/Library/LaunchDaemons

LAUNCHDAEMON

(/USR/LIBEXEC)

MACH SERVICES

(COM.APPLE.*)

NOTES

accessory_device_

arbitrator

mobile.accessory_device_

arbitrator
Handles accessories plugged 

into i-Device, such as docks. Set 

to respond to events from I/O Kit 

on the IOUSBInterface, so it 

can be started whenever such an 

accessory is connected. Formerly 

accessoryd.

Accountsd

(Accounts.framework)

accountsd.accountmanager

accountsd.oauthsigner
Single sign-on. Runs as mobile.

Amfid MobileFileIntegrity Discouraging any attempt to run 

unsigned, un-entitled code in iOS. 

Arch-nemesis of all jailbreakers. 

Uses HostSpecialPort 18.

Apsd

(ApplePushService

.framework)

Apsd Apple Push Service Daemon (the 

APS private framework). Runs as 

mobile.

Assetsd

(AssetsLibrary.framwork)

PersistentURLTranslator

.Gatekeeper

assetsd.*

Runs as mobile.

Atc Atc Air traffi  c controller.

Calaccessd

(EventKit.framework/

Support)

Calaccessd The EventKit’s calendar access 

daemon. Runs as mobile.

crash_mover crash_mover Moves crashes to /var/Mobile/

Library/Logs.

fairplayd.XXX Fairplayd

Unfreed
User mode helper for Apple’s 

“FairPlay” DRM. This daemon 

is hardware specifi c (the plist 

contains a LimitedToHardware 

key), with XXX specifying the 

board type (e.g., N81 for iPod 4,1).

Itunesstored

(iTunesStore.framework/

Support)

iTunesStore.daemon.*

itunesstored.*
The iTunes Store server. Mostly 

known for the app store badge 

notifi cations.

Runs as mobile.

Lockbot --- Listens on /var/run/lockbot. 

Assists in jailing the device.

c07.indd 244c07.indd   244 10/5/2012 4:16:51 PM10/5/2012   4:16:51 PM



Lists of LaunchDaemons x 245

LAUNCHDAEMON

(/USR/LIBEXEC)

MACH SERVICES

(COM.APPLE.*)

NOTES

Lockdownd lockdown.host_watcher See next section of this chapter.

Mobileassetd Mobileassetd Runs with -t 15.

mobile.installd mobile.installd Runs with -t 30 as mobile.

mobile.installd

.mount_helper

mobile.installd

.mount_helper
Mounts the developer image 

when device is selected for 

development.

mobile_obliterator mobile.obliteration Remotely obliterate (that is, wipe) 

the device.

Pasteboard

(UIKit.framework/

Support/)

UIKit.pasteboardd Cut/paste support. Runs as 

mobile. Close relative of OS 

X’s as pboard(8), which is a 

LaunchAgent (q.v., pbcopy(1),
pbpaste(1)).

SpringBoard

(/System/Library/

CoreServices)

CARenderServer

SBUserNotification

UIKit.statusbarserver

bulletinboard.*

chatkit

.clientcomposeserver.xpc

iohideventsystem

smsserver

springboard.*

The chief UI of i-Devices. 

Described in its own section in 

this chapter.

Twitterd

(Twitter.Framework)

twitter.authenticate

twitterd.server
Twitter support introduced in 

iOS 5.

Vsassetsd

(VoiceServices

.framework/Support)

Vsassetd Responsible for voice assets. 

Runs as mobile.

Glancing over the table, you may have noticed two special Daemons in iOS: SpringBoard and 
lockdownd. SpringBoard is the GUI Shell and is described later in this Chapter. lockdownd
deserves more detail, and is described next.

lockdownd
lockdownd is the arch-nemesis of jailbreakers everywhere, being the user mode cop charged with 
guarding the jail. It is started by launchd and handles activation, backup, crash reporting, device 
syncing, and other services. It registers the com.apple.lockdown.host_watcher Mach service, and 
listens on TCP port 62078, as well as the /var/run/lockdown.sock UNIX domain socket. It is 
also assisted by a rookie, /usr/libexec/lockbot.
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Lockdownd is, in effect, a mini-launchd. It maintains its own list of services to start in /System/
Library/Lockdown/Services.plist, as shown in Listing 7-10. 

LISTING 7-10: An excerpt from lockdownd’s services.plist

<plist version="1.0">
<dict>
        <key>com.apple.afc</key>
        <dict>
                <key>AllowUnactivatedService</key>
                <true/>
                <key>Label</key>
                <string>com.apple.afc</string>
                <key>ProgramArguments</key>
                <array>
                        <string>/usr/libexec/afcd</string>
                        <string>--lockdown</string>
                        <string>-d</string>
                        <string>/var/mobile/Media</string>
                        <string>-u</string>
                        <string>mobile</string>
                </array>
        </dict>
        <key>com.apple.afc2</key>
        <dict>
                <key>AllowUnactivatedService</key>
                <true/>
                <key>Label</key>
                <string>com.apple.afc2</string>
                <key>ProgramArguments</key>
                <array>
                        <string>/usr/libexec/afcd</string>
                        <string>--lockdown</string>
                        <string>-d</string>
                        <string>/</string>
                </array>
</dict>

The listing shows an important service — afc — which is responsible for transferring fi les between 
the iTunes host and the i-Device. This is required in many cases, for synchronization as well as 
moving crash and diagnostic data. The second instance of the same service (afc2) is automatically 
inserted in the jailbreak process, and differs only in its lack of the -u mobile command line argu-
ment to the afc, which makes it retain its root privileges instead of dropping to the non-privileged 
user mobile. lockdownd (just like launchd) runs as root and can drop privileges before running 
another process if the UserName key is specifi ed.

GUI SHELLS

When the user logs in on the console (either automatically or by specifying credentials), the system 
starts a graphical shell environment. OS X uses the Finder, whereas iOS uses SpringBoard, but the 
two are often more similar than they let on. From launchd’s perspective, both Finder and 
SpringBoard are just one or two more agents in the collection of over 100 daemons and agents they 
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need to start and juggle. But for the user, these programs constitute the fi rst (and often fi nal) frontier 
for interaction with the operating system. 

Finder (OS X)
Finder is OS X’s equivalent of Windows’ Explorer: It provides the graphical shell for the user. It is 
started as a launch agent upon successful login, from the com.apple.Finder.plist property list (in 
/System/Library/LaunchAgents)

Finder has dependencies on no less than 30 libraries and frameworks, some of them private, which 
you can easily display by using otool(1) -l. Doing so also reveals a peculiarity: Finder is a rare 
case of an encrypted binary. OS X supports code encryption, as described in Chapter 4 and detailed 
further in Chapter 13, but there are fairly few encrypted binaries. Output 4-3 demonstrated using 
otool –l to view the encrypted portion of Finder. Using strings(1) or trying to disassemble Finder 
is, therefore, a vain effort (unless the encryption is defeated, for example by a tool like corerupt, pre-
sented in Chapter 12). You can also use GDB to attach to Finder once it is running (yet again, defeat-
ing the whole purpose of the binary protection), and trace its threads (usually only three of them).

Finder is so tightly integrated with the system that the very design of the native fi le system, HFS+, 
has been built around it. The fi le and folder data, and indeed the volume data itself, contains special 
fi nder information fi elds. These fi elds enable many features, such as reopening folder windows in the 
exact dimensions and location the user placed them last. Finder additionally makes use of extended 
attributes to store information, such as color labels and aliases. These features are all discussed in 
Chapter 16 (which is entirely devoted to HFS+).

With a Little Help from My Friends
All the work of supporting the rich GUI can prove overwhelming for any one process, which is why 
the GUI handling is actually split between several processes, which are all in /System/Library/
CoreServices.

The Dock.app is responsible for the familiar tray of icons usually found at the bottom of the desk-
top, as its name implies, but also sets the wallpaper (what X would call the “root window”), as can 
be witnessed when the process is killed. It is assisted by com.apple.dock.extra, which connects 
the UI actions to the Dock action outlets.

The SystemUIServer.app is responsible for the menu extras (right hand) side of the status bar, 
which it loads from /System/Library/CoreServices/Menu Extras. Note that there, menu extras 
may also be created programmatically (using [NSStatusBar systemStatusBar] and its setImage/
setMenu methods), in which case these extras are the responsibility of the app which created them.

Due to their important role (and Apple’s desire to keep their UI theirs for as long as possible before 
others “adopt” it), Finder’s assistants (as well as other CoreServices apps) are also protected 
binaries.

Experiment: Figuring Out Who Owns What in the GUI
Using a shell (preferably over SSH) and the UNIX kill(1) command, you can quickly determine 
which process owns what part of the GUI. Your options are to either kill the process violently (using 
kill -9) or just pause the process (using kill –STOP and kill -CONT). Doing so on the various 
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processes — Finder, Dock and SystemUIServer — will either briefl y make their UI assets disappear 
(if killed, until the processes are automatically restarted by launchd) or hang with the spinning 
beachball of death (as long as the processes are stopped) or a “fast forward” effect (when the pro-
cesses are resumed, and all the queued UI messages are delivered). Menu extras created by apps will 
be unaffected by SystemUIServer’s suspension or premature demise.

You might want to use killall(1) instead of kill, as it will send a signal by name, rather than by 
PID. If you use it this way to kill the same process repeatedly, launchd throttles the processes, which 
after a few seconds are respawned. 

SpringBoard (iOS)
What Finder is to OS X, SpringBoard is for iOS. In iOS the system need not logon, so SpringBoard 
is started automatically, to provide the familiar icon based UI of the system. This UI has served as 
the inspiration to Lion’s LaunchPad, which uses the same GUI concepts and is essentially a back 
port of SpringBoard into OS X — a fact that is evident as some SpringBoard-named fi les can be 
found in LaunchPad binary (which is technically part of the dock). Much like its OS X GUI counter-
part (Finder), SpringBoard is loaded from /System/Library/CoreServices/.

All by Myself (Sort of)
Unlike Finder, SpringBoard handles almost everything by itself, and there are only a few loadable 
bundles in the CoreServices directory. Finder’s 30 dependencies are dwarfed by SpringBoard, which 
has about 80, as you can see with otool –l, which will also reveal that SpringBoard is (surpris-
ingly) an unprotected binary. 

SpringBoard nonetheless does turn to additional bundles for certain tasks. /System/Library/
SpringBoardPlugins contains three types of loadable bundles (as of iOS 5):

 ‰ lockbundle — Lock bundles provide lock screen functionality. The 
NowPlayingArtLockScreen.lockbundle is responsible for providing the lock screen when 
the music player (Music~iphone or MobileMusicPlayer) is active and the screen is locked. 
The PictureFramePlugin shows pictures from the user’s photo library. The iPhone also has 
a bundle for VoiceMemosLockScreen (to show voice messages and missed call indicators) 

 ‰ servicebundle — Helps SpringBoard with various tasks, such as ChatKit.servicebundle,
IncomingCall.servicebundle, and WiFiPicker.servicebundle.

 ‰ bundle — The original extension before iOS 5. Still exists for NikeLockScreen.bundle and 
ZoomTouch.bundle.

Creating the GUI
SpringBoard creates its GUI by enumerating the apps in /Applications /var/mobile/

Applications and displaying icons for them on the i-Device. Icon enumeration is performed auto-
matically when SpringBoard starts. Each app’s Info.plist is read, and the app is displayed on one 
of the home screens with the icon specifi ed in its CFBundleIcons property, unless it contains the 
SBAppTags key with a hidden array entry).  Examples of hidden apps are Apple’s own DemoApp
.app, iOS Diagnostics.app, Field Test.app, Setup.app, and TrustMe.app.
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iOS devices start Setup.app when fi rst launched to confi gure the device, 
register, and activate it. This has been rumored to annoy certain types of people. 
A nice way to get past it is to jailbreak the device and boot it (tethered or unte-
thered doesn’t matter), then ssh into it and simply rename (mv) /Applications/
Setup.app (the new name doesn’t matter). Then, restart SpringBoard (killall
SpringBoard), and that setup screen is gone. iTunes will still complain about 
device registration when syncing, but there are ways to bypass that, as well.

Icon grouping and the button bar settings are saved to /var/mobile/Library/SpringBoard/
IconState.plist, with general home screen settings (as well as ringtones and other audio effects) 
in /var/mobile/Library/Preferences/com.apple.springboard. A third fi le, 
applicationstate.plist, controls application settings like badges. Figure 7-1 shows the mapping 
between the fi les and the home screen. 

~/Library/Springboard/IconState.plist:

<plist version="1.0">
<dict>
  <key>buttonBar</key>
  <array>
   <string>com.apple.mobilephone</string>
   <string>com.apple.mobilemail</string>
   <string>com.apple.mobilesafari</string>
   <string>com.apple.mobileipod</string>
  </array>
<key>iconLists</key>
 <array>
  <array>
   <string>com.apple.MobileSMS</string>
    ...
   <string>com.apple.mobiletimer</string>
   <dict>
     <key>defaultDisplayName</key>
     <array>
      <string>com.apple.MobileAddressBook</string>
      <string>com.apple.calculator</string>
      <string>com.apple.compass</string>
      <string>com.apple.VoiceMemos</string>
     </array>
     <key>listType</key>
     <string>folder</string>
    </dict>
    <string>com.etrade.mobileproiphone</string>
    <string>com.nbcuni.cnbc.cnbcrt</string>
    <string>com.apple.Preferences</string>
   </array>
   <array>
      // Next home screen(s) follow ...
     ... 
   </array>
</dict>
</plist>

~/Library/Preferences/com.apple.springboard:

~/Library/Springboard/applicationstate.plist:

<key>com.apple.Preferences</key>
<dict>
   <key>SBApplicationBadgeKey</key>
   <integer>1</integer>
   ……

<key>SBShowBatteryPercentage</key>
<true/>

FIGURE 7-1: SpringBoard’s fi les and how they lay out the iOS home screen.
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Experiment: Unhiding (or Hiding) an iOS App
It’s a simple matter to hide or unhide apps on a jailbroken device. All it takes is editing the App’s 
Info.plist and toggling the SBAppTags key. This is demonstrated in this simple experiment. You 
can use the method here to unhide or hide any app you wish.

For the app you choose, take the Info.plist and copy it to /tmp. Then, convert it to the more read-
able XML format (or, if you prefer, JSON) using plutil(1). Edit the fi le to either add or remove 
the SBAppTags key with an array, containing a single string value of ‘hidden’. Finally, restart 
SpringBoard.

Performing the sequence of operations described here on DemoApp, we would have the sequence 
shown in Output 7-3:

OUTPUT 7-3: Toggling the visibility of an iOS app

root@padishah (/)# cp /Applications/DemoApp.app/Info.plist /tmp
root@padishah (/)# plutil -convert xml1 /tmp/Info.plist
Converted 1 files to XML format
root@padishah (/)# cat /tmp/Info.plist
…
     <key>SBAppTags</key>
    <array>
        <string>hidden</string>
     </array>
…

root@padishah (/)# plutil –convert binary1 /tmp/Info.plist
Converted 1 files to binary format

root@padishah (/)# cp /tmp/Info.plist /Applications/DemoApp.app/
root@padishah (/)# killall SpringBoard

Handling the UI
Finder and SpringBoard are both in charge of presenting the UI, but Springboard’s responsibilities 
extend above and beyond. SpringBoard is apparently responsible for every type of action in iOS. 
Even if it is not the foreground application, if it is stopped (by signal) no UI events get to the active 
app, and when it is continued all the events queued are delivered to the app. 

Springboard is a multithreaded application. It has far more threads than Finder. Apple's developers 
were kind enough to name some of them (using the pthread_setname_np). The names reveal two 
Web related threads (WebCore and WebThreads), at least two belonging to 
coremedia.player, one for the WiFiManager callbacks (responsible for the WiFi indicator on the 
status bar), and three or more threads used for CoreAnimation. Debugging the process requires get-
ting past a system watchdog, which reboots the system if SpringBoard is not responsive for more 
than a few minutes. 

More information can be gleaned from Springboard’s launchd registration, i.e., the com.apple
.SpringBoard.plist entry in /System/Library/LaunchDaemons, shown in Listing 7-11. Since all 

Add or remove this value
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Mach port registrations go through launchd, this lists the (many) ports which SpringBoard requests 
launchd to register.

LISTING 7-11: SpringBoard’s registered Mach ports

<plist version="1.0">
<dict>
        <key>EmbeddedPrivilegeDispensation</key>
        <true/>
        <key>HighPriorityIO</key>
        <true/>
        <key>KeepAlive</key>
        <true/>
        <key>Label</key>
        <string>com.apple.SpringBoard</string>
        <key>MachServices</key>
        <dict>
                <key>PurpleSystemEventPort</key>
                <dict>
                        <key>ResetAtClose</key>
                        <true/>
                </dict>
                <key>com.apple.CARenderServer</key>
                <dict>
                        <key>ResetAtClose</key>
                        <true/>
                </dict>
                <key>com.apple.SBUserNotification</key>
                <true/>
                <key>com.apple.UIKit.statusbarserver</key>
                <true/>
                <key>com.apple.bulletinboard.observerconnection</key>
                <true/>
                <key>com.apple.bulletinboard.publisherconnection</key>
                <true/>
                <key>com.apple.bulletinboard.settingsconnection</key>
                <true/>
                <key>com.apple.chatkit.clientcomposeserver.xpc</key>
                <true/>
                <key>com.apple.iohideventsystem</key>
                <dict>
                        <key>ResetAtClose</key>
                        <true/>
                </dict>
                <key>com.apple.smsserver</key>
                <dict>
                        <key>ResetAtClose</key>
                        <true/>
                </dict>
                <key>com.apple.springboard</key>
                <dict>
                        <key>ResetAtClose</key>
                        <true/>

continues

c07.indd 251c07.indd   251 10/5/2012 4:16:54 PM10/5/2012   4:16:54 PM



252 x CHAPTER 7  THE ALPHA AND THE OMEGA — LAUNCHD 

                </dict>
                <key>com.apple.springboard.UIKit.migserver</key>
                <dict>
                        <key>ResetAtClose</key>
                        <true/>
                </dict>
                <key>com.apple.springboard.alerts</key>
                <dict>
                        <key>ResetAtClose</key>
                        <true/>
                </dict>
                <key>com.apple.springboard.appstatechanged</key>
                <dict>
                        <key>HideUntilCheckIn</key>
                        <true/>
                </dict>
                <key>com.apple.springboard.backgroundappservices</key>
                <dict>
                        <key>HideUntilCheckIn</key>
                        <true/>
                        <key>ResetAtClose</key>
                        <true/>
                </dict>
                <key>com.apple.springboard.blockableservices</key>
                <dict>
                        <key>ResetAtClose</key>
                        <true/>
                </dict>
                <key>com.apple.springboard.processassertionservices</key>
                <dict>
                        <key>HideUntilCheckIn</key>
                        <true/>
                        <key>ResetAtClose</key>
                        <true/>
                </dict>
                <key>com.apple.springboard.processinvalidation</key>
                <dict>
                        <key>HideUntilCheckIn</key>
                        <true/>
                </dict>
                <key>com.apple.springboard.remotenotifications</key>
                <dict>
                        <key>ResetAtClose</key>
                        <true/>
                </dict>
                <key>com.apple.springboard.services</key>
       <dict>
                       <key>HideUntilCheckIn</key>
                       true/>
                       <key>ResetAtClose</key>
                       <true/>
                <key>com.apple.springboard.watchdogserver</key>

LISTING 7-11 (continued)
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                <true/>
       </dict>
       <key>ProgramArguments</key>
       <array>
             <string>/System/Library/CoreServices/SpringBoard.app/SpringBoard</string>
       </array>
       <key>ThrottleInterval</key>
       <integer>5</integer>
       <key>UserName</key>
       <string>mobile</string>
</dict>
</plist>

Chief among all these ports is the PurpleSystemEventPort, which handles the UI events as 
GSEvent messages. This is understandably undocumented by Apple, but has been reverseengi-
neered[2]. The main thread in Springboard calls processes GSEventRun(), which is the CF RunLoop 
that handles the UI messages. The other threads are in similar run loops over the other Mach ports 
in Springboard, but due to the opaque nature of these ports, it’s diffi cult to tell which thread is on 
which port without the right symbols.

XPC (LION AND IOS)

XPC is a set of lightweight interprocess communication primitives fi rst introduced in Lion and iOS 
5. XPC is fairly well documented in Apple Developer[3]. It is also tightly integrated with the Grand 
Central Dispatcher (GCD). XPC enables a developer to break down applications into separate 
components. This improves both application stability and security, as vulnerable (or unstable) func-
tionality can be contained in an XPC service, which is managed externally — another responsibility 
happily assumed by launchd. 

Just as with its own LaunchDaemons, launchd takes on the tasks of starting XPC services on 
demand, watching over them (restarting on crash), and terminating them (the hard way, with a 
kill -9) when they are done or idle. The launchd uses xpcd(8), xpchelper(8), and xpcproxy(8)
to assist with the XPC services. It maintains XPC services alongside standard Mach services, 
in separate XPC domains — per-user, private, and singleton. This can be seen in the output of
launchctl’s bstree subcommand, as shown in Output 7-4:

OUTPUT 7-4: XPC Service Domains

root@Simulacrum (/)# launchctl bstree | grep Domain
com.apple.xpc.domain.com.apple.dock.[231] (XPC Private Domain)/
    com.apple.xpc.domain.Dock[175] (XPC Private Domain)/
    com.apple.xpc.domain.peruser.501 (XPC Singleton Domain)/
    com.apple.xpc.domain.imagent[214] (XPC Private Domain)/
    com.apple.xpc.domain.com.apple.audio[203] (XPC Private Domain)/
    com.apple.xpc.domain.peruser.202 (XPC Singleton Domain)/
    com.apple.xpc.domain.coreaudiod[108] (XPC Private Domain)/
    com.apple.xpc.system (XPC Singleton Domain)/
        ...
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XPC services and client applications link (either directly or through Cocoa) with libxpc.dylib,
which provides the various C-level XPC primitives (such as Mountain Lion’s NSXPCConnection). 
The library remains closed source at the time of this writing, but Apple does provide the <xpc/*>
includes which expose the APIs, whose internals are discussed in this section. XPC also relies on the 
private frameworks of XPCService and XPCObjects.  The former handles runtime aspects of ser-
vices, and the latter provides encoding and decoding services for XPC objects. iOS contains a third 
private framework, XPCKit.

XPC Object Types
XPC wraps and serializes various datatypes in a manner akin to the CoreFoundation framework.
<xpc/xpc.h> defi nes the object and data types supported by XPC, shown in Table 7-5. The type 
names are #defined as XPC_TYPE_typename macros wrappings pointers to the corresponding types 
in the table, and can be instantiated with xpc_typename_create functions. Objects can be retrieved 
from messages in most cases using xpc_typename_get_value. Two special object types are dic-
tionaries and arrays, which serve as containers for other object types (which may be created in or 
accessed from from them using xpc_[array|dictionary]_[get|set]_typename.

TABLE 7-5: XPC Object and data types

TYPE REPRESENTS

connection An XPC connection, over which messages can be sent and received. A con-

nection can be created using xpc_connection_create(), specifying an 

anonymous or named connection, or from a given endpoint, through a call to 

xpc_connection_create_from_endpoint().

endpoint Serializable form of a connection. Eff ectively a connection factory.

null A null object reference (constant) for comparisons.

bool A Boolean.

true/false Boolean true/false values (constants) for comparisons.

int64/uint64 Signed/Unsigned 64-bit integers.

double Double precision fl oats.

date Date intervals (UNIX time). Can be instantiated from the present time by a call 

to xpc_date_create_from_current.

data Array of bytes. The recipient can obtain a pointer to the data by calling 

xpc_data_get_bytes_ptr.

string Null terminated C-String (wraps char *). Strings may be created 

with a format string, and even with variable arguments (similar to 

vsprintf(3)). The recipient can obtain a pointer to the string by calling 

xpc_string_get_string_ptr.
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TYPE REPRESENTS

uuid Universally Unique Identifi er. The recipient can obtain the UUID by a call to 

xpc_uuid_get_bytes.

fd File descriptor. The descriptor can be used by the client by calling 

xpc_fd_dup.

shmem Shared memory. The shared memory can be mapped into the receipient’s 

address space by calling xpc_shmem_map.

array Indexed array of XPC objects. An array may contain any number of 

other object types, which may be added to it or retrieved from it using 

xpc_array_[get|set]_typename.

dictionary Associative array of XPC objects. A dictionary may contain any number 

of other object types, which may be added to it or retrieved from it using

xpc_dictionary_[get|set]_typename. 

error Error objects. Used for returning errors. Cannot be instantiated by clients.

Any of the XPC objects can be handled as an opaque xpc_object_t, and manipulated by functions 
described in xpc_object(3). These include xpc_retain/release, xpc_get_type (which returns 
one of the XPC_TYPEs corresponding to Table 7-5), xpc_hash (used to provide a hash value of an 
object for array indexing), xpc_equal (for comparing objects) and xpc_copy.

XPC Messages
Objects may be sent or received in messages. Messages are sent using one of several functions from 
<xpc/connection.h>, as shown in Table 7-6:

TABLE 7-6: XPC Messaging functions in <xpc/connection.h>

FUNCTION USAGE

xpc_connection_send_message

   (xpc_connection_t connection,

    xpc_object_t message);

Send message asynchronously on 

connection.

xpc_connection_send_barrier

  (xpc_connection_t connection,

   dispatch_block_t barrier);

Execute barrier block after last message 

is sent on connection.

xpc_connection_send_message_with_reply

   (xpc_connection_t connection,

    xpc_object_t message,

    dispatch_queue_t replyq,

    xpc_handler_t handler);

Send message, but also asynchronously 

execute handler in dispatch queue 

replyq when a reply is received.

continues
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xpc_object_t

xpc_connection_send_message_with_reply_sync

   (xpc_connection_t connection,

    xpc_object_t message);

Send message, blocking until a reply is 

received, and return reply as the xpc_

object_t return value

By default, messages are sent asynchronously, and are handled by dispatch queues (i.e., GCD), as 
shown in Figure 7-2. By using barriers, the programmer may provide a block to be executed when 
all the messages on a particular connection have been sent. Messages may expect replies, which 
are again asynchronous, though the _reply_sync function may be used to block until a message is 
received. 

Validate argument

Create a serializer to handle serialization of message

Call xpc_get_type to ensure argument is a connection,
and jump to xpc_api_misuse if it isn’t.

Invoke serializer to pack message

Release message reference

Enqueue message for asynchronous sending.
xpc_send_serializer calls mach_msg to send the message

_xpc_serializer_create

_xpc_serializer_pack

_xpc_connection_enqueue_async

xpc_release

FIGURE 7-2: Flow of xpc_connection_send_message

XPC messages are implemented over Mach messages and make use of the Mach Interface Genera-
tor (MIG) facility, which provides the xpc_domain subsystem. This subsystem contains messages 
to check in, load, or add services, and get the name of a service, similar to the bootstrap protocol 
described earlier in this chapter (XPC can be considered a subset of bootstrap, and makes use of it 
internally). Mach messages and in particular MIG are detailed in Chapter 10.

XPC services
XPC services can be created in Objective-C, or in C/C++. In either case, the services are started 
by a call to libxpc.dylib’s xpc_main. C/C++ services’ main is just a simple wrapper, which 
invokes xpc_main (declared in <xpc/xpc.h>) with the event handler function (xpc_connection_
handler_t). Objective-C services also call on xpc_main(), albeit indirectly through 
NSXPCConnection’s resume method. 

The event handler function takes a single argument, an xpc_connection_t. (Objective-C wraps 
this object with Foundation.framework’s  NSXPCConnection.) The XPC connection is treated as 

TABLE 7-6 (continued)
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an opaque object, with miscellaneous xpc_connection_* functions. In <xpc/connection.h> used 
as getters for its properties, and setters for its event handler and target queue. A connection’s name, 
effective UID and GID, PID and Audit Session ID can all be queried. 

The normal architecture of an XPC service involves calling dispatch_queue_create to create a 
queue for the incoming messages from the client and using xpc_connection_set_target_queue to
assign the queue to the connection. The service also sets an event handler on the connection, call-
ing xpc_connection_set_event_handler with a handler block (which may wrap a function). The 
handler is called whenever the service receives a message. A service may create a reply (by calling 
xpc_dictionary_create_reply) and send it.

A well-documented example of XPC is SandBoxedFetch, which is available from Apple Developer[4],
alleviating the need for an example in this book.

XPC Property Lists
XPC services are defi ned in their own bundles, contained in an XPCServices subfolder of its parent 
application or framework. As with all bundles, they have an Info.plist, which they use to declare 
various service properties and requirements:

 ‰ The CFBundlePackageType property is defi ned as “XPC!”

 ‰ The CFBundleIdentifier property defi nes the name of the XPCService. This is set to be the 
same as the bundle’s name.

 ‰ The XPCService property defi nes a dictionary, which can specify the ServiceType prop-
erty (Application. User or System), and RunLoopType (dispatch_main or NSRunLoop),
which dictates which run loop style xpc_main() adopts. The dictionary may also contain the 
JoinExistingSession Boolean property, to redirect auditing to the application’s existing 
audit session.

 ‰ The XPCService dictionary may be used to specify additional properties, prefi xed by an 
underscore. These include _SandboxProfile (which allows the optional specifi cation of 
a sandbox profi le to enforce on the XPC service, as discussed in Chapter 4) and 
_AllowedClients, which can specify the identifi ers of applications which are allowed to 
connect to the service.

SUMMARY

This chapter discussed launchd, the OS X and iOS replacement to the traditional UNIX init. 
launchd fi lls many functions in both operating systems: both those of UNIX daemons, and those of 
Mach. The Mach roles will be discussed further when the concept of Mach messages is elaborated 
on in Chapter 10.

The chapter ended with a review of the GUI of both OS X (Finder) and iOS (SpringBoard), in as 
much detail as possible on these intentionally undocumented binaries. 
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8
Some Assembly Required: 
Kernel Architectures

Before we delve into the OS X kernel internals, we present the basic ideas and architectures 
associated with and shared by all operating systems on all platforms: user mode, kernel mode, 
hardware separation, and a focus on the kernel’s tight programming constraints and real-
mode environment.

The kernel is the most critical part of any operating system. As such, it has to be highly opti-
mized to take advantage of all the features and capabilities of the underlying CPU. Kernels are, 
for the most part, written in C in order to be as close as possible to the machine, while keeping 
the code maintainable. In some cases, however, there is no choice but to get closer still, and 
use-architecture-specifi c assembly. 

Likewise, there is little choice left for those wishing to understand the kernel, but to wade into 
the quagmire that is assembly. The outputs and listings in this chapter contain a fair share of 
assembly — both Intel (for OS X) and ARM (for iOS). Unfortunately, the two variants are 
distinct languages, as foreign to each other as English is to Mandarin. A complete explana-
tion of either is well beyond the scope of the book. The intrepid reader, however, is more than 
encouraged to check out the Intel[1] and ARM[2] manuals for the complete syntax, or consult 
the appendix in this book for a quick overview and comparison of both architectures. 

KERNEL BASICS

All modern operating systems incorporate in their design a component called the kernel. This, 
like the kernel (or seed) of a fruit, is the innermost part of the system — its core. The kernel is 
the operating system. From a high-level view, the applications you run — from word proces-
sors to games — are all effectively clients of the kernel, which provides various services, or 
system calls. 
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The reasoning for a kernel becomes readily apparent when the developer’s point of view is consid-
ered — if a developer had to write applications that would work on all types of hardware, and all 
classes of environments, she would fi nd herself bogged down in a quagmire of decision-making. 
How does one interface with the hard drive? The network? The graphics adapter? The average 
developer could not care less about the idiosyncrasies of hardware devices. What’s more, if the 
developer had to build, from scratch, the code required for device and fi le access every time, it 
would infl ate both the size of the programs, as well as the time required to code them. There needs 
to be, therefore, some level of abstraction, which enables a developer to write code that is portable 
across the same operating system, but over different types of hardware. The kernel thus provides a 
level of virtualization. This is accomplished by an API that deals with abstract objects — in particu-
lar, virtual memory, network interfaces, and generic devices. 

The kernel also serves as a scheduler. All modern operating systems are preemptive multitasking
systems — with “multitasking” meaning they allow several programs, or tasks, to run concur-
rently. In actuality, though, the number of programs is far greater than the number of processors 
(or cores). The kernel therefore has to decide which program (process, or thread) can run on which 
processor/core.

The kernel is an arbiter — when programs seek to access shared devices, like the hard drive, dis-
play, or network adapters, there needs to be some form of scheduling, to avoid access confl icts or 
bottlenecks.

Another set of services offered by the kernel are security services — most often noticeable by the 
user as permissions and rights, these are mechanisms to ensure the integrity, privacy, and fair use of 
the system’s various resources. As an added layer to arbitration, any potentially sensitive operation 
(and practically all access to system resources) must fi rst pass through a security check. The kernel 
is responsible for performing that check, and enforcing the various permissions, though the system 
administrator can toggle and tweak the actual permissions themselves.

Kernel Architectures
All operating system designs include kernels, but the kernels are designed differently. There are three 
classes of kernels, and they are discussed next. 

Monolithic Kernels
The Monolithic architecture is the “classic” kernel architecture, and is still predominant in the 
UNIX and Linux realms. The term “monolithic” comes from Greek — meaning “single rock” or 
“single chunk.” A monolithic kernel follows the approach of putting all the kernel functionality — 
whether fundamental or advanced — in one address space. In this way, thread scheduling, and 
memory management are squeezed alongside fi le systems, security management, and even device 
drivers. 

To better understand the monolithic architecture, consider the layout of the Linux kernel, which is 
very close in its implementation to the standard UN*X kernel. This is shown in Figure 8-1.
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FIGURE 8-1:  The Linux kernel architecture

All the kernel functionality is implemented in the same address space. To further optimize, mono-
lithic kernels not only group all functionality into the same address space, but further map that 
address space into every processes’ memory. This is shown in Figure 8-2. In Linux, for example, of 
the 4 GB of addressable memory in a 32-bit application, 1 GB is sacrifi ced in the name of the kernel 
(On Windows 32-bit: 2 GB). Trying to set a pointer to an address above 0xC0000000 (Windows: 
0x80000000) will cause a memory violation (segmentation fault), as the memory is inaccessible from 
user mode. 

FIGURE 8-2: The monolithic kernel architecture
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Sacrifi cing so much memory — which, in 32-bit mode, makes for one quarter of the entire available 
amount — only makes sense if there is a signifi cant advantage, and indeed there is: switching from 
user mode to kernel mode in a monolithic architecture is highly effi cient, essentially as costly as a 
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thread switch. This is due to the kernel’s memory pages being resident in all processes, so that — 
aside from the kernel/user hardware enforced separation — there is really no difference between the 
two. All processes, regardless of owner or function, contain a copy of the kernel memory, just as 
they would contain copies of shared libraries. Further, these copies (again, like shared libraries) are 
all mapped to the same set of physical pages, which are resident. This not only saves precious RAM, 
but means that no signifi cant costs (such as page faults) are associated with performing a system 
call. This is especially important, given the ubiquity of system calls in user code.

In 64-bit architectures the reservation is larger by several orders of magnitude: the top 40–48 bits, 
depen ding on OS confi guration, accounting for a whopping 1–256 TB of virtual memory. Unlike the 
32-bit case, however, this really isn’t restrictive, since user mode has a like amount of addressable 
memory, which processes don’t even begin to scratch the surface of, and RAM alone could not back 
anyway.

Microkernels
While less common, The microkernel architecture is of special interest to us, as Mach, the inner-
most component of XNU, is built this way. 

A microkernel consists of only the core kernel functionality, in a minimal code-base. Only the criti-
cal aspects — usually task scheduling and memory management — are carried out by the kernel 
proper, with the rest of the functionality exported to external (usually user mode) servers. There 
exists complete isolation between the individual servers, and all communication between them is 
carried out by message passing: a mechanism allowing the delivery of (usually opaque) message 
structures and their subsequent queuing in each server’s queue, from which said component can 
later de-queue and process each, in turn. Figure 8-3 shows this architecture:

FIGURE 8-3: The microkernel architecture
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Microkernels offer several distinct advantages, which their monolithic brethren cannot. The fi rst is 
correctness: being a small code base allows for the verifi cation, by traversal of all code paths, of cor-
rect functionality. What follows is stability and robustness, as a microkernel has very few points of 
possible failure, if any. Since all the additional functionality is provided by external and independent 
servers, any failure is contained, and can be easily overcome by restarting the affected server com-
ponent. This is really not that different than a failure in a user process (think, when your browser 
or other application crashes), wherein that process can be restarted. By contrast, monolithic kernel 
failures more often than not trigger a complete kernel panic.

Another advantage of microkernels is their fl exibility, and adaptability to different platforms and archi-
tectures. Because their functionality is so well defi ned, it is relatively straightforward to port it to other 
architectures. This can, in theory, be further extended to remote components (that is, a true network-
based operating system), as there is no real constraint that message passing be confi ned to a single node.

Advantages on the one hand, there is one specifi c disadvantage on the other which outweighs most 
of them — and that is performance. Microkernel message passing translates to memory-copy opera-
tions, and several context-switch operations, neither of which are cheap in terms of computational 
speed. This disadvantage is so signifi cant, that “pure” microkernels are still largely academic, and 
not used commercially, much less so in contemporary operating systems. This calls for a third, syn-
thetic approach — hybridization.

Hybrid Kernels
Hybrid kernels attempt to synthesize the best of both worlds. The innermost core of the kernel, 
supporting the lowest level services of scheduling, inter-process communication (IPC) and virtual 
memory, is self-contained, as would be a microkernel. All other services are implemented outside 
this core, though also in kernel mode and in the same memory space as the core’s. 

Another way to look at this is as if the kernel contains within it a smaller autonomous core. Unlike 
a true microkernel design, however, this does not mandate message passing. The “kernel-within” 
is often just a self-contained modular executable, meaning other components may call on it for ser-
vices, but it does not call out. Note, however, that a hybrid kernel does not enjoy the robustness of a 
microkernel, having sacrifi ced it in return for the effi ciency of the monolithic kind.  

IS XNU A MICRO, MONOLITHIC, OR HYBRID KERNEL?

Technically, XNU is a hybrid kernel. The Windows kernel is also classifi ed as a 
hybrid, yet the differences between them are so signifi cant that using “hybrid” to 
describe both is a very loose and possibly misleading term.

Windows does contain a microkernel like core, but the executive, NTOSKRNL (or 
NTKRNLPA), itself is closer to a monolithic kernel. The kernel APIs make a dis-
tinction between the Ke prefi xed functions (the kernel core) and all the rest, but all 
are in the same address space: kernel space is reserved by default in the upper 2 GB 
of every process (44 or 48 bits in 64-bit mode), exactly as it would be in a mono-
lithic architecture. A crash in kernel mode, such as a bug in a driver, leads to the 
infamous “blue screen of death,” just like a kernel panic in UNIX.

continues
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(continued) 

OS X’s XNU is also a hybrid, but is somewhat closer to a microkernel than Win-
dows is. Mach, its core, was originally a true microkernel, and its primitives are 
still built around a message passing foundation. The messages, however, are often 
passed as pointers, with no expensive copy operations. This is because most of its 
servers now execute in the same address space (thereby classifying as monolithic). 
Likewise, the BSD layer on top of Mach, which was always a monolith, is in that 
same address space. 

Still, unlike Windows or Linux, OS X applications in 32-bit (Intel) used to enjoy 
a largely unfettered address space with virtually no kernel reservation — that is, 
the kernel had its own address space. Apple has conformed, however, and in 64-bit 
mode OS X behaves more like its monolithic peers: the kernel/user address spaces 
are shared, unless otherwise stated (by setting the -no-shared-cr3 boot argu-
ment on Intel architectures). The same holds true in iOS, wherein XNU currently 
reserves the top 2 GB of the 4 GB address space (prior to iOS version 4 the separa-
tion was 3 GB user/1 GB kernel).

USER MODE VERSUS KERNEL MODE

The kernel is a trusted system component. As we have seen, it controls the most critical functions. 
There needs to be a strict separation between the kernel functionality, and that of applications. Oth-
erwise, application instability might bring down the system. In the Microsoft realm, this was quite 
common in the days of DOS and Windows, before the advent of Windows NT based systems (such 
as NT, 2000, XP, and later). Further, this strict separation needs to be enforced by the hardware, as 
software-based enforcement is both costly (in terms of performance), and unreliable.

Intel Architecture — Rings
Intel-based systems provide the required hardware based separation. Beginning with the 286 pro-
cessor (with major enhancements in the 386 processors), Intel introduced the notion of “protected 
mode.” Intel x86 systems still boot in “real mode” (for compatibility), but all kernels switch the CPU 
to protected mode upon startup. This is accomplished by setting one of the four special-purpose 
Control Registers — CR0 — and toggling on its least-signifi cant bit. This operation is always per-
formed by assembly instructions — C and other languages have no access to the Control Registers. 
The code to do so in XNU is in start.s, for both i386 and x86_64 branches, shown in Listing 8-1:

LISTING 8-1: osfmk/x86_64/start.s

Entry(real_mode_bootstrap_base)
        cli
        LGDT(EXT(protected_mode_gdtr))
        /* set the PE bit of CR0 */
        mov     %cr0, %eax ; can't operate on CRs directly
        inc %eax ; add 1 toggles on the least significant bit
        mov     %eax, %cr0 ; update CR0
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Protected mode enforces 4 “rings.” These “rings” are privilege levels, numbered 0 through 3. They 
are modeled in a concentric fashion, with the innermost ring being ring 0, and the outermost ring 3. 
Ring 0 is the most sensitive, and is often referred to as Supervisor mode. Code on the processor run-
ning in ring 0 is the most trusted, and virtually omnipotent. As the ring levels increase, so do secu-
rity restrictions and privileges — so that code in ring 3 is least trusted, and most restricted.

Ring 0 naturally maps to kernel mode, and ring 3 — to user mode. Rings 1 and 2 are reserved for 
operating system services, but — in practice — are unused. The rings are implemented by two bits in 
the CS register, and two corresponding bits in the EFLAGS register, to set the “user privilege level” 
and “current privilege level” as part of the thread state. It is therefore not uncommon to see code 
in the kernel check the bits in CS, and bitwise-AND them with 0x3, as a way to check user/kernel 
mode on kernel entry.

Certain assembly instructions are disallowed anywhere but ring 0. These include direct access 
to hardware, manipulating the control registers, accessing protected memory regions, and many 
others. If a program attempts to execute such operations, the CPU generates a general protection 
fault (Interrupt #13), and further execution of that code is forbidden. (If protected mode were not 
enforced at the hardware level, any program that could access the control registers could switch 
between rings).

Code in a lower ring can easily switch to a higher ring, but moving from a higher ring to a lower 
ring is impossible, unless a call gate mechanism has been previously established by the lower ring. 
We will cover these in “Kernel/User Transition Mechanisms,” later. 

Virtualization note: newer processors, which support hardware based virtual-
ization, (such as Intel Vt-X and AMD-V) also offer an inner ring, “ring -1,” or 
“hypervisor mode.” This ring allows virtualization-enabled operating systems, 
such as VMWare ESX, to load prior to the guest operating systems, and offer 
their kernels full ring 0 functionality.

ARM Architecture: CPSR
ARM processors use a special register, the current program status register (CPSR) to defi ne what 
mode they are in. The processors have no less than seven distinct modes of operation, but as Table 8-1 
shows, there is still a clear dichotomy:

TABLE 8-1: ARM processor modes

MODE MODE BITS PURPOSE

USR  10000 User — Non-privileged operations

SVC 10011 Supervisor mode (default kernel mode)

SYS 11111 System — As user, but the CPSR is writable 

continues
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MODE MODE BITS PURPOSE

FIQ 10001 Fast Interrupt Request

IRQ 10010 Normal Interrupt request

ABT 10111 Abort — Failed memory access

UND 11011 Undefi ned — Illegal/unsupported instruction

USR is the only non-privileged mode. All other modes are privileged, though the kernel usually 
operates in SVC. In any of the privileged mode, the CPSR can be accessed directly, so switch-
ing modes is as trivial as setting the mode bits. From user mode, one of the user/kernel transition 
mechanisms (discussed next) must be used. The other modes of IRQ and FIQ are used for interrupt 
processing (ARM distinguishes between normal interrupts and fast ones. In IRQ mode, normal 
interrupts are masked, but fast ones may still interrupt the processor. In FIQ mode, both interrupts 
are masked). ABT is used only on memory faults, and UND is used for operations which are either 
illegal or unsupported, allowing predefi ned handlers to take over and emulate any instructions, 
which the hardware does not natively support.

KERNEL/USER TRANSITION MECHANISMS

As the previous section showed, the separation between kernel mode and user mode is critical, and 
thus provided by the hardware. But applications frequently need kernel services, and therefore the 
transition between the two modes needs to be implemented in a manner that is highly effective, but 
at the same time highly secure.

There are two types of transfer mechanisms between user mode and kernel mode:

 ‰ Voluntary — When an application requires a kernel service, it can issue a call to kernel 
mode. By using a predefi ned hardware instruction, a switch to kernel mode may be initiated. 
These services are called system calls (recall our discussion in 2.8)

 ‰ Involuntary — When some execution exception, interrupt or processor trap occurs, code exe-
cution is suspended, frozen at the exact state when the fault occurred. Control is transferred 
to a predefi ned fault handler or interrupt service routine (ISR) in kernel mode. 

Another dichotomy of control transfers often used is of asynchronous versus synchronous. The 
synchronous control transfer occurs “in sync” with the program fl ow — and is the result of some 
instruction, which resulted in a runtime anomalous condition. The asynchronous control transfer, 
by contrast, occurs when the program is interrupted by an external source (the interrupt controller). 
This is “out of sync” with the program, which would have continued normally if not for the inter-
ruption, which must be handled.   

Whichever classifi cation you choose to view them by, all types of control transfer are secure, in 
that they must be predefi ned by kernel mode code, and user mode code has no way whatsoever of 

TABLE 8-1 (continued)
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changing them. User mode, in fact, is completely oblivious to the kernel “taking over,” especially in 
involuntary control transfers. 

The kernel sets the predefi ned entry points in an interrupt dispatch table (IDT) (per the Intel 
nomenclature), or the exception vector (per that of ARM. The two terms refer to the same idea: a 
one-dimensional array wherein the predefi ned function pointers are stored. Much like a user-mode 
setlongjmp() or signal handler, the CPU will jump to the function pointer and execute the func-
tion — with the additional effect of moving to supervisor mode. 

Trap Handlers on Intel
The Intel architecture defi nes an interrupt vector of 255 entries, or cells. This vector is populated by 
the kernel when the system boots.

Exceptions — Traps/Faults/Aborts
On Intel, the fi rst 20 cells of the Intel interrupt vector are defi ned for exceptions; these are all kinds 
of special abnormal conditions that can be encountered by the processor while executing code. They 
are shown in Table 8-2, along with their corresponding XNU handler names:

TABLE 8-2: Intel exceptions — traps and faults

# EXCEPTION OCCURS WHEN XNU HANDLER NAME

0 Divide error fault DIV and IDIV fail (e.g. zero 

divide)

idt64_zero_div

3 Break point trap Debugger breakpoint idt64_int3

4 Overfl ow trap INT 0 opcode idt64_into

5 Bound range 

exceeded fault

BOUND opcode idt64_bounds

6 Invalid opcode fault Illegal instructions idt64_invop

7 Math CoProcessor 

fault

 FPU errors idt64_nofpu

8 Double fault (abort) Generated the second time 

a fault occurs on the same 

instruction

idt64_double_fault or 

idt64_db_task_dbl_fault

9 FPU Overfl ow FPU overfl ow condition idt64_fpu_over

10 Invalid TSS fault Bad Task State Segment idt64_inv_tss

11 Segment not present 

fault

Accessing protected segments idt64_segnp

continues
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# EXCEPTION OCCURS WHEN.. XNU HANDLER NAME

12 Stack segment fault Stack segment errors idt64_stack_fault or

idt64_db_task_stk_fault

13 General Protection 

fault

Memory fault, or other access 

check

idt64_gen_prot

14 Page fault Page not accessible, page 

swapped out

idt64_page_fault

16 Math fault FPU generated Idt64_tfpu_err

17 Alignment check fault Data is unaligned on a DWORD or 

other boundary

idt64_trap11

18 Machine check abort Hardware reported errors idt64_mc

19 SIMD Floating point 

fault

SSEx instructions idt64_sse_err

As you can see from the table, there are three types of exceptions:

 ‰ Faults — Occur when an instruction encounters an exception that can be corrected and the 
instruction can be restarted by the processor. A common example is a page fault, which 
occurs when a virtual memory address is not present in physical RAM. The fault handler is 
executed, and returns to the very same instruction that generated the fault.

 ‰ Traps — Are similar to faults, but the fault address returns to the instruction after the trap.

 ‰ Aborts — Cannot be restarted. In the table above, a “double fault” (#8) is an abort, as if a 
fault is triggered twice in the same instruction, it does not make sense to retry.

Interrupts
The second kind of involuntary user/kernel transition occurs on an interrupt. An interrupt is 
generated by a special sub-component of the CPU, called a Programmable Interrupt Controller 
(PIC), or — in the more modern version — Advanced PIC (APIC). The PIC receives messages from 
the devices on the system bus, and multiplexes them to one of several Interrupt Request (IRQ) lines. 
When an interrupt is generated, the PIC marks the corresponding interrupt line as active. The line 
remains active until the interrupt is handled or serviced by a function (appropriately called the 
Interrupt Handler, or Interrupt Service Routine). It is up to that function to reset the line.

Legacy PICs, (called XT-PICs), only had 16 lines, ranging from 0 to 15. Modern APICs, however, 
allow for up to 255 such lines. IRQ lines can be shared by more than one device, if the need arises. 

TABLE 8-2 (continued)
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The IRQ lines were once reserved for certain devices, as shown in Table 8-3, which in some cases 
still use their “well known” lines. The PCI bus, however, dynamically allocates most IRQs.

TABLE 8-3: Traditional IRQ reservations (for non PCI or legacy devices)

IRQ TRADITIONALLY USED FOR

0 Timer — the kernel can set this interrupt to occur at a fi xed frequency, forming the basis for task 

scheduling

1 Keyboard — dating back to the old days where the user could actually generate keystrokes 

faster than the processor could handle them

3 Serial ports (Com 2 and Com 4)

4 Serial ports (Com 1 and Com 3)

14 Primary IDE

15 Secondary IDE

The general rule of thumb is, that interrupts can be dispatched as long as:

 ‰ The corresponding interrupt request line is not currently busy (indicating a previous interrupt 
has not yet been serviced) or masked (indicating the processor or core is ignoring this inter-
rupt line) 

 ‰ No lower numbered interrupt lines are busy

 ‰ The local CPU/core has not disabled all interrupts (by low-level CLI/STI assembly).

For example, a core will not receive an interrupt on IRQ3 until IRQ0, 1 and 2 are all clear. While it is 
servicing IRQ3, interrupts 4 and higher (i.e. of lower priority) will not be delivered to the CPU. The 
timer interrupt (IRQ0 or, on APICs, the dedicated local timer IRQ line) is always the one with the 
highest priority, as it is used to drive thread scheduling. 

On a multi-core/SMP system, interrupts are dispatched per core (or processor), and the kernel may 
set “interrupt affi nity” by temporarily or permanently masking specifi c interrupt lines of a core. The 
APIC is “smart” enough to dispatch interrupts to CPUs or cores which are not busy. If an interrupt 
cannot be dispatched, the APIC can usually queue it. But queuing capabilities are very limited. Inter-
rupts that are “lost” or “dropped” may result in loss of data, or even system hangs, as a device may 
be reporting some critical event via an interrupt. Interrupts are therefore handled with the utmost 
priority of any other processing in the system — preempting everything else — and their handlers 
run for the minimum time necessary.

In Intel architectures, the IRQ lines are mapped to the processor’s Interrupt Vectors, at a location 
higher than the fi rst 32 entries (20 of which are from the Table 8-2 above, with the other 12 reserved).
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Handling Traps and interrupts in XNU on Intel
XNU registers its trap handlers in /osfmk/i386/idt.s or /osfmk/x86_64/idt_table.h, as shown 
in Listing 8-2:

LISTING 8-2: XNU IDT Table, from osfmk/x86_64/idt_table.h 

TRAP(0x00,idt64_zero_div)
TRAP_SPC(0x01,idt64_debug)
INTERRUPT(0x02)                 /* NMI */
USER_TRAP(0x03,idt64_int3)
USER_TRAP(0x04,idt64_into)
USER_TRAP(0x05,idt64_bounds)
TRAP(0x06,idt64_invop)
TRAP(0x07,idt64_nofpu)
       ..
 // handler registrations corresponding to table faultXXX

Rather than install separate handlers individually for every trap, most kernels usually install one 
handler for all the traps, and have that handler switch(), or jump according to a predefi ned table. 
XNU does exactly that by defi ning the TRAP and USER_TRAP macros (in osfmk/x86_64/idt64.s). 
These macros build on other macros (IDT_ENTRY_WRAPPER and PUSH_FUNCTION), to set up the stack 
as illustrated in Figure 8-4:

FIGURE 8-4: The TRAP macro expansion

Macro:

TRAP(n,f):

Entry(f)

IDT_ENTRY_WRAPPER:

PUSH_FUNCTION

(HNDL_ALLTRAPS)

push 0 push 0

; push 8-byte function ptr on stack 
sub  $8, %rsp; ; allocate space 
push  %rax;    ; save RAX
; load address of function into RAX 
leaq  HNDL_ALLTRAPS(%rip), %rax; 
movq  %rax, 8(%rsp); push on stack 
pop %rax           ; restore RAX

pushq

jmp L_dispatch jmp L_dispatch

$(n) pushq $(n)

Emitted Assembly:

f:

0

HNDL_ALLTRAPS

n

Resulting stack setup:

In plain words, the TRAP macro simply defi nes the handler function as an entry point, pushes zero 
(or an error code, if any) on the stack, and pushes the address of the common trap handler — HNDL_
ALLTRAPS, using the IDT_ENTRY_WRAPPER macro. Because the trap handler is a common one, the 
macro also pushes the trap number (n).  It then jumps to L_dispatch, which serves as a common 
dispatcher, and fl ows according to Figure 8-5:
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FIGURE 8-5: The common dispatcher

cmpl   $(KERNEL64_CS), ISF64_CS(%rsp) Interrupted kernel space?

No

no

Yes

yes

Swap segments

Handle EF132 traps

32-bit user mode?

L_64bit_dispatch:

Save 32 bit registers

%ebx := trapno
%rdx := trapfn
%esi := cs

Switch CR3 if user mode 
and also no_shared_cr3. 
Otherwise just mark active

Test for CPU Debug Reg

Increment Trap/Int counter

Jump to func (hndl_xxx)

%ebx := trapno
%rdx := trapfn
%esi := cs

Save 64 bit registers

cmpl $(TASK_MAP_32BIT), %gs:CPU_TASK_MAP

incl   %gs:hwlntCnt(,%ebx,4)

jmp   *%rdx

je   L_64bit_dispatch

je   L_32bit_dispatch

L_32bit_dispatch:

L_common_dispatch:

/*....*/

....

.....

swapgs

...

The last step in this fl ow is jumping to the handler function, which was defi ned on the stack (and 
loaded into RDX). In the case of a trap, this is hndl_alltraps, shown in Listing 8-3:

LISTING 8-3: hndl_alltraps, the common trap handler

Entry(hndl_alltraps)
        mov     %esi, %eax
        testb   $3, %al
        jz      trap_from_kernel

        TIME_TRAP_UENTRY

        movq    %gs:CPU_ACTIVE_THREAD,%rdi
        movq    %rsp, ACT_PCB_ISS(%rdi)         /* stash the PCB stack */
        movq    %rsp, %rdi                      /* also pass it as arg0 */
        movq    %gs:CPU_KERNEL_STACK,%rsp       /* switch to kernel stack */

continues
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        sti

        CCALL(user_trap) /* call user trap routine */

        // user_trap is very likely to generate a Mach exception, and NOT return
        // (it suspends the currently active thread). In some cases, however, it 
        // does return, and execution falls through

       /* user_trap() unmasks interrupts */
        cli /* hold off intrs - critical section */
        xorl    %ecx, %ecx /* don’t check if we’re in the PFZ */

      // Fall through to return_from_trap.

The user_trap function, implemented in i386/trap.c, handles the actual traps. This is a C func-
tion, and the CCALL family of macros, defi ned in idt64.s, bridge from assembly to C by setting up 
the arguments on the stack. The user_trap function handles traps with specifi c handlers, or gener-
ates a generic exception — by calling i386_exception — which, in turn, usually converts it to a 
Mach exception, by calling exception_triage. Mach exceptions are covered in detail in Chapter 
11, “Mach Scheduling.”  At this point, however, the important point is that exception_triage
does not return, effectively ending the code path.

Interrupts are handled in a similar way to traps, only with hndl_allintrs, instead:

#define INTERRUPT(n)                            \
        Entry(_intr_ ## n)                      ;\
        pushq   $0                              ;\
        IDT_ENTRY_WRAPPER(n, HNDL_ALLINTRS)

The resulting stack is very similar to the TRAP macro’s stack, as shown in Figure 8-4. The only 
difference is that the handler is now HNDL_ALLINTRS, instead of HNDL_ALLTRAPS, where HNDL_
ALLINTRS is defi ned as shown in Listing 8-4:

LISTING 8-4: hndl_allintrs, the common interrupt handler

#define HNDL_ALLINTRS           EXT(hndl_allintrs)
Entry(hndl_allintrs)
       /*
        * test whether already on interrupt stack
         */
       movq    %gs:CPU_INT_STACK_TOP,%rcx
       cmpq    %rsp,%rcx
       jb      1f
       leaq    -INTSTACK_SIZE(%rcx),%rdx
       cmpq    %rsp,%rdx
       jb      int_from_intstack
1:
       xchgq   %rcx,%rsp /* switch to interrupt stack */

LISTING 8-3 (continued)
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       mov     %cr0,%rax /* get cr0 */
       orl     $(CR0_TS),%eax /* or in TS bit */
       mov     %rax,%cr0 /* set cr0 */
       subq    $8, %rsp /* for 16-byte stack alignment */
       pushq   %rcx /* save pointer to old stack */
       movq    %rcx,%gs:CPU_INT_STATE /* save intr state */

       TIME_INT_ENTRY /* do timing */

incl   %gs:CPU_PREEMPTION_LEVEL
       incl    %gs:CPU_INTERRUPT_LEVEL

       movq    %gs:CPU_INT_STATE, %rdi

       CCALL(interrupt) /* call generic interrupt routine */

       cli /* just in case we returned with intrs 
enabled */
       xor     %rax,%rax
       movq    %rax,%gs:CPU_INT_STATE /* clear intr state pointer */

 // Falls through to return_to_iret, which returns to user mode via an iret 
instruction

In the above code, Interrupt (in osfmk/i386/trap.c) is the generic kernel interrupt handler. This 
goes on to direct interrupt handling to either lapic_interrupt (in osfmk/i386/lapic.c) or PE_
incoming_interrupt (in pexpert/i386/pe_interrupt.c, part of the Platform Expert), which passes 
it to the any registered I/O Kit interrupt handler. I/O Kit is described in more detail in its own chapter.

Putting this all together, and picking up where Figure 8-5 left off, we have the rest of the fl ow 
depicted in Figure 8-6.

As you can see, the trap handling in the kernel is pretty complicated, even when somewhat simplifi ed 
and broken down into separate fi gures. If that’s not fl abbergasting enough, consider this logic occurs on
every trap and interrupt, which can sometimes amount to more than thousands of times per second!

Looking at the fi gure, you will note references to the Preemption Free Zone (PFZ), and Asynchro-
nous Software Traps (ASTs). ASTs are a mechanism in XNU somewhat akin to Linux’s software 
IRQs. These are emulated traps, used primarily by the task scheduler, but not while the code is in 
the PFZ, which is a special region of text wherein preemptions are disabled. Both are covered in 
more detail in Chapter 11, “Mach Scheduling.”

Trap Handlers on ARM
The ARM architecture is much simpler than that of Intel. From the ARM perspective, any non-user 
mode is entered through an exception, or interrupt. System calls are thus invoked via a simulated 
interrupt, with the SVC instruction. SVC is an acronym for “SuperVisor Call,” though its previous 
name — SWI, or SoftWare Interrupt, was more accurate: when this instruction is called, the CPU 
automatically transfers control to the machine’s trap vector, wherein a pre-defi ned kernel instruc-
tion, usually a branch to some specifi c handler, awaits.
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FIGURE 8-6: The common dispatcher, continued.

L_common_dispatch:

hndl_alltraps:

trap_from_kernel:

ast_from_interrupt_user:

Yes No

hndl_allintrs:

Jump to func (hndl_xxx)

Back to L_64bit_dispatch 

(previous figure)

Update timers 

(TIME_INT_ENTRY)

Update timers 

(TIME_INT_EXIT)

Test user/kernel

user kernel

CCALL(interrupt) 

(handled by PE/IOKit)

Test user/kernel

Update timers 

(TIME_TRAP_UENTRY)

user_trap

i386_exception

exception_triage

return_from_trap:

return_from_trap_withast:

return_to_user:

ret_to_kernel/L_64bit_return:

ret_to_user:

kernel_trap

AST pending?

AST pending?

In PFZ?

i386_astintr 

(take AST)

Pend AST

Update timers 

(TIME_TRAP_UEXIT)

Restore thread debug registers

No

No

Yes

Yes

Update timers 

(TIME_TRAP_UENTRY)

Call i386_astintr 

to handle AST_URGENT

Restore all registers from (%RSP)

Syscall or interrupt?

iret sysret

swapgs (if returning to user)

It is the kernel’s responsibility to set up the trap handlers in ARM for all the modes the CPU can sup-
port. The iOS kernel does just that, by setting up an ExceptionVectorsBase as shown in Table 8-4:

TABLE 8-4: Registered trap handlers in iOS

OFFSET EXCEPTION HANDLED BY

0x00 Reset _fleh_reset

0x04 Undefi ned Instruction _fleh_undef

0x08 Software Interrupt _fleh_swi

c08.indd   276c08.indd   276 9/29/2012   5:31:13 PM9/29/2012   5:31:13 PM



Kernel/User Transition Mechanisms x 277

OFFSET EXCEPTION HANDLED BY

0x0C Prefetch abort _fleh_prefabt

0x10 Data abort _feh_dataabt

0x14 Address exception _fleh_addrexc

0x18 Interrupt Request _fleh_irq

0x1c Fast Interrupt Request _fleh_fiq

These symbols were still visible (and even exported!) in the iOS 3.x kernels, but have since been 
understandably removed in 4.x and later. It remains, however, fairly easy to fi nd them, as the fol-
lowing experiment shows.

Experiment: Finding the ARM trap handles in an iOS kernel
The ExceptionVectorsBase symbol is no longer exported, but — thanks to their unique structure 
of ARM handlers —  it is trivial to fi nd. The addresses of the trap handlers are loaded directly into 
the ARM Program Counter using an LDR PC, [PC, #24] command, which repeats seven times, for 
all handlers but FIQ, followed by a MOV PC, R9 (where _fleh_fiq would be), the addresses them-
selves, and several NOPs (0xE1A00000). These commands are unique, so using grep(1) on their 
binary representation (or the string itself) quickly reveals them, as shown in Listing 8-5:

LISTING 8-5: Using otool(1) and grep(1) to fi nd the ExceptionVectorsBase

morpheus@ergo (~)$ otool –tV ~/iOS/4.2.1.kernel.iPad1 | grep e59ff018
80064000       e59ff018       ldr    pc, [pc, #24] @ 0x80064020 ; points to fleh_reset
80064004       e59ff018       ldr    pc, [pc, #24] @ 0x80064024 ; points to fleh_undef
80064008       e59ff018       ldr    pc, [pc, #24] @ 0x80064028 ; points to fleh_swi
8006400c       e59ff018       ldr    pc, [pc, #24] @ 0x8006402c ; points to fleh_prefabt
80064010       e59ff018       ldr    pc, [pc, #24] @ 0x80064030 ; points to fleh_dataabt
80064014       e59ff018       ldr    pc, [pc, #24] @ 0x80064034 ; points to fleh_addrexc
80064018       e59ff018       ldr    pc, [pc, #24] @ 0x80064038 ; points to fleh_irq
morpheus@ergo (~)$ otool –tV ~/iOS/5.1.kernel.iPod4G | grep e59ff018
80078000       e59ff018       ldr    pc, [pc, #24] @ 0x80078020 ; points to fleh_reset
80078004       e59ff018       ldr    pc, [pc, #24] @ 0x80078024 ; points to fleh_undef
80078008       e59ff018       ldr    pc, [pc, #24] @ 0x80078028 ; points to fleh_swi
8007800c       e59ff018       ldr    pc, [pc, #24] @ 0x8007802c ; points to fleh_prefabt
80078010       e59ff018       ldr    pc, [pc, #24] @ 0x80078030 ; points to fleh_dataabt
80078014       e59ff018       ldr    pc, [pc, #24] @ 0x80078034 ; points to fleh_addrexc
80078018       e59ff018       ldr    pc, [pc, #24] @ 0x80078038 ; points to fleh_irq

The effect of directly loading an address into the program counter is tantamount to jumping to that 
address. These addresses are, in order, the address of the exception handlers shown previously in Table 8-4.

Using otool(1) once more, this time seeking to the address revealed by the grep(1) command, 
(continuing Listing 8-5) you reveal the actual addresses. The disassembly will be nonsensical — but 
you can clearly see the kernel-space addresses. Continuing the previous listing, Listing 8-6 examines 
the iOS 5.1 kernel:
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LISTING 8-6: The Exception Vector addresses

8007801c        e1a0f009        mov     pc, r9
80078020        80078ff4        strdhi  r8, [r7], -r4 ; fleh_reset
80078024        80078ff8        strdhi  r8, [r7], -r8 ; fleh_undef
80078028        80079120        andhi   r9, r7, r0, lsr #2 ; fleh_swi
8007802c        80079370        andhi   r9, r7, r0, ror r3 ; fleh_prefabt
80078030        800794a4        andhi   r9, r7, r4, lsr #9 ; fleh_dataabt
80078034        80079678        andhi   r9, r7, r8, ror r6 ; fleh_addrexec
80078038        8007967c        andhi   r9, r7, ip, ror r6 ; fleh_irq
8007803c        8007983c        andhi   r9, r7, ip, lsr r8 ; ...
80078040        e1a00000        nop                     (mov r0,r0)

The joker tool, on the book’s companion website, can be used for various edu-
cational tasks on the iOS kernel. It can automatically fi nd the addresses of the 
ExceptionVectors in a decrypted kernel.

You might want to also try the disassembly of iBoot, iBSS, and iBEC, as dis-
cussed in Chapter 6 “The OS X Boot Process”. All the low-level components 
initialize the exception vectors in this way.

The exception handlers can be disassembled in ARM mode. If you try to disassemble fleh_reset,
for example, you’ll reveal that it is effectively a halt instruction, jumping to itself in an endless loop. 
The most important of all the handlers is fleh_swi, which is the handler in charge of system calls— 
as those are triggered through the software interrupt mechanism. The code in it somewhat resembles 
the hndl_syscall code from the Intel XNU, discussed earlier, and is detailed later in the ARM sub-
section which follows. 

Voluntary kernel transition
When user mode requires a kernel service, it issues a system call, which transfers control to the kernel. 
There are two ways of actually implementing a system call request. The fi rst, by means of simulating 
an interrupt, is a legacy of the traditional Intel architecture, and is still used on ARM (by the SVC/SWI
instruction). The second, using a dedicated instruction (Intel’s SYSENTER/SYSCALL) is unique to Intel.

Simulated Interrupts
Any of the exceptions listed in Table 8-2 can be triggered by specifying their number as an argument 
to the INTerrupt command. This is also sometimes refers to as a synchronous interrupt, to distin-
guish it from a normal, unpredictable, and asynchronous interrupt.

For example, the debugger breakpoint operation is implemented on Intel architectures by the INT 3
instruction. This instruction, which conveniently takes only one byte (opcode 0xCC, with no oper-
ands), can be placed in memory by a debugger when the user specifi es a breakpoint at some address. 
In this way, user mode can request a kernel service voluntarily — an exception is triggered, the CPU 
switches to privileged/supervisor mode, and the corresponding exception handler is automatically 
executed. The exception handler, set by the kernel, recognizes that this is a request, and can process 
specifi c arguments from the registers (The system call number is in EAX/RAX on Intel, R12 on ARM).
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Operating systems reserve a particular interrupt number for their own mechanism of entering kernel 
mode: DOS used 0x21, NT through XP used 0x2E, and most Intel UN*X-based systems used 0x80.
On Intel, this was also the mechanism used by OS X for system calls, and — although it has been 
largely deprecated in favor of SYSCALL (see the following section), there are still some traces of it.

SYSENTER/SYSCALL 
Since user/kernel transition occurs so frequently, the Intel architecture introduced a more effi cient 
instruction for it, called SYSENTER, beginning with the Pentium II architecture. In 64-bit architec-
ture a slightly different instruction, SYSCALL, is used. Using these, rather than interrupt gates, is 
faster, as it employs a set of model specifi c registers, or MSRs. Rather than saving the key registers 
prior to entering kernel mode, and restoring them on exit, the MSRs allow the CPU to switch to 
the separate set on kernel mode, and back to the normal ones on user mode. SYSENTER or SYSCALL
function similarly to a CALL instruction — though the instructions need not save the return address 
on the stack, since the User Mode Instruction Pointer will remain untouched. A corresponding call 
to SYSEXIT restores the user mode registers. 

As the name implies, there are many model specifi c registers (and different processors have different 
sets). They are all defi ned in proc_reg.h, and the relevant ones for SYSENTER are shown in Table 8-5:

TABLE 8-5: Model-Specifi c Registers of the Intel Architecture

REGISTER # #DEFINE PURPOSE

0x174 MSR_IA32_SYSENTER_CS Code Segment

0x175 MSR_IA32_SYSENTER_ESP Stack Pointer — set by kernel to kernel stack

0x176 MSR_IA32_SYSENTER_EIP Instruction Pointer — set to kernel entry point

0xC0000081 MSR_IA32_STAR Contains base selector for SYSCALL/SYSRET,

CS/SS, and EIP

0xC0000082 MSR_IA32_LSTAR Contains SYSCALL entry point

During the boot process the kernel initializes the MSRs. The initialization is performed by cpu_
mode_init()(called from vstart(), as discussed in the next chapter). The cpu_mode_init() func-
tion calls wrmsr64 — which is a C wrapper to an identical assembly routine. The function loads the 
three model specifi c registers with the values, which will be used for the kernel stack and code. This 
is shown in Listing 8-7:

LISTING 8-7: Setting MSRs for SYSENTER and SYSCALL (osfmk/i386/mp_desc.c)

/*
 * Set MSRs for sysenter/sysexit and syscall/sysret for 64-bit.
 */
static void
fast_syscall_init64(__unused cpu_data_t *cdp)
{
       // Registers used for SYSENTER (32-bit mode on 64-bit architecture)

continues
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LISTING 8-7 (continued)

        wrmsr64(MSR_IA32_SYSENTER_CS, SYSENTER_CS); 
        wrmsr64(MSR_IA32_SYSENTER_EIP, UBER64((uintptr_t) hi64_sysenter));
        wrmsr64(MSR_IA32_SYSENTER_ESP, UBER64(current_sstk()));

        /* Enable syscall/sysret */
        wrmsr64(MSR_IA32_EFER, rdmsr64(MSR_IA32_EFER) | MSR_IA32_EFER_SCE);

        /*
         * MSRs for 64-bit syscall/sysret
         * Note USER_CS because sysret uses this + 16 when returning to
         * 64-bit code.
         */
        wrmsr64(MSR_IA32_LSTAR, UBER64((uintptr_t) hi64_syscall));
        wrmsr64(MSR_IA32_STAR, (((uint64_t)USER_CS) << 48) |
                                (((uint64_t)KERNEL64_CS) << 32));

º
}

The entry point hi64_sysenter defi ned in idt64.s, is used for 32-bit sysenter compatibility. 
It switches to kernel mode, and invokes, through the common handler shown in Figure 8-5, the 
generic hndl_sysenter, to invoke the system call (the fl ow merges with the common handler in 
L_32bit_dispatch).  This handler, in turn, tests the system-call type, treating it as a 32-bit value, 
with Mach calls as negative. A similar implementation is in hi64_syscall, which is invoked for 
64-bit syscall instructions, and calls on HNDL_SYSCALL, as shown in Listing 8-8:

LISTING 8-8: The idt64/hi64_syscall entry point

Entry(hi64_syscall)
Entry(idt64_syscall)
        swapgs                          /* Kapow! get per-cpu data area */
L_syscall_continue:
        mov     %rsp, %gs:CPU_UBER_TMP  /* save user stack */
        mov     %gs:CPU_UBER_ISF, %rsp  /* switch stack to pcb */
          ..
leaq    HNDL_SYSCALL(%rip), %r11;
        movq    %r11, ISF64_TRAPFN(%rsp)
        jmp     L_64bit_dispatch        /* this can only be a 64-bit task */

Voluntary kernel transition on ARM
The ARM architecture has no dedicated system-call instructor, and still uses the system-call gate tech-
nique. The kernel, when loaded, overwrites all the trap handlers (as shown in Table 8-4), of which the 
Software Interrupt (SWI) handler is one. When the ARM assembly instruction of SVC is executed in user 
mode, control is transferred immediately to the handler, fleh_swi, and the CPU enters kernel mode. 

The fleh_swi handler (whose address was found in the previous experiment) is highly optimized, 
but still displays the basic structure shared by the Intel version of XNU. This is shown in Listing 
8-9. If your ARM assembly isn’t what it used to be — you can just read through the comments:
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LISTING 8-9: The SWI handler from iOS 5.0 and 5.1, iPod4,1 kernel

0x80079120 _fleh_swi
  text:80079120   CMN     R12, #3
__text:80079124   BEQ     loc_80079344  ; Branches off to ml_get_timebase if R12==3
;
; Largely irrelevant ARM Assembly omitted for brevity
; jumps to another section of the function which handles Machine Dependent calls
;
; What is relevant: R11 holds the system call number
;
__text:80079184   BLX     get_BSD_proc_and_thread_and_do_kauth 
 ;
; Set R9 to the privileged only Thread and Process ID Register

 ; We need this for UNIX system calls, later
 ;
__text:80079188   MRC     p15, 0, R9,c13,c0, 4 
 ;
 ; Remember that Mach calls are negative. The following separates Mach from UNIX
 ;
__text:8007918C   RSBS    R5, R11, #0 ; Reverse substract with carry
__text:80079190   BLE     _is_unix
 ;
; Fall through on Mach. This is what in Intel would be a call to mach_munger

 ; but on ARM just directly gets the Mach trap
 ;
 ; KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_EXCP_SC, 
 ; (call_number)) | DBG_FUNC_START);
 ;
__text:80079194   LDR     R4, =_kdebug_enable ; recall kdebug was discussed in Ch. 5
__text:80079198   LDR     R4, [R4]
__text:8007919C   MOVS    R4, R4  ; test kdebug_enable
__text:800791A0   MOVNE   R0, R8
__text:800791A4   MOVNE   R1, R5
__text:800791A8   BLNE    ____kernel_debug_mach_func_entry
__text:800791AC   ADR     LR, _return_from_swi   ; Set our return on error
   ;

; Increment Mach trap count (at offset 0x1B4 of thread structure)
   ;
__text:800791B0   LDR    R2, [R10,#0x1B4] ; get Mach trap count
__text:800791B4   CMP    R5, #128         ; Compare Mach trap to MACH_TRAP_TABLE_COUNT
__text:800791B8   ADD    R2, R2, #1       ; increment Mach trap count
__text:800791BC   STR    R2, [R10,#0x1B4] ; and store
__text:800791C0   BGE    do_arm_exception ; if syscall number > MACH_TRAP_TABLE_COUNT...
   ;

; If we are here, R5 holds the Mach trap number – dereference from mach_trap_table:
   ; R1 = mach_trap_table[call_number].mach_trap_function

;
__text:800791C4   LDR    R1, =_mach_trap_table
__text:800791C8   ADD    R1, R1, R5,LSL#3  ; R1 = R1 + call_num * sizeof(mach_trap_t)
__text:800791CC   LDR    R1, [R1,#4] ; +4, skip over arg_count
   ;
   ; if (mach_call == (mach_call_t)kern_invalid)

;
__text:800791D0   LDR    R2, =(_kern_invalid+1)

continues
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__text:800791D4   MOV    R0, R8
__text:800791D8   TEQ    R1, R2
__text:800791DC   BEQ    do_arm_exception

;
; else just call trap from R1
;

__text:800791E0   BX      R1      ; Do Mach trap (jump to table pointer)
   ; returning from trap
__text:800791E4   STR     R1, [R8,#4]
return_from_swi
__text:800791E8   STR     R0, [R8]
__text:800791EC   MOVS    R4, R4
__text:800791F0   MOVNE   R1, R5
 ;
 ; KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_EXCP_SC, (call_number)) | DBG_FUNC_END);
 ; 
__text:800791F4   BLNE    ____kernel_debug_mach_func_exit
 ;
 ; iOS's load_and_go_user is like OS X's thread_exception_return();
 ;
__text:800791F8   BL      __load_and_go_user
__text:800791FC   B       loc_800791FC       ; HANG ENDLESSLY – Not Reached
 ;
 ; arm_exception(EXC_SYSCALL,call_number, 1);
 ;
do_arm_exception: ; Generates a Mach exception (discussed in Chapter 10)
__text:80079200   MOV     R0, #EXC_SYSCALL
__text:80079204   SUB     R1, SP, #4
__text:80079208   MOV     R2, #1
__text:8007920C   BLX     _exception_triage ; as i386_exception, direct fall through
__text:80079210   B       loc_80079210 ; HANG ENDLESSLY – Not reached
 ;
; For UNIX System calls:
 ;
_is_unix
 ;
 ; Increment UNIX system call count for this thread 
 ; (at offset 0x1B8 of thread structure)
 ;
__text:80079220   LDR     R1, [R10,#0x1B8]
__text:80079224   MOV     R0, R8           ; out of order: 1st argument of unix_syscall
__text:80079228   ADD     R1, R1, #1
__text:8007922C   STR     R1, [R10,#0x1B8]
 ;
 ;
 ;
__text:80079230   MOV     R1, R9           ; 2nd argument of unix_syscall
__text:80079234   LDR     R2, [R9,#0x5BC]  ; 3rd argument of unix_syscall
__text:80079238   LDR     R3, [R10,#0x1EC] ; 4th argument of unix_syscall
 ;
; Call _unix_syscall
 ;
__text:8007923C   BL      _unix_syscall
__text:80079240   B    loc_80079240          ; HANG ENDLESSLY – Not reached

LISTING 8-9 (continued)
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SYSTEM CALL PROCESSING

Most people are familiar with POSIX system calls. In XNU, however, the POSIX system calls make 
up only one of four possible system call classes, as shown in Table 8-6:

TABLE 8-6: XNU system call classes

SYSCALL_CLASS HANDLED BY ENCOMPASSES

UNIX (1) unix_syscall[64]

(bsd/dev/i386/systemcalls.c)

POSIX/BSD system calls: the “classic” system 

calls, interfacing with XNU’s BSD APIs.

MACH (2) mach_call_munger[64]

(osfmk/i386/bsd_i386.c)

Mach traps: calls that interface directly with 

the Mach core of XNU.

MDEP (3) machdep_syscall[64]

(osfmk/i386/bsd_i386.c)

Machine dependent calls: used for processor 

specifi c features.

DIAG (4) diagCall[64]

(osfmk/i386/Diagnostics.c )

Diagnostic calls: used for low-level kernel 

diagnostics. Enabled by the diag boot 

argument.

In 32-bit architectures, the UNIX system calls are positive, whereas the Mach traps are negative. In 
64-bit, all call types are positive, but the most signifi cant byte contains the value of  SYSCALL_CLASS
from the preceding table. The value is checked by shifting the system call number SYSCALL_CLASS_
SHIFT (=24) bits, as you can see in Listing 8-10: 

LISTING 8-10: The XNU 64-bit common system call handler 

Entry(hndl_syscall)
        TIME_TRAP_UENTRY

        movq    %gs:CPU_KERNEL_STACK,%rdi
        xchgq   %rdi,%rsp                       /* switch to kernel stack */
        movq    %gs:CPU_ACTIVE_THREAD,%rcx      /* get current thread     */
        movq    %rdi, ACT_PCB_ISS(%rcx)
        movq    ACT_TASK(%rcx),%rbx             /* point to current task  */

/* Check for active vtimers in the current task */
        TASK_VTIMER_CHECK(%rbx,%rcx)

/*
         * We can be here either for a mach, unix machdep or diag syscall,
         * as indicated by the syscall class:
         */
        movl    R64_RAX(%rdi), %eax /* syscall number/class */
        movl    %eax, %edx
        andl    $(SYSCALL_CLASS_MASK), %edx /* syscall class */
        cmpl    $(SYSCALL_CLASS_MACH<<SYSCALL_CLASS_SHIFT), %edx
        je      EXT(hndl_mach_scall64)

continues
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        cmpl    $(SYSCALL_CLASS_UNIX<<SYSCALL_CLASS_SHIFT), %edx
        je      EXT(hndl_unix_scall64)
        cmpl    $(SYSCALL_CLASS_MDEP<<SYSCALL_CLASS_SHIFT), %edx
        je      EXT(hndl_mdep_scall64)
        cmpl    $(SYSCALL_CLASS_DIAG<<SYSCALL_CLASS_SHIFT), %edx
        je      EXT(hndl_diag_scall64)

        /* Syscall class unknown */
        CCALL3(i386_exception, $(EXC_SYSCALL), %rax, $1)

All handlers are prototyped in the same way — as C functions which take one argument, which is 
a pointer to an architecture specifi c saved state, which is really nothing more than a structure con-
taining a dump of all the processor registers. In OS X, this is an x86_saved_state_t (defi ned in 
osfmk/mach/i386/thread_status.h), which holds (as a union) either a 32-bit or a 64-bit state.  
The kernel sources leak an arm_saved_state_t as well.

The handlers are expected to never return. Indeed, on OS X all of the handlers end by calling 
thread_exception_return()(defi ned in osfmk/x86_64/locore.s, which falls through to return_
from_trap(), as discussed earlier in this chapter. In iOS, load_and_go_user() is used instead, and 
returns to user mode by restoring the CPSR to user.

POSIX/BSD System calls
The main personality exposed by XNU is that of POSIX/BSD. These are internally referred to as 
“UNIX system calls” or “BSD calls,” even though they contain quite a few Apple-specifi c calls.

unix_syscall
The BSD system call handler has a straightforward implementation. Both 32- and 64-bit handlers 
(in bsd/dev/i386/systemcalls.c) get the saved state as an argument and operate in the same 
manner, namely:

1. Make sure the saved state matches the architecture.

2. Get the BSD process structure from the current_task. Make sure that the BSD process 
actually exists.

3. If a syscall number is 0, it is an indirect system call. Fix arguments accordingly.

4. Arguments are expected to be passed as 64-bit values. For 64-bit handler, this only requires 
work if they cannot all be passed in registers (i.e. cases where there are more than six argu-
ments). The remaining arguments then need to be copied onto the stack. In the 32-bit 
handler, arguments need to be “munged.” Munging refers to the process of copying the argu-
ments from user mode, while addressing 32/64-bit compatibility.

5. Execute system calls from the sysent table. All system calls are executed in the same way.

To notify the auditing subsystem of the call:

AUDIT_SYSCALL_ENTER(code, p, uthread);

LISTING 8-10 (continued)
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To actually execute the call:

error = (*(callp->sy_call))((void *) p, uargp, &(uthread->uu_rval[0]));

To notify the auditing system of the call exit:

AUDIT_SYSCALL_EXIT(code, p, uthread, error);

In other words, syscalls are subject to auditing and are all called with the fi rst argument 
being the current_proc().

6. In rare cases, the system call might indicate it needs to be restarted, which is handled by 
pal_syscall_restart().

7. The “error” (the system call return code) is handled to fi t in the return register (for Intel this 
is EAX/RAX, and for ARM it’s R0).

8. The system call returns through thread_exception_return() (for iOS, load_and_go_
user), which is the same handling as return_from_trap(), taking any ASTs along the way.

sysent
BSD system calls are maintained in the sysent table. This table is an array of similarly-named 
structures and is defi ned in bsd/sys/sysent.h as shown in Listing 8-11:

LISTING 8-11: The sysent table

struct sysent { /* system call table */
       int16_t     sy_narg; /* number of args */
       int8_t      sy_resv; /* reserved  */
       int8_t      sy_flags; /* flags */
       sy_call_t  *sy_call; /* implementing function */
       sy_munge_t *sy_arg_munge32; /* system call arguments munger for 32-bit 

process */
       sy_munge_t *sy_arg_munge64; /* system call arguments munger for 64-bit 

process */
       int32_t     sy_return_type; /* system call return types */
       uint16_t    sy_arg_bytes; /* Total size of arguments in bytes for

 * 32-bit system calls
*/

};

#ifndef __INIT_SYSENT_C__
extern struct sysent sysent[];
#endif  /* __INIT_SYSENT_C__ */

extern int nsysent;
#define NUM_SYSENT      439     // # of syscalls (+1) in Lion. (SL: 434, ML: 440, iOS5: 439)

The sysent table is populated during compile time by a shell script, bsd/kern/makesyscalls.
sh, which is invoked during the building of the kernel. This script parses the system call template 
fi le, bsd/kern/syscalls.master, wherein all the system calls are defi ned, as shown in 
Listing 8-12. 
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LISTING 8-12: The bsd/kern/syscalls.master fi le

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/types.h>
#include <sys/sysent.h>
#include <sys/sysproto.h>

0       AUE_NULL        ALL     { int nosys(void); }   { indirect syscall }
1       AUE_EXIT        ALL     { void exit(int rval) NO_SYSCALL_STUB; } 
2       AUE_FORK        ALL     { int fork(void) NO_SYSCALL_STUB; } 
3       AUE_NULL        ALL     { user_ssize_t read(int fd, user_addr_t cbuf, user_size
_t nbyte); } 
4       AUE_NULL        ALL     { user_ssize_t write(int fd, user_addr_t cbuf, user_size
_t nbyte); } 
5       AUE_OPEN_RWTC   ALL     { int open(user_addr_t path, int flags, int mode) NO
_SYSCALL_STUB; } 
...
... // many more system calls omitted here 
... //
433     AUE_NULL        ALL     { int pid_suspend(int pid); }
434     AUE_NULL        ALL     { int pid_resume(int pid); }
#if CONFIG_EMBEDDED
435     AUE_NULL        ALL     { int pid_hibernate(int pid); }
436     AUE_NULL        ALL     { int pid_shutdown_sockets(int pid, int level); }
#else
435     AUE_NULL        ALL     { int nosys(void); } 
436     AUE_NULL        ALL     { int nosys(void); }
#endif
437     AUE_NULL        ALL     { int nosys(void); } { old shared_region_slide_np }
438     AUE_NULL        ALL     { int shared_region_map_and_slide_np(int fd, uint32_t 
count, const struct shared_file_mapping_np *mappings, uint32_t slide, uint64_t* 
slide_start, uint32_t slide_size) NO_SYSCALL_STUB; }

// Mountain Lion also contains 439 – kas_info

The system call table whets the appetite of many a hacker (and security researcher alike), because 
intercepting system calls means complete control of user mode. As a result, the symbol is no longer 
exported, not on OS X and certainly not on iOS. A common technique suggested by Stefan Esser[3]

relies on the table being in close proximity to the kdebug public symbol. A more reliable technique, 
however, can quickly reveal the sysent structure’s unique signature even in a binary dump with no 
symbols. The joker tool, available on the book’s companion website, was written especially for this 
purpose, and zeroes in on the signature shown in Listing 8-13. The signature is actually the same for 
OS X and iOS, with only minor modifi cations for sizeof(void *) between 32- and 64-bit (and, of 
course, the system call addresses themselves). 

LISTING 8-13: A disassembly of an iOS 5.1 kernel, showing the system call table

802CCBAC_sysent DCD 0                  ; Called from unix_syscall+C4
...
802CCBC4        DCW 1                  ; int16_t    sy_narg; (exit has one argument)
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802CCBC6        DCB 0                  ; int8_t     sy_resv;
802CCBC7        DCB 0                  ; int8_t     sy_flags;
802CCBC8        DCD_exit+1             ; sy_call_t *sy_call = exit(int);
802CCBCC        DCD 0                  ; sy_munge_t *sy_arg_munge32;
802CCBD0        DCD 0                  ; sy_munge_t *sy_arg_munge64;
802CCBD4        DCD SYSCALL_RET_NONE   ; int32_t    sy_return_type; (0 = void)
802CCBD8        DCW 4                  ; uint16_t   sy_arg_bytes; (1 arg = 4 bytes)
802CCBDA        DCW 0                  ; Padding to 32-bit boundary
              ; ------------------------------------------
802CCBDC        DCW 0                  ; int16_t    sy_narg; (fork has no arguments)
802CCBDE        DCB 0                  ; int8_t     sy_resv;
802CCBDD        DCW 0                  ; int8_t     sy_flags;
802CCBE0        DCD fork+1             ; sy_call_t *sy_call = pid_t fork();
802CCBE4        DCD 0                  ; sy_munge_t *sy_arg_munge32;
802CCBE8        DCD 0                  ; sy_munge_t *sy_arg_munge64;
802CCBEC        DCD SYSCALL_RET_INT_T  ; int32_t    sy_return_type; (pid_t is an int)
802CCBF0        DCW 0                  ; uint16_t   sy_arg_bytes; (fork has none)
802CCBF2        DCW 0 ; Padding to 32-bit boundary
               ;----------------------------------------
802CCBF4        DCB 3                  ; int8_t     sy_narg; (read(2) has three args)
802CCBF5        DCB 0                  ; int8_t     sy_flags;
802CCBF6        DCW 0                  ; padding to 32-bit boundary
802CCBF8        DCD _read+1            ; sy_call_t *sy_call = read(int,void *, size_t);
802CCBFC        DCD 0                  ; sy_munge_t *sy_arg_munge32;
802CCC00        DCD 0                  ; sy_munge_t *sy_arg_munge64;
802CCC04        DCD SYSCALL_RET_SSIZE_T; int32_t     sy_return_type;
802CCC08        DCW 0xC                ; uint16_t    sy_arg_bytes; (3 args = 12 bytes)
.. //
.. // and on, and on , and on…
.. //
802CF4D4_nsysent DCD 0x1B7             ; NUM_SYSENT

The system calls are also generated with their names hard-coded into the binary. In OS X 
that doesn’t make too much of a difference, but in iOS this feature is quite useful. iOS’s system 
calls are largely the same as those of OS X, with a few notable exceptions (for example, the 
“ledger” system call, #373, unavailable on OS X prior to Mountain Lion, and the
pid_shutdown_sockets system call). A more detailed discussion of the specifi c system calls
can be found in the online appendix. 

Mach Traps
If the system call number is negative (on 32-bit OS X or iOS) or contains the Mach class (64-bit), the 
kernel fl ow is diverted to handling Mach traps, rather than BSD system calls. The handler for Mach 
traps is called mach_call munger[64].

mach_call_munger
Mach traps are processed by mach_call_munger[64], which is implemented (on OS X) in osfmk/
i386/bsd_i386.c. The term “munging” dates back to the days when function arguments needed 
to be undergo internal type-casting and alignment from the stack, to a structure of 64-bit integers. 
Both UNIX and Mach call arguments needed munging, and the 32-bit unix_syscall still contains 
munging code. 
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Munging is no longer necessary in x86_64, because the AMD-64 ABI uses six registers directly. The 
only case where munging would required is if a function has more than six arguments (which is sel-
dom, if ever). In the 32-bit version of the handler, a helper function mach_call_munger32 is called 
which copies the arguments and aligns them in a mach_call_args structure. Listing 8-14 shows the 
64-bit version, annotated and noting where 32-bit would differ:

LISTING 8-14: mach_call_munger64, from osfmk/i386/bsd_i386.c

void
mach_call_munger64(x86_saved_state_t *state)
{
        int call_number;
        int argc;
        mach_call_t mach_call;
        x86_saved_state64_t     *regs;

        assert(is_saved_state64(state));
        regs = saved_state64(state);

        // In mach_call_munger (the 32-bit version), the call_number is obtained
        // by: call_number = -(regs->eax);
        call_number = (int)(regs->rax & SYSCALL_NUMBER_MASK);

DEBUG_KPRINT_SYSCALL_MACH(
                "mach_call_munger64: code=%d(%s)\n",
                call_number, mach_syscall_name_table[call_number]);

        // Kdebug trace of function entry (see chapter 5)
        KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_EXCP_SC,
                                           (call_number)) | DBG_FUNC_START,
                              regs->rdi, regs->rsi,
                              regs->rdx, regs->r10, 0);

        // if this is an obviously invalid call, raise syscall exception
        if (call_number < 0 || call_number >= mach_trap_count) {
                i386_exception(EXC_SYSCALL, regs->rax, 1);
                /* NOTREACHED */
        }
       // Get entry from mach_trap_table. We need the entry to validate the call
       // is a valid one, as well as get the number of arguments
        mach_call = (mach_call_t)mach_trap_table[call_number].mach_trap_function;

       // Quite a few entries in the table are marked as invalid, for deprecated calls.
       // If we stumbled upon one of those, generate an exception

        if (mach_call == (mach_call_t)kern_invalid) {
                i386_exception(EXC_SYSCALL, regs->rax, 1);
                /* NOTREACHED */
        }

        argc = mach_trap_table[call_number].mach_trap_arg_count;
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       // In 32-bit, we would need to prepare the arguments, copying them from
       // the stack to a mach_call_args struct. This is where we would need to
       // call a helper, mach_call_arg_munger32:
       //  if (argc) 
       //   retval = mach_call_arg_munger32(regs->uesp, argc, call_number, &args);
       //
       //  In 64-bit, up to six arguments may be directly passed in registers,
       //  so the following code is only necessary for cases of more than 6
        if (argc > 6) {

                int copyin_count;
                copyin_count = (argc - 6) * (int)sizeof(uint64_t);

                if (copyin((user_addr_t)(regs->isf.rsp + sizeof(user_addr_t)), (char 
*)&regs->v_arg6, copyin_count)) {
                        regs->rax = KERN_INVALID_ARGUMENT;

                        thread_exception_return();
                        /* NOTREACHED */
                }
        }

                if (retval != KERN_SUCCESS) {
                        regs->eax = retval;

                        DEBUG_KPRINT_SYSCALL_MACH(
                                "mach_call_munger: retval=0x%x\n", retval);

                        thread_exception_return();
                        /* NOTREACHED */
                }
        }

        // Execute the call, collect return value straight into RAX
        regs->rax = (uint64_t)mach_call((void *)(&regs->rdi));

        DEBUG_KPRINT_SYSCALL_MACH( "mach_call_munger64: retval=0x%llx\n", regs->rax);

        // Kdebug trace of function exit (see chapter 5)

        KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_EXCP_SC,
                                           (call_number)) | DBG_FUNC_END,
                              regs->rax, 0, 0, 0, 0);

        throttle_lowpri_io(TRUE);

        // return to user mode
        thread_exception_return();
        /* NOTREACHED */
}

Note how similar this code is to the disassembly of fleh_swi shown earlier in Listing 8-9: even 
though iOS doesn’t use a munger, the sanity checks and Mach trap kdebug traces are the same.
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mach_trap_table
The mach_trap_table, an array of mach_trap_t structures, can be found in osfmk/kern/syscall_
sw.c, where it is followed by the corresponding names, in mach_syscall_name_table, as shown in 
Listing 8-15:

LISTING 8-15: The Mach trap table and syscall_name_table (osfmk/kern/syscall_sw.c)

mach_trap_t     mach_trap_table[MACH_TRAP_TABLE_COUNT] = {
/* 0 */         MACH_TRAP(kern_invalid, 0, NULL, NULL),
// many invalid traps…
/* 26 */        MACH_TRAP(mach_reply_port, 0, NULL, NULL),
/* 27 */        MACH_TRAP(thread_self_trap, 0, NULL, NULL),
/* 28 */        MACH_TRAP(task_self_trap, 0, NULL, NULL),
/* 29 */        MACH_TRAP(host_self_trap, 0, NULL, NULL),
// many more traps, most invalid..
/* 127 */       MACH_TRAP(kern_invalid, 0, NULL, NULL),
};

const char * mach_syscall_name_table[MACH_TRAP_TABLE_COUNT] = {
/* 0 */         "kern_invalid",
..
/* 26 */        "mach_reply_port",
/* 27 */        "thread_self_trap",
/* 28 */        "task_self_trap",
/* 29 */        "host_self_trap",
..
/* 127 */       "kern_invalid",
};

int     mach_trap_count = (sizeof(mach_trap_table) / sizeof(mach_trap_table[0]));

kern_return_t kern_invalid(
        __unused struct kern_invalid_args *args)
{
        if (kern_invalid_debug) Debugger("kern_invalid mach trap");
        return(KERN_INVALID_ARGUMENT);
}

Most Mach traps are unused, funneled to kern_invalid(), which returns KERN_INVALID_
ARGUMENT to the caller. Those Mach traps that are of some use are discussed in the online appendix. 
Finding the unexported table in the iOS binary can be accomplished reliably (and just as easily as 
fi nding sysent) by looking for its distinct signature (a sequence of kern_invalid and NULLs), or 
by following the reference from fleh_swi. The joker tool, from the book’s companion website, does 
just that. 

Mach traps are not likely to be deprecated any time soon. In fact, Apple seems to be adding more 
traps on occasion. One recent such addition in iOS 5.x was the family of kernelrpc_* calls 
(10–23), which will likely make their way into OS X in Mountain Lion. Output 8-1 shows the 
address of the defi ned Mach traps on an iOS 5.1 kernel (those not listed are all kern_invalid), as 
displayed by the joker tool:
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OUTPUT 8-1: Mach traps (and their names) on iOS 5.1

 10 _kernelrpc_mach_vm_allocate_trap         800132ac 
 11 _kernelrpc_vm_allocate_trap              80013318 
 12 _kernelrpc_mach_vm_deallocate_trap       800133b4 
 13 _kernelrpc_vm_deallocate_trap            80013374 
 14 _kernelrpc_mach_vm_protect_trap          8001343c 
 15 _kernelrpc_vm_protect_trap               800133f8 
 16 _kernelrpc_mach_port_allocate_trap       80013494 
 17 _kernelrpc_mach_port_destroy_trap        800134e4 
 18 _kernelrpc_mach_port_deallocate_trap     80013520 
 19 _kernelrpc_mach_port_mod_refs_trap       8001355c 
 20 _kernelrpc_mach_port_move_member_trap    8001359c 
 21 _kernelrpc_mach_port_insert_right_trap   800135e0 
 22 _kernelrpc_mach_port_insert_member_trap  8001363c 
 23 _kernelrpc_mach_port_extract_member_trap 80013680 
 26 mach_reply_port                          800198ac 
 27 thread_self_trap                         80019890
 28 task_self_trap                           80019870 
 29 host_self_trap                           80017db8 
 31 mach_msg_trap                            80013c1c 
 32 mach_msg_overwrite_trap                  80013ae4 
 33 semaphore_signal_trap                    800252d4 
 34 semaphore_signal_all_trap                80025354 
 35 semaphore_signal_thread_trap             80025260 
 36 semaphore_wait_trap                      800255e8 
 37 semaphore_wait_signal_trap               8002578c 
 38 semaphore_timedwait_trap                 800256c8 
 39 semaphore_timedwait_signal_trap          8002586c 
 43 map_fd                                   80025f50 
 44 task_name_for_pid                        801e0734 
 45 task_for_pid                             801e0598 
 46 pid_for_task                             801e054c 
 48 macx_swapon                              801e127c 
 49 macx_swapoff                             801e14cc 
 50 kern_invalid                             80025f50 
 51 macx_triggers                            801e1260 
 52 macx_backing_store_suspend               801e11f0 
 53 macx_backing_store_recovery              801e1198 
 58 pfz_exit                                 80025944 
 59 swtch_pri                                800259f4 
 60 swtch                                    80025948
 61 thread_switch                            80025bb8 
 62 clock_sleep_trap                         800160f0 
 89 mach_timebase_info_trap                  80015318 
 90 mach_wait_until_trap                     80015934 
 91 mk_timer_create_trap                     8001d238 
 92 mk_timer_destroy_trap                    8001d428 
 93 mk_timer_arm_trap                        8001d46c
 94 mk_timer_cancel_trap                     8001d4f0 
100 iokit_user_client_trap (probably)        80234aa0

A more detailed discussion of the specifi c traps can be found in the online appendix.
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Machine Dependent Calls
Besides Mach traps and UNIX system calls, XNU contains machine dependent calls. As the name 
implies, these vary by platform. These calls in OS X are open source, but remain undocumented in 
iOS. Binary inspection confi rms that, indeed, these calls exist. True to their machine-specifi c nature, 
they mostly offer functionality pertaining to the CPU caches (e.g. invalidating the MMU instruction 
and data caches). 

machdep_call _table
The machine dependent calls have their own dispatch table — machdep_call_table, defi ned in 
osfmk/i386/machdep_call.c in a similar manner to the Mach trap table, and shown in Listing 8-16:

LISTING 8-16: Machine dependent calls, from osfmk/i386/machdep_call.c

machdep_call_t          machdep_call_table[] = {
        MACHDEP_CALL_ROUTINE(kern_invalid,0),
        MACHDEP_CALL_ROUTINE(kern_invalid,0),
        MACHDEP_CALL_ROUTINE(kern_invalid,0),
        MACHDEP_CALL_ROUTINE(thread_fast_set_cthread_self,1),
        MACHDEP_CALL_ROUTINE(thread_set_user_ldt,3),
        MACHDEP_BSD_CALL_ROUTINE(i386_set_ldt,3),
        MACHDEP_BSD_CALL_ROUTINE(i386_get_ldt,3),
};
machdep_call_t          machdep_call_table64[] = {
        MACHDEP_CALL_ROUTINE(kern_invalid,0),
        MACHDEP_CALL_ROUTINE(kern_invalid,0),
        MACHDEP_CALL_ROUTINE(kern_invalid,0),
        MACHDEP_CALL_ROUTINE64(thread_fast_set_cthread_self64,1),
        MACHDEP_CALL_ROUTINE(kern_invalid,0),
        MACHDEP_CALL_ROUTINE(kern_invalid,0),
        MACHDEP_CALL_ROUTINE(kern_invalid,0),
};

As you can see in the listing, most machine dependent calls are unused in the Intel architecture. In the 
32-bit architecture, calls existed to set the LDT and GDT. In 64-bit, only one call — thread_fast_
set_cthread_self64 — remains, used to set the CPU’s MSR_IA32_KERNEL_GS_BASE to the thread ID. 
The set_cthread_self function also exists on iOS, wherein it sets the processor’s control registers 
c13,c0. You can see its source in libc’s arm/pthreads/pthread_set_self.s, which demonstrates call-
ing machine specifi c calls on ARM by setting R12 to 0x80000000 and passing the call number in R3.

Diagnostic calls
As if XNU’s vast debug facilities are not enough, it contains a fourth class of system calls reserved 
exclusively for diagnostics. Unlike Mach traps, UNIX system calls, and machine-dependent calls, 
there is only one diagnostic call defi ned, appropriately called diagCall (or diagCall64), and it 
selects the type of diagnostics required according to its fi rst argument. Also unlike the other types, 
this call is only active if the kernel’s global diagnostic variable, dgWork.dgFlags has set the 
enaDiagSCS bit (#defined in osmfk/i386/Diagnostics.h as 0x00000008).
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During the PPC era, the diagCall was extremely powerful, and could be used for myriad diag-
nostics, such as controlling and reading physical memory pages. In its Intel incarnation, however, 
XNU’s diagCall has been reduced to support only one code: dgRuptStat (#25), used to query 
or reset per-CPU interrupt statistics. You can verify this for yourself by checking osfmk/i386/
Diagnostics.c, where this call (in both 32-bit and 64-bit versions) is implemented.

The following experiment shows the usage of diagCall to create a simple interrupt statistics viewer, 
similar to Linux’s /proc/interrupts.

Experiment: Demonstrating OS X’s diagCall()
Listing 8-17, if compiled, will demonstrate the power of diagCall() by displaying interrupts in 
your system:

LISTING 8-17: Demonstrating invoking diagCall() by inline assembly

int diagCall (int diag, uint32_t *buf)
{
  __asm__ ("movq    %rcx,%r10; movl    $0x04000001, %eax ; syscall ; ");

};

void main(int argc, char **argv)
{
  uint32_t c[1+ 2*8 + 256*8]; // We'll break at 8 processors or cores. Meh.
  uint32_t i = 0;
  int ncpus = 0;
  int d;
  mach_timebase_info_data_t    sTimebaseInfo;
  memset (c, '\0', 1000 * sizeof(uint32_t));

  if (argc ==2 && strcmp(argv[1], "clear")==0)
        { printf("Clearing counters\n"); 
          printf("diagCall returned %d\n", diagCall(25,0));
          exit(0);

        }

  printf (" diagCall returned %x\n", diagCall(25,c));

  // Can check for failure by diagCall's return code, or by ncpus:
  // The first entry in the buffer should be set to the number of 
  // CPUs, and will therefore be non-zero.

  ncpus= c[0];
  if (!ncpus) { fprintf(stderr,"DiagCall() failed\n"); exit(1);}

  printf("#CPUs: %d\n", c[0]);

  printf ("Sample: \t");
  for (i = 0 ; i < ncpus; i++) {
         uint64_t *sample = (uint64_t *) &c[1+256*i];

continues
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    if ( sTimebaseInfo.denom == 0 ) {
        (void) mach_timebase_info(&sTimebaseInfo);
    }

       printf ("%15ld\t", 
       ((*sample /sTimebaseInfo.denom) * sTimebaseInfo.numer) / 1000000000);
        }
  printf ("\n");

  for (i = 0; i<256; i++) {
        int slot =  1+2 + i; // 1 - num cpus. 2 - timestamp (8 bytes)

        if (c[slot] || c[slot+256+2]) 
            printf ("%10d\t%10d\t%10d\n", i,c[slot], c[256+slot+2]);
      }

}

You’ll note the program has inline assembly for the implementation of diagCall(), required because 
Apple has no public wrapper for diagnostic calls. Also, note the assembly is somewhat similar to the 
Mach traps and system calls discussed in Chapter 2. The difference, however, lies in the system call 
class being 0x40000000, rather than the 0x10000000 for UNIX or 0x20000000 for Mach calls. 

Assembly aside, the program is a simple one: with no arguments, it will display the interrupt statis-
tics per CPU. Optionally, it can accept a “clear” argument which will reset the statistics counter. But 
if you try to execute either functionality, you will likely get an error.

To use diagCall(), you must fi rst enable the diag boot-argument, and set its value to 0x00000008,
or any other combination which contains that bit (a safe bet is 0xFFFFFFFF). You can do that by 
editing the kernel’s boot confi guration fi le, /Library/Preferences/SystemConfiguration/
com.apple.Boot.plist. This fi le and other boot arguments are discussed in the next chapter, but 
the modifi cation you need is a simple one: adding the diag argument to the “Kernel Flags” alongside 
any already defi ned, as shown in Listing 8-18:

LISTING 8-18: Adding the diag boot argument to enable diagCall

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" 
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
        <key>Background Color</key>
        <integer>50349</integer>
        <key>Boot Logo</key>
        <string>\System\Library\CoreServices\BootLogo.png</string>
        <key>Kernel Architecture</key>
        <string></string>
        <key>Kernel Flags</key>
        <string>diag=0x00000008</string> <!--There may be other boot args defined !-->
</dict>
</plist>

LISTING 8-17 (continued)
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Once the system has been rebooted, the program should work just fi ne, and provide you with inter-
rupt statistics. You can verify that “clear” indeed resets the counters.

XNU AND HARDWARE ABSTRACTION

Reading through the chapter, you have no doubt noticed that the two architectures — Intel 
and ARM — abide by the same general concepts of traps, interrupts and “supervisor mode,” 
yet take a totally different approach in implementing them (with the approach sometimes 
changing in between processor models!). Likewise, before migrating to Intel the default archi-
tecture of OS X was the PowerPC — another processor with its own approach to implement-
ing these ideas.* How, then, can XNU maintain the same code base for such totally different 
architectures?

One aspect of hardware agnosticism was already discussed in the chapter dealing with the system 
boot — it is the Platform Expert module, by means of which the kernel can obtain important hard-
ware confi guration data. This, however, only addresses some of the issues raised by different hard-
ware implementations. The kernel itself needs to be modifi ed and adapted to address the various 
CPU related idiosyncrasies. 

XNU does not have a full hardware abstraction layer, per se (as did, at one time, Windows). Rather, 
the approach it adopted follows the Mach tradition, which is very similar to the one in Linux, 
as well. Throughout the kernel, there are various macros and functions, which hide architecture 
specifi c implementations. Linux does so by means of the arch/ subdirectory of its kernel sources, 
wherein the hardware-dependent implementations of kernel functionality are implemented in cor-
responding assembly. These either add to, or supersede the existing macros in various other subdi-
rectories of the source. Mach has no one convention for architecture specifi c functions, though most 
of them are prefi xed with ml (machine layer, or machine level), and implemented in osfmk/i386/
machine_routines.c (and, as a little digging shows, osfmk/arm/machine_routines.c for iOS, 
though the arm branch is of course closed source).

For example, consider the rather simple operation, of enabling/disabling interrupts. Intel processors 
use a bit in the EFLAGS register to mark interrupt masking. The ml_get_interrupts_enabled is 
shown in Listing 8-19:

LISTING 8-19: Interrupt checking on Intel architectures

_ml_get_interrupts_enabled:
ffffff800022b884        pushq   %rbp ; standard
ffffff800022b885        movq    %rsp,%rbp ;   function prolog…
ffffff800022b888        pushf ; push EFLAGS on stack
ffffff800022b889        popq    %rax ; and copy to RAX
ffffff800022b88a        shrq    $0x09,%rax ; Shift right 9 bits
ffffff800022b88e        andl    $0x01,%eax ; isolate (return) last bit
ffffff800022b891        leave ; undo prolog
ffffff800022b892        ret ; return (rax) to caller

*Note, that the PowerPC architecture is completely ignored in this book. This is because Apple, with Lion, 
has removed PPC support from XNU. For an excellent reference on the PPC implementation (up to and 
including Tiger), refer to Amit Singh’s book.
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On ARM, there is no EFLAGS register. Rather, the interrupt state is maintained in the CPSR (Specifi -
cally, the 8th bit). The code for the same function thus becomes what is show in Listing 8-20:

LISTING 8-20 Interrupt checking on ARM architectures

_ml_get_interrupts_enabled:
8007c26c      mrs     r2, CPSR ; R2 gets value of CPSR
8007c270      mov     r0, #1  @ 0x1 ; R0 is set to 0x1
8007c274      bic     r0, r0, r2, lsr #7 ; BIt-Clear (AND-NOT) i.e: R0 = R0 &^(R2 <<7)
8007c278      bx      lr ; return (R0) to caller

On the deprecated PPC (therefore, on kernels up to and including Snow Leopard only), the EE bit 
(External Interrupt Enable) is bit #15. So the same function becomes what is shown in Listing 8-21:

LISTING 8-21: Interrupt checking on the (now deprecated) PPC architectures

_ml_get_interrupts_enabled:
000c3464        mfmsr   r3 ; Move from Machine-Specific-Register to R3
000c3468        rlwinm  r3,r3,17,31,31 ; Rotate Left Word Immediate then aNd with Mask
000c346c        blr ; Return

Table 8-7 lists some of the ml_ functions in XNU.

TABLE 8-7: ml_ functions in XNU

ML_ FUNCTION USED FOR

ml_cpu_up/ml_cpu_down Activate/Deactivate a processor. Null function on Intel.

ml_is64bit

ml_thread_is64bit

ml_state_is64bit

64 bit mode of CPU, current thread, and saved state. 

Implemented as CPU Data macros. Currently not appli-

cable on iOS.

ml_io_map Map I/O space. Intel implementation wraps io_map()  

from osfmk/i386/io_map.c

ml_phys_[read/write]_[xxx][_64] Functions to read and write physical memory elements 

(xxx can be byte/half/word/double)

ml_static_ptovirt Physical to Virtual translation. In ARM, this is done using 

special registers (p15's c7,c8). In Intel, this follows the 

PTE/PDE mechanism. 

ml_[get/set]_interrupts_enabled

ml_at_interrupt_context

ml_install_interrupt_handler

ml_cause_interrupt

Get/set interrupts (discussed above), determine if in 

interrupt.

ml_install_interrupt_handler() is used by IOKit 

drivers, and actually wraps the platform expert. 

ml_cause_interrupt is not supported on Intel (and 

would cause a kernel panic)
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It should be noted that while the ml_ functions are fairly abundant, they do not cover all hardware-
specifi c aspects. As you will see later, many more implementations (e.g. atomic operations, per-CPU 
data, the “pmap” physical memory abstraction, and more) can be handled in other ways. This is 
what is meant by the “specifi c hacks” in the OS X architectural diagram presented throughout this 
book. Fortunately, porting is not really the developers’ problem so much as it is Apple’s.

SUMMARY

This chapter discussed the fundamental concepts of operating system architecture. User mode, ker-
nel mode, and the transition mechanisms between them are all supported by the underlying hard-
ware, be it OS X’s Intel or iOS’s ARM. 

The two architectures were compared and contrasted, showing both the theory of each, and then 
the implementation — in OS X and iOS both — by viewing the low-level assembly. The chapter dis-
cussed the implementation of the various system call classes, predominantly UNIX system calls and 
Mach Traps, and concluded with a discussion of XNU’s ml_* hardware abstraction primitives.

The next chapter will take you deeper into XNU, introducing you to its source tree, and its boot 
process. This will enable you to get more comfortable, as the second part of this book ensues, and 
we delve deeper still into the internals of the kernel common to both OS X and iOS.
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9
From the Cradle to the Grave — 
Kernel Boot and Panics

In previous chapters, you have seen how, depending on architecture, the kernel image is found 
and arguments are passed to it. This chapter picks up where the others have left off and pres-
ents a detailed description of how XNU boots — in both OS X and iOS. By going over the 
kernel sources line by line, you will be able to follow the steps the kernel takes in initializing 
the system.

This chapter also discusses the premature demise of the kernel, which occurs in cases where an 
unhandled CPU trap, or other unexpected kernel code path, causes a “panic.”

THE XNU SOURCES

To better understand this chapter and this entire part of the book, it is highly recommended 
that you follow along with the XNU sources. Much like the Linux kernel, XNU sources are 
freely downloadable. This section details the steps required to obtain and compile XNU.

Getting the Sources
Ever since Apple annexed CMU’s Open Source Mach project, it has selectively kept XNU 
open source. The key word here is “selectively,” because Apple only publishes the OS X com-
piled version. For iOS (i.e. the ARM port of XNU), Apple keeps the XNU source closed. The 
two used roughly the same kernel version until iOS 4.2, when iOS “took off” and advanced in 
its kernel version beyond that of OS X. At the time of writing, for example, iOS 5 is at XNU 
1878, whereas Lion is lagging still at 1699. This is likely going to change as Mountain Lion 
takes the lead (with version 2050), unless iOS 6 continues the trend and leaps ahead. 

The source code excerpts provided here are from XNU 1699.26.8, which you can download as 
a tarball from http://opensource.apple.com/tarballs/xnu/xnu-1699.26.8.tar.gz and 
unpack (using tar zxvf). This is the version of the kernel Apple provides with Lion 10.7.4, 
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the latest available as this book is frozen in print. It’s more than likely that by the time you read 
these lines, however, a newer kernel version will be available. This version will likely be Mountain 
Lion’s (or later?), and may possibly introduce some changes from the listings in this book. If that 
is the case, you can either stick to the XNU version cited in this book, or obtain the latest one. In 
any case, in order to follow along the examples, even outdated open source certainly beats binary 
disassembly.

Take advantage of Apple’s XNU source repository at http://opensource
.apple.com/tarballs/xnu/. Examining the same function in different versions 
of the kernel will enable you to get a fi rsthand impression of the modifi cations 
Apple introduced over time to XNU, following the evolution step by step. You 
don’t even need to download the sources locally: The source tree is available 
unpacked in http://opensource.apple.com/source/xnu/xnu-XXXX.yy.zz/,
so you can simply append the path of the fi le you are interested in, and replace 
the version number of XNU with the kernel you are interested in. 

Alternatively, check out the book’s companion website, which offers an HTML-
enabled cross reference, similar to the Linux LXR.

Making XNU
If you have Apple’s developer’s tools installed, you are steps away from compiling XNU. This is a 
fairly straightforward, albeit lengthy, process — but well worth it. Compiling enables you to see 
fi rst-hand each and every stage of the boot process. You can easily insert debugging and logging 
messages, as well as selectively comment or #ifdef out portions. XNU already has a plethora of 
debugging information embedded in its code, which you can reveal with a simple #define DBG (or 
–DDBG) when making it.

Using the developer tools, you can compile XNU for either Intel 32-bit or 64-bit architecture. The 
GCC compiler in the developer tools can compile XNU easily, provided that the prerequisites listed 
in the next section are satisfi ed.

Prerequisites
To build XNU, you need several development tools:

 ‰ Cxxfilt: Current version: 9. The real name of this package is C++filt, but + is an illegal 
character in DOS fi lenames.

 ‰ Dtrace: Current version: 7.8. Required for CTFMerge.

 ‰ Kext-tools: Current version: 180.2.1.

 ‰ bootstrap_cmds: Current version: 72. Required for relpath and other commands.

Fortunately, all these tools are freely available for download from Apple’s open-source site. Getting 
the tarballs is straightforward, although their versions are often updated. 
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To build Cxxfilt and bootstrap commands, a simple make usually suffi ces. Defi ne RC_OS to macos
and RC_ARCHS to i386, x86_64, or both.

DTrace and Kext-tools build using XCode’s command line xcodebuild.

To summarize, your command line will resemble the following, as shown as Listing 9-1:

LISTING 9-1: Obtaining and making the prerequisites for building XNU

 #
 # Getting C++ filter
 #
$ curl http://opensource.apple.com/tarballs/cxxfilt/cxxfilt-9.tar.gz > 
       cxx.tar.gz
$ tar xvf cxx.tar.gz
$ cd cxxfilt-9
$ mkdir -p build obj sym 
$ make install RC_ARCHS="i386 x86_64" RC_CFLAGS="-arch i386 -arch x86_64 -pipe" \
 RC_OS=macos RC_RELEASE=Lion SRCROOT=$PWD OBJROOT=$PWD/obj \
 SYMROOT=$PWD/sym DSTROOT=$PWD/build
  #
  # Getting DTrace – This is required for ctfconvert, a kernel build tool
  #
$ curl http://opensource.apple.com/tarballs/dtrace/dtrace-90.tar.gz > dt.tar.gz
$ tar zxvf dt.tar.gz
$ cd dtrace-90
$ mkdir -p obj sym dst
$ xcodebuild install -target ctfconvert -target ctfdump -target ctfmerge \
ARCHS="i386 x86_64" SRCROOT=$PWD OBJROOT=$PWD/obj SYMROOT=$PWD/sym \
DSTROOT=$PWD/dst
  #
  # Getting Kext Tools
  #
$ curl http://opensource.apple.com/tarballs/Kext_tools/Kext_tools-180.2.1.tar.gz \
 > kt.tar.gz
$ tar xvf kt.tar.gz
$ cd Kext_tools-180.2.1
$ mkdir -p obj sym dst
$ xcodebuild install -target Kextsymboltool -target setsegname \
ARCHS="i386 x86_64" SRCROOT=$PWD OBJROOT=$PWD/obj SYMROOT=$PWD/sym \
 DSTROOT=$PWD/dst
  #
  # Getting Bootstrap commands – newer versions are available, but would
  # force xcodebuild
  #
$ curl http://opensource.apple.com/tarballs/bootstrap_cmds/bootstrap_cmds-72.tar.gz \
 > bc.tar.gz
$ tar zxvf bc.tar.gz 
$ cd bootstrap_cmds-84
$ mkdir -p obj sym dst
$ make install RC_ARCHS="i386" RC_CFLAGS="-arch i386 -pipe" RC_OS=macos \
 RC_RELEASE=Lion SRCROOT=$PWD OBJROOT=$PWD/obj SYMROOT=$PWD/sym DSTROOT=$PWD/dst
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Making the Kernel
Once all the prerequisites mentioned in the previous section are satisfi ed, making the kernel is 
straightforward, as shown in Listing 9-2:

LISTING 9-2: Making the kernel

$ wget http://opensource.apple.com/tarballs/xnu/xnu-1699.26.8.tar.gz # or curl
$ tar xvf xnu-1699.26.8.tar.gz
$ cd xnu-1699.26.8
$ make ARCH_CONFIGS="I386 X86_64" KERNEL_CONFIGS="RELEASE"
MIG clock.h
MIG clock_priv.h
MIG host_priv.h
Generating libkern/version.h from…/1699.26.8/libkern/libkern/version.h.template
MIG host_security.h
...
... (many more lines omitted for brevity)

The build will take some time, progressing through each directory. For each fi le, the build requires 
one or more of the following actions, shown in Table 9-1:

TABLE 9-1: Build Actions

ACTION PURPOSE

AS Assemble: Used on .s fi les

C++ Compile C++: Used on .cpp fi les (IOKit)

CC Compile: Used on .c fi les

CTFCONVERT Prepare/Process Compact Text Format debugging information 

LDFILELIST Link: Used on directories, once all the fi les in them have been compiled

MIG Mach Interface Generator: Used on .defs fi les, to creates client/server Mach mes-

sage passing code from stub defi nitions. The generated fi les are then compiled (CC)

If the process is successful, the built kernel will be found in BUILD/obj/RELEASE_I386, BUILD/obj/
RELEASE_X86_64, or both. Using the lipo(1) tool, you can construct one fat binary to contain both 
architectures, although that is not strictly necessary.

One Kernel, Multiple Architectures
Apple has adapted XNU to run on no less than four architectures: PowerPC, i386, x86_64, and, in 
iOS, ARM. In doing so, it drew on its core — Mach — which, by design, was made fl exible for any 
architecture. 
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Similar to the Linux kernel, which may be compiled for specifi c architectures, so can Mach. Both 
kernels follow a similar design. Most of the kernel is architecture-agnostic, and architecture-idio-
syncratic parts are implemented in corresponding directories.

In Linux, this is achieved by defi ning functions as macros and overriding the basic implementations 
with architecture optimized ones, found in the arch/ subdirectory of the source tree. In this way, 
the kernel entry points, low-level thread, and memory management are coded in highly specialized 
assembly (.s fi les), while the rest is in C++.

The principle in Mach is almost the same: The osfmk/ directory, in which the Mach sources reside, 
has architecture-specifi c subdirectories. In the open-source XNU, these are i386/ and x86_64/.
Older versions of XNU also contain a ppc/ subdirectory. Strings inside the iOS kernel reveal that a 
fourth directory, arm/, which Apple keeps closed source.

Additionally, XNU relies on a specialized directory, pexpert — the so called Platform Expert. This 
directory is a small, yet highly important one. It contains specialized functions for each architecture. 
In the open-source version, the only supported architecture is i386/x64 (both under i386), but iOS 
has a similar ARM platform expert, which — again — Apple keeps private (though its symbols, too, 
occasionally leak in iOS versions). 

The i386 Platform Expert is tightly integrated with EFI (from which it obtains confi guration 
parameters) from one end and with IOKit (for which it provides services) from the other. The ARM 
Platform Expert is similarly integrated with iBoot. Table 9-2 shows the pexpert subdirectory on OS 
X only. iOS is likely different.

TABLE 9-2: pexpert subdirectory ()

SUBDIRECTORY CONTAINS

conf Machine-specifi c makefi les 

gen Contains the code to handle the boot arguments (bootargs.c), device tree 

(devicetree.c) and the output/boot logo (pe_gen.c) fi les

i386 Low-level handlers for interrupts, serial, and machine identifi cation

Pexpert Contains the header fi les for all the Platform Expert components the other kernel 

components use

IOKit, the XNU driver framework, makes extensive use of the Platform Expert. But even the kernel 
core frequently relies on PE calls. The most commonly called on feature of the Platform Expert is 
the _PE_state, which is a platform dependent singleton structure representing the initial state of the 
machine, as set up by the boot loader. On an Intel platform, it looks like this:

typedef struct PE_state {
        boolean_t       initialized;
        PE_Video        video;
        void            *deviceTreeHead;
        void            *bootArgs;
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} PE_state_t;

PE_state_t  PE_state;

With PE_Video being the graphics console information, as in the following:

struct PE_Video {
  unsigned long   v_baseAddr;  /* Base address of video memory */
  unsigned long   v_rowBytes;  /* Number of bytes per pixel row */
  unsigned long   v_width;     /* Width */
  unsigned long   v_height;    /* Height */
  unsigned long   v_depth;     /* Pixel Depth */
  unsigned long   v_display;   /* Text or Graphics */
  char            v_pixelFormat[64];
  unsigned long   v_offset;    /* offset into video memory to start at */
  unsigned long   v_length;    /* length of video memory (0 for h * w) */
  unsigned char   v_rotate;   /* Rotation: 0:0 1: 90, 2: 180, 3: 270 */
  unsigned char   v_scale;        /* Scale Factor for both X & Y */
  char            reserved1[2];
#ifdef __LP64__
  long            reserved2;
#else
  long            v_baseAddrHigh;
#endif
};

A call to PE_init_platform (in pexpert/i386/pe_init.c) sets up the PE_state, most impor-
tantly the bootArgs pointer. Various kernel components can then access the arguments using 
PE_parse_boot_argn():

boolean_t PE_parse_boot_argn(
        const char      *arg_string,
        void            *arg_ptr,
        int              max_arg);

This function allows a caller to specify an arg_string, and an arg_ptr, a buffer of up to max_arg
bytes, which will be populated by the function (returning true) if the argument was supplied on the 
kernel command line.

Another commonly used functionality of the Platform Expert is the device tree. This is a render-
ing of all the devices in the system in a hierarchical tree structure, much like Solaris’ /devices or 
Linux’s /sys/devices. The device tree is initialized by the boot loader (OS X: EFI, iOS: iBoot), 
and allows the kernel to query which devices are connected. The device tree is detailed in Chapter 
6.

The Platform Expert is also used in the low-level handling of CPU, virtual memory, and other hard-
ware. This is why the IOKit makes such frequent use of it. From the user mode perspective, the fl ow 
of a system call, (or Mach trap), starts as an architecture agnostic BSD/Mach call, and as it traverses 
the layers of the kernel, it gets more and more specifi c. The IOKit also creates a specialized class, 
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IOPlatformExpert, which is used to instantiate a singleton — gIOPlatform — which is then con-
sulted for machine-related information. IOPlatformExpert is defi ned in an architecture-specifi c 
manner, although it does have similar methods across architectures. This will be elaborated on in 
Chapter 19, which deals exclusively with IOKit.

Confi guration Options
XNU has quite a few confi guration options, which you can toggle before compiling the kernel. 
These are #defines, which either set various buffer values, or enable parts of the code and hide 
others at the preprocessor level, so that the resulting objects are as slim as possible. Most are pre-
fi xed with CONFIG, though not always. There are far too many options to list in this book, but the 
interesting ones include those shown in Table 9-3:

TABLE 9-3: Some of the Confi guration Options for Building XNU

OPTION AFFECTS

CONFIG_AUDIT Enables the audit subsystem.

CONFIG_DTRACE Enables DTrace hooks in kernel.

CONFIG_EMBEDDED Sets embedded device features. Apple sets this for iOS.

CONFIG_MACF MAC security policy.

CONFIG_NO_PRINTF_STRINGS

CONFIG_NO_KPRINTF_STRINGS

Saves 50 K of kernel memory, and makes life a little bit harder 

for iOS reverse engineers, where it is used.

CONFIG_SCHED_* Select specifi c task scheduling algorithm. XNU off ers TRADI-

TIONAL, PROTO, GRRR, and FIXED_PRIORITY. Scheduling is 

discussed in Chapter 12. 

SECURE_KERNEL Kernel security extensions.

Every subdirectory of the kernel source tree (which corresponds to a subsystem) contains a 
conf/ subdirectory, which controls the options of its subsystem. The options are documented in 
MASTER fi les.

The XNU Source Tree
XNU’s source tree is considerable — around 50 MB when fully extracted. While it is not as large as 
the Linux source tree (which is double this fi gure, even with most drivers excluded), it is still easy to 
get lost in the source.

A slightly easier way to navigate the source is with the FXR tool, at http://fxr.watson.org/.
This tool, (derived from LXR, the Linux Cross Reference tool), explores FreeBSD’s source tree, 
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and other code bases, including XNU. The latest version indexed at the time of writing is 1699.24.8 
(OS X 10.7.2).

FINDING A SYMBOL OR STRING IN THE SOURCE FILES

If you’re looking for a particular function name, variable, or other symbol in the 
source fi les, grep(1) is your friend. You can use grep to enter any regular expres-
sion and fi nd it in the .h or .c fi les, and — by using xargs(1) — extend the com-
mand so that the search covers all fi les in the directory.

For example, if you are looking for vstart, you would cd to the xnu source root 
directory, and type the following:

morpheus@Ergo(../xnu-1699.26.8)$ find . -name "*.c" –print | xargs 
grep vstart
./bsd/dev/i386/fbt_x86.c:    "vstart"
./osfmk/i386/i386_init.c: * vstart() is called in the natural mode 
(64bit for
./osfmk/i386/i386_init.c:vstart(vm_offset_t boot_args_start)
./osfmk/i386/i386_init.c:   DBG("vstart() NX/XD enabled\n");
./osfmk/ppc/pmap.c: *    kern_return_t pmap_nest(grand, subord, 
vstart, size)
... (Other results omitted for brevity) ..

The approach is a brute force one, at best, as all instances of your search string will 
be returned. If the string is a common substring, brace yourself for many results. 
Still, with a little C, you should be able to sift through the results and fi nd the one 
or few which are relevant to your search — useful when you don’t have access to 
the HTML cross references.

To make your life easier, nearly all the functions in XNU are implemented so that their name begins 
the line in which they are implemented. That is, their return value is deliberately stated in the pre-
ceding line. This makes it easy to fi nd the implementation of a function you are looking for by using 
grep with the caret (̂ ) sign, which is reserved for the beginning of a line. In the preceding example, 
using the caret would have given us exactly the result we want:

morpheus@Ergo (../xnu-1699.26.8)$ find . -name "*.c" | xargs grep ^vstart
./osfmk/i386/i386_init.c:vstart(vm_offset_t boot_args_start)

The regular expression syntax can be further tweaked to fi lter results, for example by looking for \
at the end of the symbol (denoting where function arguments begin).

XNU’s source tree is large, but fairly well organized into several subtrees. These subtrees contain 
the implementation of the various kernel subsystems, as shown in Table 9-4:
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TABLE 9-4: The XNU Subtrees

DIRECTORY CONTAINS

bsd BSD components of kernel

config Exported symbols for various architectures

iokit The I/O Kit driver runtime subsystem

libkern The kernel main runtime library APIs

osfmk Mach components of kernel

pexpert Platform-specifi c stuff  (PPC, i386)

security The BSD MAC Framework

The BSD layer is further broken down into subcomponents, as you can see in Table 9-5:

TABLE 9-5: BSD Subdirectory

SUBDIRECTORY CONTAINS

bsm/security Basic Security Module (auditing subsystem)

conf Machine-specifi c Makefiles 

crypto Implementations of symmetric algorithms and hashes

dev BSD Devices (/dev directory entries)

hfs File system driver (HFS/HFS+) is OS X default

i386/machine/ppc Private kernel headers for Intel/PPC architectures

kern Main kernel code

libkern Kernel runtime exports (CRC, string functions)

man Some actually useful man pages

net*/netinet* Networking subsystem (sockets) and IP stack

nfs NFSv3 stack, for remote fi le systems

sys Kernel headers

vfs Virtual Filesystem Switch

vm BSD’s virtual memory handlers
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Likewise, Mach, in the /osfmk (Open Software Foundation Mach Kernel) subdirectory has the sub-
directories shown in Table 9-6.

TABLE 9-6: OSFMK Subdirectory

SUBDIRECTORY CONTAINS

chud The Computer Hardware Understanding Development tools. These 

extremely powerful APIs formed the kernel support for OS X diagnostic 

tools (known as the CHUD tools), which included the legendary Shark utility, 

Reggie SE and others. Ever since Leopard (10.5) they have been gradually 

phased out of OS X, losing ground to DTrace. The code support for them, 

however, still exists. See the discussion in Chapter 5.

conf Machine-specifi c Makefiles 

console Console initialization, serial, boot video and panic UI

ddb Kernel debugger (obsolete)

default_pager VM Pager

device Mach support for I/O Kit and devices

i386/ppc/x86_64 CPU-specifi c implementations (the good stuff )

ipc IPC, ports, and messages

kdp KDP (Debugger) support

mach, machine The Mach generic and machine dependent kernel headers

man The only man pages you’ll ever get on Mach calls

pmc/profiling PMC performance monitoring

UserNotification Kernel-User Notifi cation (KUNC)

vm Virtual memory implementation and headers

BOOTING XNU

XNU is a Mach-O object. The boot loader (EFI or iBoot) contain Mach-O parsing code, and can 
deduce the entry point from the LC_UNIXTHREAD command. Using otool, you can do so as well.

It is a worthwhile experiment to compile XNU with the various debug settings (DEBUG, CONFIG_
DEBUG, and their ilk) and follow the full debug output, as it will show the fl ow much like in the 
following pages. To capture serial output, it is a good idea to run OS X in a Virtual Machine, and 
defi ne a serial port, redirected to a text fi le. Even though OS X is technically not supposed to be 
virtualized, there are many articles and tutorials on how to trick it into running inside a virtual 
machine, after all.
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The boot process is a long and arduous fl ow, spanning multiple fi les. Reading 
this following section in depth will no doubt be tedious. It is recommended that, 
as a fi rst read, you go over this section in more of a cursory read, not stalling to 
mull on the aspects which may seem unclear or obscure. Then, after reading the 
next chapters — wherein the Mach and BSD layers are described in depth — 
revisit this section, and things will “fall into place.”

The Bird’s Eye View
The high level view of XNU’s boot process is given in Figure 9-1. This is a greatly simplifi ed and 
somewhat inaccurate view, but it serves as a point of departure for this chapter, as we zoom in with 
ever-increasing resolution

Set up segmentation

_pstart(OS X)

i386_init(OS X)/arm_init*(iOS)

_slave_pstart(OS X)

i386_init_slave (do_init_slave)

kernel_bootstrap

_vstart

Master processor:
From EFI/iBoot

slave_main()
Loads context of next thread

(or idle thread). Never returns

kernel_bootstrap_thread

bsd_init

Pass bootargs

PID 1 (/sbin/launchd)vm_pageout()

Various house keeping threads

BSD system threads

machine_startup

Slave processor(s):
following smp_init

start(iOS)

FIGURE 9-1: The high level view of XNU’s boot
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Apple originally left iOS’s XNU fully intact with symbols, when the closest 
thing to a “jailbreak” was an American prime time TV drama with a similar 
name. Since then, however, iOS has been aggressively and repeatedly stripped, 
with fewer and fewer symbols remaining with every new release. XNU hasn’t 
changed that dramatically, so a bit of common sense (and other oversight by 
Apple) allows the reconstruction of symbols. In some cases, however – particu-
larly new code such as SMP (i.e. ARM dual-core support), which was introduced 
in iOS 4.3 with the iPad 2, the symbols are unknown, and the logic is deduced 
from educational binary inspection. The iOS picture therefore remains, in some 
cases, incomplete, and may be subject to change.

OS X: vstart
vstart (osfmk/i386/i386_init.c) is the i386/x64 “offi cial” kernel initialization function, and 
marks the transition from assembly code to C. It is also a special function, in that it executes on 
the primary (boot) CPU, as well as any slave CPUs (or cores) present in the machine. The slaves can 
tell themselves apart because the argument to vstart, the boot_args_start pointer, is NULL for 
slaves. 

The following list depicts the fl ow of vstart on OS X:

 ‰ On Boot (master) CPU: vstart optionally (#if DBG) initializes the serial line by calling 
pal_serial_init().

 ‰ Enable NX/XD: On x64 platforms, the NX (No Execute) bit is a processor feature meant 
to combat code injection. Pages marked as data (commonly the stack and heap) will trigger 
a page fault if accessed by the Instruction Pointer. This is a hardware enforced mechanism, 
which defeats a signifi cant part of the code injection techniques, although not all of them; 
return-oriented programming — the diverting execution to pre-existing library code — will 
still work.

The NX/XD bit is set per-processor — master and slaves alike, if cpuid_extfeatures
(from osfmk/i386/cpuid.c) reports this feature is present (CPUID_EXTFEATURE_XD).

 ‰ cpu_desc_init[64] (osfmk/i386/mp_desc.c): This initializes the GDT and LDT on the 
master cpu. This is followed by a call to cpu_desc_load(64), which loads the kernel LDT 
for use on both master and slaves. 

 ‰ cpu_mode_init() (in osfmk/i386/mp_desc.c): This nitializes the CPU’s MSRs (used for 
SYSENTER/SYSCALL), and its physical page map (pmap)

 ‰ i386_init/i386_init_slave: This is called from either the master or slave CPUs.

iOS: start 
In iOS most of the boot-related functions have been stripped, yet the start() function remains 
one of the few proudly exported symbols. It will likely remain so, as it is declared in XNU’s 
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LC_UNIXTHREAD command as well. The entry point is in the vicinity of 0x8007c058. In the iPhone 
4S, where a XNU decrypted binary is, as yet, unavailable, it resides in 0x8007A0B4.

The entry point has an unusual structure, which helps in its disassembly: Its fi rst three instructions, 
shown in Listing 9-3, are uncommon enough to allow its detection, and also that of the next step, 
arm_init. The start() function loads the address of the latter into the link register (R14), so that 
it effectively returns to it on exit, and then disables interrupts. The entry point for iOS 6 will likely 
be in the 0x8007xxx to 0x8008xxx range, though (if Mountain Lion is any indication) kernel ASLR 
will randomly “slide it” on every boot.

LISTING 9-3: The iOS entry point start code (obtained with the corerupt tool)

start:
0x8007A0B4       MOV          R1, #0
0x8007A0B8       LDR          LR, =_arm_init      ; Load next stage as return address
0x8007A0BC       CPSID        IF                  ; Shhh! Disable Interrupts (IRQ/FIQ)
...
0x8007A0D8       MCR          p15, 0, R5,c2,c0, 0 ; Translation table base 0
0x8007A0DC       MCR          p15, 0, R5,c2,c0, 1 ; Translation table base 1
0x8007A0E0       MOV          R5, #2 ; Boundary size 4K (as page 
size)
0x8007A0E4       MCR          p15, 0, R5,c2,c0, 2 ; Translation Table base control
...   ;
0x8007A318       MOV          R5, #0
0x8007A31C       MCR          p15, 0, R5,c8,c7, 0 ; Invalidate I and D TLBs
0x8007A320       DSB          SY
0x8007A324       ISB          SY
0x8007A328       MOV          R7, #0
0x8007A2EC       BX           LR                   ; "returns" to arm_init

In the sequence that follows, this function mostly handles low level processor settings, through the 
ARM control registers, installs the kernel’s trap handlers from the ExceptionVectorsBase (dis-
cussed in Chapter 8), manipulates more settings, and then jumps to arm_init.

[i386|arm]_init 
The platform initialization function — in OS X’s case i386_init() — initializes the master CPU 
for use, and readies the kernel boot. A similar functions, in OS X’s case — i386_init_slave() — 
does the same for the slave CPUs. This function is expected to never return. Unlike the next stages, 
which are largely similar on both platforms, this step is highly specifi c. This is why the function 
name contains the architecture name. 

In iOS, this function is replaced by arm_init(), which provides very similar functionality, 
albeit suited for the ARM platform. Its fl ow is largely the same, give or take a function, such as 
a call to arm_vm_init() for virtual memory, and a call to ml_io_map(), which the Intel version 
doesn’t have.

The init function is long, but well structured. Like the rest of the functions involved in the boot pro-
cess, it calls on subroutines to perform the work of initializing each subsystem or component. You 
can follow the fl ow in Figure 9-2:
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cpu_init
(osfmk/i386/cpu.c)

pal_i386_init
(osfmk/i386/pal_routines.c)

Calls on the Platform Abstraction Layer initialization — in effect simply a call to

initialize a lock on the EFI.

Initializes the PE_state global, which contains a copy of the boot arguments, video

arguments, and more. This function calls pe_identify_platform (from

pexpert/i386/pe_identify_machine.c), to set gPEClockFrequency.

This calls lck_mod_init (osfmk/kern/locks.c) and timer_call_initialize

(osfmk/kern/timer_call.c) which is used in timer calls.

Sets the current CPU clock timer’s deadline to the ominous “EndOfAllTime”. Literally,

this is no joke. The 64-bit maximum value, is some 677 billion years in our future, long

after you, the author, and all humanity perishes, and our universe ceases to exist.

After the clock is set to run indefinitely, cpu_init() calls
i386_activate_cpu()(osfmk/i386/mp.c).

i386_init

kernel_early_bootrap
(osfmk/kern/startup.c)

PE_Init_Platform
(pexpert/i386/pe_init.c)

panic_init
(libsyscall/mach/panic.c)

printf_init
(osfmk/kern/printf.c)

Called in case a debugger will be attached. Then, kernel printf() messages will

be directed to the debugger.

Called to redirect any kernel panics so they can be intercepted by an attached

kernel debugger.

Check for serial console

PE_init_kprintf
(pexpert/i386/pe_kprintf.c)

Called to enable kprintf() output to get to the console.

64-bit processor detection

PE_Init_printf
(pexpert/gen/pe_gen.c)

Called to enable printf() output to get to the console.

If CPU features support the CPUID_EXTFEATURE_EM64T flag, it will be enabled–

unless "-legacy" was specified as a command line argument to the kernel.

PE_init_platform
(pexpert/i386/pe_init.c)

i386_vm_init
(osfmk/i386/i386_init.c)

Takes over virtual memory management from EFI. Also calls

pmap_bootstrap (osfmk/i386/pmap.c) to initialize kernel physical memory map.

PE_init_platform is called again, this time with its first argument set toTRUE,

indicating virtual memory has been initialized. It obtains the video information and

the device tree from EFI.

tsc_init
(osfmk/i386/tsc.c)

PE_create_console
(pexpert/i386/pe_init.c)

Starts either the graphics mode console, or the text mode console.

Obtains FSB frequency and other parameters from EFI, and the CPU’s Time Stamp

Counter (TSC register) frequency from the CPU. It then calculates the conversion

factor between the two.

power_management_init
(osfmk/i386/pmCPU.c)

Sets up the pm_init_lock, which is later used by the kernel extension which

manages power.

Check the “serial” boot arg, and switch_to_serial_console() if set.
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processor_bootstrap
(osfmk/kern/processor.c)

initializes the processor subsystem of Mach. This initializes three queues – task,

terminated_tasks and threads, creates the master_processor object, and calls

processor_init(), which sets its fields and assigns it to the default processor set, pset0.

(processors and processor sets are described in the next chapter).

thread_bootstrap
(osfmk/kern/thread.c)

sets up the template for the Mach thread objects (discussed in the next chapter).

The Mach thread primitive has numerous fields, and this function fills them with their

default values. It then sets the first system thread, init_thread, to inherit all the values

from the template, and calls machine_set_current_thread (osfmk/i386/pcb.c)
to mark this thread as active on this CPU.

machine_startup
(osfmk/i386/AT386/model_dep.c)

The next stage of initialization. Never returns, and described in the next section.

FIGURE 9-2: i386_init fl ow

A considerable amount of work in the <platform>_init function goes to checking for the existence 
of a console device, initializing it and redirecting the kernel’s printf()s and kprintf()s to it. The 
console of an OS X device is usually its keyboard and screen, and using the -v (verbose) boot argu-
ment you can see a verbose boot (alternatively, by pressing Alt+V while rebooting). You can also do 
so in iOS, if you pass the –v argument through redsn0w or other utilities, though the screen often 
fl ashes too quickly for any meaningful output to be discerned.

If the serial boot argument is specifi ed, the kernel can redirect the console to a serial port, instead. 
This method comes in handy in iOS to enable kernel debugging. As noted by security researcher 
Stefan Esser and discussed previously in this book, the iOS serial port may be enabled (though it 
requires some equipment and minor soldering). 

i386_init_slave()
Slave processors’ real-mode entry point is set (by smp_init, later on), to be slave_pstart. This 
function, in turn, merges with the start_common, but leaves the kernel bootargs structure pointer 
as NULL. The common code calls vstart, as shown earlier, but slave processors can then tell them-
selves apart from the master due to the NULL argument. 

vstart() behaves slightly differently for the master processor than it does for the slaves, performing 
the one-time kernel initialization if it detects it is running on the master. Then, the roads diverge; 
whereas the master processor executes i386_init(), the slaves turn to i386_init_slave() 
instead. This function is a call through to do_init_slave(FALSE). 

do_init_slave()
The do_init_slave function is called when a slave processor wakes up, either for the very fi rst 
time, or when it awakes from hibernation/sleep. First, the function checks its argument — fast_
restart: — which may indicate this is a call from pmCPUHalt (osfmk/i386/pmCPU.c). A fast 
restart merely wakes up the CPU, whereas a slow, or full start, initializes and then starts the CPU. 
This, in turn, involves:

 ‰ Setting caching and write-through by ensuring the NW and CD fl ags of CR0 are off
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 ‰ Confi guring the local interrupt controller — lapic_configure() — from osfmk/i386/
lapic_native.c)

 ‰ Initializing the FPU (init_fpu(), osfmk/i386/fpu.c)  in the same manner as machine_
init(), described later

In either a fast or slow startup, the next step is a call to initialize the CPU (cpu_init(), osmfk/

kern/cpu.c), as performed by i386_init for the main. The function then calls slave_main (from 
osfmk/kern/startup.c). This function takes the next available thread for execution from the cur-
rent_processor()’s next_thread fi eld. If no runnable threads exist, the idle thread (created by 
kernel_bootstrap_thread) is taken instead. As the thread context is loaded into the processor, 
this function had better not return (or the kernel will panic).

machine_startup
machine_startup(osfmk/i386/AT386/model_dep.c) function, called at the last step of 
<platform>_init, is misleading: although its name and location both seem to imply hardware and 
model dependency, it is actually less dependent on the underlying hardware than its predecessor, and 
has the same implementation in OS X and in iOS. 

The function mostly parses several command line arguments (using the Platform Expert’s 
PE_parse_boot_argn), mostly fl ags of the debug boot-arg, to control boot-time debugging. If 
MACH_KDB is defi ned, a call to ddb_init(osfmk/ddb/db_sym.c) initializes Mach’s low-level kernel 
debugger and halts the kernel boot at this stage, so a debugger may be attached. Otherwise, a few 
more command line arguments (dealing with scheduling quanta and preemption) are parsed, and 
then a call to machine_conf() sets the machine_info structure’s memory_size fi eld. The full list of 
arguments can be found later in this chapter.

A call to ml_thrm_init() hints at some future plans to initialize CPU thermal reporting on Intel 
processors, as PPC’s XNU had, but NOTYET: this is #ifdef'ed out on both OS X and iOS. The last 
step is, therefore, a fall through to kernel_bootstrap(), which also never returns, and performs 
the bulk of the low level Mach initialization. 

kernel_bootstrap
The kernel_bootstrap(osfmk/kern/startup.c) function continues to setup and initialize the 
core subsystems of the Mach kernel, erecting the necessary foundations upon which the BSD is over-
laid. From this stage onward, initialization is largely the same in OS X and iOS, with a few minor 
differences that relate to low-level initialization of machine-dependent aspects (such as the physical 
map abstraction), or to specifi c features, most of which are new to iOS.

Aside from virtual memory (without which there is nothing), kernel_bootstrap also initializes the 
key abstractions of Mach:

 ‰ IPC: Mach is based around message passing, and this requires signifi cant resources, such as 
memory, synchronization objects, and the Mach Interface Generator (MIG).

 ‰ Clock: The clock abstractions enable alarms (the system clock) and time-telling (the 
“calendar”).
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 ‰ Ledgers: Ledgers are part of Mach’s system enabling accounting. This has recently been 
revamped in iOS 5 and Mountain Lion.

 ‰ Tasks: Tasks are Mach’s containers, akin to BSD’s processes (in fact, a 1:1 mapping exists 
between the two).

 ‰ Threads: Threads are the actual units of execution. A task is merely a resource container, but 
it is the thread which gets scheduled and executed.

The kernel_bootstrap function doesn’t return. Instead, it assumes the context of the kernel_
bootstrap_thread, which is the system’s fi rst active thread. As this thread, it carries on with ini-
tialization, dealing with subsystems of increasing complexity.

The fl ow of kernel_bootstrap is annotated in Figure 9-3.

ipc_bootstrap
(osfmk/ipc/ipc_init.c)

mac_policy_init
(security/mac_base.c)

vm_mem_bootrap
(osfmk/vm/vm_init.c)

vm_mem_init
(osfmk/vm/vm_init.c)

sched_init
(osfmk/kern/sched_prim.c)

wait_queue_bootstrap
(osfmk/kern/wait_queue.c)

ipc_init
(osfmk/ipc/ipc_init.c)

scale_setup
(osfmk/kern/startup.c)

Print version
A small, but memorable printf(): "Darwin Kernel Version 11.0.0:…"
(suppressed on iOS as printf()is replaced by consume_printf_args).

Parse (some) boot arguments
"-l" "trace" and "serverperfmode" arguments are checked and their

respective kernel variables are initialized.

Sets task and thread maxima, based on serverperfmode argument. Calls

bsd_scale_setup (bsd/dev/unix_startup.c) for max procs, vnodes,

etc., which calls bsd_exec_setup (bsd/kern/bsd_init.c) for max number

of execs().

Massive initialization function which sets up the virtual memory subsystem:

vm_pages, zones, vm_objects, vm_maps, kmem, pmap, kalloc, vm_fault,

memory managers, and the device_pager.

Wrapper over vm_object_init (osfmk/vm/vm_object.c), which is a null sub

(vm_mem_bootstrap()did everything anyway).

Initialize the scheduler subsystem. First, command line arguments are parsed to check

the value of sched, or kern.sched (from device tree). This value will override the

choice of default scheduling algorithm. Then, the appropriate scheduler will be called.

For more on scheduling, see the next chapter.

Initializes the memory zones used to maintain the kernel’s wait queues.

Sets up the memory required by the IPC subsystem: IPC memory zones, and IPC

spaces. Also initializes MIG, IPC hash tables, synchronization objects, and the host

notify system.

Allocates a submap used by the kernel for ipc. Calls ipc_host_init
(osfmk/kern/ipc_host.c) which creates the host special ports, the

processor set port, and the default processor port.

Initializes memory resources required by the Mandatory Access Control

(MAC) framework, as well as the zone used to store MAC labels.

Kernel_bootstrap:

FIGURE 9-3: The fl ow of kernel_bootstrap (from osmfk /kern/startup.c) continues
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thread_init
(osfmk/kern/thread.c)

kernel_bootstrap_thread
(osfmk/kern/startup.c)

Initializes memory zone for threads, and calls

stack_init(osfmk/kern/stack.c)to set up kernel stack. Also calls

machine_thread_init(osfmk/i386/pcb.c)for any machine specific

initialization, such as setting up zones for saved thread states (OS X: x86[_64])

saved state and debug state zones. iOS: arm debug state zone.

Threads are initialized, so formally create first thread,

kernel_bootstrap_thread, and become it by loading its context (never

returns).

task_init
(osfmk/kern/task.c)

Initializes memory zone for tasks, and officially creates the kernel_task.
iOS: Also creates per-task ledgers.

clock_init
(osfmk/kern/clock.c)

mapping_free_prime
(osfmk/i386/pmap_common.c)

machine_init
(osfmk/i386/AT386/model_dep.c)

Frees pv hashes. Null sub on iOS.

OS X: Displays CPU ID and features. Initializes EFI and SMP (see below).

Initializes FPU and configures clock. Initializes MTRR and PAT. Frees low

memory pages. iOS: just configures clock.

Falls through to clock_oldinit (osfmk/kern/clock_oldops.c),

which initializes the structures of all defined clocks in the system.

ledger_init
(osfmk/kern/ledger.c)

OS X: Initializes root wired and paged ledgers. (This will change in Mountain Lion)

iOS: uses per-task ledgers, so this function is not called.

PMAP_ACTIVATE_KERNEL
(osfmk/vm/pmap.h)

This macro either #defines to nothing on OS X, or calls another, PMAP_ACTIVATE
(if it is defined) to activate the kernel pmap on the given processor. This seems null

on both iOS and OS X.

FIGURE 9-3: The fl ow of kernel_bootstrap (from osmfk /kern/startup.c) (continued)

machine_init
Just before the Mach primitives are initialized, kernel_bootstrap calls machine_init(osfmk/
i386/AT386/model_dep.c), for machine specifi c aspects. On ARM, this call doesn’t do much, 
aside from confi gure the clock. In OS X, however, this call is of paramount importance, especially 
in SMP (which Mac hardware is by default). Its fl ow is shown in Figure 9-4:

The function responsible for the SMP initialization is smp_init. This function is responsible for two 
main tasks:

 ‰ Initialize the LAPIC: In SMP architectures, each processor (or core) has a Local Advanced 
Programmable Interrupt Controller. This is responsible, at the hardware level, for interrupt 
delivery to the core.

 ‰ Set the slave CPU’s entry point: This is done using a physical memory copy through 
install_real_mode_bootstrap(), because Intel CPUs and cores wake up with paging 
disabled. The entry point is set to slave_pstart(), as discussed previously. 
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debug_log_init
(osfmk/kern/debug.c)

Display CPU features
(all in osfmk/i386/cpuid.c)

smp_init
(osfmk/i386/mp.c)

efi_init
(osfmk/i386/AT386/model_dep.c)

Initialize various locks and call the following:

Init_fpu
(osfmk/i386/fpu.c)

Set CR0 to enable CPU, Set CR4 to enable SIMD and XSAVE, if possible.

MTRR settings

clock_config
(osfmk/kern/clock.c)

pmap_lowmem_finalize
(osfmk/i386/pmap.c)

Memory Type Range Register support, #if CONFIG_MTRR.

Free pages in low memory. Optionally write-protect kernel (if wpkernel
argument is specified).

Sets calendar (real time clock) adjustment and wake calls. Falls through to

clock_oldconfig (clock_oldops.c), which sets alarms and calls each clock’s

configuration function.

Initializes EFI Runtime services and maps memory.

Initializes the panic log. Not really used (log

is initialized anyway statically).

i386_smp_init
(osfmk/i386/mp_native.c)

install_real_mode_bootstrap
(osfmk/i386/acpi.c)

Copies CPU boot (slave_pstart) to physical

memory in real-mode vector area.

Initializes and configures local APIC, and installs

Non Maskable (NMI) and Inter-Processor (IPI)

interrupt handlers.

console_init
(osfmk/console/i386/serial_console.c)

Allocates console ring buffer and read/write locks.

cpu_thread_init
(osfmk/i386/mp_native.c)

ml_cpus_*
(osfmk/i386/mp.c)

Identify Intel processor idiosyncrasies.

Local APIC initializations
(osfmk/i386/lapic_native.c)

Probe for local APIC?

No Local APIC (=UniProcessor)

FIGURE 9-4: The fl ow of machine_init() on OS X 
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kernel_bootstrap_thread
In its new persona as the kernel_bootstrap_thread the main thread keeps on with its task of ini-
tializing the various subsystems, whose foundations were established in the last stage. 

Now that thread support has been enabled, the kern_bootstrap_thread can call on kernel_
create_thread() to spawn helper threads. Indeed, it does just that, with the very fi rst thread cre-
ated being the idle thread. This thread is necessary so that the system cores or CPUs will always 
have something to execute when all other threads are blocking.

Following the idle thread, the next thread started is the scheduler itself. The scheduler is described 
in depth later in Chapter 11. The scheduler is the task which will, at specifi ed intervals and after 
interrupts, get to decide which thread gets to execute next. 

After spawning a few system threads to handle thread maintenance, OS X’s XNU starts a mapping_
replenish() thread. Similar functionality is achieved on iOS by spawning a zone_refill_thread,
though only a little bit later.

If the kernel is confi gured with SERIAL_KDP (as both OS X and iOS are), a call to init_kdp() next 
initializes the debugger. It’s rather odd that Apple left KDP support in iOS: Though i-Devices come 
with no offi cial serial port, their (single) connection can be made into a serial port[1], and KDP sup-
port is instrumental in letting hackers obtain a view of memory. 

The next important step carried out is initializing IOKit, which is XNU’s device driver framework. 
This is key, because without IOKit, XNU can’t directly access devices: It simply has no code of its 
own to access even the most basic devices of the disk, display, and network.

Once IOKit is initialized, interrupts may be enabled. This is done by a call to spllo(), which 
#defines to ml_enable_interrupts(). As shown in the previous chapter, this function adapts to 
the underlying interrupt mechanism (Intel’s IF EFLAG or ARM’s Interrupt bit in CPSR).

The next module to initialize is the shared region module, which is used by clients such as dyld(1)
when loading shared libraries, and the kernel itself in what is known as the commpage. The com-
mpage is a single page that is mapped from the kernel directly to all processes, and contains various 
exported data, as well as functions. This page always resides in the same address and is accessible to 
all processes, as described in Chapter 4.

If the kernel is compiled with Mandatory Access Control (CONFIG_MACF), as both OS X and iOS are, 
a call to mac_policy_initmach() follows, which enables the policy modules to start their work as 
early as possible. This is crucial for maintaining system security, as otherwise various race condi-
tions could allow attackers to attempt operations before policies come into full effect.

Once MAC is enabled, the BSD subsystem can be initialized. This is a massive function, bsd_
init(), worthy of its own section and is detailed later. This function eventually spawns the init 
task, which executes /sbin/launchd, the progenitor of all user mode processes. 

Following BSD’s initialization, if the kernel was confi gured with the serial boot argument, a 
serial console is enabled by spawning a dedicated console listener thread. By this time, user mode 
processes (spawned after the BSD subsystem completes its initialization) may access the console by 
opening its tty. Again, somewhat surprisingly, this is enabled in iOS.
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On an SMP system, the penultimate step is to enable the local page queue for each CPU. On a uni-
processor, this is skipped. Finally, with nothing else left to do, the main thread assumes a new per-
sonality for the last time — that of vm_pageout(), which will manage swapping for the system and 
is covered in Chapter 12, dealing with the Mach VM subsystem. (See Figure 9-5.)

Starts the thread termination daemon (to clean

up after threads) and the thread stack daemon

(to allocate memory for new threads).

Starts the kernel thread callout daemon.

This is a background thread which lives to

take on miscellaneous chores, such as background

memory allocation, by thread_call_setup().

Enable interrupts

OS X: cpu_userwindow_init

clock_service_create
(osfmk/kern/clock_oldops.c)

device_service_create
(osfmk/device/device_init.c)

kdp_init
(sfmk/kern/startup.c)

Bind to current CPU

OS X: mapping_adjust
(osfmk/i386/pmap_common.c) OS X: mapping_replenish()

(osfmk/i386/pmap_common.c)

iOS: nkdbufs, kern tracing

Kernel_bootstrap_thread

Creates idle thread.

thread_terminate_daemon()
(osfmk/kern/thread.c)

thread_stack_daemon()
(osfmk/kern/thread.c)

thread_daemon_init
(osfmk/kern/thread.c)

thread_call_initialize
(osfmk/kern/thread_call.c)

idle_thread_create(processor)
(osfmk/kern/startup.c)

sched_init_thread()
(osfmk/kern/sched_prim.c)

sched_startup
(osfmk/kern/sched_prim.c)

thread_call_daemon()
(osfmk/kern/thread_call.c)

Starts the system scheduler:

If the kernel is configured with SERIAL_KDP, this will set up a kernel debugger connection

on the serial port. By using KDP, a debugger can be connected from a remote machine as

early as this stage.

This is a platform expert call to perform several initializations. Before actually starting IOKit,

it initializes two Color LookUp Tables: the BootCLUT (the familiar grey screen on OS X),

the FailedBootCLUT the Panic UI (the familiar error screen, which is discussed later),

and the spinning progress indicator as the system boots. Finally, it starts IOKit by

a call to StartIOKit (iokit/Kernel/IOStartIOKit.cpp).

Creates the HOST_IO_MASTER_PORT, a special host port used to access devices.

Creates the system clock abstraction, which allows the setting

of alarms and timers in the kernel and in user mode.

OS X: Adust kernel pmaps and start map

recycle/replenish thread. (iOS: not called).

PE_init_iokit
(pexpert/i386/pe_init.c)

zone_refill_thread() is likely similar to mapping_replenish().

OS X: nkdbufs, kern tracing

OS X: cpu_physwindow_init

OS X: pmc_bootstrap iOS: zone_prio_refill_configure iOS: zone_refill_thread()

FIGURE 9-5: Flow of kernel_bootstrap_thread

continues
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mac_policy_initmach
(security/mac_base.c)

Finish MAC module initialization.

serial_keyboard_init
(osfmk/console/serial_general.c)

bsd_init
(bsd/kern/bsd_init.c)

vm_pageout()
(osfmk/vm/vm_pageout.c)

vm_page_init_local_q
(osfmk/vm/vm_resident.c)

Initialize the BSD subsystem (see below) and spawn the

bsdinit_task (exec’ing launchd).
bsdinit_task()

(bsd/kern/bsd_init.c)

Jettison kernel linker
(becomes launchd)

If the kernel was booted with “serial,” a separate kernel

thread is started for tty consoles
serial_keyboard_start()

(osfmk/console/serial_general.c)

Unbind from current CPU

(becomes pageout daemon)

SMP: Initialize CPU’s local

page queue. Null on

uniprocessor

Continuously invokes serial_keyboard_poll(),

which gets characters from the serial port

(using serial_getc), converts them to console

input (using cons_cinput). The BSD subsystem

previously registered the receiving end of the console.

vm_shared_region_init()
(osfmk/vm/vm_shared_region.c)

vm_commpage_init()
(osfmk/vm/vm_shared_region.c)

Initialize the shared region module and the commpage (see below).

FIGURE 9-5: Flow of kernel_bootstrap_thread (continued)

bsd_init 
The entire setup of the BSD layer of XNU is performed by a single function called (unsurprisingly) 
bsd_init(), in the similarly named bsd/kern/bsd_init.c. This function call is enclosed in an 
#ifdef MACH_BSD, which demonstrates just how decoupled the Mach part of XNU can be made 
from its BSD. In XNU, however, the two are intricately intertwined following this call.

There is a signifi cant amount of work which follows. Most of it is performed by self-contained *_
init() functions, to initialize the various subsystems, each in turn. Most of the functions take no 
arguments. This (and a panic or two) makes it relatively easy to pick out of iOS’s long disassembly. 
Because this function is the fulcrum of all of the BSD subsystem, the rest of the disassembly falls like 
a string of dominoes, as shown in Listing 9-4, which has been partially annotated:

LISTING 9-4: Partial disassembly of bsd_init() of an iPhone 4S memory image 

               ...
0x802B710E   LDR   R0, "bsd_init: Failed to create execve"...
0x802B7110   BL    _panic
0x802B7114   B     802B711A     ; Normal boot obviously skips over the panic
0x802B7116   BL    _bsd_bufferinit
0x802B711A   BL    sub_802040AC ; IOKitInitializeTime
0x802B711E   MOVS  R6, #0
0x802B7120   BL    sub_802B7D7C ; ubc_init
0x802B7124   BL    sub_801E2070 ; devsw_init
0x802B7128   BL    sub_802B5DE4 ; vfsinit
0x802B712C   BL    sub_801AF7F4 ; mcache_init
0x802B7130   BL    sub_801BE110 ; mbinit
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0x802B7134   BL    sub_800D858C ; net_str_id_init
0x802B7138   BL    sub_802B7740 ; knote_init
0x802B713C   BL    sub_802B74E8 ; aio_init
0x802B7140   BL    sub_801B5320 ; pipeinit
0x802B7144   BL    sub_801D24D4 ; pshm_lock_init
0x802B7148   BL    sub_801D1AB0 ; psem_lock_init
0x802B714C   BL    sub_801DBC0C ; pthread_init
0x802B7150   BL    sub_802B8174 ; pshm_cache_init
0x802B7154   BL    sub_802B814C ; psem_cache_init
0x802B7158   BL    sub_802B7D28 ; time_zone_slock_init 
0x802B715C   BL    sub_801B2410 ; select_wait_queue_init 
0x802B7160   BL    sub_802B74B8 ; stackshot_lock_init 
0x802B7164   BL    sub_801ABEAC ; sysctl_register_fixed 
0x802B7168   BL    sub_802B7B84 ; sysctl_mib_init 
0x802B716C   BL    sub_800C8A04 ; dlil_init
0x802B7170   BL    sub_802B63A8 ; protocol_kpi_init
0x802B7174   BL    sub_802B7FFC ; socketinit
0x802B7178   BL    sub_802B7EB8 ; domaininit
0x802B717C   BL    sub_800FC040 ; iptap_init

You can follow the fl ow along in Figure 9-6. Note that, unlike the previous fi gure, this does not 
point out the threads spawned by the functions, even though quite a few do so.

throttle_init
(unknown at time of writing)

bsd_init()

ML/iOS: initializes a lock and a thread call to an I/O throttling thread.

funnel_alloc(KERNEL_FUNNEL)
(osfmk/kern/thread.c)

Allocates the kernel funnel (global high-level lock).

Print copyright
(osfmk/kern/thread.c)

OS X: Prints the BSD license copyright (“Copyright (c) 1982, 1986, 1989..”)

iOS: silently consumed by printf.

kmeminit
(bsd/kern/kern_malloc.c)

Initializes BSD’s memory zones, which are built over Mach’s. These are used

extensively for BSD’s subsystems, and are discussed in Chapter 13.

parse_bsd_args
(bsd/kern/bsd_init.c)

Parses “-b” “-s” and “-x” boot and some other arguments. Inline in iOS.

kauth_init
(bsd/kern/kern_authorization.c)

Initializes the kauth subsystem, used for modules, and brings up all of its components: cred,

identity, groups, scope, and resolver.

procinit
(bsd/kern/kern_proc.c)

tty_init
(bsd/kern/tty.c)

Christen the kernel task

Create process lock groups

Initializes the process lists (all, and zombie). Also initializes hash tables for pids, process

groups, sessions, and ui. #if CONFIG LCTX (true on OS X/iOS) also initializes

login contexts.

The tty line discipline subsystem, by allocating the tty lock group.

Ties the kernproc structure (a.k.a proc0) to the Mach kernel_task object by setting that

task’s bsdinfo pointer. Also Officially names the BSD process “kernel task” (by setting its

p->p comm).

Creates the global process lock group (“proc”) and #if CONFIG_FINE_LOCK_GROUPS
(which is false) also defines finer-grainer locks.

FIGURE 9-6: The fl ow of bsd_init() continues
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Associate file descriptor table

Associate rlimit table

Associate sigacts and stats

chgproccnt(0, 1)
(bsd/kern/kern_proc.c)

Allocate execve submap

bsd_bufferinit
(bsd/dev/unix_startup.c)

IOKitInitializeTime
(iokit/Kernel/IOStartIOKit.cpp)

ubc_init
(bsd/kern/ubc_subr.c)

devsw_init
(bsd/kern/bsd_stubs.c)

vfsinit
(bsd/vfs/vfs_init.c)

Initializes the Virtual Filesystem Switch, which is the BSD layer’s unified interface

for file systems (Chapter 14).

Initializes the Unified Buffer Cache, which is the BSD layer’s block buffering

mechanism, and is used to speed up file and block device I/O.

Initializes the BSD device switch lock group.

“Charges” root’s process quota for two processes (0, the kernproc, and 1, the

bsdinit_task to launch, once called mach_init, and nowadays called

launchd).

Allocates buffers for most BSD subsystems, such as vnodes, network protocols. Called

bsd_startupearly(bsd/dev/unix_startup.c)and ends with bufinit
(bsd/vfs/vfs_bio.c), which also initializes lists and hashes

Waits until IOKit’s IORTC (real time clock) arrives (and, on OS X, also IONVRAM, for NVRAM

support), and initializes the system time (or calendar, in Mach parlance) to support

gettimeofday()functions.

Allocates a kernel page able submap which can be used during execve(). This

is required because an execve() will be needed soon to spawn PID 1.

mac_cred_label_associate_kernel()and mac_task_label_update_cred()
to update the kauth credentials previously created and tie them to the Mandatory Access

Control framework.

Ties fileproc0, the master file descriptor table, to kernproc’s p_fd, and initialize some of

its fields.

Ties pstats0 and sigacts0 to p_stats and p_sigacts fields of kernproc.

Set execarg limits

…

mac_policy_initbsd
(security/mac_base.c)

Create Process 0

Enables the BSD portion of the MAC framework policies and auto-exempt the kernel process

from it. On Intel, a call to check policy init()validates the policy was initialized correctly.

Turns the kernel process into a full BSD process, with PID 0. Initializes various fields of

kernproc to reflect the code signing validity and other settings of the process.

Kauth credentials

file_lock_init
(bsd/kern/kern_descrip.c)

Sets limits on exec()args, and the maximum size of the execargs cache as a function of

how many simultaneous exec()calls are allowed.

Allocates credentials for the kernel using kauth_cred_create(), and then calls

kauth_cred_ref()to increment the reference count. Both functions are from

bsd/kern/kern_credential.c.

Initialize the “file” lock group, which contains the uipc lock and file_flist_lock.

MAC label assignment
Creates the process resource limits table (used by ulimit(1)and

get/setrlimit(2)). This is inherited later by all subprocesses.

FIGURE 9-6: The fl ow of bsd_init() (continued)
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Sys V Sem/Shm/Msg lock Init

POSIX Sem/Shm lock Init

pthread_init
(bsd/kern/pthread_synch.c)

POSIXSem/Shm cache Init
(bsd/kern/posix_[sem|shm].c)

time_zone_slock_init
(bsd/kern/kern_time.c)

select_wait_queue_init
(bsd/kern/sys_generic.c)

stackshot_lock_init
(bsd/kern/kdebug.c)

Sysctl registration
(…c)

Obtaining a stackshot (discussed in Chapter 5) requires a lock over the processes, so they

don’t get modified during the process of the stackshot.

dlil_init
(bsd/net/dlil.c)

proto_kpi_init
(bsd/net/kpi_protocol.c)

Depending on SYSV_SHM, SYSV_MEM, and SYSV_MSG, the locks for the System V APIs are

initialized here. This holds in OS X, but not in iOS.

Initialize hash tables for POSIX semaphores and shared memory.

POSIX Semaphores and Shared memory locks, by contrast supported on both OS X and iOS,

are initialized here, as a prerequisites for POSIX threads.

Allocates a lock group for PThreads. If PSYNCH is defined, also a workgroup cleanup thread

callout, and a zone for psynch (discussed in Chapter 13).

Falls through to wait_queue_init
(&select_conflict_queue, SYNC_POLICY_FIFO);.

Allocates the time zone spin lock.

Initializes the Data Link Interface Layer (DLIL), which is the support for layer II protocols, such as

Ethernet. Parses several network related boot args, initializes various zones, spawns the dlil

input_thread for the loopback interface, and potentially initializes PF, if defined.

Allocates the locks used by the kernel programming interface which enables access to

registered network protocols from within the kernel.

A call to sysctl_register_fixed (bsd/kern/kern_newsysctl.c)
registers the top level sysctl(8)namespaces, followed by a call to

sysctl_mib_init(bsd/kern/kern_mib.c)to populate the hw.* MIBs.

mcache_init
(bsd/kern/mcache.c)

mbinit
(bsd/kern/uipc_mbuf.c)

net_str_id_init
(bsd/net/net_str_id.c)

OS X: audit_init
(bsd/security/audit/audit.c)

#if CONFIG_AUDIT (which is true in OS X, but not iOS), this brings up the audit subsystem.

Auditing is discussed in Chapter 3.

Allocates a lock for net_str, which is used in MBuf tag allocation and looking up strings

associated with network kernel extensions (NKEs).

Initializes MBufs, which are the data buffers used by the network stack.

Initializes the BSD mcache mechanism, which is an efficient allocator with individual CPU cache

optimizations (discussed in chapter 13).

knote_init
(bsd/kern/kern_event.c)

aio_init
(bsd/kern/kern_aio.c)

pipeinit
(bsd/kern/sys_pipe.c)

Initializes the asynchronous I/O locks: aio_proc, aio_entry, and aio_queue.
Also initializes AIO_NUM_WORK_QUEUES (currently, 1) work queue, and

CONFIG_AIO_THREAD_COUNT worker threads.

Allocates the memory zone (“knote zone”) to be used by up to 8192 kernel events, and the

required lock groups for them. Sets up the kqueue lock, and timer filter lock.

Allocates a lock group for PThreads. If PSYNCH is defined, also a workgroup cleanup thread

callout, and a zone for psynch (discussed in Chapter 13).

continues

c09.indd   323c09.indd   323 9/29/2012   5:32:23 PM9/29/2012   5:32:23 PM



324 x CHAPTER 9  FROM THE CRADLE TO THE GRAVE — KERNEL BOOT AND PANICS

bsd_autoconf
(bsd/kern/bsd_init.c)

loopattach()
(bsd/net/if_loop.c)

Calls kminit (bsd/dev/i386/km.c) which is used for the serial

console, and falls through to IOKitBSDInit (iokit/bsddev/
IOKitBSDInit.cpp), which publishes all the IOBSD resources.

Inline in iOS.

ether_family_init
(bsd/net/ether_if_module.c)

With an uncommon #include right before it, a call to loopattach
brings up the lo0 interface.

pfloginit
(bsd/net/if_pflog.c)

net_init_run
(bsd/net/init.c)

utun_register_control
(bsd/net/if_utun.c)

netsrc_init
(bsd/net/netsrc.c)

domainfin
(bsd/kern/uipc_domain.c)

vnode_pager_bootstrap
(osfmk/vm/bsd_vm.c)

#if NETWORKING

(True in OS X/iOS)

Set sup BSD’s vnode pager, which is used to swap to memory mapped

files

If PF is enabled, this initializes it. PF is a packet filtering mechanism

which is used in Lion

Registers AF_INET, AF_INET6, AppleTalk (#ifNETAT) protocol plumbers,

and initializes vlan (#if VLAN) and bond (#if BOND) families. Also

enables bridging, #if IF_BRIDGE.

UTUN (User TUNnel) is a mechanism to enable user mode processes

to register network interfaces (tun# devices) to which sockets can be

bound. All traffic then gets redirected to the registering process, which

enables VPN and tunneling software.

Registers the NETSRC PF_SYSTEM control. (Discussed in Chapter 16).

Runs all the functions registered in a private list by net_init_add()
in reverse order.

Runs any specific address family finalization routines. Currently used

for ip6_fin().

inittodr
(bsd/kern/kern_time.c)

Verifies the real time clock value, or set to the “epoch” (1/1/70).

socketinit
(bsd/kern/uipc_socket.c)

domaininit
(bsd/kern/uipc_domain.c)

Allocates the locks used by the kernel programming interface which

enables access to registered network protocols from within the kernel.

Creates the hardcoded domains (socket address families) used in XNU.

Additional domains may be created dynamically.

#if SOCKETS

(true in OS X/iOS)

iOS/ML: iptap_init
(probably bsd/net/iptap.c)

iOS: kern_hibernation_init
(bsd/kern/kern_memorystatus.c)

iOS: kern_memorystatus_init
(bsd/kern/kern_memorystatus.c)

Kernel and process hibernation is enabled #if CONFIG_FREEZE is

set. Although the code for this has been present for a long time, it is

only enabled in iOS (for details see Chapters 11 and 13).

Another feature, the kernel memory status thread, is enabled only 

#if CONFIG_EMBEDDED (i.e. on iOS). This monitors the system’s

RAM consumption, and reacts to low memory events.

#if
CONFIG_FREEZE
(iOS only)

#if
CONFIG_EMBEDDED
(iOS only)

Iptap is another feature that first appeared in iOS and has been ported

into Mountain Lion.

kmstartup
(osfmk/profiling/profile-mk.c)

If kernel profiling is enabled (which it normally is not), this starts the

kernel profiling support.

thread_wakeup(&lbolt)
(bsd/kern/bsd_init.c)

Lightning bolt is a thread which wakes up once every second to

handle timeout events. This wakes it up for the first time, effectively

kickstarting the mechanism.

FIGURE 9-6: The fl ow of bsd_init() (continued)
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bsd_utaskbootstrap
(bsd/kern/bsd_init.c)

pal_kernel_announce
(osfmk/i386/pal_native.h)

OS X: Set PPC arch handler
(bsd/kern/kern_sysctl.c)

mountroot_post_hook

bsd_init_kprintf(“done\n”);

Another debug print that doesn’t see the light of day

(as bsd_init_kprintf is a null #define). Still, after *so* much hard

work, bsd_init is entitled to a sense of achievement! (As are you,

if you’ve followed along so far!)

Clones PID 1 from PID 0. Signals the special case AST_BSD, which will

effectively start PID 1 (discussed next) and lead to user mode initialization.

Inline in iOS.

Platforms any platform specific tasks related with the kernel’s new

live state. A null sub.

Installs the PowerPC architecture handler. This used to provide the hook

by means of which Rosetta (/usr/libexec/oah/RosettaNonGrata)

could be called on execution of Mach-O binaries.

If any component has registered a function to be called post successful

root filesystem mounting, bsd_init will call it here.

#if
CONFIG_EMBEDDED

#if
NFS_CLIENT

#if
CONFIG_IMAGEBOOT

#if
DEVFS

Mount root file system

iOS: IOSecureBSDRoot
(iokit/bsddev/IOKitBSDInit.cpp)

NFS Networkboot
(…c)

imageboot_needed()?

Set kernel start time

devfs_kernel_mount
(bsd/miscfs/devfs/devfs_vfsops.c)

Optional (#if DEVFS), but on by default, this mounts the /dev
file system.

Attempts to mount the root file system, using vfs_mountroot(),

and retry until successful. If successful, obtain root vnode and tie to

current directory pointer of kernproc.

Calls on the Platform Expert to secure the BSD root device.

If NFS Client functionality is enabled, optionally boot from a network

root by calling nfsboot_setup()from bsd/kern/netboot.c.

If Image boot is enabled, call imageboot_needed (bsd/kern/
kern_imageboot), to check on rp0 and rp1 boot args, and

potentially calls imageboot_setup() to mount the image and boot

from it.

Sets kernproc->p_start to exact time.

siginit()
(bsd/kern/kern_sig.c)

Initializes default signal masks for process 0 (which will be inherited

by all subsequent BSD processes) with flags from sigprop template 

(in bsd/sys/signalvar.h).

FIGURE 9-6: The fl ow of bsd_init() 

bsdinit_task
Towards the end of its execution, bsd_init() makes a call to bsd_utaskbootstrap(). This func-
tion is responsible indirectly for starting PID 1, which is the fi rst task to emerge into user mode. To 
do so, it fi rst makes a call to cloneproc(), which creates a new Mach task. But from here to user 
mode the road is long. 

To actually spin off the new task, utaskbootstrap() generates an asynchronous system trap (AST) 
by calling act_set_astbsd() on the newly created thread. ASTs are covered in Chapter 11, deal-
ing with Mach scheduling, but in the interim suffi ce it to say that they are scheduling events, which 
in this case will result in the init task executing: The call followed by a call to thread_resume() 
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on it, and then utaskbootstrap() returns to bsd_init(). When the AST is processed, the Mach 
AST handler will specifi cally handle this special case, by calling bsd_ast() (from bsd/kern/kern_
sig.c), which in turn calls bsdinit_task(). This function is shown in Listing 9-5:

LISTING 9-5: bsdinit_task() (from bsd/kern/bsd_init.c)

bsdinit_task(void)
{
        proc_t p = current_proc();
        struct uthread *ut;
        thread_t thread;

        process_name("init", p);

        ux_handler_init();

        thread = current_thread();
        (void) host_set_exception_ports(host_priv_self(),
                         EXC_MASK_ALL & ~(EXC_MASK_RPC_ALERT),//pilotfish (shark) ..
                        (mach_port_t) ux_exception_port,
                                      EXCEPTION_DEFAULT| MACH_EXCEPTION_CODES,
                                      0);

        ut = (uthread_t)get_bsdthread_info(thread);

        bsd_init_task = get_threadtask(thread);
        init_task_failure_data[0] = 0;

#if CONFIG_MACF
        mac_cred_label_associate_user(p->p_ucred);
        mac_task_label_update_cred (p->p_ucred, (struct task *) p->task);
#endif
        load_init_program(p);
        lock_trace = 1;
}

The bsdinit_task() sets the initial process name to init, true to its UNIX origins. This is 
nothing more than a simple memcpy to the proc_t’s comm fi eld. Next, a call to ux_handler_
init(). This creates a separate kernel thread, ux_handler, which is responsible for handling 
UNIX exceptions — i.e. receiving messages on a global ux_exception_port. What follows is a 
registration of the init thread’s exception port, to register this global port as its own. This, as is 
discussed in Chapter 12 (under “Exceptions”), ensures that all UNIX exceptions of init — and 
therefore all UNIX processes (its descendants) — are handled by this thread. Finally, it calls 
load_init_program().

load_init_program() (shown in Listing 9-6) is responsible for turning PID 1 into the well-known 
launchd. To do so, it fi rst manually sets up argv[], in user memory. The argv[0] is set to init_
program_name, a 128-byte array hardcoded to /sbin/launchd. Optionally, if the kernel was booted 
with -s (which results in the boothowto global variable fl agging RB_SINGLE), the same -s is propa-
gated to launchd.
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Once argv[] is set up, launchd is started by a standard call to execve(). Since this call is expected 
to never return, if it does, the exec has failed. The code that follows it, therefore, is a kernel panic. 
With this, the path this thread takes is all in user mode, and is discussed in Chapter 5.

LISTING 9-6: load_init_program (from bsd/kern/kern_exec.c)

// Note that launchd's path is hard-coded right into the kernel.
// This was "/mach_init" up to OS X 10.3

static char             init_program_name[128] = "/sbin/launchd";
struct execve_args      init_exec_args;

/*
 * load_init_program
 *
 * Description: Load the "init" program; in most cases, this will be "launchd"
 *
 * Parameters:  p                  Process to call execve() to create
 *                                 the "init" program
 *
 * Returns:     (void)
 *
 * Notes:     The process that is passed in is the first manufactured
 *            process on the system, and gets here via bsd_ast() firing
 *            for the first time.  This is done to ensure that bsd_init()
 *            has run to completion.
 */

void load_init_program(proc_t p)
{
     vm_offset_t     init_addr;
     int             argc = 0;
     uint32_t argv[3];
     int                     error;
     int             retval[2];

     /*
      * Copy out program name.
      */

     init_addr = VM_MIN_ADDRESS;
     (void)vm_allocate(current_map(),&init_addr,PAGE_SIZE,VM_FLAGS_ANYWHERE);
      if (init_addr == 0)
            init_addr++;

     (void) copyout((caddr_t) init_program_name, CAST_USER_ADDR_T(init_addr),
                        (unsigned) sizeof(init_program_name)+1);

     argv[argc++] = (uint32_t)init_addr;
     init_addr += sizeof(init_program_name);
     init_addr = (vm_offset_t)ROUND_PTR(char, init_addr);

     /*
continues
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      * Put out first (and only) argument, similarly.
      * Assumes everything fits in a page as allocated
      * above.
      */
      if (boothowto & RB_SINGLE) {
             const char *init_args = "-s";

             copyout(init_args, CAST_USER_ADDR_T(init_addr),
                        strlen(init_args));

             argv[argc++] = (uint32_t)init_addr;
             init_addr += strlen(init_args);
             init_addr = (vm_offset_t)ROUND_PTR(char, init_addr);

      }
      /*
       * Null-end the argument list
       */
      argv[argc] = 0;
      /*
       * Copy out the argument list.
       */

      (void) copyout((caddr_t) argv, CAST_USER_ADDR_T(init_addr),
                      (unsigned) sizeof(argv));

      /*
       * Set up argument block for fake call to execve.
       */

      init_exec_args.fname = CAST_USER_ADDR_T(argv[0]);
      init_exec_args.argp = CAST_USER_ADDR_T((char **)init_addr);
      init_exec_args.envp = CAST_USER_ADDR_T(0);

      /*
       * So that mach_init task is set with uid,gid 0 token
       */
      set_security_token(p);

      error = execve(p,&init_exec_args,retval);
      if (error)
              panic("Process 1 exec of %s failed, errno %d",
                    init_program_name, error);
}

Sleeping and Waking Up 
Any laptop owner no doubt appreciates OS X’s ability to sleep. This ability is even more important 
for i-Devices, wherein power consumption must be minimized, while at the same time maintaining 
the “always-on” experience.

LISTING 9-6 (continued)
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The iOS sleeping and hibernation mechanisms are, at the time of writing, not entirely 
fi gured out: Most of the work there, as in OS X, is done by an external kernel extension 
(OS X’s AppleACPI). 

In OS X, XNU’s portion of the sleep and hibernation code is open source, but the Kext’s part 
isn’t. The kernel can be put to sleep by a call from the Kext by acpi_sleep_kernel(). The 
AppleACPIPlatform.Kext uses this call. It proceeds as follows: 

 ‰ All CPUs but the current one are halted. This is done by calling 
pmCPUExitHaltToOff(), which is a wrapper over a corresponding function from a dispatch 
table. The kernel does not have an implementation for this, and relies on a specialized Kext 
(AppleIntelCPUPowerManagement.Kext) to call pmKextRegister with the dispatch table 
(defi ned as a pmDispatch_t in osfmk/i386/pmCPU.h).

 ‰ The local APIC is shut down, in preparation for sleep.

 ‰ A kdebug message is output.

 ‰ CR3 is saved on x86_64.

 ‰ A call to acpi_sleep_cpu (in osfmk/x86_64/start.s) puts the CPU to sleep. This saves 
all the registers, and calls a caller supplied callback function (from the calling Kext) to put 
CPU to sleep. In case of hibernation, acpi_hibernate is called instead, which fi rst writes the 
memory image to disk.

 ‰ Control is passed back to the fi rmware.

AppleACPIPlatform.Kext can also request the installation of a wake handler. This is done by a 
call to acpi_install_wake_handler (also in osfmk/i386/acpi.c), which uses install_real_
mode_handler (encountered previously in the discussion of slave processors). The wake handler is 
acpi_wake_prot, an assembly function from osfmk/x86_64/start.s. acpi_wake_prot, which 
performs the following actions:

 ‰ Switches back to 64-bit mode

 ‰ Restores kernel GDT, CR0 , LDT and IDT, and task register

 ‰ Restores all saved registers (by acpi_sleep_cpu())

When the function returns, it does so into sleep_kernel(),right after the call acpi_sleep_cpu().
Think of it as one really long function call, but it eventually does return. The rest of sleep_
kernel() basically undoes all of the sleep steps, in reverse order. Finally, it calls install_real_
mode_bootstrap(), to once again set slave_pstart()as the slave CPUs’ activation function.

BOOT ARGUMENTS

XNU has quite a few boot arguments, but Apple really doesn’t bother documenting them. Nor is 
there any particular naming convention - some use a hyphen (-), whereas others do not. 

There are generally two ways to pass arguments to the kernel:

 ‰ Via the NVRAM using the boot-args variable (which can be set using the nvram command.
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 ‰ Via /Library/Preferences/SystemConfiguration/com.apple.Boot.plist. This is a 
standard Property List fi le, in which you can specify arguments in a kernel_flags element.

In iOS, iBoot has long been modifi ed so as to not pass boot arguments to XNU. 
Jailbreaking utilities (such as redsn0w) enable passing argument strings to the 
kernel, but only in a tethered boot.

Table 9-7 lists some useful kernel boot arguments of Mac OS X, sorted by a rough alphabetical 
order:

TABLE 9-7: XNU Boot Arguments 

ARGUMENT HANDLED BY USED FOR

-l kernel_bootstrap Leaking logging

-s parse_bsd_args

bsd/kern/bsd_init.c

Single user mode 

(boothowto |= RB_SINGLE)

-b parse_bsd_args

bsd/kern/bsd_init.c

Bypassing the boot RC 

(boothowto |= RB_NOBOOTRC)

-x parse_bsd_args

bsd/kern/bsd_init.c

Safe booting 

(boothowto |= RB_SAFEBOOT)

-disable_aslr parse_bsd_args

bsd/kern/bsd_init.c

Randomizing address space layout. May only be 

disabled if DEVELOPMENT or DEBUG are #defined

-no_shared_

cr3

pmap_bootstrap

(osfmk/x86_64/

pmap.c)

Forcing a kernel to reside in its own address 

space and not piggybacked on processes. Useful 

only for some minor debugging

-no64exec parse_bsd_args

bsd/kern/bsd_init.c

Forcing 32-bit mode

Bootarg_no64_exec = 1

-kernel_text_

ps_4K

pmap_lowmem_finalize Kernel to be allocated with 4 KB, rather than 2 MB 

pages

-zc

-zp

-zinfop

zlog

zrecs

zone_init

osfmk/kern/zalloc.c

Mach zone debugging. Described in more detail 

in Chapter 12 

cpus i386_init

osfmk/i386/

i386_init.c

Artifi cially limiting how many CPUs to use
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ARGUMENT HANDLED BY USED FOR

debug machine_startup

(osfmk/i386/AT386/

model_dep.c)

Debug mode. See “Kernel Debugging” later in 

this chapter

diag osfmk/i386/

i386_init.c
dgWork.dgFlags global variable for enabling 

diagnostic system calls

himemory_mode osfmk/i386/

i386_init.c
Toggling High memory mode — debugging on 

systems with more than 4 GB of physical memory

io

iotrace

StartIOKit

(iokit/Kernel/

IOStartIOKit.cpp)

Setting the gIOKitDebug and gIOKitTrace 

fl ags, respectively (and gIOKitTrace actually 

imports fl ags from gIOKitDebug)

kextlog OSKext::initialize

(libkern/c++/OSKext.

cpp)

Setting the sKernelLogFilter mask, which is 

used for kext logging. Discussed in Chapter 18

kmem parse_bsd_args Enabling /dev/kmem. Not available if SECURE_

KERNEL is #defined. Naturally, not available on 

iOS

maxmem i386_init

(osfmk/i386/

i386_init.c)

Artifi cially limiting how much physical memory to 

use, in MB

msgbuf parse_bsd_args Adjusting the size of kernel ring buff er (shown by 

dmesg(1) command)

novfscache parse_bsd_args Disabling the VFS cache

policy_check parse_bsd_args Setting policy check fl ags if CONFIG_MACF is 

defi ned.

serial i386_init

osfmk/i386/

i386_init.c

Setting serial mode — serial keyboard/console. 

Depending on this argument, serialbaud (in 

pexpert/i386/pe_serial.c) can set the serial 

baud rate

serverperf-

mode

kernel_bootstrap Setting server performance mode

wpkernel pmap_lowmem_finalize Writing protect kernel region

Additional arguments can be defi ned by kext subsystems, such as the Kernel Debugger Protocol 
(KDP), and the virtual memory zone allocator (osfmk/kern/zalloc.c) discussed in Chapter 12. 
Kexts can likewise parse the argument string (by calling PE_parse_boot_argn) to obtain private 
arguments. A good example for this is iOS’s AppleMobileFileIntegrity — a key component 
trusted with code signing entitlements, whose arguments are discussed in Chapter 14.
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KERNEL DEBUGGING

The kernel allows remote debugging using the KDP protocol. This is a simple protocol, carried over 
UDP, which is used by XNU for debugging and/or core dump generation. The client is the debugged 
system, and the server is some other (hopefully more stable) system. Table 9-8 shows the boot argu-
ments used by KDP:

TABLE 9-8: Arguments Parsed by kdp_register_send_receive() in osfmk/kdp/kdp_udp.c

ARGUMENT TOGGLES/ENABLES

debug Bit-fl ags specifying debugging options. See Table 9-9.

_panicd_ip IP address of remote PanicD.

_router_ip IP address of router.

_panicd_port UDP port number of remote PanicD.

_panicd_corename Core fi le on remote PanicD.

The arguments in the preceding table are used in conjunction with kdp_match_name (which can be 
set to serial, en0, en1, and so on) to set up the kernel debug protocol.

In order to trace kernel extensions (kexts) and their debug/log messages, the Kextlog boot-arg can 
be used. This is a bitmask argument, which controls the kernel’s built-in fi ltering mechanisms, much 
like Windows’ DebugPrintFilter does for its DbgPrint. The argument can also be changed at run-
time, via sysctl(8) as debug.Kextlog. This is discussed in great detail under “Kext Logging,” in 
Chapter 18, which is devoted exclusively to kexts.

To enable full kernel debugging, the system must be booted with debug. The kernel debug fl ags are 
specifi ed in TN2118[2] (“Kernel Core Dumps”) and in the Kernel Programming Guide[3], as shown in 
Table 9-9. 

TABLE 9-9: Flag Values of the debug Boot Aargument and Their Meanings

FLAG VALUE MEANING

DB_HALT 0x01 Halt boot, waiting for debugger to attach.

DB_PRT 0x02 Redirect printf()s in kernel to console.

DB_NMI 0x04 Allow dropping immediately into the kernel debug-

ger on the command-power key sequence, or by 

holding together Command+Option+Ctrl+Shift+Esc.

DB_KPRT 0x08 Redirect kprintf()s in kernel to serial port, if 

defi ned.

DB_KDB 0x10 Sets KDB as the current debugger.
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FLAG VALUE MEANING

DB_SLOG 0x20 Outputs diagnostics to system log.

DB_ARP 0x40 Allows ARP in KDP.

DB_LOG_PI_SCRN 0x0100 Disables Panic dialog. This is useful when core 

dumps are generated, as it will show instead the 

progress of sending the core.

DB_KERN_DUMP_ON_PANIC 0x0400 Core dumps on panic — handled by kdp_panic_

dump() in kdp.c.

DB_KERN_DUMP_ON_NMI 0x0800 Core dumps on an NMI, but not crash. If DB_DBG_

POST_CORE (0x1000) is additionally set, kernel will 

wait for debugger attachment.

DB_PANICLOG_DUMP 0x2000 Only shows panic log on dump, not full core.

Heisenberg’s Uncertainty Principle makes live kernel debugging on the same machine 
impossible. The debugger is, therefore, a different machine than the debuggee and normally 
requires a serial port, Ethernet, or FireWire connection. In OS X, the fwkpfv(1) command may 
be used to direct kprintf()s over FireWire. Another tool, fwkdp(1), may be used to enable 
KDP over FireWire.

VMWare makes debugging immeasurably easier, by enabling the debuggee to be in a virtual 
machine (OS X is not VM-friendly, but can be cajoled — or coerced, on non-Apple architectures 
— into it). The host debugger can attach using the kdp-reattach macro from the Kernel Debug Kit’s 
kgmacros. This requires setting up a static ARP entry for the debuggee’s IP, but is a fairly straight-
forward process. If the VM is booted with DB_HALT (nvram boot-args="debug=0x01"), it will 
halt until the debugger attaches. VMWare has its own built-in support, and the process of using it, 
or KDP, is well documented[4].

“Don’t Panic”
As Mac users know, every now and then the operating system itself may unexpectedly halt, due to 
an instability in the kernel mode. Linux simply dumps everything in black and white on the con-
sole, Windows favors EGA blue, while Mac OS X prefers grey alpha-blending. This “Gray Screen of 
Death” is the all-too-familiar result of the kernel calling the internal panic() routine. This routine, 
which displays the unexpected shutdown message and halts the CPU, does so very rarely, and only 
in cases where a system halt is the least worst option, preferable to possible serious data corruption. 
This generally happens in two cases:

 ‰ The kernel code path reaches some unexpected location, like the default: clause of a 
switch() statement that otherwise handled all known conditions. For example, the HFS+ 
code (in bsd/hfs) contains calls to panic() on every possible fi le system data structure 
inconsistency.
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 ‰ An unhandled exception or trap occurs in kernel mode, causing the kernel trap handler 
(kernel_trap in osfmk/i386/trap.c) to be invoked for a kernel mode thread and 
reach an unhandled code path. The kernel trap handler then, for lack of any other option, 
calls panic_trap(). This function kprintf()s a message, and calls panic() from kern/
debug.c. It, in turn, calls Debugger() (from i386/AT386/model_dep.c), which draws the 
familiar dialog using a call to draw_panic_dialog().

Panics shouldn’t happen, period. The kernel, as the underlying foundation of the entire operating 
system, must be solid and reliable. When panics do occur, usually they can be traced to a faulty 
driver (i.e. a kext). Very rarely, however, they arise from a bug in the kernel itself. These bugs are, 
one hopes, fi xed as future versions of the kernel are released.

Manually Triggering a Panic
Whether for testing purposes or for debugging, OS X has several options for manually triggering a 
panic:

 ‰ Triggering a panic with DTrace: dtrace -w -n "BEGIN{ panic();}". The “-w” (destruc-
tive probes) switch of DTrace is required, as a panic is certainly considered destructive. 

 ‰ A kernel extension to automatically trigger a panic, downloadable as part of TN2118 
(“Kernel Core Dumps”).

 ‰ A “fake” panic, by calling sysctl.

The safest option for simulating panics is the third — merely testing the panic UI, by means of a 
sysctl. This is shown in the experiment — Viewing the Panic UI — later in this chapter.

Implementation of Panic
The kernel code to generate a panic is in the Mach core, in osfmk/console. Table 9-10 lists the fi les 
dealing with panics.

TABLE 9-10: Files in osfmk/ Related to Panics

FILE CONTAINS

panic_dialog.c Main fi le for panic dialog generation

panic_image.c The pixel map containing the familiar image displayed on panic

panic_ui/genimage.c A C image generator — converts from raw bitmap to C struct 

panicimage

panic_ui/qtif2raw.c Converts image from QuickTime 256-color to raw bitmap

panic_ui/setupdialog.c Alternate binary to perform both genimage and qtif2raw

c09.indd 334c09.indd   334 9/29/2012 5:32:27 PM9/29/2012   5:32:27 PM



Kernel Debugging x 335

The functions in these fi les are not exported to user mode for obvious reasons, but there is also a 
way to simulate a panic, as the following experiment shows.

Experiment: Viewing the Panic UI
The code in bsd/kern/kern_panicinfo.c defi nes the following:

#define KERN_PANICINFO_TEST     (KERN_PANICINFO_IMAGE+2)
  /* Allow the panic UI to be tested by root without causing a panic */

static int sysctl_dopanicinfo SYSCTL_HANDLER_ARGS
{
  ..
case KERN_PANICINFO_TEST:

                panic_dialog_test();
                break;

}

The panic_dialog_test is implemented in osfmk/console/panic_dialog.c:, as shown in 
Listing 9-7:

LISTING 9-7: panic_dialog_test, from osfmk/console/panic_dialog.c

void panic_dialog_test( void )
{
        boolean_t o_panicDialogDrawn = panicDialogDrawn;
        boolean_t o_panicDialogDesired = panicDialogDesired;
        unsigned int o_logPanicDataToScreen = logPanicDataToScreen;
        unsigned long o_panic_caller = panic_caller;
        unsigned int o_panicDebugging = panicDebugging;

        panicDebugging = TRUE;
        panic_caller = (unsigned long)(char *)__builtin_return_address(0);
        logPanicDataToScreen = FALSE;
        panicDialogDesired = TRUE;
        panicDialogDrawn = FALSE;

        draw_panic_dialog();

        panicDebugging = o_panicDebugging;
        panic_caller = o_panic_caller;
        logPanicDataToScreen = o_logPanicDataToScreen;
        panicDialogDesired = o_panicDialogDesired;
        panicDialogDrawn = o_panicDialogDrawn;
}
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To show the panic dialog test, the simple code snippet shown in Listing 9-8, run as root, 
would do:

LISTING 9-8: Testing a panic image (OS X only)

size_t len = 0; 
int name[3] = { CTL_KERN, KERN_PANICINFO, KERN_PANICINFO_IMAGE + 2 }; 
sysctl(name, 3, NULL, (void *)&len, NULL, 0);

The is required because the actual constant you would be using, KERN_PANICINFO_TEST, is not 
exported from the kernel headers . If you are feeling especially adventurous, you can use the KERN_
PANICINFO sysctl with the following:

int name[3] = { CTL_KERN, KERN_PANICINFO, KERN_PANICINFO_IMAGE };

…which will enable you to set a panic kernel image by using the following code snippet:

int len;
char *buf = /* image in kraw format */
int bufsize = /* size of the above image */
int name[3] = { CTL_KERN, KERN_PANICINFO, KERN_PANICINFO_IMAGE };
sysctl(name, 3, NULL, (void *)&len, buf, bufsize); 

Panic Reports
When a panic occurs, there is nothing more to do but force a halt and save the data so the cause 
might be determined post mortem. Since the halt will likely force a power cycle (read: cold reboot), 
however, the data will be lost if just saved to RAM. The fi lesystem logic might be in a non-consis-
tent state (and might also be the cause of the panic). This leaves the machine’s NVRAM as a last 
resort. 

The Platform Expert (specifi cally, PESavePanicInfo()) calls on the NVRAM handler to write 
the data to an NVRam variable — aapl,panic-info (defi ned as kIODTNVRAMPanicInfoKey in 
iokit/IOKit/IOKitKeys.h). The log is saved in packed form (using packA(), a simple algorithm 
in osfmk/kern/debug.c), which writes the 7-bit ASCII characters in the log consecutively into 8-bit 
bytes. This, however, requires full 8-bit values to be escaped as %XX, similar to URI escaping, which 
somewhat defeats the purpose of packing. 

When the system boots next, a specialized launchDaemon, /System/Library/CoreServices/
DumpPanic, is invoked by launchd (from /System/Library/LaunchDaemons/com.apple
.DumpPanic.plist). This daemon checks the panic data in the NVRAM variable, unpacks the 
data, and moves it to /Library/Logs/DiagnosticReports. These logs are then saved using the 
following naming convention:

Kernel_YYYY-MM-DD-HHDDSS_computer_name.panic

The actual report is generated using a private (and, thus, undocumented) framework 
called CrashReporterSupport. In Lion, the daemon also depends on a library, 
libDiagnosticMessagesClient.dylib.
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Apple’s TN2063[5] details how to decipher panic logs, using gdb and the Kernel Debug Kit. 
Alternatively, you can follow the examples shown here, which rely on otool(1) instead. The 
method shown here has the advantage of being applicable on any system, without additional 
downloads, but would not work for panics generated by kernel extensions (kexts) without their 
symbols. 

Apple’s Kernel Debug Kit (available through the Mac OS X Developer Program 
or elsewhere on the Internet) isn’t really a “kit” so much as the collection of 
GDB macros and a debug build of the kernel. Nonetheless, it is very useful, 
especially for live kernel debugging (over serial port or VM). While it greatly 
simplifi es the process shown in the following example, it’s important to under-
stand the manual process of tracing through a panic, for times wherein the debug 
kit may not be available. The process described is also advantageous in that it 
doesn’t require GDB.

Example: 32-Bit Crash Log of an Unhandled Trap
Crashes are like snowfl akes. No two are exactly the same. This is because, at the time of the crash, 
the internal state of the kernel is dependent on many factors. Depending on which kernel exten-
sions have been loaded and unloaded, and which threads are active, the resulting crash dump can 
vary greatly. In this example, we consider an actual crash log, one of too many which occurred as 
this book was written. (See Output 9-1.) The next time you encounter a crash (or, if you still have 
a panic log in your DiagnosticReports/ directory), you can follow along the steps described next. 
The output will be different, naturally, but the process is generally the same.

OUTPUT 9-1: A crash dump log

Sun Jul 04 08:50:33 2011
panic(cpu 1 caller 0x2aab59): Kernel trap at 0x00f9a983, type 14=page fault, registers:
CR0: 0x8001003b, CR2: 0x00000000, CR3: 0x00100000, CR4: 0x00000660
EAX: 0x00000001, EBX: 0x0c267b00, ECX: 0x01000000, EDX: 0x00000001
CR2: 0x00000000, EBP: 0x6d513bd8, ESI: 0x00000001, EDI: 0x00000000
EFL: 0x00010202, EIP: 0x00f9a983, CS:  0x00000008, DS:  0x0c260010
Error code: 0x00000000

Backtrace (CPU 1), Frame : Return Address (4 potential args on stack)
0x6d5139d8 : 0x21b510 (0x5d9514 0x6d513a0c 0x223978 0x0) 
0x6d513a28 : 0x2aab59 (0x59aeec 0xf9a983 0xe 0x59b0b6) 
0x6d513b08 : 0x2a09b8 (0x6d513b20 0xd4fb480 0x6d513bd8 0xf9a983) 
0x6d513b18 : 0xf9a983 (0xe 0x48 0xd4f0010 0x10) 
0x6d513bd8 : 0xf9e909 (0xc267b00 0x0 0x0 0x0) 
0x6d513c78 : 0xf9ea1c (0xc267b00 0xe0000100 0x0 0x0) 
0x6d513c98 : 0x53e815 (0xc267b00 0xa75df80 0x0 0xf9d146) 
0x6d513cd8 : 0xfa60fa (0xc267b00 0xa75df80 0x0 0x3) 
0x6d513d88 : 0x30aaba (0xe000004 0x20006415 0x6d513ed0 0x1) 
0x6d513dc8 : 0x2fdf34 (0x6d513de8 0x3 0x6d513e18 0x5874e3) 
0x6d513e18 : 0x2f29ac (0xa0bea04 0x20006415 0x6d513ed0 0x1) 

continues
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0x6d513e78 : 0x470ed0 (0x82b36a0 0x20006415 0x6d513ed0 0x6d513f50) 
0x6d513e98 : 0x49cc02 (0x82b36a0 0x20006415 0x6d513ed0 0x6d513f50) 
0x6d513f78 : 0x4f6075 (0x86a5d20 0x7f6dfc8 0x812acd4 0x0) 
0x6d513fc8 : 0x2a144d (0x7f6dfc4 0x0 0x0 0x8d6da64) 

      Kernel Extensions in backtrace (with dependencies):
         com.apple.iokit.IOStorageFamily(1.6.2)@0xf97000->0xfaefff

BSD process name corresponding to current thread: diskarbitrationd

Mac OS version:
10J869

Kernel version:
Darwin Kernel Version 10.7.0: Sat Jan 29 15:17:16 PST 2011; 
 root:xnu-1504.9.37~1/RELEASE_I386
System model name: MacBookAir3,2 (Mac-2410XXXXXXxxxxx)

System uptime in nanoseconds: 218120590760858
unloaded Kexts:
com.apple.iokit.SCSITaskUserClient      2.6.5 
    (addr 0x586e7000, size 0x28672) - last unloaded 212106050855061
loaded Kexts:
...
com.apple.driver.AppleMikeyHIDDriver    1.2.0
com.apple.driver.AppleHDA       1.9.9f12
com.apple.driver.AGPM   100.12.19
...
com.apple.driver.AppleMikeyDriver       1.9.9f12

How does one approach a panic log? In this case, because the panic is generated from an unhandled 
trap, the fi rst line contains the trap number.

panic(cpu 1 caller 0x2aab59): Kernel trap at 0x00f9a983, type 14=page fault,...

The code at 0x00f9a983 generated a page fault. The panic code displays the culprit: The com
.apple.iokit.IOStorageFamily kext, version 1.6.2, which was loaded from address 0xf97000
through 0xfaefff. This automatically singles the problematic portion:

..
0x6d513b18 : 0xf9a983 (0xe 0x48 0xd4f0010 0x10) 
0x6d513bd8 : 0xf9e909 (0xc267b00 0x0 0x0 0x0) 
0x6d513c78 : 0xf9ea1c (0xc267b00 0xe0000100 0x0 0x0) 
0x6d513c98 : 0x53e815 (0xc267b00 0xa75df80 0x0 0xf9d146) 
0x6d513cd8 : 0xfa60fa (0xc267b00 0xa75df80 0x0 0x3) 
..

Note the 0x53e815 in the preceding output. This address is in the kernel proper, not in the kext. 
The address is a 32-bit one, and the kernel version line identifi es it as an i386 kernel. Using otool –
tV, you can disassemble the kernel and fi nd the line that led to the calls following it. Because this is 
a return address, the instruction before it should be a call instruction. Using grep –B 1 (to show the 
line before the match) reveals:

OUTPUT 9-1 (continued)

c09.indd 338c09.indd   338 9/29/2012 5:32:28 PM9/29/2012   5:32:28 PM

mailto:1.6.2)@0xf97000-


Kernel Debugging x 339

morpheus@Ergo $ otool -tV -arch i386 /mach_kernel | grep -B 1 53e815
0053e80f     call     *0x000002e4(%eax)
0053e815     movl     0x28(%esi),%ebx

The closest symbol to this address is __ZN9IOService5closeEPS_m. The I/O Kit runtime and 
various drivers are C++, not C, so their names are mangled. In this case, demangling would yield 
IOService::close(IOService*, unsigned long). We can craft a rather crude shell script to fi nd 
all the symbols by employing grep –B 1 on each address, as shown in Output 9-2:

OUTPUT 9-2: Finding and symbolicating the addresses of a panic

# Load all the addresses from the crash dump into a variable, say $ADDRS

$ ADDRS=`cat /Library/Logs/DiagnosticReports/\ 
         Kernel_2011-07-16-085033_Mes-MacBook-Air.panic  |
        grep ^0x  | 
        cut -d : -f2 | cut -d' ' -f2 | cut -dx -f2`

# Next, for each address, symbolify. The line before the address is the 
# corresponding call instruction, so we use grep –B 1 to retrieve it

$ for addr in $ADDRS; 
      do otool -tV -arch i386 /mach_kernel | grep -B 1 $addr | head -1; 
  done
0021b50b     calll     _Debugger                ; panic() calls _Debugger()
002aab54     calll     0x0021b353               ; calls _panic
002a09b3     calll     _kernel_trap             ; nearest symbol is lo_alltraps
..  ( return to IOKit Driver)
0053e80f     call     *0x000002e4(%eax)         ; __ZN9IOService5closeEPS_m
.. ( call to IOKit Driver)
0030aab4     call     *0x0083b690(%edx)         ; nearest symbol is _spec_ioctl
002fdf31     call     *(%eax,%edx,4)            ; inside VNOP_IOCTL
002f29a7     calll     _VNOP_IOCTL              ; unnamed function @002f2860
00470ecd     call     *0x08(%edx)               ; nearest symbol is _fo_ioctl
0049cbfd     calll     0x00470e91               ; nearest symbol is ioctl
004f6072     call     *0x04(%edi)               ; Calling from syscall table
002a1448     calll     _unix_syscall64          ; In _lo64_unix_scall

What do we do about the IOKit Driver? The dump identifi ed it as com.apple.iokit
.IOStorageFamily kext. The binary resides in /System/Library/Extensions (IOStorageFamily
.Kext/Contents/MacOS/IOStorageFamily). To make sure we have the right version, use grep on 
the Info.plist fi le, as shown in Output 9-3:

OUTPUT 9-3: Verifying the kernel extension version

$ cat /System/Library/Extensions/IOStorageFamily.Kext/Contents/Info.plist |
         grep -B 1 1.6.2
     <key>CFBundleShortVersionString</key>
     <string>1.6.2</string>
--
     <key>CFBundleVersion</key>
     <string>1.6.2</string>
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This is, as expected, 1.6.2. We can then try otool(1) on it. But, because a kext is a relocatable 
fi le, the addresses displayed by otool(1) will be wrong — based at 0x00000000. Turning to the 
panic log again, note the address range: 0xf97000 through 0xfaefff. It then becomes trivial 
to fi nd the symbols. For example, to fi nd 0xfa60fa, we would have to look for the difference 
between 0xfa60fa to 0xf97000 — i.e., 0xf0fa.

We can now reconstruct the chain of events (written in order), as shown in Output 9-4. Finding 
the kext addresses is left as an exercise for the reader, and is done in a similar manner to the one 
described here.

OUTPUT 9-4: Reconstructed chain of events. 

002a1448     calll     _unix_syscall64 ; Entry from user mode: syscall64
004f6072     call     *0x04(%edi) ; Dispatch to syscall table 
0049cbfd     calll     0x00470e91 ; nearest symbol is ioctl
00470ecd     call     *0x08(%edx) ; nearest symbol is _fo_ioctl
002f29a7     calll     _VNOP_IOCTL ; (*fp->f_ops->fo_ioctl)
002fdf31     call     *(%eax,%edx,4) ; inside VNOP_IOCTL
0030aab4     call     *0x0083b690(%edx) ; nearest symbol is _spec_ioctl
0xfa60fa (0xc267b00 0xa75df80 0x0 0x3)  ; IOPartitionScheme::handleClose
0053e80f     call     *0x000002e4(%eax) ; IOService::close (provider)
0xf9ea1c (0xc267b00 0xe0000100 0x0 0x0)     ; driver::close(this, e0001000 are kIO bits)
0xf9e909 (0xc267b00 0x0 0x0 0x0)            ; . . .
0xf9a983 (0xe 0x48 0xd4f0010 0x10) 
         << Page fault occurs and control passes to lo_alltraps >>
002a09b3     calll     _kernel_trap ; nearest symbol is lo_alltraps
002aab54     calll     0x0021b353 ; i.e call _panic
0021b50b     calll     _Debugger

Because this is a 32-bit kernel, the arguments are all on the stack. You could thus dive even deeper, 
as the panic log specifi es the four positions on the stack frame next to the return address — i.e. what 
would be up to four arguments. On a 64-bit system, you won’t be so lucky and neither would you be 
on iOS. Both Intel 64-bit and ARM use the registers for parameter passing, using the stack only for 
those rare cases of more than 4-6 arguments. Reconstructing function arguments on those architec-
tures is next to impossible.

SUMMARY

This chapter described the two most important phases of the kernel lifecycle — birth and death. 
The kernel is “born” when it is instantiated by the boot loader (in x86 - EFI’s boot.efi, and in 
iOS - iBoot), and loads all the various subsystems and kernel threads before the fi rst process, 
launched, emerges in user mode. The chapter followed the kernel startup, up to the beginning of the 
fi rst BSD task — launchd. User mode boot is discussed in Chapter 7.

A kernel panic, which is the premature death of the kernel, isn’t all too frequent an occurrence, 
but when it does happen, it is a serious incident. The kernel dumps whatever information it can, 
and then halts the CPU to prevent any damage to the system. This chapter explained panics, and 
described the means to diagnose them.

The next chapters will take you deeper into the kernel, by delving into the architectural components 
of XNU.
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10
The Medium Is the Message: 
Mach Primitives

At the heart of XNU lies the Mach microkernel, which Apple assimilated from NeXTSTEP. 
Mach is the very core of the kernel in both OS X and iOS, although it is somewhat modifi ed 
from its original version, which is Carnegie Mellon University’s open source microkernel. 

Even though the Mach core is wrapped by the BSD layer and the main kernel interface is in 
the standardized POSIX system calls, the core works with its own particular set of APIs and 
primitives. It is these constructs that this chapter discusses. 

Mach may be a microkernel by design, but is a pretty complex system. This chapter therefore 
focuses on its core building blocks, as follows:

 ‰ Introducing: Mach: Presents the Mach design philosophy and goals.

 ‰ Message Passing Primitives: Discusses messages and ports, the basic of Mach IPC.

 ‰ Synchronization Primitives: Details the various kernel objects — locks and semaphores, 
which are used to ensure safety in concurrency.

 ‰ IPC in depth: Discusses what happens behind the scenes when Mach messages are 
passed, and discusses the Mach Interface Generator (MIG) tool, which is used through-
out the kernel.

 ‰ Machine Primitives: Details the Mach host, clock processor, processor, and processor_
set abstractions. These abstractions provide an architecture-independent way to access 
system information and functions. 

The next chapters will cover specifi c domains in Mach — scheduling and virtual memory 
management.
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INTRODUCING: MACH

Much has been written about the process that led to Apple adopting Mach in Mac OS X, but the 
history is of less signifi cance to this book, which focuses primarily on the technical aspects. Suffi ce 
it to say that Apple’s fl agship at the time, the ailing Mac OS 9, was heading for the reefs: As a less-
than-effi cient operating system, based on cooperative multitasking and highly proprietary, its per-
formance was limited and not up to par with its peers. Apple realized that sooner or later it would 
have to re-engineer its entire kernel. With the acquisition of NeXT, the opportunity presented itself 
to take its already proven (although somewhat avant-garde) kernel design, and use it in Mac OS.

Mach is the collaboration of many people, but arguably none have contributed to it as much as 
one — Avadis Tevanian, Jr. His fi ngerprints (in the form of the fi le main comments) are still present 
in much of the code. Tevanian was part of Mach since its inception at CMU, and later evolved it — 
fi rst at NeXT, then at Apple, where he worked until 2006.

The Mach Design Philosophy
Mach started its life as academic research into operating system infrastructure. Contrary to the 
monolithic philosophy, which implements a full-blown, complicated kernel, Mach boasts a highly 
minimalist concept: a thin, minimal core, supporting an object-oriented model wherein individual, 
well-defi ned components (in effect, subsystems) communicate with one another by means of mes-
sages. Unlike other operating systems, which present a complete model on top of which user mode 
processes may be implemented, Mach provides a bare-bones model, on top of which the operating 
system itself may be implemented. OS X’s XNU is one specifi c implementation of UNIX (specifi -
cally, BSD 4.4) over Mach, although in theory any operating system may use the same architecture. 
Indeed, Windows borrows some design concepts from Mach as well, albeit with a vastly different 
implementation.

In Mach, everything is implemented as its own object. Processes (which Mach calls tasks), threads, 
and virtual memory are objects, each with its own properties. This, in itself, is not anything note-
worthy. Other operating systems also use objects (effectively, C structures with function pointers) to 
implement their underlying primitives.

What makes Mach different is its choice of implementing object-to-object communication by means 
of message passing. Unlike other architectures, in which one object can access another as the need 
arises through a well-known interface, Mach objects cannot directly invoke or call on one another. 
Rather, they are required to pass messages. The source object sends a message, which is queued by the 
target object until it can be processed and handled. Similarly, the message processing may produce a 
reply, which is sent back by means of a separate message. Messages are delivered reliably (if a message 
is sent, it is guaranteed to be received) in a FIFO manner (received in the same order they are sent). 
The content of the message is entirely up to the sender and the receiver to negotiate.

As a minimalist architecture, Mach does not concern itself with higher-level concepts. Once the 
basic primitives of a process and a thread are defi ned, everything else may be handled by separate 
threads. Files and fi le systems, for example, are left for a higher level to implement. Likewise, device 
drivers are a higher-level concept that is left undefi ned at the Mach layer. 

The Mach kernel thus becomes a low-level foundation, concerning itself with only the bare mini-
mum required for driving the operating system. Everything else may be implemented by some higher 
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layer of an operating system, which then draws on the Mach primitives and manipulate them in 
whatever way it sees fi t. 

It’s important to emphasize that while Mach calls are visible from user mode, they implement a deep 
core, on top of which a larger kernel may be implemented. Mach is, essentially, a kernel-within-a-
kernel.  The “offi cial” API of XNU is that of the BSD POSIX layer, and Apple keeps Mach to the 
absolute bare minimum. The average developer knows nothing of Mach, thanks to the far richer 
enveloping Cocoa APIs. Mach calls, however, remain a fundamental part of the architecture.

Although XNU is open source, Apple (probably intentionally) does not provide much documenta-
tion about Mach, whereas other components of XNU are well documented. To exacerbate the issue, 
the documentation that is provided — in XNU’s osfmk/man directory — is a collection of anti-
quated, and sometimes inaccurate, man2html pages. Some documentation may be found in CMU’s 
original documents[1,2], but it too, is quite venerable and sometimes irrelevant.

While XNU relies on Mach 3.0, there are some considerable differences between 
the Mach implementation of XNU and that of CMU Mach, or GNU’s. Apple 
has removed support for several Mach APIs that were previously supported — 
for example, task_set_emulation() calls, which were used for system call 
emulation (and in XNU return KERN_NOT_SUPPORTED). Likewise, thread tracing 
is no longer supported, nor is Mach’s Event Trace Analysis Package (ETAP), 
although these features were present in older incarnations of XNU.  

On the other hand, XNU has made some signifi cant additions, including adding 
custom virtual memory handlers. Even different versions of XNU sometimes 
contain noticeable differences in Mach. The rest of this chapter explores those 
Mach features that are present in XNU.

Mach Design Goals
The design document of Mach (which is still freely available from the Open Source Foundation[3])
lists several design goals, fi rst and foremost of which is moving all functionality out of the kernel 
and into user mode, leaving the kernel with the bare minima, i.e:

 ‰ Management of “points of control” or execution units (threads).

 ‰ Allocation of resources to individual threads or groups (tasks).

 ‰ Virtual memory allocation and management. 

 ‰ Allocation of low-level physical resources — namely, the CPU, memory, and any physical 
devices.

Remember, that Mach only provides for the low-level arbitration primitives. That is, Mach will 
provide a means to enforce a policy, but not the policy itself. Mach does not recognize any security 
features, priority, or preferences — all of which need be defi ned by the higher-level implementation.

A powerful advantage of the Mach design is, that — unlike other operating systems — it has 
taken into account aspects of multi-processing. Much of the kernel functionality is implemented 
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by separate, distinct components, which pass well-defi ned messages between them, with no global 
scope. As such, there is no real requirement that all the components execute on the same processor, 
or even the same machine. Theoretically, Mach could be extended to an operating system for com-
puter clusters just as easily.

MACH MESSAGES

The most fundamental concept in Mach is that of a message, which is exchanged between two end-
points, or ports. The message is the core building block of Mach’s IPC, and is designed to be suit-
able for passing between any two ports — whether local to the same machine, or on some remote 
host. Issues such as parameter serialization, alignment, padding and byte-ordering are all taken into 
consideration and hidden by the implementation. 

Simple Messages
A message, like a network packet, is defi ned as an opaque blob encapsulated by a fi xed header. In 
Mach’s case, this is defi ned in <mach/message.h> simply as:

typedef struct
{
        mach_msg_header_t       header;
        mach_msg_body_t         body;
} mach_msg_base_t;

The message header is mandatory, and defi nes the required meta data about the message, namely:

typedef struct 
{
  mach_msg_bits_t       msgh_bits;         // header bits—optional flags
  mach_msg_size_t       msgh_size;         // Size, in bytes
  mach_port_t           msgh_remote_port;  // Dst (outgoing) or src (incoming)
  mach_port_t           msgh_local_port;   // Src (outgoing) or dst (incoming)
  mach_msg_size_t       msgh_reserved;     // …
  mach_msg_id_t         msgh_id;           // Unique ID
} mach_msg_header_t;

Simply put, a message is a blob of size msgh_size, sent from one port to another, with some 
optional fl ags.

A message may optionally have a trailer, specifi ed as a mach_msg_trailer_type_t (really just an 
unsigned int):

typedef struct
{
       mach_msg_trailer_type_t     msgh_trailer_type;
       mach_msg_trailer_size_t     msgh_trailer_size;
} mach_msg_trailer_t;

Each type further defi nes a particular trailer format. These are left extensible for future implementa-
tion, although the following trailers, listed in Table 10-1, are already defi ned:
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TABLE 10-1: Mach Trailers

 TRAILER USED FOR

mach_msg_trailer_t Empty trailer

mach_msg_security_trailer_t Sender security token

mach_msg_seqno_trailer_t Sequential numbering

mach_msg_audit_trailer_t

mach_msg_context_trailer_t

Auditing token (for BSM)

mach_msg_mac_trailer_t Mandatory Access Control policy label

Replies and kernel-based messages use the trailer option, which may be specifi ed with a reserved 
fl ag, as shown later in Table 10-3.

Complex messages
The Mach message structures described so far are fairly simply simple, as one could expect. Some 
messages, however, require additional fi elds and structure. These messages, aptly titled “complex,” 
are indicated by the presence of the MACH_MSGH_BITS_COMPLEX bit in their header fl ags, and are struc-
tured differently: The header is followed by a descriptor count fi eld, and serialized descriptors back to 
back (though possibly of different sizes). The currently defi ned descriptors are shown in Table 10-2:

TABLE 10-2: Complex message descriptors

TRAILER USED FOR

MACH_MSG_PORT_DESCRIPTOR Passing around a port right

MACH_MSG_OOL_DESCRIPTOR Passing out-of-line data

MACH_MSG_OOL_PORTS_DESCRIPTOR Passing out-of-line ports

MACH_MSG_OOL_VOLATILE_DESCRIPTOR Passing out-of-line data which may be subject to 

change (volatile)

As you can see in Table 10-2, most descriptors involve “out-of-line” data. This is an important fea-
ture of Mach messages, which allows the addition of scattered pointers to various data, in a manner 
somewhat akin to adding an attachment to an e-mail. This is defi ned in <mach/message.h> for a 
64-bit structure as follows (32-bits defi ned similarly):

typedef struct
{
  uint64_t                      address;          // pointer to data
  boolean_t                     deallocate: 8;    // deallocate after send?
  mach_msg_copy_options_t       copy: 8;          // copy instructions
  unsigned int                  pad1: 8;          // reserved 
  mach_msg_descriptor_type_t    type: 8;          // MACH_MSG_OOL_DESCRIPTOR
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  mach_msg_size_t               size;             // size of the data at address
} mach_msg_ool_descriptor64_t;

Simply put, the OOL descriptor specifi es the address and size of the data to be attached, and 
instructions as to how to deal with it: whether it can be deallocated, and copy options (e.g. physical/
virtual copy). OOL-data descriptors are commonly used to pass large chunks of data, alleviating the 
need for a costly copy operation.   

Sending Messages
Mach messages are sent and received with the same API function, mach_msg(). The function has 
implementations in both user and kernel mode, and has the following prototype:

mach_msg_return_t   mach_msg
                    (mach_msg_header_t                msg,
                     mach_msg_option_t             option,
                     mach_msg_size_t            send_size,
                     mach_msg_size_t        receive_limit,
                     mach_port_t             receive_name,
                     mach_msg_timeout_t           timeout,
                     mach_port_t                   notify);

The function takes a message buffer, which is an in pointer for a send operation, and an out pointer 
for a receive operation. A sister function, mach_msg_overwrite, lets the caller specify two more 
arguments — a mach_msg_header_t * to a receive buffer and the mach_msg_size_t buffer size.

In both cases, the actual operation — send or receive — can be determined and tweaked using any 
bitwise combination of the options shown in Table 10-3.

TABLE 10-3: mach_msg() Send Options

OPTION FLAG USED TO

MACH_RCV_MSG Receive a message into the msg buff er.

MACH_RCV_LARGE Leave large messages queued and fail with MACH_RCV_TOO_LARGE 

if the receive buff er is too small. In this case, only the message 

header (which specifi es the message size) will be returned, so the 

caller can allocate more memory.

MACH_RCV_TIMEOUT Pay attention to the timeout fi eld for receive operation and fail with 

a MACH_RCV_TIMED_OUT after timeout milliseconds if no message 

received. The timeout value may also be 0.

MACH_RCV_NOTIFY Receive notifi cation.

MACH_RCV_INTERRUPT Allow operation to be interrupted (and return 

MACH_RCV_INTERUPTED), rather than retrying operation.

MACH_RCV_OVERWRITE In mach_msg_overwrite, specifi es the extra parameter — the 

receive buff er — is in/out.
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MACH_SEND_MSG Send the message in the msg buff er.

MACH_SEND_INTERRUPT Allow send operation to be interrupted (and return 

MACH_SEND_INTERUPTED), rather than retrying operation.

MACH_SEND_TIMEOUT Pay attention to the timeout fi eld for send operation — and fail after 

timeout milliseconds with a MACH_SEND_TIMED_OUT.

MACH_SEND_NOTIFY Notify message delivery to notify port.

MACH_SEND_ALWAYS Used internally.

MACH_SEND_TRAILER Specifi es one of the known Mach trailers lies at off set size of the 

message (i.e. immediately after the message buff er). 

MACH_SEND_CANCEL (Removed in Lion) Cancel a message.

Originally, Mach messages were designed for a true micro-kernel architecture. That is, the mach_
msg() function had to copy the memory backing the message between the sender and receiver. 
While this is true to the microkernel paradigm, the performance impediment of frequent memory 
copy operations proved unbearable. XNU, therefore, “cheats” by being monolithic: All kernel com-
ponents share the same address space, so message passing can simply pass the pointer to the mes-
sage, thereby saving a costly memory copy operation. 

To actually send or receive messages, the mach_msg() function invokes a Mach trap. This is, essen-
tially, the Mach equivalent of a system call, which was discussed in Chapter 8, which deals with ker-
nel architectures. Calling mach_msg_trap() from user mode will use the trap mechanism to switch 
to kernel mode, wherein the kernel implementation of mach_msg() will do the work.

Ports
Messages are passed between end points, or ports. These are really nothing more than 32-bit integer 
identifi ers, although they are not used as such, but as opaque objects. Messages are sent from some 
port to some other port. Each port may receive messages from any number of senders but has only 
one designated receiver, and sending a message to a port queues the message until it can be handled 
by the receiver. 

All Mach primitive objects are accessed through corresponding ports. That is, by seeking a handle 
on an object, one really requests a handle to its port. Access to a port is by means of port rights,
defi ned in <mach/port.h>, as shown in Table 10-4:

TABLE 10-4: Mach Port Rights

MACH_PORT_RIGHT_ MEANING

SEND Send (enqueue) messages to this port. Multiple senders are allowed.

RECEIVE Read (dequeue) messages from this port. Eff ectively, this is ownership of the port.

continues
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MACH_PORT_RIGHT_ MEANING

SEND_ONCE Send only one message. The right immediately revoked afterwards, into 

DEAD_NAME.

PORT_SET Receive rights to multiple ports simultaneously.

DEAD_NAME Port right after SEND_ONCE is exhausted.

The key rights are, as one can imagine, SEND and RECEIVE. SEND_ONCE is the same as SEND, but 
allows for only one message (that is, it is revoked by the system after its fi rst use). The holder of the 
MACH_PORT_RIGHT_RECEIVE right is, in effect, the owner of the port, and the only entity allowed to 
dequeue messages from the port.

The functions in <mach/mach_port.h> can be used to manipulate task ports, even from outside 
the task. In particular, the mach_port_names routine can be used to dump the port namespace of a 
given task. Listing 10-1 reproduces the functionality of GDB’s info mach-ports command. 

LISTING 10-1: A simple Mach port dumper

kern_return_t lsPorts(task_t TargetTask)
{
    kern_return_t               kr;
    mach_port_name_array_t      portNames            = NULL;
    mach_msg_type_number_t      portNamesCount;
    mach_port_type_array_t      portRightTypes       = NULL;
    mach_msg_type_number_t      portRightTypesCount;
    mach_port_right_t           portRight;
    unsigned int                p;

    // Get all of task's ports
    kr = mach_port_names(TargetTask,
                        &portNames,
                        &portNamesCount,
                        &portRightTypes,
                        &portRightTypesCount);
    if (kr != KERN_SUCCESS) 
    { fprintf (stderr,"Error getting mach_port_names.. %d\n", kr);return (kr); }
    // Ports will be dumped in hex, like GDB, which is somewhat limited. This can be 
    // extended to recognize the well known global ports (left as an exercise for the
    // reader)
    for (p = 0; p < portNamesCount; p++) {
         printf( "0x%x 0x%x\n",  portNames[p], portRightTypes[p]);
      } // end for
} // end lsPorts

int main(int argc, char * argv[])
{
    task_t              targetTask;
    kern_return_t       kr;

TABLE 10-4 (continued)
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    int pid = atoi (argv[1]);
    // task_for_pid() is required to obtain a task port from a given
    // BSD PID. This is discussed in the next chapter
    kr  = task_for_pid(mach_task_self(),pid, &targetTask);
    lsPorts (targetTask);
    // Not strictly necessary, but be nice
    kr = mach_port_deallocate(mach_task_self(), targetTask);
}

A more complete example can be found in Apple Developer’s sample code for MachPortDump[4].

Passing Ports Between Tasks
Ports and rights may be passed from one entity to another. Indeed, it is not uncommon to see com-
plex Mach messages containing ports delivered from one task to another. This is a very powerful 
feature in IPC design, somewhat akin to mainstream UNIX’s domain sockets, which allow the pass-
ing of fi le descriptors between processes. 

Lion enables the conversion of UNIX fi le descriptors into Mach ports, and vice versa. These objects, 
appropriately called fi leports, are primarily used by the notifi cation system. 

Port Registration and the Bootstrap Server
Mach allows ports to be registered globally — that is, on a system-wide level, with a port nam-
ing server. In XNU, this “bootstrap server” is none other than launchd(8) — PID 1 — which, at 
the Mach task level, registers the bootstrap service port. (recall the discussion in Chapter 7, which 
explained this in detail under launchd's role of mach_init). Because every other process (and 
therefore Mach task) on the system is a descendant of launchd, it inherits this port upon birth. The 
APIs in Chapter 7 can then be used to locate service ports.

The Mach Interface Generator (MIG)
Mach’s model of message passing is one implementation of Remote Procedure Call (RPC). In a per-
fect world, the programmer need not bother with the implementation of message passing, since these 
are performed at a lower-level, and are largely independent of the message contents. The underlying 
support code can therefore be automatically generated: The programmer need only write the inter-
face specifi cation, using a higher level Interface Defi nition Language (IDL), from which a specialized 
pre-processor tool can generate the code required to construct the actual messages, and send them 
(In higher level languages this is sometimes referred to as serialization, or marshaling). To enable 
RPC to be architecture-independent and agnostic to byte-ordering, a network data representation is 
often adopted. 

Classic UN*X has SUN-RPC, which is still widely used (as an integral part of NFS). In it, a 
portmapper (running on TCP or UDP port 111) is responsible for maintaining registered pro-
grams. The programs themselves make use of the rpcgen compiler to generate code from the 
IDL. Data is converted into an external data representation (XDR), which is in network byte 
ordering. Mach does not use a dedicated port mapper (though launchd(8) handles some of the 
logic), but has a component very similar to rpcgen, called the Mach Interface Generator, com-
monly referred to as MIG.[5]
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If you look at the /usr/include/mach directory, you will see (alongside the miscellaneous header 
fi les), .defs fi les. These fi les contain the IDL defi nition fi les for the various Mach “subsystems,” as 
shown in Table 10-5:

TABLE 10-5: Mach subsystem interface defi nition fi les in <mach/*>

BASE SUBSYSTEM USE

123 audit_triggers Audit logging facility. Contains a single routine 

— audit_triggers

1000 Clock Clock and alarm routines

1200 clock_priv Kernel clock privileged interface defi nitions

3125107 clock_reply Contains reply to clock_alarm request

2401

2405

exc

mach_exc

Mach exception handling

950 host_notify_reply Contains a single routine, host_calendar_changed

400 host_priv Host privileged operations, such as reboot, kernel modules, and 

physical memory

600 host_security Contains defi nitions for task tokens

5000 ledger Contains defi nitions for the resource book-keeping subsystem. 

This was part of the Mach specifi cation, but was inactive in XNU up 

until iOS 5.0 and Mountain Lion

617000 lock_set Lock set subsystem (detailed in the previous section)

200 mach_host Mach host abstraction routines (detailed in this chapter)

3200 mach_port Mach port handling functions

– mach_types Data type defi nitions for kernel objects

4800 mach_vm Miscellaneous virtual memory handling functions. Supersedes vm 

(detailed in Chapter 12)

64 notify Port notifi cation routines

3000 processor Processor control (detailed in this chapter)

4000 processor_set Processor set control (detailed in this chapter)

5200 security Security and Mandatory Access Control interfaces

– std_types Data type defi nitions

3400 task Task operations (detailed in Chapter 11)
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27000 task_access OS X/iOS enhancement to support access checks on task handles 

and code signature checks (detailed in Chapter 10)

3600 thread_act Thread operations (detailed in Chapter 11)

3800 vm_map Miscellaneous virtual memory handling functions. Superseded by 

mach_vm (detailed in Chapter 12)

The subsystems are collections of operations that are grouped together. The operations will be seri-
alized in Mach messages. User programs can declare and use additional subsystems, as launchd(8)
does (e.g. protocol_vproc, subsystem #400, by means of which launchctl(1) can communicate 
with it). There is also no need for global uniqueness (the abovementioned protocol_vproc overlaps 
with host_priv), so long as the destination of the message knows which subsystem is relevant.

An operation can be one of several types. The MIG specifi cation lists the following types shown in 
Table 10-6.

TABLE 10-6: MIG Operation types

OPERATION TYPE PURPOSE

Routine

Simpleroutine

Sends a message to the server. A routine blocks until a reply is received, and 

returns a kern_return_t. A simpleroutine does not block to receive a reply, 

but returns immediately with the return code from msg_send().

Procedure

Simpleprocedure

As routines, but do not return a kern_return_t .

Function Returns a value from the server function.

In practice, XNU only uses routines and simpleroutines. The various operations are numbered 
sequentially, starting with the subsystem’s base number. The keyword “skip” may be used to reserve 
numbers for deprecated or obsolete operations.

The mig(1) command line tool acts as the pre-processor for the .defs fi les, and creates the .h and 
.c fi les for the client and the server (the latter are actually created by migcom(1), a utility used inter-
nally). This command is not normally part of OS X or XCode, but is part of the bootstrap_cmds
package which can be readily downloaded from http://opensource.apple.com.

For each operation, mig(1) generates a substantial portion of code, for both the client and the 
server, along with a C-style header fi le. The operation is converted into a C function which encap-
sulates the message passing code (i.e. the call to mach_msg()with MACH_SEND_MSG and MACH_RCV_
MSG fl ags). The generated code handles all the message house-keeping, such as validation of types, 
lengths, and return values. A signifi cant chunk of the code also handles Network Data Representa-
tion (NDR, akin to SUNRPC’s XDR, eXternal Data Representation), which is largely empty con-
version macros, as XNU does not support network-borne Mach messaging.

The following experiment illustrates how the Mach Interface Generator is used to automatically 
generate code.
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Experiment: Using mig(1) to Generate Files Automatically
The mig(1) utility operates on .defs fi les in a similar manner. To show this, pick an arbitrary fi le 
in /usr/include/mach — in this example, mach_host.defs. Looking at the fi le, you should be able 
to see the defi nitions of routines, as shown in Listing 10-2:

LISTING 10-2: mach_host.defs and the host MIG subsystem

...
subsystem
#if     KERNEL_SERVER
          KernelServer
#endif  /* KERNEL_SERVER */
                       mach_host 200;

/*
 *      Basic types
 */

#include <mach/std_types.defs>
#include <mach/mach_types.defs>
#include <mach/clock_types.defs>
#include <mach_debug/mach_debug_types.defs>

...

routine host_info(
                host            : host_t;
                flavor          : host_flavor_t;
        out     host_info_out   : host_info_t, CountInOut);
...

routine host_kernel_version(
                host            : host_t;
                out     kernel_version  : kernel_version_t);
...

skip; /* was enable_bluebox */     // was message 211
skip; /* was disable_bluebox */    // was message 212

Copy the fi le into an empty directory, and run the mig(1) utility on the fi le. You should see the fol-
lowing fi les as in Output 10-1:

OUTPUT 10-1: Output of running mig(1) on mach_host.defs

morpheus@Ergo (/tmp/scratch)$ ls -l
total 792
-r--r--r--  1 morpheus  wheel    6975 Mar 26 11:34 mach_host.defs
-rw-r--r--  1 morpheus  wheel   20334 Mar 26 11:34 mach_host.h
-rw-r--r--  1 morpheus  wheel  164125 Mar 26 11:34 mach_hostServer.c
-rw-r--r--  1 morpheus  wheel  207442 Mar 26 11:34 mach_hostUser.c

Message Base

Message #200 (Base + 0)

Message #201 (Base + 1)
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The resulting mach_host.h fi le is the #include fi le readily usable by C programs, and should be 
nearly or entirely identical to the <mach/mach_host.h>. Looking at the client fi le, you will notice 
the considerable amount of automatically generated code. Looking specifi cally at the host_info
message, you should see something like listing 10-3, which has been further annotated for 
readability:

LISTING 10-3: The mach_hostUser.c fi le generated by mig(1) from mach_host.defs

...
/* Routine host_info */

// prototype generated directly from defs
mig_external kern_return_t host_info
(
        host_t host,
        host_flavor_t flavor,
        host_info_t host_info_out,
        mach_msg_type_number_t *host_info_outCnt
)
{

// MIG defines the request and reply structures next.

#ifdef  __MigPackStructs
#pragma pack(4)
#endif
        typedef struct {
                mach_msg_header_t Head;
                NDR_record_t NDR;                     // Network data representation
                                                      // information
                host_flavor_t flavor;
                mach_msg_type_number_t host_info_outCnt;
        } Request;
#ifdef  __MigPackStructs
#pragma pack()
#endif

#ifdef  __MigPackStructs
#pragma pack(4)
#endif
        typedef struct {
                mach_msg_header_t Head;
                NDR_record_t NDR;                     // Network data representation
                                                      // information
                kern_return_t RetCode;
                mach_msg_type_number_t host_info_outCnt;
                integer_t host_info_out[15];
                mach_msg_trailer_t trailer;
        } Reply;
#ifdef  __MigPackStructs
#pragma pack()
#endif

    union {

routine host_info(
     host            : host_t;
     flavor          : host_flavor_t;
 out host_info_ out  : host_info_t,
                       CountInOut);

continues
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                Request In;
                Reply Out;
        } Mess;

        Request *InP = &Mess.In;
        Reply *Out0P = &Mess.Out;

        mach_msg_return_t msg_result;

#ifdef  __MIG_check__Reply__host_info_t__defined
        kern_return_t check_result;
#endif  /* __MIG_check__Reply__host_info_t__defined */

        DeclareSendRpc(200, "host_info")

        InP->NDR = NDR_record;

        InP->flavor = flavor;

        // somewhat crude sanity check on argument length. "15" is the hard-coded limit
        if (*host_info_outCnt < 15)
                InP->host_info_outCnt = *host_info_outCnt;
        else
                InP->host_info_outCnt = 15;

        // Prepare message header
        InP->Head.msgh_bits =
                MACH_MSGH_BITS(19, MACH_MSG_TYPE_MAKE_SEND_ONCE);
        /* msgh_size passed as argument */
        InP->Head.msgh_request_port = host;
        InP->Head.msgh_reply_port = mig_get_reply_port();
        InP->Head.msgh_id = 200;

   __BeforeSendRpc(200, "host_info")

     // this is the heart of host_info and, indeed, most MIG generated code: A call to 
     // mach_msg.

        msg_result = mach_msg(&InP->Head, MACH_SEND_MSG|MACH_RCV_MSG|
        MACH_MSG_OPTION_NONE, (mach_msg_size_t)sizeof(Request), 
       (mach_msg_size_t)sizeof(Reply), InP->Head.msgh_reply_port, MACH_MSG_TIMEOUT_NONE,
        MACH_PORT_NULL);
        __AfterSendRpc(200, "host_info")
 
     // If the message sending fails, we have nothing more to seek here. Abort.
        if (msg_result != MACH_MSG_SUCCESS) {
                __MachMsgErrorWithoutTimeout(msg_result);
                { return msg_result; }
        }

     // MIG can optionally define reply checking logic. It is easier for it to generate
     // the code anyway, #ifdef'd, so as to generate uniform code in all cases.

#if     defined(__MIG_check__Reply__host_info_t__defined)

Message #200 (Base + 0)

LISTING 10-3 (continued)
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        check_result = __MIG_check__Reply__host_info_t((__Reply__host_info_t *)Out0P);
        if (check_result != MACH_MSG_SUCCESS)
                { return check_result; }
#endif  /* defined(__MIG_check__Reply__host_info_t__defined) */

        // If output is within specified buffer bounds, copy what we can to caller, and
        // fail
        if (Out0P->host_info_outCnt > *host_info_outCnt) {
                (void)memcpy((char *) host_info_out, (const char *) 
                Out0P->host_info_out,4 *  *host_info_outCnt);
                *host_info_outCnt = Out0P->host_info_outCnt;
                { return MIG_ARRAY_TOO_LARGE; }
        }
        // Otherwise, it is safe to copy all the output to the caller.
        (void)memcpy((char *) host_info_out, (const char *) Out0P->host_info_out, 4 * 
         Out0P->host_info_outCnt);

        // Set buffer count
        *host_info_outCnt = Out0P->host_info_outCnt;

        // And.. we're done!
        return KERN_SUCCESS;
}

Replies, by convention, are numbered at 100 over their respective requests. This means that the 
reply to host_info (#200), for example, will be 300, as you can indeed verify by looking at the code 
generated for __MIG_check__Reply__host_info_t, in the same fi le.

IPC, IN DEPTH

So far, we have covered the basic primitives required for IPC: the messages, the ports they are sent 
from and received on, and the semaphores and locks required to enable safe concurrency. But we 
have given little attention to the underlying implementation of these primitives, in particular the 
port objects themselves. This section goes into more detail.

Every Mach task (the high-level abstraction somewhat corresponding to a process, as you will see in 
the next chapter) contains a pointer to its own IPC namespace, which holds its own ports. Addition-
ally, a task can obtain the system-wide ports, such as the host port, the privileged ports, and others. 

The port object exported to user space (the mach_port_t previously shown) is really a handle to the 
“real” port object, which is an ipc_port_t. This is defi ned in osfmk/ipc/ipc_port.h as shown in 
Listing 10-4.

LISTING 10-4: The structure behind a Mach port

struct ipc_port {

        /*
         * Initial sub-structure in common with ipc_pset
         * First element is an ipc_object second is a

continues
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         * message queue
         */
        struct ipc_object ip_object;

        struct ipc_mqueue ip_messages;  

        union {
                struct ipc_space *receiver;     // pointer to receiver's IPC space
                struct ipc_port  *destination;  // or pointer to global port
                ipc_port_timestamp_t timestamp;
        } data;

        ipc_kobject_t ip_kobject;       // Type of object behind this port (IKOT_* 
                                        // constant from osfmk/kern/ipc_kobject.h)

        mach_port_mscount_t ip_mscount; 
        mach_port_rights_t ip_srights;
        mach_port_rights_t ip_sorights;

        struct ipc_port *ip_nsrequest;
        struct ipc_port *ip_pdrequest;
        struct ipc_port_request *ip_requests;
        boolean_t ip_sprequests;

        unsigned int ip_pset_count;
        struct ipc_kmsg *ip_premsg;
        mach_vm_address_t ip_context;

...

#if CONFIG_MACF_MACH
        struct label    ip_label;     // used to enforce BSD's Mandatory Access Control
                                      // Framework
#endif
};

struct ipc_object 
   {
     ipc_object_bits_t io_bits;          
     ipc_object_refs_t io_references;                  
     decl_lck_mtx_data(,     io_lock_data)
    };

typedef struct ipc_mqueue {
  union {
    struct {
       struct  wait_queue      wait_queue;
       struct ipc_kmsg_queue   messages;
       mach_port_msgcount_t    msgcount;
       mach_port_msgcount_t    qlimit;
       mach_port_seqno_t       seqno;
       mach_port_name_t        receiver_name;
       boolean_t               fullwaiters;
           } port;
    struct {
           struct wait_queue_set   set_queue;
           mach_port_name_t        local_name;
           } pset;
        } data;
} *ipc_mqueue_t;

LISTING 10-4 (continued)
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To gain a better understanding, it helps to look at the implementations of the two most important 
IPC functions: mach_msg_send() and mach_msg_receive().

Behind the Scenes of Message Passing
Mach messages in user mode use the mach_msg() function, described earlier, which calls its corre-
sponding kernel function mach_msg_trap() through the kernel’s Mach trap mechanism (discussed 
in Chapter 8). The mach_msg_trap() falls through to mach_msg_overwrite_trap(), which deter-
mines a send or receive operation by testing MACH_SEND_MSG or MACH_RCV_MSG fl ag, respectively.

Sending Messages
Mach message-sending logic is implemented in two places in the kernel: mach_msg_overwrite_
trap(), and mach_msg_send(). The latter is used only for kernel-mode message passing, and is not 
visible from user mode.

In both cases, the logic is similar, and proceeds according to the following:

 ‰ Obtain current IPC space by a call to current_space().

 ‰ Obtain current VM space (vm_map) by a call to current_map().

 ‰ Sanity check on size of message.

 ‰ Compute msg size to allocate: This is taken from the send_size argument, plus a hard coded 
MAX_TRAILER_SIZE.

 ‰ Allocate the message using ipc_kmsg_alloc.

 ‰ Copy the message (send_size bytes of it), and set msgh_size in header.

 ‰ Copy the port rights associated with the message, and any out-of-line memory into the cur-
rent vm_map by calling ipc_kmsg_copyin. This function calls ipc_kmsg_copyin_header
and ipc_kmsg_copyin_body, respectively.

 ‰ Call ipc_kmsg_send() to actually send the message: 

 ‰ First, a reference to msgh_remote_port is obtained, and locked.

 ‰ If the port is a kernel port (i.e. the port ip_receiver is the kernel IPC space), the mes-
sage is processed using ipc_kobject_server() (from osfmk/kern/ipc_kobject.c). 
This will fi nd the corresponding function in the kernel to execute on the message (or 
call ipc_kobject_notify() to do so) and should also generate a reply to the message.

 ‰ In any case — that is, if the port is not in kernel space, or due to a reply returned 
from ipc_kobject_server()— the function falls through to deliver the message (or 
the reply to it) by calling ipc_mqueue_send(), which copies the message directly to 
the port’s ip_messages queue and wakes up any waiting thread.

Receiving Messages
Similar to the message sending case, the Mach message-sending logic is implemented in two places 
in the kernel. As before, the mach_msg_overwrite_trap() is used to serve requesters from user 
mode, whereas mach_msg_receive() is reserved for kernel-mode ones. 

 ‰ Obtain current IPC space by a call to current_space().

 ‰ Obtain current VM space (vm_map) by a call to current_map().
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 ‰ No sanity check is performed on the size of the message. This is unnecessary, as messages 
have been validated during sending.

 ‰ The IPC queue is obtained by a call to ipc_mqueue_copyin()

 ‰ A reference is held on the current thread. Using a reference on the current thread makes it 
suitable for Mach’s continuation model, which alleviates the need to maintain the full thread 
stack. This model is described in more detail in the Mach scheduling chapter.

 ‰ The ipc_mqueue_receive() is called to dequeue the message.

 ‰ Finally, mach_msg_receive_results() is called. This function could also be called from a 
continuation.

SYNCHRONIZATION PRIMITIVES

Message-passing is just one component of the Mach IPC architecture. The second is synchroniza-
tion, which enables two or more concurrent operations to determine access to shared resources.

Synchronization relies on the ability to exclude access to a resource while another is using it. The 
most basic primitive, therefore, is a mutual exclusion object, or mutex. Mutexes are nothing more 
than ordinary variables in kernel memory, usually integers up of machine size, with one special 
requirement — the hardware must enforce atomic operations on them: “Atomic,” in the sense that 
an operation on a mutex cannot be disrupted — not even by a hardware interrupt. In SMP systems, 
a second requirement of physical mutual exclusion is required, which is usually implemented by 
some type of memory fence or barrier. 

The following section describes Mach’s synchronization primitives. There are quite a few of those, 
and each is aimed at a particular purpose. As a quick guide, consult Table 10-7:

TABLE 10-7: Mach Synchronization Primitives

OBJECT IMPLEMENTED IN OWNER VISIBILITY WAIT

Mutex 

(lck_mtx_t)

i386/i386_locks.c One Kernel Idle*

Semaphore 

(semaphore_t)

kern/sync_sema.c Many User Idle

Spinlock 

(hw_lock_t, ..)

i386/i386_lock.s One Kernel Busy

Lock sets

(lock_set_t)

kern/sync_lock.c One User Idle (as mutex)
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Like most of the primitives discussed in this chapter, Mach provides lock by putting together two 
layers:

 ‰ The hardware specifi c layer: Relies on processor idiosyncrasies and specifi c assembly instruc-
tions to provide the atomicity and exclusion

 ‰ The hardware agnostic layer: Wraps the specifi cs with a uniform API. The API makes the lay-
ers on top of Mach (or the user API) totally oblivious to the implementation specifi cs. This is 
usually achieved with a simple set of macros.

Lock Group Objects
Most Mach synchronization objects do not exist by their own right. Rather, they belong to a lck_
grp_t object. The lock groups are defi ned in osfmk/kern/locks.h as shown in Listing 10-5:

LISTING 10-5: The lck_grp_t, from osfmk/kern/locks.h

typedef struct _lck_grp_ {
        queue_chain_t           lck_grp_link;
        uint32_t                lck_grp_refcnt;
        uint32_t                lck_grp_spincnt;
        uint32_t                lck_grp_mtxcnt;
        uint32_t                lck_grp_rwcnt;
        uint32_t                lck_grp_attr;
        char                    lck_grp_name[LCK_GRP_MAX_NAME];
        lck_grp_stat_t          lck_grp_stat;
} lck_grp_t;

Simply put, the lck_grp_t is simply a member in a linked list, with a given name, and up to three 
lock types: spinlocks, mutexes, and read/write locks. A lock group also has statistics (the lck_grp_
stat_t), which can be used for debugging synchronization related issues. The attributes are largely 
unused, though LCK_ATTR_DEBUG can be set. Table 10-8 lists the APIs for creating and destroying 
lock groups:

TABLE 10-8: Mach lock group API functions

MACH MUTEX API USED TO

lck_grp_t               
*lck_grp_alloc_init
       (const char*  grp_name, 
       lck_grp_attr_t  *attr);

Create a new lock group. The group is identifi ed by 

grp_name, and possesses the attributes specifi ed in 

attr. In most cases, the attributes are default, as set by 

lck_grp_attr_alloc_init();

void lck_grp_free
        (lck_grp_t   *grp);

Deallocate lock group grp. 

Virtually every subsystem of Mach, as well as most of BSD, creates and utilizes a lock group for 
itself during initialization.
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Mutex Object
The most commonly used lock object is the mutex. Mutexes are defi ned as lck_mtx_t objects. 
The mutex objects are largely architecture agnostic. A mutex must belong to a lock group and are 
defi ned in osfmk/kern/locks.h with the operations in Table 10-9:

TABLE 10-9: Mach mutex API functions

MACH MUTEX API USED TO

lck_mtx_t                
*lck_mtx_alloc_init(                                                        
lck_grp_t  *grp,                                                         
lck_attr_t *attr);

Allocate a new mutex object, belonging 

to group grp, with the attributes speci-

fi ed by attr.

lck_mtx_init(
lck_mtx_t  *lck,
lck_grp_t  *grp,

lck_attr_t *attr);

As lck_mtx_alloc_init, but initial-

izes an already allocated mutex lck.

lck_mtx_lock(lck_mtx_t *lck)

lck_mtx_try_lock(lck_mtx_t *l)

Lock the mutex lck. This will block 

indefi nitely. The try variant doesn’t 

block, but may fail.

lck_mtx_unlock(lck_mtx_t*lck); Unlock the mutex lck.

lck_mtx_destroy(lck_mtx_t   *lck,

                lck_grp_t   *grp); 

Mark lck as destroyed and no longer 

usable. The mutex is still allocated, how-

ever (and may be reinitialized)

lck_mtx_free(lck_mtx_t *lck,

             lck_grp_t  *grp);

Mark lck as destroyed, and deallocate 

it. 

wait_result_t lck_mtx_sleep    

(lck_mtx_t         *lck,

 lck_sleep_action_t action,

 event_t            event,

 wait_interrupt_t   inter);

Make current thread sleep until lck 

becomes available. 

wait_result_t    lck_mtx_sleep_deadline

(lck_mtx_t         *lck,                                                            

 lck_sleep_action_t action,  

 event_t            event,

 wait_interrupt_t   inter,                                                                         

 uint64_t           deadline);

Make current thread sleep until lck 

becomes available, or until deadline has 

been met.

The implementation of the mutex operation is architecture-dependent, and in the open source XNU 
is split between osfmk/kern/locks.c and osfmk/i386/locks_i386.c, with optimized assembly 
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primitives in osfmk/i386/i386_lock.s. There are additionally lck_mtx_lock__[try]_spin_*
functions, which on Intel architectures can convert mutexes to spinlocks (discussed later). 

Read-Write Lock Object
Mutexes have a major drawback, which is that only one thread can hold them at a given time. In many 
scenarios, multiple threads may require read-only access to a resource. In those cases, using a mutex 
would prevent concurrent access, even though the threads would not interfere with one another.

Enter: The read-write lock. This is a “smarter” mutex, which distinguishes between read and write 
access. Multiple readers (“consumers”) can hold the lock at any given time, but only one writer 
(“producer”) can hold the lock. When a writer holds the lock, all other threads are blocked. The 
API for read-write locks is largely identical to that of mutexes, save for the locking functions, which 
accept a second argument specifying the lock type.

TABLE 10-10: Mach rwlock API functions

MACH RWLOCK API USED TO

lck_rw_t                
*lck_rw_alloc_init
       (lck_grp_t   *grp,                                                           
        lck_attr_t  *attr);

Allocate a new rwlock object, belonging to group grp, with 

the attributes specifi ed by attr.

lck_rw_init(lck_rw_t   *lck,
            lck_grp_t  *grp,

            lck_attr_t *attr);

As lck_rw_alloc_init, but initializes an already allocated 

rw lck.

lck_rw_lock(lck_rw_t *lck, 

lck_rw_type_t read_or_write);
Lock the mutex lck for read_or_write access. 

Readers: This call will block only if a writer holds the lock.

Writers: This call will block until all other threads give up the 

lock.

This call is a wrapper of lck_rw_lock_shared and 

lck_rw_lock_exclusive.

lck_rw_unlock(lck_mtx_t *lck, 

lck_rw_type_t read_or_write);
Unlock the mutex lck. This call is a wrapper of lck_rw_

unlock_shared and lck_rw_unlock_exclusive.

lck_rw_destroy(lck_mtx_t *lck,

               lck_grp_t*grp);

Mark lck as destroyed and no longer usable. The mutex is 

still allocated, however (and may be reinitialized).

lck_mtx_free(lck_mtx_t *lck,

lck_grp_t    *grp);

Mark lck as destroyed, and deallocate it. 

wait_result_t lck_rw_sleep

(lck_mtx_t         *lck,

 lck_sleep_action_t action,

 event_t            event,

 wait_interrupt_t   inter);

Make current thread sleep until lck becomes avail-

able. The action can specify LCK_SLEEP_SHARED or 

LCK_SLEEP_EXCLUSIVE.
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Spinlock Object
Both mutexes and semaphores are idle-wait objects. This means that if the lock object is held by 
some other owner, the thread requesting access is added to a wait queue, and is blocked. Blocking a 
thread involves giving up its time slice and yielding the processor to whichever thread the scheduler 
decrees should be next. When the lock is made available, the scheduler will be notifi ed and — at 
its discretion — dequeue the thread and reschedule it. This, however, could severely impact perfor-
mance, since often times the object is only held for a few cycles, whereas the cost of two or more 
context switches is orders of magnitude greater. In these cases, it may be advisable to not yield the 
processor, and — instead — continue to try to access the lock object repeatedly, in what is called 
a busy-wait. If, indeed, the current owner of the lock object relinquishes it anyway in a matter of a 
few cycles, it saves at least two context switches.

This “if,” however, is a really big “if.” A spinning thread does so in what may end up being an 
endless loop: The current owner may not give up the spinlock so quickly, and could in fact hold it 
indefi nitely while waiting for some other resource. This leads to the much-dreaded busy deadlock 
scenario, in which the entire system may grind to a halt. 

The basic spinlock type is the hardware-specifi c hw_lock_t. On top of it are implemented the other 
lock types: the lck_spin_t (a thin wrapper), the simple_lock_t, and the usimple_lock_t.
The locks may have different implementations, though in practice the simple lock is usually just 
#defined over the usimple one. 

The APIs for all three spinlock types resemble those of the other objects. A detailed example of 
locking at the hardware level (the hw_lock_t), contrasting ARM and Intel as well as UP and SMP, 
can be found in the appendix in this book.

Semaphore Object
Mach offers semaphores, which are generalizations of mutex objects.  A semaphore is a mutex 
object whose value can be other than 0 or 1 — up to some positive number, which is the count of 
concurrent semaphore holders. To put it another way, a mutex can be considered as a special case of 
a binary semaphore. Semaphores, however, are visible in user mode, whereas mutexes aren’t.

Mach semaphores are not the same as POSIX semaphores. The API presented 
here is different, and not POSIX compliant. The underlying implementation of 
POSIX semaphores, however, is over Mach semaphores (e.g. POSIX’s 
sem_open() calls on Mach’s semaphore_create())

The API for semaphores, listed in Table 10-11 is straightforward to use:
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TABLE 10-11: Mach Semaphore API functions

MACH SEMAPHORE API USED TO

semaphore_create(task_t t,

           semaphore_t *sem,

           int          policy,

           int          value);

Create a new semaphore in sem for task t, with initial 

count value. The policy indicates how blocking threads 

will be awakened, as per the same values of lock policies.

semaphore_destroy (task_t t, 

   semaphore_t    semaphore);

Destroy a semaphore port semaphore in t.

semaphore_signal

 (semaphore_t semaphore);

Increment count of a semaphore. If the count becomes 

greater than or equal to zero, a blocking thread is awak-

ened, according to the policy.

semaphore_signal_all

 (semaphore_t semaphore);

Set count of semaphore to zero, thereby waking all 

threads.

semaphore_wait

 (semaphore_t semaphore);

Decrement count on semaphore, and block until count 

becomes non-negative again.

The semaphore itself is not a lockable object. It is a small struct, containing the reference to the 
owner and its port. Additionally, it contains a wait_queue_t, which is a linked list of threads wait-
ing on it. It is that wait_queue_t which gets locked, by means of a hardware lock. This is shown in 
Listing 10-6:

LISTING 10-6: THE SEMAPHORE OBJECT, FROM osfmk/kern/sync_sema.h

typedef struct semaphore {
        queue_chain_t     task_link;  /* chain of semaphores owned by a task */
        struct wait_queue wait_queue; /* queue of blocked threads & lock     */
        task_t            owner;      /* task that owns semaphore            */
        ipc_port_t        port;       /* semaphore port                      */
        uint32_t          ref_count;  /* reference count                     */
        int               count;      /* current count value                 */
        boolean_t         active;     /* active status                       */
} Semaphore;

#define semaphore_lock(semaphore)   wait_queue_lock(&(semaphore)->wait_queue)
#define semaphore_unlock(semaphore) wait_queue_unlock(&(semaphore)->wait_queue)
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Semaphores also have one other interesting property — they may be converted to and from ports. 
The functions in osfmk/kern/ipc_sync.c allow this. This functionality, however, is not exposed 
to user mode, and is not used in the kernel proper.

Lock Set Object
Tasks can utilize lock sets at the user mode level. These are conceptually arrays of locks (actually, 
mutexes), which can be acquired by a given lock ID. The locks can also be given — handed off — 
to other threads. Handing off will block the handing thread and wake up the receiving thread. 

The lock sets are essentially wrappers over the kernel’s mutexes, lck_mtx_t’s, as shown in the 
Figure 10-1: 

Public interface

lock_acquire

<mach/lock_set.h> osfmk/kern/sync_lock.c osfmk/kern/sync_lock.h osfmk/i386/i386_lock.c

ulock_lock

Implement lock_t over 
a ulock object

#define ulock_lock to 
be a lck_mtx_lock, and 
lck_mtx_lock as extern

Implement the 
lck_mtx_lock in 

low-level assembly

lck_mtx_lock lck_mtx_lock

Kernel private Architecture agnostic, 
but more primitive 

objects

Architecture specific

FIGURE 10-1: Lock set implementation over mutexes

The APIs are listed in Table 10-12:

TABLE 10-12: Lock Set APIs (visible in user mode)

MACH LOCK SET API USED TO

lock_set_create(task_t t,

lock_set_t  lock_set,

int count,

int  policy);

Create a lock set lock_set for task t, with up to count 

locks. Wake up threads obtaining lock in set according to 

policy: 

   SYNC_POLICY_FIFO: queued

   SYS_POLICY_FIXED_PRIORITY: by priority

lock_set_destroy(task_t t,

lock_set_t  lock_set);

Destroy a lock set and any locks it may contain.

lock_acquire

(lock_set_t lock_set,

 int lock_id);

Acquire lock lock_id in lock set lock_set. This function 

may block indefi nitely.

lock_release

(lock_set_t lock_set,

 int lock_id);

Release lock lock_id in lock set lock_set, if held.
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lock_try

(lock_set_t lock_set,

 int lock_id);

Try to acquire, but fail if lock is already held with 

KERN_LOCK_OWNED, rather than block until available.

lock_make_stable

(lock_set_t lock_set,

 int lock_id);

Make a lock, which was acquired and returned 

KERN_LOCK_UNSTABLE, once again stable.

lock_handoff

(lock_set_t lock_set,

 int lock_id);

Give a lock (which is currently owned) to another thread.

lock_handoff_accept

(lock_set_t lock_set,

 int lock_id);

Accept a lock which was previously given with 

lock_handoff_accept.

The interesting aspect of locksets is that they allow the handoff of locks. This is the act of passing 
a lock from one task to another. Mach also uses handoff in the context of scheduling, allowing one 
thread to yield the processor but specify which thread to run in its stead.

MACHINE PRIMITIVES

Mach abstracts the machine it is operating on by several so called “machine primitives,” which 
include the host (physical machine abstraction), clock (time keeping), processor (CPU), and proces-
sor set (logical groupings of CPUs). These are described next.  

Host Object
Mach’s most fundamental object is the “host,” which represents the machine itself. The host object 
is a simple construct, defi ned in <osmfk/kern/host.h> as shown in Listing 10-7:

LISTING 10-7: Host abstraction defi nition from osfmk/kern/host.h

struct  host {
        decl_lck_mtx_data(,lock)                /* lock to protect exceptions */
        ipc_port_t special[HOST_MAX_SPECIAL_PORT + 1]; // ports such as priv, I/O, 
        pager, struct exception_action exc_actions[EXC_TYPES_COUNT];
};
typedef struct host     host_data_t;

The host is really nothing more than a collection of “special ports,” which are used to send the host 
various messages, and a collection of exception handlers (which are described later in this chapter). 
A lock is defi ned over the host to avoid concurrent access during exception processing.
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The host structure serves three basic functions:

 ‰ Provides machine information: Mach provides a surprisingly rich set of API calls to query 
machine information, and all require obtaining the host port in order to function.

 ‰ Provide access to subsystems: Through the host abstraction, an application can request access 
to any of several “special” ports used by subsystems. Additionally, it is possible to gain 
access to all the other machine abstractions (notably, the processor and processor_set).

 ‰ Provides default exception handling: As shown later, exceptions are escalated from the 
thread level to the process (task) level, and — if not handled — to the host level for generic 
handling.

The important aspect of the host APIs is that they provide information that is virtually unobtainable 
in other ways. The Mach APIs provide the most straightforward way to get information about ker-
nel modules, memory tables, and other aspects, which POSIX (and, therefore, the BSD layer) does 
not offer. Table 10-13 lists these APIs:

TABLE 10-13: Mach host APIs

MACH HOST API USED TO

host_info

(host_t            host,

 host_flavor_t     flavor,

 host_info_t       host_info_out,

 mach_msg_type_number_t

                  *host_info_outCnt

Get various system information, according to 

flavor:

HOST_BASIC_INFO: Basic informa-

tion on the host — host_info_out is a 

host_basic_info.

HOST_SCHED_INFO: host_info_out is a 

host_sched_info specifying scheduling 

information.

host_processor_info

(host_t            host,

processor_flavor_t flavor,

natural_t         *processorCount,

processor_info_array_t *info,

mach_msg_type_number_t *count);

Get detail on the host processors: 

processorCount will hold the number of 

processors, and information (according to 

flavor) will be returned in info, an array of 

infoCnt bytes.

host_get_clock_service

(host_t            host,

 clock_id_t        clock_id,

 clock_serv_t     *clock_serv);

Get a pointer to the host’s clock service 

(discussed later).

kmod_get_info

(host_t host,

kmod_args_t *modules,

mach_msg_type_number_t *modulesCnt);

Get a list of kernel modules on the host — 

deprecated in Snow Leopard, and unsup-

ported in Lion and iOS.

c10.indd 368c10.indd   368 9/29/2012 5:32:57 PM9/29/2012   5:32:57 PM



Machine Primitives x 369

host_virtual_physical_table_info

(host_t                    host,

 hash_info_bucket_array_t *info,

 mach_msg_type_number_t   *infoCnt);

Virtual to physical address mapping tables.

Only supported on debug kernels (#if 

MACH_VM_DEBUG).

host_statistics

(host_t                    host_priv,

 host_flavor_t             flavor,

 host_info_t               host_info_out,

 mach_msg_type_number_t    hioCnt);

Obtain various statistics about host. A 

host_statistics64 function also exists.

host_lockgroup_info

(host_t host,

 lockgroup_info_array_t   *lockgroup_info,

 mach_msg_type_number_t   *lgiCnt);

Obtain information about kernel lock groups 

(internal lock objects in kernel).

OS X and jailbroken iOS contain a hostinfo(1) command, which displays the mach_host_info_t
structure information in user-friendly form as shown in Listings 10-8a through 10-8c:

LISTING 10-8A: hostinfo(1) on the author’s MacBook Air

root@Ergo (/)# hostinfo
Mach kernel version:
     Darwin Kernel Version 10.8.0: Tue Jun  7 16:33:36 PDT 2011; root:xnu-1504.15.3~1/
     RELEASE_I386
Kernel configured for up to 2 processors.
2 processors are physically available.
2 processors are logically available.
Processor type: i486 (Intel 80486)
Processors active: 0 1
Primary memory available: 4.00 gigabytes
Default processor set: 74 tasks, 337 threads, 2 processors
Load average: 1.29, Mach factor: 1.14

LISTING 10-8B: hostinfo(1) on an iPod Touch

Podicum:~ root# hostinfo
Mach kernel version:
       Darwin Kernel Version 11.0.0: Thu Sep 15 23:34:16 PDT 2011; root:xnu-1878.4.43~2/
       RELEASE_ARM_S5L8930X
Kernel configured for a single processor only.
1 processor is physically available.
1 processor is logically available.

continues

c10.indd 369c10.indd   369 9/29/2012 5:32:58 PM9/29/2012   5:32:58 PM



370 x CHAPTER 10  THE MEDIUM IS THE MESSAGE: MACH PRIMITIVES

Processor type: armv7 (arm v7)
Processor active: 0
Primary memory available: 248.95 megabytes
Default processor set: 33 tasks, 233 threads, 1 processors
Load average: 0.46, Mach factor: 0.58

LISTING 10-8C: hostinfo(1) on the iPad 2 (Note two processors = 2 cores)

Padishah:~ root# hostinfo
Mach kernel version:
        Darwin Kernel Version 11.0.0: Wed Mar 30 18:52:42 PDT 2011; root:xnu-1735.46~10/
        RELEASE_ARM_S5L8940X
Kernel configured for up to 2 processors.
2 processors are physically available.
2 processors are logically available.
Processor type: armv7 (arm v7)
Processors active: 0 1
Primary memory available: 502.00 megabytes
Default processor set: 34 tasks, 281 threads, 2 processors
Load average: 0.07, Mach factor: 1.92

These commands are a straightforward dump of the host_basic_info struct defi ned in osfmk/
mach/host_info.h (and <mach/host_info.h>). If the “i486” processor type is somewhat surpris-
ing, it is because the APIs have not been updated in a long, long time.

Experiment: Using Host Functions to Obtain Information 
Listing 10-9 shows how you can create a hostinfo(1) like utility using a few lines of code:

LISTING 10-9: The source of a hostinfo(1) like utility.C

#include <mach/mach.h>
#include <stdio.h>

// A quick & dirty hostinfo(1) like utility

int main(int argc, char **argv)
{

        mach_port_t     self = host_self();
        kern_return_t   rc;
        char            buf[1024]; // suffices. Better code would sizeof(..info)
        host_basic_info_t hi;
        int len = 1024;

    // Getting the host info is simply a matter of calling host_info
    // on the host_self(). We do not need the privileged host port for
    // this..
        rc = host_info (self,              // host_t host,
                            HOST_BASIC_INFO,   // host_flavor_t flavor,
                            (host_info_t) buf, // host_info_t host_info_out,

LISTING 10-8B (continued)
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                  &len); // mach_msg_type_number_t *host_info_outCnt

        if (rc != 0) { fprintf(stderr,"Nope\n"); return(1);}

    hi = (host_basic_info_t) buf; // type cast, so we can print fields

  // and print fields..
        printf ("CPUs:\t\t %d/%d\n",  hi->avail_cpus, hi->max_cpus);
        printf ("Physical CPUs:\t %d/%d\n",  hi->physical_cpu, hi->physical_cpu_max);
        printf ("Logical CPUs:\t %d/%d\n",   hi->logical_cpu,  hi->logical_cpu_max);
        printf ("CPU type:\t %d/%d, Threadtype: %d\n", hi->cpu_type,
                                                   hi->cpu_subtype, hi->cpu_threadtype);

    // Note memory_size is a signed 32-bit! Max value is 2GB, then it flips to negative
    printf ("Memory size:\t %d/%ld\n", hi->memory_size, hi->max_mem);

        return(0);
}

This listing will compile cleanly on OS X and iOS. The “physical/logical” distinction between the 
CPUs doesn’t really work, as Mach can’t tell the difference. The reader is encouraged to add other 
_info like utilities as an exercise.

Host Special Ports
The Mach host object also contains “special” ports. These, as you can see in Listing 10-7, are main-
tained in an internal array — so merely having the host port is insuffi cient to obtain access to them. 
A call to host_get_special_port must be made and, as most specifi c ports are well known, mac-
ros exist to obtain each of them, as shown in Listing 10-10:

LISTING 10-10:  Host special ports and the macros to get them (osfmk/mach/
host_special_ports.h)

/*
 * Always provided by kernel (cannot be set from user-space).
 */
#define HOST_PORT                        1
#define HOST_PRIV_PORT                   2
#define HOST_IO_MASTER_PORT              3 // used by IOKit (see chapter 13)
#define HOST_MAX_SPECIAL_KERNEL_PORT     7 /* room to grow */

/*
 * Not provided by kernel
 */

#define HOST_DYNAMIC_PAGER_PORT         (1 + HOST_MAX_SPECIAL_KERNEL_PORT)
#define HOST_AUDIT_CONTROL_PORT         (2 + HOST_MAX_SPECIAL_KERNEL_PORT)
#define HOST_USER_NOTIFICATION_PORT     (3 + HOST_MAX_SPECIAL_KERNEL_PORT)
#define HOST_AUTOMOUNTD_PORT            (4 + HOST_MAX_SPECIAL_KERNEL_PORT)
#define HOST_LOCKD_PORT                 (5 + HOST_MAX_SPECIAL_KERNEL_PORT)
#define HOST_SEATBELT_PORT              (7 + HOST_MAX_SPECIAL_KERNEL_PORT)
#define HOST_KEXTD_PORT                 (8 + HOST_MAX_SPECIAL_KERNEL_PORT)

continues
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#define HOST_CHUD_PORT                  (9 + HOST_MAX_SPECIAL_KERNEL_PORT)
#define HOST_UNFREED_PORT               (10 + HOST_MAX_SPECIAL_KERNEL_PORT)
#define HOST_AMFID_PORT                 (11 + HOST_MAX_SPECIAL_KERNEL_PORT)
#define HOST_GSSD_PORT                  (12 + HOST_MAX_SPECIAL_KERNEL_PORT) // Lion
#define HOST_MAX_SPECIAL_PORT           (13 + HOST_MAX_SPECIAL_KERNEL_PORT)
                                        /* room to grow here as well */

/*
 * Special node identifier to always represent the local node.
 */
#define HOST_LOCAL_NODE                  -1
                        
/*
 * Definitions for ease of use.
 *
 * In the get call, the host parameter can be any host, but will generally
 * be the local node host port. In the set call, the host must the per-node
 * host port for the node being affected.
 */

#define host_get_host_port(host, port)  \
        (host_get_special_port((host),  \
        HOST_LOCAL_NODE, HOST_PORT, (port)))
#define host_set_host_port(host, port) (KERN_INVALID_ARGUMENT)

#define host_get_host_priv_port(host, port)     \
        (host_get_special_port((host),          \
        HOST_LOCAL_NODE, HOST_PRIV_PORT, (port)))
#define host_set_host_priv_port(host, port) (KERN_INVALID_ARGUMENT)

#define host_get_io_master_port(host, port)     \
        (host_get_special_port((host),          \
        HOST_LOCAL_NODE, HOST_IO_MASTER_PORT, (port)))
#define host_set_io_master_port(host, port) (KERN_INVALID_ARGUMENT)

... (others defined similarly)…

Not all the special ports are necessarily kernel ones. In fact, most of those #define’d in Listing 
10-10 are in user mode, owned by specifi c daemon processes. These user-mode special ports are 
listed in Table 10-15:

TABLE 10-15: Host special ports claimed by user mode processes

CONSTANT USED FOR 

HOST_DYNAMIC_PAGER_PORT(8) OS X: Used by dynamic_pager. Serves swap fi le resizing 

requests (described in Chapter 11).

HOST_AUDIT_CONTROL(9) OS X: used by auditd (described in Chapter 3).

HOST_USER_NOTIFICATION_PORT(10) OS X: Used by the kuncd, Kernel/User Notifi cation Center 

daemon. This is a daemon which receives requests from 

kernel mode and displays dialogs to the user.

LISTING 10-10 (continued)
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HOST_AUTOMOUNTD_PORT(11) OS X: used by the fi le system automount daemon.

HOST_LOCKD_PORT(12) OS X: used by the RPC lockd.

HOST_SEATBELT_PORT(14) Seatbelt — the former name of the Sandbox API. Used by 

the sandboxd.

HOST_KEXTD_PORT(15) OS X: The Kernel Extension Daemon — Responsible for 

centralizing kernel extension load requests from user 

mode, and assisting the kernel when loading multiple 

kexts. Unused in iOS.

HOST_CHUD_PORT(16) The Computer Hardware Understanding Port, reserved for 

CHUD programs, for low-level profi ling and diagnostics. 

Used by appleprofilepolicyd.

HOST_UNFREED_PORT(17) iOS: Used by fairplayd, Apple’s DRM enforcer.

HOST_AMFID_PORT(18) iOS: Used by amfid and AppleMobileFileIntegrity, 

which enforces code signatures and entitlements.

HOST_GSSD_PORT(19) As of Lion: Used by GSS. Before Lion, this was a task-level 

special port (#8). Unused in iOS.

The special ports can be requested from launchd, in the MachServices key, by specifying the Host
SpecialPort key. Listing 10-11 shows the sandboxd requesting the HOST_SEATBELT_PORT on OS X 
or iOS:

LISTING 10-11: Requesting HOST_SEATBELT_PORT (#14) in com.apple.sandboxd.plist

...
     <key>MachServices</key>
     <dict>
           <key>com.apple.sandboxd</key>
           <dict>
                   <key>HostSpecialPort</key>
                   <integer>14</integer>
           </dict>
     </dict> 
...

Whether they are kernel-provided or external, the same function can be used to retrieve special 
ports, however. This function is host_get_special_port(), which is defi ned in osfmk/kern/
host.c, and shown in Listing 10-12:

LISTING 10-12: host_get_special_port(), as defi ned in osfmk/kern/host.c

host_get_special_port(
        host_priv_t     host_priv,
        __unused int    node,

continues
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        int             id,
        ipc_port_t      *portp)
{
        ipc_port_t      port;

        if (host_priv == HOST_PRIV_NULL ||
            id == HOST_SECURITY_PORT || id > HOST_MAX_SPECIAL_PORT || id < 0)
                return KERN_INVALID_ARGUMENT;

        host_lock(host_priv);
        port = realhost.special[id];
        *portp = ipc_port_copy_send(port);
        host_unlock(host_priv);

        return KERN_SUCCESS;
}

Host Privileged Operations
The most important special host port is the host’s privileged port. It is a prerequisite to quite a few 
operations, which are deemed “privileged” and require accessing special ports. While anyone is able 
to get the host port by means of mach_host_self(), discussed previously, only privileged users can 
get the privileged port by calling host_get_host_priv_port(), shown in Listing 10-8. Once the 
port is obtained, it can be used in any of the calls shown in Table 10-16, defi ned in <mach/host_
priv.h>:

TABLE 10-16: Functions in <mach/host_priv.h>

MACH HOST_PRIV API USED FOR

host_get_boot_info

(host_priv_t            host_priv,

 kernel_boot_info_t      info)

Return boot information in info. Actual imple-

mentation is machine-specifi c. OS X’s (in osfmk/

i386/AT386/model_dep.c) returns an empty 

string.

host_reboot 

 (host_priv_t            hp,

 int                     options);

Reboot host, according to options. 

Currently defi ned are HOST_REBOOT_

DEBUGGER (to invoke the kernel debugger) and 

HOST_REBOOT_UPSDELAY.

This function calls on the Platform Expert to do 

the actual work of halting/restarting.

host_priv_statistics

 (host_priv_t            host_priv,

 host_flavor_t           flavor,

 host_info_t             host_info_out,

 mach_msg_type_number_t *hioCnt);

In OS X and iOS, same as host_statistics.

LISTING 10-12 (continued)
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host_default_memory_manager

 (host_priv_t             host_priv,

 memory_object_default_t *def,

 memory_object_cluster_size_t

 cluster_size);

Register default pager task (discussed in 

Chapter 12).

[mach]_vm_wire

(host_priv_t             host_priv,

 vm_map_t task,

 vm_address_t address,

 vm_size_t size,

 vm_prot_t desired);

Change residency of memory range (address—

address+size) resident in VM map of task 

according to desired. This is very similar to 

mlock(2). To unwire (munlock(2)), specify 

VM_PROT_NONE in fl ags.

Note, that while BSD treats mlock(2) as a per-

process API, in Mach this is a host level call, as it 

aff ects the entire machine’s physical memory.

This calls mach_vm_wire() internally.

vm_allocate_cpm

 (host_priv_t host_priv,

 vm_map_t task,

 vm_address_t *address,

 vm_size_t size,

 int flags);

Experimental API meant to off er a contiguous 

physical memory allocator.

host_processors

 (host_t host_priv,

 processor_port_array_t pl,

 mach_msg_type_number_t *count);

Populate array of count processors ports pl on 

the system.

host_get_clock_control

 (host_priv host_priv,

 clock_id_t    id,

 clock_ctrl_t  control);

Set control to be a handle (send right) to the 

clock specifi ed by id. 

kmod_create(...);

kmod_destroy(...);

kmod_control(...);

Mach kernel module support. No longer sup-

ported in either OS X or iOS.

host_get_special_port

 (host_priv_t             host_priv,

 int                      node,

 int                      which,

 mach_port_t             *port);

Get or set any of the host’s special ports 

(discussed in the last section).

continues
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MACH HOST_PRIV API USED FOR

host_set_special_port

 (host_priv_t host_priv,

        int which,

        mach_port_t port);

host_set_exception_ports

 (host_priv_t host_priv,

 exception_mask_t exc_mask,

 exception_mask_array_t masks,

 mach_msg_type_number_t *mCnt,

 exception_handler_array_t old,

 exception_behavior_array_t oldb,

 exception_flavor_array_t oldf);

host_get_exception_ports (...);

host_swap_exception_ports (...);

Get/Set or swap between the host-level excep-

tion handlers (discussed under “Exceptions,” in 

the next chapter).

host_load_symbol_table As noted in the sources — “This has never and 

will never be supported on Mac OS X” (would 

have loaded the kernel symbol table into kernel 

debugger). 

host_processor_sets

 (host_priv_t host_priv,                  

 processor_set_name_port_array_t 

 processor_set_name_list,              

 mach_msg_type_number_t *count);

Similar to host_processor but get array of 

processor_sets. Processor sets are primitives 

that group the machine’s CPUs. They are dis-

cussed later.

set_dp_control_port

 (host_priv_t host,

 mach_port_t control_port);

 get_dp_control_port

 (host_priv_t host,

 mach_port_t *contorl_port);

Get or set Dynamic Pager control port. The 

Dynamic Pager is discussed in Chapter 12.

host_set_UNDServer

  (host_priv_t     host_priv,

 UNDServerRef    server)

host_get_UNDServer

 (host_priv_t     host_priv,

 UNDServerRef    *server)

Wrappers over host_get/set_user_notifi-

cation_port. Used in XNU’s UNC mechanisms 

to export kernel messages to user mode. This is 

a deprecated API which allows drivers and other 

kernel-level code to display GUI prompts.

TABLE 10-16 (continued)
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kext_request

(host_priv_t hp,

 uint32_t clientLogSpec,

 vm_offset_t requestIn,

 mach_msg_type_number_t reqLen,

 vm_offset_t * responseOut,

 mach_msg_type_number_t * lenOut,

 vm_offset_t * logDataOut,

 mach_msg_type_number_t * ldoLen,

 kern_return_t          * op_result)

Apple-specifi c extension to support Kernel Exten-

sions — used in place of the kmod_* api to 

insert kexts. The message is used to load, query 

and remove kernel extensions (described in 

detail in Chapter 18). 

An interesting observation is that, for a privileged user, the host’s “regular” and “privileged” port 
appear alike (i.e. comparing the port numbers reveals they are very much the same), whereas the 
unprivileged user gets a “0” when attempting to retrieve the privileged port.

Experiment: Rebooting Using the Privileged Port
The following (very simple) listing (Listing 10-13) shows how to reboot the system if access to the 
privileged port can be obtained. Naturally, you will need root permissions to access this (but do be 
careful, as — unlike the OS X GUI, which gives you a chance to change your mind — this will halt/
restart your machine without warning):

LISTING 10-13: Rebooting the system, via the host API

#include <mach/mach.h>
void main()
{

    mach_port_t     h = mach_host_self();
    mach_port_t     hp;
    kern_return_t   rc;

    /* request host privileged port. Will only work if we are root   */
    /* Note, this is the "right" way of doing it.. but we could also */
    /* use a short cut, left as an exercise                          */
    rc = host_get_host_priv_port (h, &hp);

    if (rc == KERN_SUCCESS) host_reboot(hp, 0);

        // If we are root, this won't even be reached.
        printf ("sorry\n");

}

As an exercise, run the preceding program, but change the hp parameter — the privileged host port 
— to h. What happens? What does that tell you about the necessity of host_get_host_priv_port?
Validate this by examining host_priv_self() and host_self() in osfmk/kern/host.c.
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Clock Object
The Mach kernel provides a simple abstraction of a “clock” object. This object is used for timekeep-
ing and alarms, and is defi ned in osfmk/kern/clock.h, shown in Listing 10-14:

LISTING 10-14: The clock object, from osfmk/kern/clock.h

struct  clock_ops {
        int             (*c_config)(void);              /* configuration */
        int             (*c_init)(void);                /* initialize */
        kern_return_t   (*c_gettime)(   /* get time */
                                mach_timespec_t                 *cur_time);
        kern_return_t   (*c_getattr)(   /* get attributes */
                         clock_flavor_t           flavor,
                         clock_attr_t             attr,
                         mach_msg_type_number_t  *count); 

struct  clock {
        clock_ops_t                     cl_ops;                 /* operations list */
        struct ipc_port         *cl_service;    /* service port */
        struct ipc_port         *cl_control;    /* control port */
};

As can be seen from the listing, the clock is a simple object with two ports — one for “service” func-
tions (e.g. time-telling or alarms), and the other for “control” functions, such as setting the time of day.

From user mode, however, the visible API is fairly basic, as detailed in <mach/clock.h>, and shown 
in Table 10-17:

TABLE 10-17: The Mach user-mode visible APIs

MACH CLOCK API USED FOR

clock_get_time

 (clock_serv_t clock_serv,

 mach_timespec_t *cur_time);

Get the current time from clock_serv into cur_time.

clock_get_attributes 

 (clock_serv_t clock_serv,

 clock_flavor_t flavor,

 clock_attr_t clock_attr,

 mach_msg_type_number_t  

*clock_attrCnt);

Get clock clock_serv’s attribute, of selected fl avor, 

into clock_attr_t.

Currently defi ned attributes:

CLOCK_GET_TIME_RES

CLOCK_ALARM_CURRES

CLOCK_ALARM_MINRES CLOCK_ALARM_MAXRES.

clock_alarm

 (clock_serv_t clock_serv,

 alarm_type_t alarm_type,

 mach_timespec_t alarm_time,

 clock_reply_t alarm_port);

Request an alarm message from theclock_serv. This 

message will be sent to thealarm_port at the speci-

fi ed alarm_time. Time is specifi ed as TIME_ABSO-

LUTE or TIME_RELATIVE.
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In all the API functions shown, the client fi rst obtains a handle to the clock (clock_serv_t) by call-
ing host_get_clock_service. Mach exposes two types of clocks — SYSTEM_CLOCK/REALTIME_
CLOCK, and CALENDAR_CLOCK (SYSTEM and REALTIME are both the same clock) — and the caller 
needs to specify the clock type as the second parameter to this call. Whereas SYSTEM_CLOCK keeps 
the time since boot, CALENDAR_CLOCK is synchronized with the machine’s RTC to provide both the 
time and date.

Internally, however, there are quite a few clock functions. XNU provides a newer API than the orig-
inal Mach and has deprecated the original API to “old” status, so if you examine the sources you 
are likely to see references to both the new functions and their “old” counterparts.

All the clocks are created as part of the kernel’s initialization process. The clocks are defi ned in a 
global clock_list (in osfmk/i386/AT386/conf.c):

struct  clock   clock_list[] = {

        /* SYSTEM_CLOCK */
        { &sysclk_ops, 0, 0 },

        /* CALENDAR_CLOCK */
        { &calend_ops, 0, 0 }
};
int     clock_count = sizeof(clock_list) / sizeof(clock_list[0]);

The clock_init()function, called from kernel_bootstrap(), falls through to clock_oldinit()
and initializes each clock in the list by calling its c_init function. For the system clock, which is 
the important abstraction of the system’s timer tick, the sysclk_ops are defi ned in osfmk/kern/
clock_oldops.c, as follows:

struct clock_ops sysclk_ops = {
        rtclock_config,              // the c_config member   
        rtclock_init,                // the c_init member
        rtclock_gettime,
        rtclock_getattr,
};

The kernel_bootstrap_thread() then calls clock_service_create(), which in turn calls ipc_
clock_init() to create each clock’s service and confi guration port, and then ipc_clock_enable()
to enable IPC access to it. Finally, it wraps up by allocating a global alarm_zone called “alarms,” 
which is used for clock alarms.

Clock alarms are really just wrappers over the well-known Mach messages. These alarms, defi ned in 
osfmk/kern/clock_oldops.c, are stored in a linked list of struct alarm, defi ned as follows:

struct alarm {
        struct  alarm   *al_next;                       /* next alarm in chain */
        struct  alarm   *al_prev;                       /* previous alarm in chain */
        int                al_status;                   /* alarm status */
        mach_timespec_t al_time;                        /* alarm time */
        struct {                                        /* message alarm data */
                int             type;                   /* alarm type */
                ipc_port_t       port;                  /* alarm port */
                mach_msg_type_name_t   port_type;       /* alarm port type */
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                struct  clock   *clock;                 /* alarm clock */
                void                    *data;          /* alarm data */
        } al_alrm;

The clock_alarm function, callable from both user and kernel mode, validates the arguments 
and sets up an alarm by obtaining the global alarm_lock, allocating a new alarm object from the 
alarm_zone, copying the arguments to it, and posting it using post_alarm, which in turn calls set_
alarm to set the alarm_expire_timer to the time specifi ed in the alarm, converted to absolute time.

When the alarm expires, the clock thread wakes up into alarm_done, which delivers the alarm to 
the al_port specifi ed — i.e. sends a message by calling clock_alarm_reply().

The most important internal API clocks offer is clock_deadline_for_periodic_event: This API 
is used by schedulers (discussed next chapter) to set up a recurring notifi cation — and thus, a call-
back into the scheduler, which keeps the system’s multitasking engine running. 

Processor Object
The processor object represents a logical CPU or core present on the machine. In today’s multicore 
default architecture, each core is considered to be a CPU, and Mach does not make the distinction 
between the two terms. Processors are assigned to processor sets, which are logical groupings of one 
or more processors.

The processor is a simple abstraction of a CPU, used by Mach for basic operations, such as starting 
and stopping a CPU or core and dispatching threads to it. The structure is defi ned in osfmk/kern/
processor.h and is fairly well commented, as shown in Listing 10-15:

LISTING 10-15: The processor object, from osfmk/kern/processor.h

struct processor {
        queue_chain_t  processor_queue;/* idle/active queue link,
                                        * MUST remain the first element */
        int            state;          /* one of OFFLINE,SHUTDOWN,START,INACTIVE,
                                        * IDLE, DISPATCHING, or RUNNING */
        struct thread *active_thread,  /* thread running on processor */
                      *next_thread,    /* next thread when dispatched */
                      *idle_thread;    /* this processor's idle thread. */

        processor_set_t         processor_set;  /* assigned set (discussed later) */
        int                     current_pri;    /* priority of current thread */
        sched_mode_t            current_thmode; /* sched mode of current thread */
        int                     cpu_id;         /* platform numeric id */

        timer_call_data_t       quantum_timer;  /* timer for quantum expiration */
        uint64_t                quantum_end;    /* time when current quantum ends */
        uint64_t                last_dispatch;  /* time of last dispatch */

        uint64_t                deadline;      /* current deadline */
        int                     timeslice;     /* quanta before timeslice ends */
  
       /* Specific thread schedulers defined in the mach kernel require expanding this
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        * structure with their own fields—this will be explained next chapter
        */
#if defined(CONFIG_SCHED_TRADITIONAL) || defined(CONFIG_SCHED_FIXEDPRIORITY)
        struct run_queue        runq;                   /* runq for this processor */
        int                     runq_bound_count; /* # of threads bound to this 
                                                   * processor */
#endif
#if defined(CONFIG_SCHED_GRRR)
        struct grrr_run_queue   grrr_runq;      /* Group Ratio Round-Robin runq */
#endif
        processor_meta_t        processor_meta; /* meta data on processor */

        struct ipc_port *       processor_self; /* port for operations */

        processor_t             processor_list; /* all existing processors */
        processor_data_t        processor_data; /* per-processor data */
};

Most important in the processor object is the runq element, which is the processor’s local queue of 
threads that have been dispatched to it. Run queues are discussed in Chapter 11.

The processors on a host can be obtained by a call to host_processors(), which will return an array 
of processor_t objects. Mach defi nes the operations shown in Table 10-18, on the processor_t:

TABLE 10-18: Processor operations

MACH PROCESSOR API USED TO

processor_start (processor_t p); Start the processor or core p. Cannot start an 

already active processor.

processor_exit(processor_t p) Exit (shut down) the processor or core p.

processor_info(processor_t p, 

processor_flavor_t flavor,

host_t *host,

processor_info_t pi_out,

mach_msg_type_number_t *outCnt)

Return information on processor according to 

flavor requested. Flavors supported are 

PROCESSOR_BASIC_INFO and

PROCESSOR_CPU_LOAD_INFO.

Information will be placed into pi_out and 

will be outCnt bytes.

processor_control(processor_t p,

processor_info_t cmd,

mach_msg_type_number_t cnt);

Pass cnt commands (in cmd) to processor p. 

Not implemented on Intel architectures.

processor_assign (processor_t p, 

processor_set_t new_set, boolean_t wait);
Assign processor p  to processor set 

new_set, possibly waiting until the process 

queue is empty.

processor_get_assignment (processor_t p, 

processor_set_name_t *pset);
Get the pset the current processor is 

assigned to.
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The APIs in the preceding table are simple, yet quite powerful. They can be used, among other 
things, to display detailed information about the processors in the system, as in the next experiment.

Experiment: Fun with Mach processor_ts
Listing 10-16 demonstrates using processor_info() to display the information on the current pro-
cessors in a system:

LISTING 10-16: Using processor_info()

#include <stdio.h>           // fprintf, stderr, and friends
#include <mach/mach.h>       // Generic Mach stuff, like kern_return_t
#include <mach/processor.h>  // For the processor_* APIs
#include <mach-o/arch.h>     // For NXArch

int main(void) {

        kern_return_t    kr;
        host_name_port_t host = mach_host_self();
        host_priv_t      host_priv;
        processor_port_array_t processors;
        natural_t              count, infoCount;
        processor_basic_info_data_t basicInfo;
        int                     p;

        // First, get the privileged port – otherwise we can't query the processors
 
        kr = host_get_host_priv_port(host, &host_priv); 

        if (kr != KERN_SUCCESS) 
          { fprintf(stderr, "host_get_host_priv_port %d (you should be root)", kr);
          exit(1); }

        // If we're here, we can try to get the process array
        kr = host_processors (host_priv, &processors, &count);
        if (kr != KERN_SUCCESS) { fprintf(stderr, "host_processors %d", kr); exit(1); }

        // And if we got this far, we have it! Iterate, then:
        for (p = 0; p < count; p++)
        {
                // infoCount is in/out, so we have to reset it on each iteration
                infoCount = PROCESSOR_BASIC_INFO_COUNT;

                // Ask for BASIC_INFO. It is left to the reader as an exercise
                // to implement CPU_LOAD_INFO
                kr = processor_info (processors[p],        // the processor_t
                                     PROCESSOR_BASIC_INFO, // Information requested
                                    &host,                 // The host
                 (processor_info_t) &basicInfo,            // Information returned here
                                    &infoCount);           // Sizeof(basicInfo) (in/out)

          
                if (kr != KERN_SUCCESS) {fprintf(stderr, "?!\n"); exit(3);}
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                // Dump to screen. We use NX APIs to resolve the cpu type and subtype
                printf("%s processor %s in slot %d\n",
                     (basicInfo.is_master ? "Master" : "Slave"),
                     NXGetArchInfoFromCpuType(basicInfo.cpu_type,
                                              basicInfo.cpu_subtype)->description,
                     basicInfo.slot_num);
        }
}

As suggested in the comments, you are encouraged to adapt this exercise to PROCESSOR_CPU_LOAD_
INFO. If you look at <mach/processor_info.h>, you will see references to two other informational 
types: PROCESSOR_PM_REGS_INFO and PROCESSOR_TEMPERATURE — but neither are supported on 
Intel or ARM. ARM supports the PROCESSOR_CPU_STAT fl avor, which allows obtaining processor 
exception statistics (defi ned in <mach/arm/processor_info.h>, in the iPhone SDK).

Another interesting feature enabled by the Mach APIs is the starting and stopping (shutting down) 
of processors on-the-fl y. Consider the following program (Listing 10-17):

LISTING 10-17: A program to stop all but the main processor on a system

#include <mach/mach.h>
#include <stdio.h>
void main(int argc, char **argv)
{
  
  host_t        myhost = mach_host_self();
  host_t        mypriv;

  int           proc;
  kern_return_t kr;
  processor_port_array_t processorPorts;
  mach_msg_type_number_t        procCount;

  kr = host_get_host_priv_port(myhost,&mypriv);
  if (kr ) { printf ("host_get_host_priv_port: %d\n", kr); exit(1);}

   // Get the ports of all the processors in the system
   kr = host_processors (mypriv,         // host_t host,
                        &processorPorts, // processor_port_array_t *out_processor_ports,
                        &procCount);     // mach_msg_type_number_t *out_processorCnt
                        
   if (kr) { printf ("host_processors: %d\n", kr); exit(2);}

   printf ("Got %d processors . kr %d\n", procCount, kr);
   for (proc = 0 ; proc <procCount; proc++)
        { 
                printf ("Processor %d\n", processorPorts[proc]);
                // you really want to leave proc 0 active!
                if (proc > 0) { processor_exit(processorPorts[proc]);
                                if (kr != KERN_SUCCESS) printf ("Unable to stop %d\n",
                                proc);}
        }
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You can easily adapt the following program (on a multi-core CPU or SMP system) to selectively dis-
able or enable processors. It’s worth stating the obvious — that it is possible to modify this program 
to stop all processors in your system, which will require you to reboot. Be warned.

Processor Set Object
One or more processor_t objects can be grouped into a processor set, or a pset (this is the proces-
sor_set member of the processor object), shown in Listing 10-18. A processor set is a logically 
coupled group of processors and allows Mach to effi ciently scale to SMP architectures by using the 
set as a container for related processors. 

Processors in a pset are maintained in one of two queues: an active_queue, for those proces-
sors that are currently executing threads, and an idle_queue, for processors that are idle (i.e. 
executing the idle_thread). The processor set also has a global run_queue (pset_runq), which 
contains threads to execute on the set’s processors. Like all other objects, processor sets expose 
ports: pset_self, — for operations on the set, and pset_name_self, used for operations on the 
processor set.

LISTING 10-18: processor_set defi nition (from osfmk/kern/processor.h)

struct processor_set {
        queue_head_t            active_queue;   /* active processors */
        queue_head_t            idle_queue;     /* idle processors */

        processor_t                     low_pri, low_count;

        int                                     online_processor_count;

        int                                     cpu_set_low, cpu_set_hi;
        int                                     cpu_set_count;

        decl_simple_lock_data(,sched_lock)      /* lock for above */

#if defined(CONFIG_SCHED_TRADITIONAL) || defined(CONFIG_SCHED_FIXEDPRIORITY)
        struct run_queue        pset_runq;      /* runq for this processor set */
        int                                     pset_runq_bound_count;
                /* # of threads in runq bound to any processor in pset */
#endif

        struct ipc_port *       pset_self;      /* port for operations */
        struct ipc_port *       pset_name_self; /* port for information */

        processor_set_t         pset_list;      /* chain of associated psets */
        pset_node_t             node;
}
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The operations provided by the processor set are shown in Table 9-10:

TABLE 9-10: Processor set APIs

MACH PROCESSOR SET API USAGE

processor_set_statistics

(processor_set_name_t    pset,

 processor_set_flavor_t  flavor,

 processor_set_info_t    info_out,

 mach_msg_type_number_t *ioCnt)

Get processor set statistics of flavor about 

pset into info_out, with size ioCnt.

processor_set_destroy 

(processor_set_t         pset);
Destroy the processor set pset. This function 

is not implemented (returns KERN_FAILURE). 

There is also a processor_set_create in 

kernel mode, though it, too, is 

unimplemented.

processor_set_max_priority 

(processor_set_t         pset, 

int max_prio,

boolean_t change_threads);

Set maximum priority on new threads 

assigned to pset. If change_threads is true, 

also set maximum priority for existing threads.

processor_set_policy_enable 

(processor_set_t         pset, 

int                      policy);

Apply policy on processor set pset.

processor_set_policy_disable

(processor_set_t         pset,

int                      policy,

boolean_t                change_threads);

Disable policy on processor set pset. 

Optionally, change thread behavior due to 

disablement.

processor_set_tasks

(processor_set_t set,

 task_array_t *task_list,

mach_msg_type_number_t  *tlCnt);

Obtain the tlCnt tasks in the  task_list 

array on processor_set.

processor_set_threads

(processor_set_t set,

thread_act_array_t      *thread_list,

mach_msg_type_number_t  *tlCnt);

Same, for threads. Apparently intentionally 

unsupported on iOS.

continues
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MACH PROCESSOR SET API USAGE

kern_return_t 

processor_set_policy_control

(processor_set_t         pset,

 processor_set_flavor_t  flavor,

 processor_set_info_t    info,

 mach_msg_type_number_t  infoCnt,

 boolean_t               change);

Change policy on processor set.

Unsupported (returns 

KERN_INVALID_ARGUMENT).

kern_return_t 

processor_set_stack_usage

(processor_set_t pset,

 unsigned               *ltotal,

 vm_size_t              *space,

 vm_size_t              *resident,

 vm_size_t              *maxusage,

 vm_offset_t            *maxstack);

In debug kernels only.

processor_set_info

(processor_set_name_t    pset,

int                      flavor,

host_t                  *host,

processor_set_info_t     iout,

mach_msg_type_number_t  *ioCnt);

Obtain info of type flavor on pset. 

flavor can be one of many constants 

defi ned in <mach/processor_info.h>.

The processor_set_tasks and processor_set_threads are both internally implemented over an 
internal function, processor_set_things, which abstracts the array argument and takes an addi-
tional argument, “type,” which specifi es THING_TASK or THING_THREAD.

Experiment: Listing Tasks on the Current Processor Set
As an example, consider the following ps type process listing program (Listing 10-19), which 
takes a processor set object, and obtains a list of its tasks. For now, both tasks and threads are left 
as opaque structures. The listing will be developed in the next chapter, however, to further show 
detailed information for the tasks and threads.

TABLE 9-10 (continued)
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LISTING 10-19: Displaying the tasks on the default processor set

void main(int argc, char **argv)
{
  
  host_t                 myhost = mach_host_self();
  mach_port_t            psDefault;
  mach_port_t            psDefault_control;
  task_array_t           tasks; 
  mach_msg_type_number_t numTasks;
  int                    t;                  // a task index 
  
  kern_return_t kr;

  // Get default processor set
  kr = processor_set_default(myhost, &psDefault);

  // Request control port
  kr = host_processor_set_priv(myhost, psDefault, &psDefault_control); 
  if (kr != KERN_SUCCESS) { fprintf(stderr, "host_processor_set_priv - %d", kr); 
  exit(1); }

  // Get tasks. Note this behaves a bit differently on iOS.
  // On OS X, you can also get the threads directly (processor_set_threads)
  
  kr = processor_set_tasks(psDefault_control, &tasks, &numTasks); 
  if (kr != KERN_SUCCESS) { fprintf(stderr,"processor_set_tasks - %d\n",kr); exit(2); }

  // Iterate through tasks. For now, just display the task ports and their PIDs
  // We use "pid_for_task" to map a task port to its BSD process identifier 

  for (t = 0; t < numTasks; i++)
        {
                int pid;
                pid_for_task(tasks[t], &pid);
                printf("Task: %d pid: %d\n", tasks[i],pid);

            // Stay tuned: 
            // In the next chapter, this experiment will be expanded to list task 
            // information, as well as the threads of each task

}
}

The output of the program in this example differs slightly in iOS: proces-
sor_set_tasks will not return PID 0 (the kernel_task), as getting a handle to 
the kernel_task can open up potentially dangerous access to the kernel memory 
maps. Likewise, processor_set_threads is (apparently intentionally) not sup-
ported. There is therefore no legitimate way (jailbreaks not withstanding) to 
obtain kernel thread or memory handles from user mode — which is just the 
way Apple would like to keep it. 
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SUMMARY

This chapter describes the basic principles of Mach. Ports are the underlying primitives on top of 
which virtually all other objects in Mach are implemented. Messages are passed between ports, 
and allow performing various operations on them. Additionally, messages enable IPC, a feature 
which is built into the Mach kernel, and extended using the synchronization primitives — spinlocks, 
mutexes, semaphores, and lock sets.

Mach also defi nes basic machine-level primitives — the host, clock, processor and processor_set
abstractions. These are essential in performing various system-related tasks, primarily scheduling, 
which is covered in the next chapter.
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11
Tempus Fugit — Mach 
Scheduling

Based on the core primitives discussed in Chapter 10, Mach provides many important fea-
tures, almost all of which revolve around the management of system resources — hardware 
devices, virtual memory, and the CPU itself. Managing the CPU is also referred to as schedul-
ing, because it refers to the operation of deciding which of the many programs vying for the 
CPU will get to use it and when. 

This chapter focuses on scheduling. It is divided into the following sections:

 ‰ Scheduling Primitives: Describes tasks and threads, and the application programming 
interfaces (APIs) they offer.

 ‰ Scheduling: Discusses high-level concepts of scheduling, such as the algorithms.

 ‰ Asynchronous Software Traps (ASTs): Explains Mach’s concept of ASTs, which are 
instrumental in scheduling.

 ‰ Exception Handling: Discusses Mach’s unique approach to hardware 
traps — exceptions.

 ‰ Scheduling Algorithms: Details Mach’s default thread scheduler, as well as the schedul-
ing framework, which allows extending or replacing the scheduler with other algorithm 
implementations.

SCHEDULING PRIMITIVES

Like all modern operating systems, the kernel sees threads, not processes. Mach, in fact, does 
not recognize the notion of a process as UN*X does. It employs a slightly different approach, 
using the concepts of the more lightweight tasks rather than processes. Classic UN*X uses a 
top-down approach, in which the basic object is a process that is further divided into one or 
more threads. Mach, on the other hand, uses a bottom-up approach in which the fundamental 
unit is a thread, and one or more threads are contained in a task.
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Threads
A thread defi nes the atomic unit of execution in Mach. It represents the underlying machine register 
state and various scheduling statistics. Defi ned in kern/thread.h, a thread is designed to provide 
the maximum information required for scheduling, while maintaining the lowest overhead possible. 
(See Listing 11-1.)

LISTING 11-1: The Mach thread structure, from osfmk/kern/thread.h

struct thread {
        /*
         *      NOTE:   The runq field in the thread structure has an unusual
         *      locking protocol.  If its value is PROCESSOR_NULL, then it is
         *      locked by the thread_lock, but if its value is something else
         *      then it is locked by the associated run queue lock.
         *
         *      When the thread is on a wait queue, these first three fields
         *      are treated as an unofficial union with a wait_queue_element.
         *      If you change these, you must change that definition as well
         *      (kern/wait_queue.h).
         */
        /* Items examined often, modified infrequently */
        queue_chain_t   links;                  /* run/wait queue links */
        processor_t             runq;           /* run queue assignment */
        wait_queue_t    wait_queue;             /* wait queue we are currently on */
        event64_t               wait_event;     /* wait queue event */
        integer_t               options;        /* options set by thread itself */
#define TH_OPT_INTMASK          0x03            /* interrupt / abort level */
#define TH_OPT_VMPRIV           0x04            /* may allocate reserved memory */
#define TH_OPT_DTRACE           0x08            /* executing under dtrace_probe */
#define TH_OPT_SYSTEM_CRITICAL  0x10            /* Thread must always be allowed to run - 
even under heavy load */

        /* Data updated during assert_wait/thread_wakeup */
        decl_simple_lock_data(,sched_lock)      /* scheduling lock (thread_lock()) */
        decl_simple_lock_data(,wake_lock)       /* for thread stop / wait (wake_lock()) 
*/
        boolean_t               wake_active;    /* wake event on stop */
        int                     at_safe_point;  /* thread_abort_safely allowed */
        ast_t                   reason;                 /* why we blocked */
        wait_result_t           wait_result;    /* outcome of wait -
                                                 * may be examined by this thread
                                                 * WITHOUT locking */
        thread_continue_t       continuation;   /* continue here next dispatch */
        void                            *parameter;             /* continuation parameter 
*/

        /* Data updated/used in thread_invoke */
    struct funnel_lock  *funnel_lock;           /* Non-reentrancy funnel */
    int                  funnel_state;
#define TH_FN_OWNED             0x1                             /* we own the funnel */
#define TH_FN_REFUNNEL          0x2                             /* re-acquire funnel on 
dispatch */
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        vm_offset_t             kernel_stack;      /* current kernel stack */
        vm_offset_t             reserved_stack;    /* reserved kernel stack */

        /* Thread state: */
        int                     state;
/*
 *      Thread states [bits or'ed]
 */
#define TH_WAIT                 0x01               /* queued for waiting */
#define TH_SUSP                 0x02               /* stopped or requested to stop */
#define TH_RUN                  0x04               /* running or on runq */
#define TH_UNINT              0x08              /* waiting uninteruptibly
#define TH_TERMINATE    0x10                       /* halted at termination */
#define TH_TERMINATE2   0x20                       /* added to termination queue */

#define TH_IDLE                 0x80               /* idling processor */

        /* Scheduling information */
        sched_mode_t            sched_mode;        /* scheduling mode */
        sched_mode_t            saved_mode;        /* saved mode during forced mode 
demotion */
  // Bitmask of miscellaneous TH_SFLAG bits
        unsigned int            sched_flags;       /* current flag bits */
        integer_t               sched_pri;         /* scheduled (current) priority */
        integer_t               priority;          /* base priority */
        integer_t               max_priority;      /* max base priority */
        integer_t               task_priority;     /* copy of task base priority */
        integer_t               promotions;        /* level of promotion */
        integer_t               pending_promoter_index;
        void                    *pending_promoter[2];
        integer_t               importance;        /* task-relative importance */

                                                   /* real-time parameters */
        struct {                                   /* see mach/thread_policy.h */
        uint32_t                period;
        uint32_t                computation;
        uint32_t                constraint;
        boolean_t               preemptible;

        uint64_t                deadline;
        }                       realtime;

        uint32_t                was_promoted_on_wakeup;
        uint32_t                current_quantum;   /* duration of current quantum */
        uint64_t  last_run_time;                   /* time when thread was switched away 
from */
        uint64_t  last_quantum_refill_time;        /* time current_quantum refilled after 
expiration */

  /* Data used during setrun/dispatch */
        timer_data_t   system_timer;               /* system mode timer */
        processor_t    bound_processor;            /* bound to a processor? */
        processor_t    last_processor;             /* processor last dispatched on */

continues
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        processor_t    chosen_processor;         /* Where we want to run this thread */

        /* Fail-safe computation since last unblock or qualifying yield */
        uint64_t       computation_metered;
        uint64_t       computation_epoch;
        uint64_t       safe_release;             /* when to release fail-safe */

        /* Call out from scheduler */
        void           (*sched_call)( int                     type,
                                     thread_t        thread);
#if defined(CONFIG_SCHED_PROTO)
        uint32_t       runqueue_generation;      /* last time runqueue was drained */
#endif

        /* Statistics and timesharing calculations */
#if defined(CONFIG_SCHED_TRADITIONAL)
        natural_t    sched_stamp;                /* last scheduler tick */
        natural_t    sched_usage;                /* timesharing cpu usage [sched] */
        natural_t    pri_shift;                  /* usage -> priority from pset */
        natural_t    cpu_usage;                  /* instrumented cpu usage [%cpu] */
        natural_t    cpu_delta;                  /* accumulated cpu_usage delta */
#endif
        uint32_t     c_switch;                   /* total context switches */
        uint32_t     p_switch;                   /* total processor switches */
        uint32_t     ps_switch;                  /* total pset switches */

        /* Timing data structures */
        timer_data_t user_timer;                 /* user mode timer */
        uint64_t     user_timer_save;            /* saved user timer value */
        uint64_t     system_timer_save;          /* saved system timer value */
        uint64_t     vtimer_user_save;           /* saved values for vtimers */
        uint64_t     vtimer_prof_save;
        uint64_t     vtimer_rlim_save;

        /* Timed wait expiration */
        timer_call_data_t       wait_timer;
        integer_t               wait_timer_active;
        boolean_t               wait_timer_is_set;

        /* Priority depression expiration */
        timer_call_data_t       depress_timer;
        integer_t               depress_timer_active;
        /* Processor/cache affinity
         * - affinity_threads links task threads with the same affinity set
         */
        affinity_set_t          affinity_set;
        queue_chain_t           affinity_threads;

        /* Various bits of stashed state */
        union {
           struct {
             mach_msg_return_t       state;      /* receive state */
             ipc_object_t            object;     /* object received on */

LISTING 11-1 (continued)
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             mach_vm_address_t     msg_addr;         /* receive buffer pointer */
             mach_msg_size_t       msize;            /* max size for recvd msg */
             mach_msg_option_t     option;           /* options for receive */
             mach_msg_size_t       slist_size;       /* scatter list size */
             mach_port_name_t      receiver_name;    /* the receive port name */
             struct ipc_kmsg       *kmsg;            /* received message */
             mach_port_seqno_t     seqno;            /* seqno of recvd message */
             mach_msg_continue_t   continuation;
               } receive;
           struct {
             struct semaphore      *waitsemaphore;   /* semaphore ref */
             struct semaphore      *signalsemaphore; /* semaphore ref */
             int                   options;          /* semaphore options */
             kern_return_t         result;           /* primary result */
             mach_msg_continue_t continuation;
                  } sema;
           struct {
             int                   option;           /* switch option */
                  } swtch;
           int                     misc;             /* catch-all for other state */
        } saved;
/* IPC data structures */
        struct ipc_kmsg_queue ith_messages;
        mach_port_t ith_rpc_reply;                   /* reply port for kernel RPCs */

        /* Ast/Halt data structures */
        vm_offset_t                recover;          /* page fault recover(copyin/out) */
        uint32_t                   ref_count;        /* number of references to me */

        queue_chain_t              threads;          /* global list of all threads */

        /* Activation */
        queue_chain_t                   task_threads;

        /*** Machine-dependent state ***/
        struct machine_thread   machine;

        /* Task membership */
        struct task                             *task;
        vm_map_t                                map;

        decl_lck_mtx_data(,mutex)

        /* Kernel holds on this thread  */
        int                                             suspend_count;

        /* User level suspensions */
        int                                             user_stop_count;

        /* Pending thread ast(s) */
        ast_t                                   ast;

        /* Miscellaneous bits guarded by mutex */
        uint32_t   active:1,                         /* Thread is active and has not been
        terminated */

continues
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                   started:1,                    /* Thread has been started after
                                                    creation */
                   static_param:1,               /* Disallow policy parameter changes */
                   :0;

        /* Return Handers */
        struct ReturnHandler {
               struct ReturnHandler    *next;
               void            (*handler)(
                     struct ReturnHandler            *rh,
                     struct thread                           *thread);
                } *handlers, special_handler;

        /* Ports associated with this thread */
        struct ipc_port             *ith_self;   /* not a right, doesn't hold ref */
        struct ipc_port             *ith_sself;  /* a send right */
        struct exception_action exc_actions[EXC_TYPES_COUNT];

        /* Owned ulocks (a lock set element) */
        queue_head_t                    held_ulocks;

#ifdef  MACH_BSD
        // this field links us from the Mach layer to the BSD layer
        void                                    *uthread;
#endif

#if CONFIG_DTRACE
                uint32_t t_dtrace_predcache;/* DTrace per thread predicate value hint */
                int64_t t_dtrace_tracing;        /* Thread time under dtrace_probe() */
                int64_t t_dtrace_vtime;
#endif

  uint32_t    t_page_creation_count;
                clock_sec_t t_page_creation_time;

                uint32_t t_chud;                 /* CHUD flags, used for Shark */

                integer_t mutex_count;           /* total count of locks held */

                uint64_t thread_id;              /*system wide unique thread-id*/

        /* Statistics accumulated per-thread and aggregated per-task */
        uint32_t                syscalls_unix;
        uint32_t                syscalls_mach;
        zinfo_usage_store_t     tkm_private;     /* private kernel memory allocs/frees */
        zinfo_usage_store_t     tkm_shared;      /* shared kernel memory allocs/frees */
        struct process_policy ext_actionstate;   /* externally applied actions */
        struct process_policy ext_policystate;   /* externally defined process policy 
states*/
        struct process_policy actionstate;       /* self applied acions */
        struct process_policy policystate;       /* process wide policy states */
};

LISTING 11-1 (continued)
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The preceding structure is huge, and therefore most threads are created by cloning off of a generic 
template, which fi lls the structure with default values. This template is the thread_template
defi ned in osfmk/thread/thread.c. It is fi lled by thread_bootstrap(), which is called as part of 
the kernel boot (in i386_init), and is copied off of in thread_create_internal(), which imple-
ments the thread_create() Mach API.

One particular fi eld of interest is the uthread member, which is a void pointer to the BSD layer. 
This member points to a BSD user thread, which is opaque to Mach, and remains opaque, as it will 
in this chapter (although we will explore it in Chapter 13, which unravels the BSD layer).

Notice that while it is full of miscellaneous fi elds, a thread contains no actual resource references. 
Mach defi nes the task as a thread container, and it is the task level in which resources are handled. 
A thread has access (via ports) to only the resources and memory allocated in its containing task.

Tasks
A task serves as a container object, under which the virtual memory space and resources are man-
aged. These resources are devices and other handles. The resources are further abstracted by ports. 
Sharing resources thus becomes a matter of providing access to their corresponding ports. 

Strictly speaking, a task is not what other operating systems call a process, as Mach, being a micro-
kernel, provides no process logic, only the bare bones implementation. In the BSD model, however, 
a straightforward 1:1 mapping exists between the two concepts, and every BSD (and therefore, OS 
X) process has an underlying Mach task object associated with it. This mapping is accomplished by 
specifying an opaque pointer, bsd_info, to which Mach remains entirely oblivious. Mach represents 
the kernel by a task as well, (globally referred to as the kernel_task) though this task has no cor-
responding PID (technically, it can be thought of as PID 0).

The task is a relatively lightweight structure (at least, compared to the threads), defi ned in osfmk/
kern/task.h as shown in Listing 11-2. The noteworthy fi elds are emphasized.

LISTING 11-2 The Mach task structure, from osfmk/kern/task.h

struct task {
        /* Synchronization/destruction information */

decl_lck_mtx_data(,lock)        /* Task's lock */
        uint32_t        ref_count;      /* Number of references to me */
        boolean_t       active;         /* Task has not been terminated */
        boolean_t       halting;        /* Task is being halted */

        /* Miscellaneous */
vm_map_t        map; /* Address space description */

        queue_chain_t   tasks;          /* global list of tasks */
        void            *user_data;     /* Arbitrary data settable via IPC */

        /* Threads in this task */
queue_head_t            threads;   // Threads, in FIFO queue

        processor_set_t         pset_hint;
        struct affinity_space   *affinity_space;

continues
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int           thread_count;        // #threads in threads queue 
        uint32_t      active_thread_count; // #active threads (<=thread_count)
        int                     suspend_count;  /* Internal scheduling only */

        /* User-visible scheduling information */
        integer_t               user_stop_count;   /* outstanding stops */

        task_role_t             role;

        integer_t               priority;      /* base priority for threads */
        integer_t               max_priority;/* maximum priority for threads */

        /* Task security and audit tokens */
        security_token_t sec_token;
        audit_token_t   audit_token;
  /* Statistics */
        uint64_t                total_user_time;  /* terminated threads only */
        uint64_t                total_system_time;

        /* Virtual timers */
        uint32_t                vtimers;

        /* IPC structures */
        decl_lck_mtx_data(,itk_lock_data)
        struct ipc_port *itk_self;      /* not a right, doesn't hold ref */
        struct ipc_port *itk_nself;     /* not a right, doesn't hold ref */
        struct ipc_port *itk_sself;     /* a send right */
        struct exception_action exc_actions[EXC_TYPES_COUNT];
                                        /* a send right each valid element  */
        struct ipc_port *itk_host;      /* a send right */
        struct ipc_port *itk_bootstrap; /* a send right */
        struct ipc_port *itk_seatbelt;  /* a send right */
        struct ipc_port *itk_gssd;      /* yet another send right */
        struct ipc_port *itk_task_access; /* and another send right */ 
        struct ipc_port *itk_registered[TASK_PORT_REGISTER_MAX];
                                        /* all send rights */

// remember that each task has its own private port namespace.
        // (Namespaces are explained in the section dealing with Mach IPC)
        struct ipc_space *itk_space; // task local port namespace

        /* Synchronizer ownership information */
        queue_head_t    semaphore_list;       /* list of owned semaphores   */
        queue_head_t    lock_set_list;        /* list of owned lock sets    */
        int             semaphores_owned;     /* number of semaphores owned */
        int             lock_sets_owned;      /* number of lock sets owned  */

        /* Ledgers */ // These are likely different in Mountain Lion and iOS
        struct ipc_port *wired_ledger_port;
        struct ipc_port *paged_ledger_port;
        unsigned int     priv_flags;          /* privilege resource flags */

LISTING 11-2 (continued)
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        MACHINE_TASK

// If you've ever wondered where top(1) gets its info – this is it
// These fields can be queried with task_info flavor 2 (task_events_info)

        integer_t faults;              /* faults counter */
        integer_t pageins;             /* pageins counter */
        integer_t cow_faults;          /* copy on write fault counter */
        integer_t messages_sent;       /* messages sent counter */
        integer_t messages_received;   /* messages received counter */
        integer_t syscalls_mach;       /* mach system call counter */
        integer_t syscalls_unix;       /* unix system call counter */
        uint32_t  c_switch;            /* total context switches */
        uint32_t  p_switch;            /* total processor switches */
        uint32_t  ps_switch;           /* total pset switches */

        zinfo_usage_store_t tkm_private;/* private kmem alloc/free stats */
        zinfo_usage_store_t tkm_shared; /* shared kmem alloc/free stats  */
        zinfo_usage_t tkm_zinfo;        /* per-task, per-zone usage statistics */

#ifdef  MACH_BSD 
        void *bsd_info;   // MAPPING TO BSD PROCESS OBJECT
#endif
        struct vm_shared_region         *shared_region;
        uint32_t taskFeatures[2]; // 64-bit addressing/register flags.

        mach_vm_address_t  all_image_info_addr; /* dyld __all_image_info  */
mach_vm_size_t          all_image_info_size; /* section location and size */

#if CONFIG_MACF_MACH
        ipc_labelh_t label;
#endif

#if CONFIG_COUNTERS
#define TASK_PMC_FLAG 0x1       /* Bit in "t_chud" signifying PMC interest */
        uint32_t t_chud;                /* CHUD flags, used for Shark */
#endif

        process_policy_t ext_actionstate;  /* externally applied actions */
        process_policy_t ext_policystate;  /* ext. def. process policy states*/
        process_policy_t actionstate;      /* self applied acions */
        process_policy_t policystate;      /* process wide policy states */

        uint64_t rsu_controldata[TASK_POLICY_RESOURCE_USAGE_COUNT];

        vm_extmod_statistics_data_t     extmod_statistics;
};

On its own, a task has no life. Its raison d’être is to serve as a container of one or more threads. 
The threads in a task are maintained in the threads member, which is a queue containing thread_
count threads, as highlighted in the preceding code.

Additionally, most of the operations on a task are really just iterations of the same corresponding 
thread operations for all threads in the given task. For example, to set the task priority, task_
priority() is implemented as in Listing 11-3:
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LISTING 11-3: The implementation of task_priority(), from osfmk/kern/task_policy.c

static void task_priority(
        task_t                  task,
        integer_t               priority,
        integer_t               max_priority)
{
        thread_t                thread;

        task->max_priority = max_priority;

        if (priority > task->max_priority)
                priority = task->max_priority;
        else
        if (priority < MINPRI)
                priority = MINPRI;

        task->priority = priority;

        queue_iterate(&task->threads, thread, thread_t, task_threads) {
                thread_mtx_lock(thread);

                if (thread->active)
                        thread_task_priority(thread, priority, max_priority);

                thread_mtx_unlock(thread);
        }
}

The queue_iterate macro loops over the queue_head_t. Each thread, in turn, is locked. If it is 
active, its priority can be set. The thread can then be unlocked.

Ledgers
Ledgers provide a mechanism to charge quotas and set limits for Mach tasks. This is somewhat 
similar to the getrlimit(2)/setrlimit(2) system calls offered by POSIX, but offers more 
advanced resource throttling capabilties: Resources  (typically CPU and memory) can be transferred 
in between ledgers, and exceeding their limits can result in a Mach exception, callback execution, or 
thread block until the ledger is “refi lled”.

Ledgers have been around since the inception of Mach, but have only recently been implemented in 
XNU. In fact, they will only be supported offi cially as of Mountain Lion, having made their debut 
in iOS. Though the Lion kernel sources have an osfmk/kern/ledger.c fi le, the comment on the fi le 
admits it is nothing more than a “half-hearted attempt” for “dysfunctional” ledgers, providing only 
the root_wired_ledger and root_paged_ledger ledgers. Both are initialized (by ledger_init) to 
be unlimited (LEDGER_ITEM_INFINITY), so the system keeps track, but does not enforce any limits 
on its wired and paged memory. 

A new BSD System call, #373 (aptly named ledger) is currently undocumented, but supported in 
iOS and will likely be supported in Mountain Lion. The call is a BSD bridge to the underlying Mach 
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APIs of ledger_info(), ledger_entry_info(), and ledger_template_info() for codes of 0, 
1, or 2, respectively. It remains, at the time of writing, undocumented. This will enable ledgers to be 
used on a per-task basis, allowing for greater control over system resources such as CPU and mem-
ory, which are especially scarce and precious on iOS.

Task and Thread APIs
The rich structures of task_t and thread_t presented so far are in some ways too rich — the struc-
tures are huge and contain a plethora of detail that most kernel APIs do not need to access, at least 
not directly. Another problem is that the structures may change in between kernel versions (and, 
in fact, are slightly different in the closed source iOS). Fortunately, Mach contains an assortment 
of API calls that you can use on tasks and threads in an object-oriented manner, leaving the actual 
implementations opaque. You can and should use specifi c accessor functions for the important 
fi elds, such as get_bsdthread_info(), get_bsdtask_info(), get_bsdthreadtask_info(), and 
so on. Additionally, you can use APIs corresponding to task and thread “methods,” discussed next 
in this section.

Getting the Current Task and Thread
At any given point, the kernel must be able to get the handle of the current task and 
current thread. It accomplishes this via two functions: current_task() and current_thread(),
respectively. 

Although the functions are defi ned in osfmk/kern/task.h and osfmk/kern/thread.h, respec-
tively, they are really wrappers over architecture-dependent variants. Both functions are macros 
over corresponding “fast” functions. The trick involved in both operations is in getting current_
thread(), i.e., current_thread_fast(), because the current_task() can be retrieved by simply 
returning the task fi eld of the current thread (and, in fact, current_task_fast() is defi ned over the 
current_thread() -> task). 

If you look through the XNU sources, you will fi nd that current_thread() (in osfmk/i386/
machine_routines.c and as a macro in osfmk/i386/cpu_data.h) wraps current_thread_
fast(), which in turn is #defined over get_active_thread(). The implementation of get_
active_thread() wraps CPU_DATA_GET(cpu_active_thread,thread_t), which is inline assembly 
(relying on the GS register). In iOS, the assembly call relies on the ARM coprocessor’s special regis-
ter c13. If you’re interested in the low level specifi cs, refer to the appendix in this book.

Task APIs
Mach provides a complete subsystem of functions to handle tasks. The APIs exposed to user mode 
are in <mach/task.h>, which includes an architecture header (i.e., <mach/i386/task.h>, or <mach/
arm/task.h>. The latter can be found in the iPhoneOS5.0.sdk directories). Table 11-1 details these 
functions, which are (with the exception of mach_task_self()) all implemented over Mach mes-
sages (MIG subsystem 3400):

c11.indd 399c11.indd   399 9/29/2012 5:43:01 PM9/29/2012   5:43:01 PM



400 x CHAPTER 11  TEMPUS FUGIT — MACH SCHEDULING

TABLE 11-1: Task APIs available in user mode

MACH TASK APIS USED FOR

mach_task_self() Obtains task’s port, with names of send rights. 

task_create(task_t target_task,

ledger_array_t ledgers,

mach_msg_type_number_t,

boolean_t,

task_t *child_task);

Creates child_task from target_task. Initializes with 

array of ledgersCnt ledgers. Inherits parent’s memory 

task if set. Otherwise, task starts with no memory, and 

memory must be set up manually.

This call is no longer supported. Its body, 

task_create_internal, is still visible privately from 

the kernel to support BSD’s fork() and cloneproc().

task_terminate(task_t

               target_task)
Terminates the existing task.

task_threads(task_t target_task,

  thread_act_array_t *act_list,

  mach_msg_type_number_t *alCnt);

Enumerates all threads in target_task into array, 

act_list, containing alCnt entries of the ports of 

target task. 

task_info(task_name_t,

      task_flavor_t kern/

thread.h,

      task_info_t,

      task_info_out,

      mach_msg_type_number_t 

     *task_info_outCnt)

task_set_info(task_t,

       task_flavor_t flavor,

       task_info_t,

       mach_msg_type_number_t);

Queries information on task_name_t. Information is of 

type task_flavor_t.

See the following experiment for an example of fl avors.

set_info similarly sets information on task.

task_suspend(task_t target_task);

task_resume(task_t target_task);
Suspends or resumes target_task, done by enumer-

ating all the task threads and calling thread_suspend/

resume directly

Calling task_suspend increments the suspension count; 

task_resume decrements it. A task will be runnable if its 

suspend count is 0.

Wrapped by the BSD layer’s pid_suspend and pid_

resume system calls.

get_special_port

(task_t task,

  int which_port,

  mach_port_t *special_port)

Get special port for a given task. A corresponding set_

special_port is available as well.
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MACH TASK APIS USED FOR

task_set_exception_ports

(task_t task,

 exception_mask_t,

 mach_port_t,

 exception_behavior_t,

 thread_state_flavor_t);

task_get_exception_ports

(task_t,

 exception_mask_t,

 exception_mask_array_t,

 mach_msg_type_number_t *,

 exception_handler_array_t,

 exception_behavior_array_t,

 exception_flavor_array_t);

Queries, sets, or swaps between task-level exception 

ports, which are where Mach exception messages will be 

sent.

task_policy_set (task_t,

        task_policy_flavor_t,

        task_policy_t,

       mach_msg_type_number_t);

task_policy_get(task_t,

        task_policy_flavor_t,

        task_policy_t,

      mach_msg_type_number_t *,

       boolean_t *);

Set or get scheduling policy for a task (i.e., all its threads).

task_sample (task_t task,

        mach_port_t reply);
Periodically samples and saves IP (Intel) or PC (ARM) of 

task. Removed.

task_get_state(task_t task,

      thread_state_flavor_t,

      thread_state_t,

      mach_msg_type_number_t *);

Gets the state of a task. A corresponding task_set_

state() is also available.

Additionally, internal APIs — unexposed to user mode — include the ones in Table 11-2.

TABLE 11-2: Mach kernel private task APIs

MACH TASK APIS USED FOR 

task_priority (task_t,

       Integer_t  priority,

       Integer_t  max);

Sets priority of task_t to be priority, and sets maximum 

allowed priority to be max. This is achieved by iterating all 

threads and calling thread_task_priority.

task_importance(task_t,

        integer_t importance)
Wrapper over task_priority(), used when 

renice(2)ing processes. Eff ectively calls the former with 

importance + BASEPRI_DEFAULT. 
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The task port is the path to complete and unfettered control over the task, its 
threads and its resources. The APIs shown in the preceding tables are but a frac-
tion of the operations Mach allows on a task. The next section shows how a 
task’s threads can be manipulated externally, and Chapter 12 will show even 
more APIs (and a companion tool), which enable breaching and defi ling the 
task’s sanctum sanctorum — its virtual memory image. 

These capabilities become immeasurably more potent when applied to the 
kernel_task., allowing a privileged user to peek and modify kernel memory. 
It is for this reason that Apple goes to great lengths to prevent user mode access 
to the kernel_task in iOS, and why jailbreaking patches usually target these 
protections fi rst.

Experiment: Using the Task APIs
The preceding chapter showed you the host_info() function, and it’s only natural to expect similar 
functions to exist for tasks and threads. The chapter ended with a demonstration of enumerating tasks 
on the default processor set, but did not really show anything other than the corresponding PIDs.

Using task_info it is possible to extend Listing 10-19 to also provide highly detailed information 
about tasks. The second parameter to task_info is the task_flavor_t, specifying the type of 
information requested. The fl avors are somewhat volatile, and their changes from version to version 
can make it hard for third parties to rely on them for diagnostics. But the risk of recompiling (and 
dealing with insipid, obsoleted constants) is well worth the cornucopia of diagnostic information 
provided by these APIs. It is through task_info that top(1) gets all the highly detailed and Mach-
specifi c information it displays if its terminal window size permits. 

Listing 11-4 shows how task_info can be used to query some of the fl avors supported in Lion and 
later:

LISTING 11-4: Using task_info with various fl avors from Lion and iOS

doTaskInfo(task_t Task)
{
  // proper code does validation checking on calls. 
  // Omitted here for brevity
  mach_msg_type_number_t infoSize;

  char infoBuf[TASK_INFO_MAX];
  struct task_basic_info_64     *tbi;
  struct task_events_info       *tei;

#if LION // Will also work on iOS 5.x or later
  struct task_kernelmemory_info *tkmi;
  struct task_extmod_info       *texi;
  struct vm_extmod_statistics *ves;
#endif

  kern_return_t kr;
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  infoSize = TASK_INFO_MAX;
  kr = task_info(Task,
                 TASK_BASIC_INFO_64,
                 (task_info_t)infoBuf,
                 &infoSize);
  tbi = (struct task_basic_info_64 *) infoBuf;

  printf ("\tSuspend Count: %d\n", tbi->suspend_count);
  printf ("\tMemory:  %dM virtual, %dK resident\n",

tbi->virtual_size / (1024 * 1024), tbi->resident_size / 1024);
  printf ("\tSystem/User Time: %ld/%ld\n", tbi->system_time, tbi->user_time);

  infoSize = TASK_INFO_MAX; // need to reset (this is an in/out parameter)
kr = task_info(Task,
                 TASK_EVENTS_INFO,
                (task_info_t)infoBuf,
                 &infoSize);

  tei = (struct task_events_info *) infoBuf;
  printf("Faults: %d, Page-Ins: %d, COW: %d\n", tei->faults, tei->pageins,

tei->cow_faults);
  printf ("Messages: %d sent, %d received\n", tei->messages_sent, tei->messages_received);
  printf ("Syscalls: %d Mach, %d UNIX\n", tei->syscalls_mach, tei->syscalls_unix);

#if LION
  infoSize = TASK_INFO_MAX; // need to reset (this is an in/out parameter)
  kr = task_info(Task,
                 TASK_KERNELMEMORY_INFO, // defined as of Lion
                (task_info_t)infoBuf,
                 &infoSize);

  tkmi = (struct task_kernelmemory_info *) infoBuf;

  printf ("Kernel memory: Private: %dK allocated %dK freed,  Shared: %dK allocated, %dK 
freed\n",
        tkmi->total_palloc/ 1024, tkmi->total_pfree  /1024,
        tkmi->total_salloc/ 1024, tkmi->total_sfree  /1024);

// Lion and later offer the VM external modification information – really 
// useful to detect all sorts of attacks certain tools (like gdb and corerupt, presented
// in the next chapter) utlize to debug/trace processes 

  infoSize = TASK_INFO_MAX; // need to reset (this is an in/out parameter)
  kr = task_info(Task,
                 TASK_EXTMOD_INFO, // defined as of Lion
                (task_info_t)infoBuf,
                 &infoSize);
if (kr == KERN_SUCCESS) {printf("--OK\n");}
  texi = (struct vm_extmod_statistics *) infoBuf;
  ves = &(texi->extmod_statistics);

  if (ves->task_for_pid_count)
    { printf ("Task has been looked up %ld times\n", ves->task_for_pid_count); }
  if (ves->task_for_pid_caller_count)
    { printf ("Task has looked up others %ld times\n", ves->task_for_pid_caller_count); }

continues
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  if (ves->thread_creation_count || ves->thread_set_state_count)
   {  printf ("Task has been tampered with\n"); }
  if (ves->thread_creation_caller_count || ves->thread_set_state_caller_count)
   {  printf ("Task has tampered with others\n"); }

#endif
}

Plugging this function into Listing 10-19 is straightforward. In a manner similar to this experiment, 
you can drill down further to the thread level by using the thread_info() function. This is but one 
of many thread APIs, discussed next.

Thread APIs
Much as it does for tasks, Mach provides a rich API for thread management. Most of these achieve 
the same functionality as the task APIs. Indeed, the task APIs often just iterate over the list of 
threads in each task, and apply these in turn. As can be expected, these calls (aside from mach_
thread_self) are implemented over Mach messages (and generated by MIG subsystem 3600). Table 
11-3 lists the thread APIs. All return a kern_return_t, unless otherwise noted.

TABLE 11-3: Mach Thread APIs

MACH THREAD API USED FOR

thread_t mach_thread_self() Sends rights to thread’s kernel port.

thread_terminate(thread_t thread) Terminates self.

[thread/act]_[get/set]_state

(thread_t                 thread,

 int                      flavor,

 thread_state_t           state,

 mach_msg_type_number_t  *count)

Gets/sets thread context. The act functions disallow 

getting/setting the current thread, but otherwise fall 

through to the thread functions.

The thread_state_t is platform dependent. In OS X, 

it is an x86_thread_state_t (either 32- or 64-bit). In 

iOS, it is an arm_thread_state_t.

thread_suspend(thread_t thread)

thread_resume (thread_t thread)
Suspends or resumes thread by incrementing/decre-

menting the suspend count. The thread may only exe-

cute if both its suspend count and its containing task 

suspend count is zero.

thread_abort[_safely]

(thread_t thread)
Destroys another thread.

thread_depress_abort

(thread_t thread)
Cancel thread depression (forced lowering of priority).

LISTING 11-4 (continued)
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MACH THREAD API USED FOR

thread_[get/set]_special_port

  (thread_act_t thread,

      int    which_port,

   thread    special_port);

Gets or sets one of several special ports for the thread. 

The only special port supported in XNU is 

THREAD_KERNEL_PORT.

thread_info(thread_t thread,

     thread_flavor_t flavor,

thread_info_t  tinfo_out,

mach_msg_type_number_t *ti_count)

Queries information on thread according to flavor,

and returns it in buff er specifi ed by tinfo_out, which is 

ti_count bytes long.

GDB uses this call when you use the info task or 

info thread command.

thread_get_exception_ports

thread_set_exception_ports

thread_swap_exception_ports

Queries, sets, or swaps between exception ports, which 

are where Mach exception messages will be sent. Dis-

cussed later under Exceptions.

thread_policy/thread_set_policy Obsolete; has been replaced by thread_policy_get/

set.

thread_policy_[get/set]

 ( thread_t thread,

  thread_policy_flavor_t  flavor,

  thread_policy_t   policy_info,

  mach_msg_type_number_t  *count,

  boolean_t   *get_default))

Threads scheduling policy.

thread_policy_set is defi ned similarly (no get_

default_argument, and count is an in parameter).

thread_sample Deprecated and removed. On CMU Mach, this allows 

the periodic sampling of a thread’s program counter 

(IP/PC) and receiving of the samples using a receive_

samples API.

etap_trace_thread Deprecated and removed in Leopard and later. Similar 

to thread_sample(), above, this once enabled tracing 

a thread using ETAP buff ers.

thread_assign(thread_t thread,

  processor_set_t new_pset))

thread_assign_default

   (thread_t thread)

Assigns (=affine) thread to a particular processor set 

new_pset, or the default one. Unsupported (returns 

KERN_FAILURE).

thread_get_assigment

(thread_t         thread,

   processor_set_t *pset)

Returns current thread assignment to processor set 

(CPU affi  nity). Always returns a reference to pset0, the 

default processor set.

As an exercise, you might want to extend the listing in the previous experiment to also list threads. 
This can be done by calling task_threads() on the task port, and thread_info (with THREAD_
BASIC_INFO) on each of the thread ports returned. 
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In-Kernel Thread APIs
Mach provides a set of thread control functions, which are accessible in kernel mode only. These are 
declared in osfmk/kern/sched_prim.h:, and a subset of them is shown in Table 11-4:

TABLE 11-4 Some of the kernel-internal thread control functions in osfmk/kern/sched_prim.h

MACH THREAD API USED FOR

wait_result_t assert_wait

(event_t event,

wait_interrupt_t interruptible)

Adds the current thread to the wait queue on event. 

The event is converted to a wait queue by a wait_

hash() function. 

wait_result_t

assert_wait_deadline(

event_t event,

wait_interrupt_t interruptible,

uint64_t deadline)

As assert_wait(), but allows specifi cation of a 

future deadline. 

kern_return_t thread_wakeup_prim

(event_t event,

boolean_t one_thread,

wait_result_t result);

Wakes up a thread (one_thread = TRUE) or threads 

waiting on specifi ed event. This function wraps 

around thread_wakeup_prim_internal, which in 

turn calls wait_queue_wakeup_[one|all].

This function is usually wrapped by one of these 

macros:

thread_wakeup(x)

thread_wakeup_with_result(x,z)

thread_wakeup_one(x)

wait_result_t thread_block_reason(

thread_continue_t continuation,

void *parameter,

ast_t reason);

Blocks the current thread, yielding CPU execution, 

and optionally setting a continuation routine and 

a parameter for it. May specify AST in reason.

This function is usually wrapped by one of 

lightweight:

thread_block(thread_continue_t , specifying a 

NULL parameter, and AST_NONE for reason

thread_block_parameter (thread_

continue_t, void *), specifying AST_NONE for 

reason. 

thread_bind

   (processor_t processor);
Sets the CPU affi  nity of this thread to processor or 

removes affi  nity (PROCESSOR_NULL);.

int thread_run

(thread_t self,

thread_continue_t continuation,

void *parameter,

thread_t new_thread)

Performs thread handoff ; the current thread yields 

CPU execution (parameters are the same as 

thread_block_parameter), but transfers control 

directly to new_thread. Used in handoff s (described 

later in this chapter). 

This function wraps around thread_invoke(), 

which is internal to the scheduler. 
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MACH THREAD API USED FOR

kern_return_t thread_go

(thread_t thread,

 wait_result_t wresult);

Unblock a thread and dispatch it. Used when remov-

ing a thread from a wait queue.

void thread_setrun

(thread_t thread,

integer_t options)

Dispatch a thread, to its bound (affi  ned processor) or 

any (preferably idle) processor.

Calls realtime_setrun for realtime threads, 

fairshare_setrun for fairshare_setrun, or 

processor_setrun.

Thread Creation
Of particular interest is the thread creation API. Since a thread cannot exist outside of some con-
taining task, this API is defi ned in task.h (more specifi cally,  <mach/ARCH/task.h>, and imple-
mented in osfmk/kern/thread.c. (See Table 11-5.)

TABLE 11-5: Thread creation functions

MACH THREAD API USED FOR

thread_create

  (task_t parent,

   thread_act_t *child_act)

Create a thread in the parent task, and return it in 

child_act.

thread_create_running

(task_t parent,

thread_state_flavor_t flavor,

thread_state_t new_state,

mach_msg_type_number_t nsCnt,

thread_act_t *child_act);

Create a thread in the parent task, and initialize its 

state to new_state. The thread_state_t is depen-

dent on machine architecture (and changes between 

i386, x86_64, and ARM)

Notice the fi rst argument: task_t is the task in which the thread will be created. This means that, 
from Mach’s perspective, a thread can be created in any task the user has the corresponding port 
for. This makes the Mach infrastructure extremely fl exible in enabling the creation of remote 
threads.1

Thus, when one uses pthread_create(), an underlying API call to Mach’s thread_create ensues, 
with mach_task_self() as the fi rst argument (followed by pthread house keeping, and bsdthread_
create for the corresponding BSD thread, as will be discussed in Chapter 13). But if you have 
another task’s port, you can inject threads into it. In the right (or wrong?) hands, uncanny function-
ality can be achieved, as injected threads obtain full access to the virtual memory of their task, and 
are extremely hard to detect. 

1Windows also has a powerful thread creation API — using the CreateRemoteThread() along with 
WriteProcessMemoryEx(), which enables the user to write to the memory of any process whose handle 
can be obtained. Mainstream UNIX and Linux, however, do not have this ability, and threads may only be 
created locally.
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Creating a thread is simple, but having it do something meaningful is a tad more 
complicated. For starters, you would usually need to “bring your own code,”  
using the mach_vm_write API (presented in the next chapter) to inject code into 
the foreign task. Then, you would need to use thread_set_state (shown in 
Table 11-3) to initialize the thread’s register state to load and run the supplied 
code. All of these, however, are mere minutiae, as these APIs will all work once 
you have the task port at hand. 

SCHEDULING

No matter how many CPUs (or cores) a system has, threads will surely outnumber them. The kernel, 
therefore, has to be able to “juggle” threads on CPUs, allowing as many threads to execute in what 
the human user would perceive as concurrency. In actuality, however, because each core can only 
execute one thread at a time, the kernel has to be able to perform context switches between threads 
by preempting one thread and replacing it with another. 

Multiprocessing is now commonplace, and various technologies — hyperthread-
ing, multiple cores, and multiple processors — can be used at the hardware 
level to enable this functionality. Although each technology has its plusses and 
minuses, from the kernel’s perspective, no real difference exists among the 
aforementioned technologies. Whether you use hyperthreading, two cores, or 
two distinct CPUs, most operating systems see two logical processors.

With the processor-set abstraction, Mach is somewhat better suited than Linux or Windows and 
can actually manage cores of the same CPU in the same pset and separate CPUs in separate psets.
The rest of this section makes no distinction between the cases, and uses the term CPU for a logical, 
rather than a physical CPU.

The High-Level View
Recall that context switching is the task of freezing a given thread by recording its register state into 
a predefi ned memory location. The register state is machine-specifi c (because each machine type has 
a different set of registers). After a thread is preempted, the CPU registers can be loaded with the 
saved thread of another thread, thereby resuming its execution. 

Irrespective of operating system, the basic idea of thread scheduling is the same: A thread executes 
in the CPU (or core, or hyperthread) for as long as it needs. Executing refers to the fact that the CPU 
registers are fi lled with the thread state, and — as a consequence — the code the CPU is executing 
(by EIP/RIP or PC) is the code of the thread function in question. This execution goes on until one 
of the following occurs:

 ‰ The thread terminates. Most threads eventually reach an endpoint. Either the thread function 
returns, or the thread calls pthread_exit(), which will call thread_terminate.
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 ‰ The thread voluntarily gives up the CPU. Even though the thread work is not done, because 
of waiting for a resource or other blocking operation, continuing at this point in time makes 
no sense. The thread therefore willingly requests the scheduler to context switch to some other 
thread. The thread also needs to inform the system on when it would like to return to the CPU, 
either by specifying some deadline (in clock ticks) or requesting notifi cation of some event.

 ‰ An external interrupt interferes with thread execution, directing the CPU to save the thread 
register state and immediately execute the interrupt-handling code. Since the thread is inter-
rupted anyway, before returning from the interrupt-handling code the system invokes the 
scheduler to fi gure out whether a non-voluntary context switch (i.e., preemption) is in order. 
Such a non-voluntary context switch is the result of the thread’s timeslice (quantum) expir-
ing, or some other, higher priority thread waking up.

Priorities
All threads are equal, but some threads are more equal than others. In other words, threads are assigned 
specifi c priorities, which directly affect the frequency with which they are scheduled. Every operating 
system provides a range of such priorities: Windows has 32, Linux has 140, and Mach has 128.

The scheduler’s osfmk/kern/sched.h fi le illustrates the usage of priority ranges (which Apple calls 
“priority bands”) with ASCII graphics. Figure 11-1 presents it with more modern graphics:

Setting the kernel threads’ minimum priority to 80, high above that of user mode, ensures that 
kernel and system-housekeeping will preempt user mode threads, except for very specifi c cases as 
shown in the next experiment.

Experiment: Viewing Priorities using ps -l
Using ps(1)’s OS X specifi c -l switch will display both the priority and nice values of every (-e)
running processes. First, try this on OS X, and optionally use tr(1) and cut(1), as shown in Out-
put 11-1 to isolate the priority, nice value, and command names. Note that in OS X the depressed 
processes are reniced:

OUTPUT 11-1 Using ps –l to show process priorities and nice values in OS X 

morpheus@Minion(~)$ ps -le | tr -s ' '  | cut -d' ' -f7,8,16 | sort -n
PRI NI CMD
4   17 …/Frameworks/Metadata.framework/Versions/A/Support/mdworker
4   17 …/CoreServices.framework/Frameworks/Metadata.framework/Versions/A/Support/mdworker
4   20 /usr/sbin/netbiosd
23  10 /usr/libexec/warmd
23  10 /usr/libexec/warmd_agent
31  0  -bash 
…
54  0 /System/Library/CoreServices/loginwindow.app/Contents/MacOS/loginwindow
…
63  0 /sbin/dynamic_pager
63  0 /usr/libexec/hidd
97  0 /Applications/iTunes.app/Contents/MacOS/iTunes ; iTunes is real time
(TIME_CONSTRAINT)
97  0 /usr/sbin/coreaudiod ; along with the audiod
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127
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95
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79

64

63

52

51

31

11

0

10

MINPRI_KERNEL

MAXPRI_RESERVED

MINPRI_RESERVED

MAXPRI_USER

BASEPRI_DEFAULT

MINPRI, MINPRI_USER

0

+20

+20

nice(2) range

BASEPRI_REALTIME

MAXPRI_KERNEL

46

47

48BASEPRI_CONTROL

BASEPRI_FOREGROUND

BASEPRI_BACKGROUND

The top 25% of the priority range (MAXPRI - (NRQS / 4) + 1)
is allocated for real time threads. Mach defines RTQUEUES here,
which are threads whose policy is set to TH_MODE_REALTIME.

The next 12.5% of the priority range (BASEPRI_REALTIME - (NRQS / 8))
is allocated for kernel priorities

The next 12.5% of the priority range (MINPRI_KERNEL - (NRQS / 8))
is reserved for system

Whever is left after MINPRI_RESERVED (i.e., 50% of the priority range)
is left for the plebes

Tasks given roles of CONTROL, FOREGROUND
or BACKGROUND (discussed under “The Mach
Implementation,” later) enjoy a higher priority
than the default

FIGURE 11-1: The Mach priority ranges
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Next, if you try the same command on iOS, you will reveal some interesting patterns: The back-
grounded apps are all depressed with a priority of 4, the currently active app has a priority of 47, 
SpringBoard is at 63, and configd is actually real time. These priorities are all policy enforced, 
however, as the nice values for all these processes are 0. (See Output 11-2.)

OUTPUT 11-2: Using ps –l to show process priorities and nice values in iOS

root@Padishah (~)# ps -le | tr -s ' ' | cut -d' ' -f7,8,16 | sort -n 
PRI NI CMD
4   0  /Applications/AppStore.app/AppStore                                 ;
4   0  /Applications/MobileNotes.app/MobileNotes                           ; Background 
4   0  /Applications/MobileSafari.app/MobileSafari                         ; 
4   0  /Applications/Preferences.app/Preferences                           ;
Applications
4   0  /var/mobile/Applications/0CCB04C5-8D03-4D07-8A0F-E4112F5B6534/WSJ.app/WSJ 
..
31  0 -sh
31  0 /sbin/launchd
31  0 /usr/sbin/fairplayd.K95
31  0 /usr/sbin/syslogd
..
47  0 /Applications/MobileMusicPlayer.app/MobileMusicPlayer
47  0 /System/Library/PrivateFrameworks/IAP.framework/Support/iapd
47 /System/Library/PrivateFrameworks/MediaRemote.framework/Support/mediaremoted
47 /usr/libexec/locationd
47 /var/mobile/Applications/70565622-4490-4174-9531-EEB7B7C5715D/Remote.app/Remote ; 
foreground
47 /usr/libexec/locationd
61 /usr/sbin/mediaserverd
63 /System/Library/CoreServices/SpringBoard.app/SpringBoard ; Always at MAXPRI_USER
97 /usr/libexec/configd ; Real time

Priority Shifts
Assigning thread priorities is a start, but often those priorities need to be adjusted during runtime. 
Mach dynamically tweaks the priorities of each thread, to accommodate for the thread’s CPU usage, 
and overall system load. Threads can thus “drift” in their priority bands, decreasing in priority 
when using the CPU too much, and increasing in priority if not getting enough CPU. The traditional 
scheduler uses a macro (do_priority_computation) and a function (update_priority), both in 
osfmk/kern/priority.c, to update dynamically the priority of each thread. The macro toggles the 
thread priority by subtracting its calculated sched_usage (calculated by the function, accounting for 
CPU usage delta), shifted by a pri_shift value. The pri_shift value is derived from the global 
sched_pri_shift, which is updated by the scheduler regularly as part of the system load calcula-
tion in compute_averages (osfmk/kern/sched_average.c). Subtracting the CPU usage delta 
effectively penalizes those threads with high CPU usage (positive usage delta detracts from priority) 
and rewards those of low CPU usage (negative usage delta adds to priority).

To make sure the thread’s CPU usage doesn’t accrue to the point where the penalty is lethal, the 
update_priority function gradually ages CPU usage. It makes use of a sched_decay_shifts
structure, to simulate the exponential decay of the CPU usage by a factor of (58)n, defi ned in the 
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same fi le as shown in Listing 11-5. By using the pre-computed shift values, the computation can be 
sped up, expressed in terms of bit shifts and additions, which take less time than multiplication:

LISTING 11-5 The sched_decay_shifts structure in osfmk/kern/priority.c

/*
 *      Define shifts for simulating (5/8) ** n
 *
 *      Shift structures for holding update shifts.  Actual computation
 *      is  usage = (usage >> shift1) +/- (usage >> abs(shift2))  where the
 *      +/- is determined by the sign of shift 2.
 */
struct shift_data {
        int     shift1;
        int     shift2;
};

// The shift data at index i provides the approximation of (5/8)i
#define SCHED_DECAY_TICKS       32
static struct shift_data        sched_decay_shifts[SCHED_DECAY_TICKS] = {
        {1,1},{1,3},{1,-3},{2,-7},{3,5},{3,-5},{4,-8},{5,7},
        {5,-7},{6,-10},{7,10},{7,-9},{8,-11},{9,12},{9,-11},{10,-13},
        {11,14},{11,-13},{12,-15},{13,17},{13,-15},{14,-17},{15,19},{16,18},
        {16,-19},{17,22},{18,20},{18,-20},{19,26},{20,22},{20,-22},{21,-27}
};

Mach also supports “throttling” and defi nes MAXPRI_THROTTLE(4) for priority throttled processes, 
i.e., those processes that are intentionally penalized by the system. In iOS (CONFIG_EMBEDDED) the 
throttled priority is used for the DEPRESSPRI constant for apps in the background and affects the 
calculation of the do_priority_computation macro. The Mach host APIs provide the HOST_
PRIORITY_INFO fl avor to the host_info() function (discussed in Chapter 10), which returns a 
host_priority_info structure, reporting the various priority levels.

All the threads, with their various and volatile priorities must somehow be managed in an effi cient 
way, to allow the scheduler to fi nd the next runnable thread of the highest priority in the minimum 
amount of time possible. This is where run queues enter the picture.

Run Queues
Threads are placed into run queues, which are priority lists defi ned in osfmk/kern/sched.h as 
shown in Listing 11-6:

LISTING 11-6 The run queue, from osfmk/kern/sched.h 

struct runq_stats {
        uint64_t                                count_sum;
        uint64_t                                last_change_timestamp;
};

#if defined(CONFIG_SCHED_TRADITIONAL) || defined(CONFIG_SCHED_PROTO) || 
defined(CONFIG_SCHED_FIXEDPRIORITY)
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struct run_queue {
        int          highq;                  /* highest runnable queue */
        int          bitmap[NRQBM];         /* run queue bitmap array */
        int          count;                 /* # of threads total */
        int          urgency;               /* level of preemption urgency */
        queue_head_t queues[NRQS];          /* one for each priority */

        struct runq_stats       runq_stats;
};

#endif /* defined(CONFIG_SCHED_TRADITIONAL) || defined(CONFIG_SCHED_PROTO) || 
defined(CONFIG_SCHED_FIXEDPRIORITY) */

The run queue is a multi-level list, or an array of lists, one queue for each of the 128 priorities 
(#defined as NRQS). To make for a quick lookup of the next priority to execute, Mach uses a tech-
nique (which was used in Linux 2.6, prior to 2.6.23) called O(1) scheduling. That is, rather than 
looking at the array, checking each entry until a non-NULL one is found — which is also techni-
cally O(1), but really is O(128) scheduling — Mach checks a bitmap, which enables it to look at 32 
(#defined as NRQBM)2 simultaneously. This makes the lookup O(4), which is about as fast as pos-
sible, and most important, considering that the scheduling logic runs frequently and in critical time.

Notice that the very defi nition of the run queue becomes conditional on using 
one of several schedulers. Mach uses a “traditional” or default scheduler, but 
the scheduler is modular, and may be modifi ed or replaced altogether with other 
schedulers. (See the later section, “Scheduling Algorithms,” for more on this topic).

Code cannot just modify the thread’s sched_pri fi eld directly, as assigning a new priority for a 
thread also means moving it from one queue to another. This is performed by set_sched_pri 
(osfmk/kern/sched_prim.c), which is called from compute_priority (osfmk/kern/priority.c). 
This is shown in Figure 11-2.

thread_run_queue_remove

thread_setrun (thread,

SCHED_PREEMPT |SCHED_TAILQ)
Handle potential context switch/AST

Removed?

thread->sched_pri = priority Set thread’s sched_priority field to new priority

Remove thread from current runqueue,

Clear bit in bitmap if queue is empty,

Set thread->runq to NULL

Assign thread to new runqueue according

to scheduling policy, add at end of queue

(light bitmap if necessary) and signal

preemption.

FIGURE 11-2: Setting thread priority and moving the threads between queues

2NRQBM is hard #defined in osfmk/kern/sched.h to be NRQS/32, even for the 64-bit architecture. 
A sizeof() would have been more adequate.
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Wait Queues
A thread is optimally either in the running state or the ready state, waiting for the processor. There 
are times when the thread is blocking, waiting for some IPC object (such as a mutex or semaphore), 
some I/O operation (for example, a fi le or socket), or event. In those cases, there is no benefi t in con-
sidering scheduling the thread, since execution can only be resumed once the object or operation is 
at hand, or the event has occurred.

In those cases, a thread may be placed into a wait queue. A wait queue_t is defi ned as an opaque 
point in osfmk/kern/kern_types.h, with the implementation in osfmk/kern/wait_queue.c, as 
shown in Listing 11-7:

LISTING 11-7: The wait queue implementation, from osfmk/kern/wait_queue.c

/*
 *      wait_queue_t
 *      This is the definition of the common event wait queue
 *      that the scheduler APIs understand.  It is used
 *      internally by the gerneralized event waiting mechanism
 *      (assert_wait), and also for items that maintain their
 *      own wait queues (such as ports and semaphores).
 *
 *      It is not published to other kernel components.  They
 *      can create wait queues by calling wait_queue_alloc.
 *
 *      NOTE:  Hardware locks are used to protect event wait

 *      queues since interrupt code is free to post events to
 *      them.
 */
typedef struct wait_queue {
    unsigned int                    /* flags */
    /* boolean_t */     wq_type:16,     /* only public field */
                        wq_fifo:1,      /* fifo wakeup policy? */
                        wq_prepost:1,   /* waitq supports prepost? set only */
                        :0;             /* force to long boundary */
    hw_lock_data_t      wq_interlock;   /* interlock */
    queue_head_t        wq_queue;               /* queue of elements */
} WaitQueue;

The wait queue handling functions are exported for use by kernel components in osfmk/kern/
wait_queue.h. To add a thread to a wait queue, any of the wait_queue_assert_wait[64[_
locked]] variants may be used. The functions all enqueue the thread at the tail of the queue (unless 
the thread is realtime, privileged, or on a FIFO wait queue, in which case it is enqueued at the head 
of the queue). The functions are further wrapped by assert_wait (in osfmk/kern/sched_prim.c)
and other wrappers, used throughout the kernel, and especially in the BSD layer. 

When the wait condition is satisfi ed, the waiting thread(s) can be unblocked and dispatched again. 
The wait_queue_wakeup64_[all|one]_locked  (to wake up one or all threads when an event 
occurs) are used for this purpose. The functions dequeue the thread(s) from the wait queue, and dis-
patch them using thread_go, which unblocks (using thread_unblock) and dispatches the threads 
(using thread_setrun).

c11.indd 414c11.indd   414 9/29/2012 5:43:07 PM9/29/2012   5:43:07 PM



Mach Scheduler Specifi cs x 415

CPU Affi  nity
In modern architectures using multi-core, SMP, or hyperthreading, it is also possible to affi ne a par-
ticular thread with one or more specifi c CPUs. This can be useful to both the thread and the system 
as a whole because the thread can benefi t from its data being “left behind” in the CPU caches when 
it returns to execute on the same CPU.

In Mach parlance, a thread’s affi nity to a CPU is defi ned as a binding. thread_bind(osfmk/kern/
sched_prim.c) is used for this purpose, and merely updates the thread_t’s bound_processor
fi eld. If the fi eld is set to anything but PROCESSOR_NULL, future scheduling decisions involving the 
thread (e.g., thread_setrun) will only dispatch the thread to that processor’s run queue.

MACH SCHEDULER SPECIFICS

The view of scheduling presented so far is actually common to all modern operating systems. Mach, 
however, adds several noteworthy features:

 ‰ Handoffs allow a thread to voluntarily yield the CPU, but not to just any other thread. 
Rather, it hands the CPU off to a particular thread (of its choice). This feature is especially 
useful in Mach, given that it is a message-passing kernel, and messages pass between threads. 
This way, the messages can be processed with minimal latency, rather than opportunistically 
waiting for the next time the message-processing thread, sender or receiver, gets scheduled.

 ‰ Continuations are used in cases where the thread does not care much for its own stack, and 
can discard it, enabling the system to resume it without restoring the stack. This key feature, 
specifi c to Mach, and used in many places around the kernel.

 ‰ Asynchronous Software Traps (ASTs) are software complements to the low-level hardware 
traps mechanisms. Using ASTs the kernel can respond to out-of-band events requiring atten-
tion such as scheduling events. 

 ‰ Scheduling algorithms are modular, and the scheduler can be dynamically set on boot (using 
the sched boot-arg). In practice, however, only one scheduler (the so-called traditional
scheduler) is used.

Handoff s
All operating system support the notion of yielding, which is the act of voluntarily giving up the 
CPU to some other thread. The classic form of yielding does not enable the yielding thread to choose 
its successor, and the choice is left up to the scheduler.

Mach improves on this by adding the option to handoff the CPU. This enables the yielding thread 
to supply a hint to the scheduler as to what is the next best thread to execute. This doesn’t fully obli-
gate the scheduler, which may choose to transfer control to some other thread (if the thread specifi ed 
is, for example, not runnable). The scheduler does, however, ignore thread policies and so handoffs 
usually succeed. As a result of a handoff, the current thread’s remaining quantum is given to the 
new thread to be scheduled.

To handoff, rather than yield, a thread calls thread_switch(), specifying the port of the thread 
to switch to, optional fl ags (such as depressing the replacing thread’s priority), and the time these 
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options will be in effect. What’s even more interesting is that the thread handoff mechanism is 
accessible from user mode: Mach exports the thread_switch() as a trap (#61), so it can be called 
from user mode. This is actually one of the few Mach traps that has a manual page (osfmk/man/
thread_switch.html).

Continuations
Although context switching is straightforward in most operating systems, following a classic model 
wherein each thread has its own task, Mach offers an alternative by introducing the concept of a 
continuation. A continuation is an optional resumption function (along with a parameter to it), 
which a thread may specify if it is voluntarily requesting a context switch. If a continuation is speci-
fi ed, when the thread is resumed it will be reloaded from the point of continuation with a new stack 
and no previous state saved. This makes context switching much faster, since the saving and loading 
of registers can be omitted (In addition, this saves a signifi cant amount of space on the kernel stack, 
which is fairly small, only four pages, or 16 K). Threads in a continuation require only 4–5 KB for 
the thread state, saving an additional 16 K that would be otherwise needed. Instead of a full register 
state and thread stack, only the continuation and an optional parameter need to be saved, and this 
can be done on the thread structure itself. A simple test for continuation may be performed and, 
if one is found, it is simply jumped to, with its parameter passed to it. A thread specifi es its desire 
to be blocked using thread_block(), optionally specifying a continuation (or using THREAD_CON-
TINUE_NULL, if the standard mode is preferred). A parameter to the continuation may be specifi ed 
by thread_block_parameter(). Both calls are wrappers over thread_block_reason(), which is 
described in the section “Explicit Preemption,” later in this chapter. 

Continuations are a quick and effi cient mechanism to alleviate the cost of context switching, and 
they are used primarily in Mach’s kernel threads. In fact, Mach’s kernel_thread_create (and its 
main caller, kernel_thread_start_priority) is built over the idea of a continuation, as shown in 
Listing 11-8.

LISTING 11-8 kernel_thread_create and its use of continuations

kern_return_t
kernel_thread_create(
        thread_continue_t          continuation,
        void                      *parameter,
        integer_t                  priority,
        thread_t                  *new_thread)
{
        kern_return_t           result;
        thread_t                thread;
        task_t                  task = kernel_task;

// thread_create_internal sets the thread.continuation
        result = thread_create_internal
                 (task, priority, continuation, TH_OPTION_NONE, &thread);
        if (result != KERN_SUCCESS)
                return (result);

        task_unlock(task);
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        lck_mtx_unlock(&tasks_threads_lock);

        stack_alloc(thread);
        assert(thread->kernel_stack != 0);
#if CONFIG_EMBEDDED
        if (priority > BASEPRI_KERNEL) // Set kernel stack for high priority threads
#endif
        thread->reserved_stack = thread->kernel_stack;

// and the parameter is set manually here
        thread->parameter = parameter;

       if(debug_task & 1)
        kprintf("kernel_thread_create: thread = %p continuation = %p\n", 
                 thread, continuation);

        *new_thread = thread;

        return (result);
}

..
kern_return_t kernel_thread_start_priority(
        thread_continue_t       continuation,
        void                   *parameter,
        integer_t               priority,
        thread_t               *new_thread)
{
        kern_return_t   result;
        thread_t                thread;

        result = kernel_thread_create(continuation, parameter, priority, &thread);
        if (result != KERN_SUCCESS)
                return (result);

        *new_thread = thread;

        thread_mtx_lock(thread);
        thread_start_internal(thread);
        thread_mtx_unlock(thread);

        return (result);
}

Continuations are particularly attractive in kernel threads, since it is a simple matter to set the con-
tinuation is simply the thread entry point. Hence, this is the way Mach kernel threads are started. 
User mode thread creation also makes use of continuations, by setting (in thread_create_
internal2) the continuation to thread_bootstrap_return(). This is just a DTrace hook, followed 
by thread_exception_return(), which returns to user mode.

Note that continuations require the setting thread to be aware of both the preemption and the 
continuation logic. It follows, therefore, that Mach supports two different models of preemp-
tion — explicit and implicit — with the continuation model only available for explicit preemptions. 
These are discussed next.
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Continuations are the brainchild of Richard Draves, one of the original developers of Mach (whose 
name still adorns the XNU sources in osfmk/ipc and elsewhere). Continuations were introduced in 
1991[3], in a paper by Draves, Bershad, and Rashid, part of a Ph.D. thesis at CMU[4]).

Preemption Modes
Threads in a system may be preempted in one of two ways: explicitly, when a thread gives up control 
of the CPU or enters an operation defi ned as blocking, and implicitly, due to an interrupt. Explicit 
preemption is sometimes referred to as synchronous, as it is a priori predictable. Interrupts, which 
by their very nature are unpredictable, make implicit preemption asynchronous.

Explicit Preemption

Explicit preemption occurs when a thread voluntarily wants to relinquish the CPU. This could be 
due to waiting for a resource, or I/O, or sleeping for a set amount of time. User mode threads are 
subject to explicit preemption when calling blocking system calls, such as read(), select(), sleep,
and so on. 

To provide explicit preemption, Mach offers the thread_block_reason() function. This function, 
defi ned in osfmk/kern/sched_prim.c, takes three parameters: A continuation function, a param-
eter for it, and a reason. The reason is an AST_ (Asynchronous Software Trap) constant, discussed 
later.

thread_block_reason is defi ned as shown in Listing 11-9.

LISTING 11-9: thread_block_reason() in osfmk/kern/sched_prim.c

/*
 *      thread_block_reason:
 *
 *      Forces a reschedule, blocking the caller if a wait
 *      has been asserted.
 *
 *      If a continuation is specified, then thread_invoke will
 *      attempt to discard the thread's kernel stack.  When the
 *      thread resumes, it will execute the continuation function
 *      on a new kernel stack.
 */

thread_block_reason(
        thread_continue_t       continuation,
 void                            *parameter,
        ast_t                           reason){
        register thread_t               self = current_thread();
        register processor_t    processor;
        register thread_t               new_thread;
        spl_t                                   s;

        counter(++c_thread_block_calls);
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        s = splsched();

        if (!(reason & AST_PREEMPT))
                funnel_release_check(self, 2);

        processor = current_processor();

        /* If we're explicitly yielding, force a subsequent quantum */
        if (reason & AST_YIELD)
                processor->timeslice = 0;

        /* We're handling all scheduling AST's */
        ast_off(AST_SCHEDULING);

       // Save continuation and its relevant parameter, if any, on our own uthread

        self->continuation = continuation;
        self->parameter = parameter;
       // improbable kernel debug stuff omitted here
     do {
            thread_lock(self);
            new_thread = thread_select(self, processor);
            thread_unlock(self);
        } while (!thread_invoke(self, new_thread, reason)); // thread_invoke will switch 
context

        funnel_refunnel_check(self, 5);
        splx(s);

        return (self->wait_result);
}

Two helper functions are also defi ned: thread_block_parameter() and thread_block(). The for-
mer calls thread_block_reason() with the reason parameter set to AST_NONE, and the latter does 
the same, but also sets the parameter to NULL.

Calling thread_block allows the setting of a continuation, which is stored on the thread_t
structure (current_thread()->continuation) along with its parameter (current_thread()
->parameter). The thread_block() function then calls thread_select() to get the next thread 
on the current processor (which may or may not be different from the current), and tries to call 
thread_invoke() on it.

The thread_invoke() function is responsible for performing the context switch and handling the 
continuation. This function is quite long (and could benefi t from an overhaul!), but basically checks 
whether the new thread to be invoked has a continuation function. If it does, the continuation func-
tion is directly called. Otherwise, performing a full context switch becomes necessary.

From a higher-level perspective, the operation is actually quite simple, as shown in Figure 11-3.
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thread_block_reason(cont,param,reason)
(osfmk/kern/sched_prim.c)

thread_invoke
(osfmk/kern/sched_prim.c)

Continuation?

call_continuation()Return from thread_block()

Save continuation and parameter to self
Select new thread

Call thread_invoke(self, new, reason)

Possibly switch kernel stack
if new thread has continuation, call it
else perform full context switch

FIGURE 11-3: Thread Invocation

call_continuation() is a machine-dependent, much faster mechanism to restore state. Listing 
11-10 shows how on x86_64 this can be implemented with effi cient code:

LISTING 11-10: the call_continuation implementation on x86_64

//prototype: call_continuation(thread_continue_t       continuation,
//                             void                   *parameter,
//                             wait_result_t           wresult);

Entry(call_continuation)
        movq    %rdi,%rcx                       /* get continuation */
        movq    %rsi,%rdi                       /* continuation param */
        movq    %rdx,%rsi                       /* wait result */
        movq    %gs:CPU_KERNEL_STACK,%rsp       /* set the stack */
        xorq    %rbp,%rbp                       /* zero frame pointer */
        call    *%rcx                           /* call continuation */
       // usually not reached – if reached, thread will terminate:
        movq    %gs:CPU_ACTIVE_THREAD,%rdi
        call    EXT(thread_terminate)

Implicit Preemption

Mac OS 9 was built entirely around the concept of explicit preemption, which made it a coopera-
tive multitasking system. But explicit preemption is inherently limited, as leaving the choice of 
relinquishing the CPU to the running thread is extremely unreliable. Threads can be caught in time-
consuming processing, or worse, endless loops, and never get to a point of explicit preemption. 

Mac OS X, by contrast, is a preemptive multitasking system. In plain terms, Mach reserves the 
right to preempt a thread at any given time, whether or not the thread is ready for it. Unlike explicit 
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preemption, this implicit form of preemption is invisible to the thread. The thread remains blissfully 
unaware, and its state is saved and restored transparently. Most threads won’t care about this, as 
they are likely to be I/O bound anyway. But for CPU-intensive threads, this could be problematic, 
especially when time-critical performance may be required (for example, video and audio decoding).

Implicit preemption is far simpler, conceptually, from its explicit counterpart. This is because it does 
not involve any continuations. Since the thread is unaware of its being suspended, it cannot ask for a 
continuation.

While a thread cannot explicitly control its own scheduling, Mach does offer several pre-set policies 
that can work toward guaranteeing classes of service. Note “work toward” because Mach is a time-
sharing system, not a real-time one, and there can be no true guarantee of service. Using thread_
policy_set(), which is a Mach trap visible from user mode, it is possible to request such a policy. 
The function is defi ned in osfmk/kern/thread_policy.c as follows: 

kern_return_t
thread_policy_set(
        thread_t                                thread,
        thread_policy_flavor_t  flavor,
        thread_policy_t                 policy_info,
        mach_msg_type_number_t  count);

The function verifi es its arguments (that is, that thread is not THREAD_NULL and that thread
->static_param is false), and then calls thread_policy_set_internal(), which switch()es 
on the fl avor argument, which may be one of the following items in Table 11-6.

TABLE 11-6: Flavor arguments

TASK POLICIES SPECIFIES

STANDARD_POLICY Fair queuing. Approximately equal share to all computations. No data 

be provided to the policy. This is deprecated, eff ectively equivalent 

to EXTENDED_POLICY, below, with timesharing. 

EXTENDED_POLICY Fair queuing, but provides a forward hint for long-running computa-

tion. An optional parameter, timeshare, may be specifi ed.

TIME_CONSTRAINT_POLICY Policy defi ned by period, computation, constraint, and 

preemptible — soft real time. This boosts the thread’s priority to the 

real-time range (discussed later).

PRECEDENCE_POLICY Policy defi ned by thread’s importance fi eld, which enables preferring 

it with respect to other threads in the same task.

AFFINITY_POLICY Thread scheduled by affinity_tag, which prefers scheduling by 

L2 cache affi  nity.

BACKGROUND_POLICY Policy defi ned by priority. This is used only if CONFIG_EMBEDDED 

(iOS), suggesting low priority for background tasks (i.e., those not 

visible as i-Device’s primary).
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These fl avors allow fi ne-grained control of the scheduling of individual threads. The default policy, 
THREAD_STANDARD_POLICY, is used for fair time sharing. It requires no additional parameters. 
THREAD_EXTENDED_POLICY builds on it, and adds one Boolean parameter, timeshare, which when 
false, specifi es an alternate policy, and when true, falls back to the standard policy.

A more complicated, and closer to real-time policy is THREAD_TIME_CONSTRAINT_POLICY, which 
allows fi ne-grained tuning of scheduling. Key to this policy is the notion of “processing arrivals,” 
which is the scheduling of the thread in question. Units are measured in the kernel’s CPU clock 
cycles. This policy is based on several parameters:

 ‰ Period: Requests a time between two consecutive processing arrivals. If this value is not zero, 
the thread in question is assumed to seek processor time once every period cycle.

 ‰ Computation: A 32-bit integer specifying the computation time needed each time the thread 
is scheduled.

 ‰ Constraint: The maximum amount of (real) time between the beginning and the end of the 
computation.

 ‰ Preemptible: A Boolean value specifying whether the computation may be interrupted; that 
is, whether these computation cycles have to be contiguous (preemptible = false) or not 
(preemptible = true)

THREAD_PRECEDENCE_POLICY takes one parameter, importance, which provides the relative impor-
tance of this thread compared to other threads of the same task. The value is signed, meaning 
threads can bump up or down relative to their peers, yet in XNU the minimum priority is IDLE_PRI,
which is defi ned as zero.

THREAD_AFFINITY_POLICY provides for L2 cache affi nity between threads of the same cache. This 
means that these threads are likely to run on the same CPU, regardless of cores (as all cores share 
the same L2 cache, anyway), but not likely to cross CPUs in a true SMP environment. To provide 
this affi nity, this policy uses an affinity_tag that is shared among related processes (that is, parent 
and descendants).

THREAD_BACKGROUND_POLICY is used for background threads; that is, threads that are of lesser pri-
ority and importance to the system. This is not defi ned in OS X, but is used in iOS, suggesting its 
use for Apps which are sent to the background by SpringBoard. 

Tasks lend an extra level of scheduling, by providing a “role” fi eld, which may be one of the follow-
ing shown in Table 11-7. 

TABLE 11-7: Task roles

TASK ROLES (TASK_CONSTANT) SPECIFIES

RENICED Any task altered using nice(1) or renice(1).

UNSPECIFIED Default value, unless otherwise specifi ed.

FOREGROUND_APPLICATION GUI foreground.
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TASK ROLES (TASK_CONSTANT) SPECIFIES

BACKGROUND_APPLICATION GUI background.

CONTROL_APPLICATION Task is a GUI Control application (usually the 

dock). Only one task can hold this at any given 

time. The priority range is set to BASEPRI_CON-

TROL, up to the task’s already maximum priority. 

GRAPHICS_SERVER Reserved for Window Manager use. Only one 

task at a time can hold this role, and it is usually 

the WindowServer. The priority range is MAX-

PRI_RESERVED - 3, MAXPRI_RESERVED.

THROTTLE_APPLICATION Set to the maximum priority (MAXPRI_THROTTLE). 

Mapped from PRIO_DARWIN_BG.

NONUI_APPLICATION Mapped from PRIO_DARWIN_NONUI. Priority 

range is BASEPRI_DEFAULT, MAXPRI_USER.

DEFAULT_APPLICATION Default, unless otherwise stated.

The task “role” thus affects the scheduling of its threads.

To allow implicit preemption, some mechanism must exist to support asynchronous events and 
interruptions at the kernel level. This mechanism is Mach’s Asynchronous Software Traps (ASTs), 
and is described next.

Asynchronous Software Traps (ASTs)
The discussion of trap handling in Chapter 8 explained what happens when a transition is 
made back from kernel mode into user mode, but has intentionally omitted a key component — 
Asynchronous Software Traps (ASTs). An AST is an artifi cial, non-hardware trap condition that has 
been raised. ASTs are crucial for kernel operations and serve as the substrate on top of which sched-
uling events (such as preemption, discussed earlier in this chapter), and BSD’s signals (discussed in 
Chapter 13) are implemented.

An AST is implemented as a fi eld of various bits in the thread’s control block, which can be indi-
vidually set by a call to thread_ast_set(). This is a macro, as shown in Listing 11-11:

LISTING 11-11 Setting ASTs in osfmk/kern/ast.h

#define thread_ast_set(act, reason) (hw_atomic_or_noret(&(act)->ast, (reason)))
#define thread_ast_clear(act, reason) (hw_atomic_and_noret(&(act)->ast, ~(reason)))
#define thread_ast_clear_all(act) (hw_atomic_and_noret(&(act)->ast, AST_NONE))

The “reasons” defi ned in Mach are in osfmk/kern/ast.h, but are really quite poorly documented. 
Table 11-8 shows the defi ned ASTs, and their purpose.
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TABLE 11-8: Defi ned ASTs

AST CONSTANT MEANING

AST_PREEMPT Current thread is being preempted.

AST_QUANTUM Current thread’s quantum (time slice) has expired.

AST_URGENT AST must be handled immediately. Used when inserting real time threads.

AST_HANDOFF Current thread is handing off  the CPU to a specifi c other thread. This is set by 

thread_run() (osfmk/kern/sched_prim.c).

AST_YIELD Current thread has voluntarily yielded the CPU.

AST_APC Migration.

AST_BSD Special AST used during BSD initialization to start the init task; that is, 

launchd(1).

AST_CHUD[_URGENT] Computer Hardware Understanding ASTs for profi ling and tracing. See dis-

cussion of CHUD in Chapter 5.

ASTs can also be used in combos, which are bitwise ORs of the preceding fl ags. These are shown in 
Table 11-9.

TABLE 11-9: AST Combinations

AST COMBO BITWISE OR OF MEANING

AST_NONE 0 Used to clear all AST reasons.

AST_PREEMPTION   (AST_PREEMPT | AST_
QUANTUM | AST_URGENT) 

Bitmask of all ASTs that involve preempting the 

current thread. The ast_taken() function will 

cause the thread to block, and force a context 

switch.

AST_SCHEDULING AST_PREEMPTION | AST_
YIELD | AST_HANDOFF) 

Bitmask of all ASTs that can be set by the 

scheduler.

AST_PER_THREAD AST_APC | AST_BSD | 

MACHINE_AST…
Bitmask of ASTs that are used on a per -hread 

basis. MACHINE_AST_PER_THREAD is unused in 

OS X (set to 0).

AST_CHUD_ALL AST_CHUD_URGENT | 

AST_CHUD
All CHUD ASTs.

AST_ALL 0xFFFFFFFF Used to set all AST reasons. Set by 

i386_astintr().

The combos are used to group the ASTs into two classes: those that involve preemption, and those 
that may be set or unset by the scheduler.
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When the system returns from a trap (after the call to user_trap_returns) or interrupt (after the 
call to INTERRUPT), it doesn’t immediately return to user mode. Instead, the code checks for the 
presence of an AST by looking at the thread’s ast fi eld. If it is not 0, it calls i386_astintr() to 
process it, as shown in Listing 11-12.

LISTING 11-12: AST checks on return from trap in osfmk/s86_64/idt64.s

Entry(return_from_trap)
        movq    %gs:CPU_ACTIVE_THREAD,%rsp
        movq    TH_PCB_ISS(%rsp), %rsp  /* switch back to PCB stack */
        movl    %gs:CPU_PENDING_AST,%eax
        testl   %eax,%eax
        je      EXT(return_to_user)     /* branch if no AST */
  // otherwise we fall through to here:
L_return_from_trap_with_ast:
               …
               …
2:
        STI                      /* interrupts always enabled on return to user mode */

        xor     %edi, %edi              /* zero %rdi */
        xorq    %rbp, %rbp              /* clear framepointer */
        CCALL(i386_astintr)             /* take the AST */

        CLI
        xorl    %ecx, %ecx              /* don't check if we're in the PFZ */
        jmp     EXT(return_from_trap)   /* and check again (rare) */

Figure 11-4 shows the AST check points on return from traps and interrupts as shown in 
Listing 11-12.

ASTs are thus a little bit like Linux’s softIRQs in that they run with all interrupts enabled, but still 
“out of process time.”  

i386_astintr() is a wrapper over ast_taken(), as shown in Listing 11-13:

LISTING 11-13: The implementation of i386_astintr

i386_astintr(int preemption)
{
        ast_t           mask = AST_ALL;
        spl_t           s;

        if (preemption)
                mask = AST_PREEMPTION;

        s = splsched();

        ast_taken(mask, s);

        splx(s);
}
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i386_astinstr()

return_from_trap

return_to_user

return_from_trap_with_ast

ast_from_interrupt_user

hndl_allintrs

interrupt

ast pending?

ast_taken()
…

FIGURE 11-4: AST check points on trap and interrupt return

The ast_taken function, (which can also be called from kernel traps, and upon kernel thread ter-
mination), is responsible for handling the ASTs in all threads save kernel idle threads. ASTs marked 
as AST_URGENT and AST_PREEMPT (that is, the AST_PREEMPTION combo) cause immediate preemp-
tion of the thread. Otherwise, this function checks for AST_BSD, which is a temporary hack that 
was put into Mach for BSD events (such as signals), but remained indefi nitely. If a BSD AST is set, 
bsd_ast (from bsd/kern/kern_sig.c), is called to handle signals. Chapter 9 covers signals in 
greater detail.

In IOS, the common code that returns from fleh_irq, undef, and prefabt does something similar, 
but calls ast_taken directly. The ast_taken function is also called on enable_preemption().

A special case with ASTs is when function execute in a special region of the commpage (discussed in 
Chapter 4) known as the Preemption Free Zone (PFZ). Outstanding ASTs are deferred (or pended) 
while in this zone. If you look back at Figure 8-6, you will see in return_from_trap_with_ast 
a call to commpage_is_in_pfz[32|64] (both defi ned for OS X in osfmk/i386/commpage/
commpage.c). If the address is determined to be in the PFZ, the ASTs are marked pending until the 
PFZ is exited. Neither PFZ nor commpage are well documented, but what little is provided is shown 
in Listing 11-14.
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LISTING 11-14: The PFZ defi nition, from osfmk/i386/commpage/commpage.c

/* PREEMPTION FREE ZONE (PFZ)
 *
 * A portion of the commpage is speacial-cased by the kernel to be "preemption free",
 * ie as if we had disabled interrupts in user mode.  This facilitates writing
 * "nearly-lockless" code, for example code that must be serialized by a spinlock but
 * which we do not want to preempt while the spinlock is held.
 *
 * The PFZ is implemented by collecting all the "preemption-free" code into a single
 * contiguous region of the commpage.  Register %ebx is used as a flag register;
 * before entering the PFZ, %ebx is cleared.  If some event occurs that would normally
 * result in a premption while in the PFZ, the kernel sets %ebx nonzero instead of
 * preempting.  Then, when the routine leaves the PFZ we check %ebx and
 * if nonzero execute a special "pfz_exit" syscall to take the delayed preemption.
 *
 * PFZ code must bound the amount of time spent in the PFZ, in order to control
 * latency.  Backward branches are dangerous and must not be used in a way that
 * could inadvertently create a long-running loop.
 *
 * Because we need to avoid being preempted between changing the mutex stateword
 * and entering the kernel to relinquish, some low-level pthread mutex manipulations
 * are located in the PFZ.
 */

Scheduling Algorithms
Mach’s thread scheduling is highly extensible, and actually allows changing the algorithms used for 
thread scheduling. Table 11-10 shows what you will see if you look at osfmk/kern/sched_prim.h.

TABLE 11-10: Supported schedulers in Mach

KSCHED… CONSTANT (STRING) USED FOR

TraditionalString ("traditional") Traditional (default)

TraditionalWithPsetRunQueueString

("traditional_with_pset_runqueue")
Traditional, with PSet affi  nity

ProtoString ("proto") Global runqueue based scheduler

GRRRString  ("grrr") Group Ratio Round Robin

FixedPriorityString ("fixedpriority") Fixed Priority

FixedPriorityWithPsetRunqueueString

("fixedpriority_with_pset_runqueue")
Fixed Priority with PSet affi  nity

Normally, only one scheduler, the traditional one, is enabled, but the Mach architecture allows 
for additional schedulers to be defi ned and selected during compilation using corresponding 
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CONFIG_SCHED_ directives. The scheduler that will be used can then be specifi ed with the scheduler
boot-arg, or a device tree entry. 

Each scheduler object maintains a sched_dispatch_table structure, wherein the various opera-
tions (think: methods) are held as function pointers. A global table, sched_current_dispatch,
holds the currently active scheduling algorithm and allows scheduler switching during runtime. All 
schedulers must implement the same fi elds, which the generic scheduler logic invokes using a SCHED
macro, as shown in Listing 11-15:

LISTING 11-15: sched_prim.h generic scheduler mechanism

/*
 * Scheduler algorithm indirection. If only one algorithm is
 * enabled at compile-time, a direction function call is used.
 * If more than one is enabled, calls are dispatched through
 * a function pointer table.
 */

#if   !defined(CONFIG_SCHED_TRADITIONAL) && !defined(CONFIG_SCHED_PROTO) && 
!defined(CONFIG_SCHED_GRRR
) && !defined(CONFIG_SCHED_FIXEDPRIORITY)
#error Enable at least one scheduler algorithm in osfmk/conf/MASTER.XXX
#endif

#define SCHED(f) (sched_current_dispatch->f)
struct sched_dispatch_table {
           .. // shown in table below //
..
extern const struct sched_dispatch_table *sched_current_dispatch;

The scheduler dispatch table itself is described in Table 11-11:

TABLE 11-11: Scheduler dispatch table methods

SCHEDULER METHOD USED FOR

init() Initializing the scheduler. Any specifi c scheduler 

data structures and bookkeeping is set up here. 

Called by sched_init().

timebase_init() Time base initialization.

processor_init(processor_t) Any per-processor scheduler init code.

pset_init(processor_set_t) Any per-processor-set scheduler init code.

maintenance_continuation() The periodic function providing a scheduler 

tick. This function normally computes the vari-

ous averages (such as the system load factors), 

and updates threads on run queues. This func-

tion usually re-registers itself.
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SCHEDULER METHOD USED FOR

choose_thread(processor_t, int); Choosing next thread of greater (or equal) 

priority int.

steal_thread(processor_set_t) “Stealing” thread from another processor in 

pset (used if no runnable threads remain on a 

processor).

compute_priority(thread_t, boolean_t) Computing priority of given thread. Boolean is 

override_depress.

choose_processor(processor_set_t pset,

processor_t processor,

thread_t thread);

Choosing a processor for thread_t, starting 

the search at the pset specifi ed. May provide 

a processor “hint” if a processor is 

recommended.

processor_enqueue(processor_t             

processor,

thread_t                thread, 

integer_t               options)

Enqueueing thread_t on processor_t by 

calling run_queue_enqueue on the processor’s 

run queue.

Returns TRUE if a preemption is in order. 

Only option is SCHED_TAILQ – enqueue last.

processor_queue_shutdown(processor_t) Removing all non-affi  ned/bound threads from 

processor’s run queue.

processor_queue_remove(processor_t,

thread_t)
Removing the thread thread_t from the pro-

cessor queue of the processor_t.

processor_queue_empty(processor_t) A simple Boolean check for entries in run 

queue.

priority_is_urgent(int priority) Returns TRUE if the priority is urgent and would 

mandate preemption. 

processor_csw_check(processor_t) Returns an ast type specifying whether a con-

text switch from (i.e., preemption of) the running 

thread is required.

processor_queue_has_priority

(processor_t, int, boolean_t)
Determining if queue of processor_t has 

thread(s) with priority greater (boolean_t = 

false) or greater-equal (true) than priority int.

initial_quantum_size(thread_t) Returns the initial quantum size of a given 

thread?

initial_thread_sched_mode(task_t) Returns a sched_mode_t denoting the schedul-

ing mode for a new thread created in task_t.

supports_timeshare(void) Returns true if scheduler implementation sup-

ports quantum decay.

continues
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SCHEDULER METHOD USED FOR

can_update_priority(thread_t) Determines ifhread's priority can be safely 

updated?

update_priority(thread_t) Used to update thread thread_t’s priority.

lightweight_update_priority(thread_t) A lighter alternative to update_priority, 

requiring less processing.

quantum_expire(thread_t) Denotes quantum expiration for thread_t.

should_current_thread_rechoose_processor

(processor_t)
Check whether this processor is preferable for 

this thread (e.g., because of affi  nity) or is a bet-

ter processor available

int processor_runq_count(processor_t) Returning queue load of processor_t. Useful 

for load balancing.

uint64_t processor_runq_stats_count_

sum(processor_t)
Aggregating statistics on processor_t’s run 

queue.

fairshare_init() Any initialization required for fair share threads.

int fairshare_runq_count() Returning number of fair share threads.

uint64_t fairshare_runq_stats_count_sum

(processor_t)
Aggregating statistics on processor_t’s fair-

share run queue.

fairshare_enqueue(thread_t thread) Enqueueing fair share thread_t. 

thread_t fairshare_dequeue() Dequeueing and returning a fair share thread.

boolean_t

direct_dispatch_to_idle_processors;
If TRUE, can directly send a thread to an idle pro-

cessor without needing to enqueue.

To keep the thread scheduling going, every schedule implements a maintenance_continuation
function. This is just an application of the continuation mechanism described earlier in this chapter 
for kernel threads. In it, the scheduler thread registers a clock notifi cation using clock_deadline_
for_periodic_event. A call to assert_wait_deadline ensures the thread will run within the 
specifi ed deadline, and the thread is blocked on the continuation.  The process is jumpstarted in the 
scheduler’s init function.

The schedulers make heavy use of the Asynchronous Software Trap (AST) mechanism, which was 
discussed in this chapter. Specifi cally, the scheduler uses traps of a very specifi c type: AST_
PREEMPTION. These tie the scheduling logic to interrupt handling and kernel/user space transitions. 
It’s also worth noting that the scheduling logic is laced with calls to the kdebug mechanism 
(discussed in Chapter 5). The kdebug codes (defi ned with DBG_MACH_SCHED and declared in bsd
/sys/kdebug.h) mark most of the important points in the scheduler’s fl ow. 

TABLE 11-11 (continued)
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TIMER INTERRUPTS

This chapter has so far dealt with the primitives and constructs Mach uses in its scheduling logic. In 
this section, these ideas are integrated with the “engine” which drives scheduling, namely the timer 
interrupts.

Interrupt-Driven Scheduling
For a system to offer preemptive multitasking, it must support some mechanism to fi rst enable the 
scheduler to take control of the CPU, thereby preempting the thread currently executing, and then 
perform the scheduling algorithm, which will decide whether the current thread may resume execu-
tion or should instead be “kicked out” to relinquish the CPU to a more important thread.

To usurp control of the CPU from the existing thread, contemporary operating systems (Apple’s 
included) harness the already-existing mechanism of hardware interrupts. Because the very nature 
of interrupts forces the CPU to “drop everything” on interrupt and longjmp to the interrupt handler 
(also known as the interrupt service routine, or ISR), it makes sense to rely on the interrupt mecha-
nism to run the scheduler on interrupt. 

One small problem remains, however: Interrupts are asynchronous, which means that they can occur 
at any time and are quite unpredictable. While a busy system processes thousands of interrupts every 
second, a system with a quiet period of I/O — wherein the usual interrupt sources (the disk, network, 
and user) are all idle — can also be idle interrupt-wise. There is, therefore, a need for a predictable 
interrupt source, one that can be relied on to trigger an interrupt within a given time frame.

Fortunately, such an interrupt source exists, and XNU calls it the real time clock, or rtclock.
This clock is hardware dependent — the Intel architecture uses the local CPU’s APIC for this pur-
pose — and can be confi gured by the kernel to generate an interrupt after a given number of cycles. 
The interrupt source is often referred to as the Timer Interrupt. Older versions of XNU triggered 
the Timer Interrupt a fi xed number of times per second, a value referred to as hz. This value is glob-
ally defi ned in the BSD portion of the kernel, in bsd/kern/clock.c, (shown in Listing 11-16) and is 
unappreciated, to say the least:

LISTING 11-16: The now deprecated Hz hardware interval, in bsd/kern/kern_clock.c

/*
 * The hz hardware interval timer.
 */

int             hz = 100;                /* GET RID OF THIS !!! */
int             tick = (1000000 / 100);  /* GET RID OF THIS !!! */

There is, indeed, good reason to be contemptuous of this. A timer interrupting the kernel at a fi xed 
interval will cause predictable, but extraneous interrupts. Too high a value of hz implies too many 
unnecessary interrupts. On the other hand, too low a value would mean the system is less respon-
sive, as sub-hz delays would only be achievable by a tight loop. The old hertz_tick() function 
used in previous versions of OS X is still present, but unused and conditionally compiled only if 
XNU is compiled with profi ling.
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The solution is to adopt a different model of a tick-less kernel. This model is much like the one from 
Linux (versions 2.6.21 and above), in which on every Timer Interrupt the timer is reset to schedule 
the next interrupt only when the scheduler deems it necessary. This means that, on every Timer 
Interrupt, the interrupt handler has to make a (very quick) pass over the list of pending deadlines, 
which are primarily sleep timeouts set by threads, act on them, if necessary, and schedule the next 
Timer Interrupt accordingly. More processing in each Timer Interrupt is well worth the savings in 
spurious interrupts, and the processing can be kept to a minimum by keeping track of only the most 
exigent deadline. 

Timer Interrupt Processing in XNU
XNU defi nes, per CPU, an rtclock_timer_t type (in osfmk/i386/cpu_data.h), which is used 
to keep track of timer-based events. This structure notes the deadline of a timer and a queue of 
call_entry structures (from osfmk/kern/call_entry.h), holding the callouts defi ned as shown in 
Listing 11-17:

LISTING 11-17: The rtclock_timer_t, from osfmk/i386/cpu_data.h

typedef struct rtclock_timer {
        mpqueue_head_t          queue;       // A queue of timer call_entry structures
        uint64_t                deadline;    // when this timer is set to expire
        uint64_t                when_set;    // when this timer was set
        boolean_t               has_expired; // has the deadline passed already?
} rtclock_timer_t;

typedef struct cpu_data
{
  …
        int                     cpu_running;
        rtclock_timer_t         rtclock_timer; // Per CPU timer 
        boolean_t               cpu_is64bit;
 …
}

The rtclock_timer’s queue is kept sorted in order of ascending deadlines, and the deadline fi eld is 
set to the nearest deadline (i.e., the head entry in the queue). 

XNU uses another machine-independent concept of an event timer (also called the etimer) to wrap 
the rtclock_timer and hide the actual machine-level timer interrupt implementation. Its usage is 
discussed next.

Scheduling Deadlines
Deadline timers are set (read: added to the rtclock’s queue) through a call timer_queue_
assign(osfmk/i386/etimer.c). This function sets a deadline only if it is earlier (read: expires 
sooner) than the one already set in the current CPU’s rtclock_timer.deadline. The actual setting 
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of the deadline at the hardware level is handled by etimer_set_deadline, followed by a call to 
etimer_resync_deadlines (osfmk/i386/etimer.c), which sets the CPU’s local APIC, and will 
be discussed soon.

The scheduler interfaces with timer_queue_assign through the higher-level abstraction of a timer
callout, by using timer_call_enter, from osfmk/kern/timer_call.c, on the thread’s wait_
timer. The callout is a function pointer with pre-set arguments, defi ned in osfmk/kern/timer_
call_entry.h as shown in Listing 11-18:

LISTING 11-18: The callout structure, from osfmk/kern/timer_call_entry.h

typedef struct call_entry {
    queue_chain_t       q_link;    // next
    queue_head_t        *queue;    // queue head
    call_entry_func_t   func;      // callout to invoke
    call_entry_param_t  param0;    // first parameter to callout function
    call_entry_param_t  param1;    // second parameter to callout 
    uint64_t            deadline;  // deadline to invoke function by
} call_entry_data_t;

// Adjust with flags and a soft deadline, this becomes struct timer_call
typedef struct timer_call {
        struct call_entry       call_entry;
        decl_simple_lock_data( ,lock);          /* protects call_entry queue */
        uint64_t                soft_deadline;  // Tests expiration in 
timer_queue_expire()
        uint32_t                flags;
        boolean_t               async_dequeue;  /* this field is protected by
                                                   call_entry queue's lock */
} *timer_call_t;

Timer events not deemed critical are added with a so-called “slop” value which coalesces them so 
as to increase the probability that they expire at the same time (and thus reduce overall timer inter-
rupts). The various callers of timer_call_enter can declare their calls to be critical by specifying 
the TIMER_CALL_CRITICAL fl ag.

The process of setting timer deadlines from the scheduler’s end is shown in Figure 11-5.

Timer Interrupt Handling
Timer Interrupt handling is performed by rtclock_intr (osfmk/i386/rtclock.c). The function 
itself doesn’t do much: It merely asserts all interrupts are disabled determines which mode (kernel or 
user) was interrupted, and saves the existing thread’s registers. The real work is accomplished by a 
call to etimer_intr (osfmk/i386/etimer.c), which checks whether the timer deadline (rtclock_
timer->deadline) or the power management deadline (as returned from pmCPUGetDeadline(), in 
osfmk/i386/pmCPU.c) expired, and, if they did, acts on them. If the scheduler can be thought of as 
the producer of the deadline queue, then this function is its consumer. 
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Scheduler functions

thread_set_timer_deadline

thread_set_timer

thread_dispatch
(osfmk/kern/sched_prim.c)

timer_call_enter
(osfmk/kern/timer_call.c)

timer_queue_assign
(osfmk/i386/etimer.c)

etimer_set_deadline
(osfmk/i386/etimer.c)

etimer_resync_deadlines
(osfmk/i386/etimer.c)

timer_call_enqueue_
deadline_unlocked

thread_quantum_expire
(osfmk/kern/priority.c)

wait_queue_assert_wait64
(osfmk/kern/wait_queue.c)

Falls through to timer_call_enter_internal, which sets up
timer_call_entry, adds a “slop” to coalesce non-critical timer calls,
and calls timer queue_assign

Calls etimer_set_deadline if deadline more imminent than
current CPU’s. Returns either current CPU’s queue (if CPU active)
or Master CPU’s

Sets new deadline on current CPU’s
rtc_clock and calls etimer_resync_deadlines

Calls setPop() to set hardware deadline (the
next timer interrupt) on current CPU’s Local
APIC (see figure 12-9)

Inserts call in queue sorted by deadline (by eventually calling
call_entry_enqueue_deadline, osfmk/kern/call_entry.h)

FIGURE 11-5: Setting deadlines

To act on timers etimer_intr calls timer_queue_expire (or pmCPUDeadline, for the power 
management related deadlines), which walks the queue and invokes the expired timer’s callout 
function, with its two arguments (and also logs a kdebug event before and after the call). The func-
tion dequeues and invokes callouts until it hits the fi rst callout whose deadline has not yet expired. 
Because the queue is sorted in order of increasing deadlines, all other deadlines are guaranteed to be 
pending, as well. The fi rst non-expired deadline effectively becomes the next deadline to process, so 
it is returned to etimer_intr.  This is shown in Figure 11-6.
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rtclock_intr
(osfmk/i386/rtclock.c)

etimer_intr
(osfmk/i386/etimer.c)

etimer_resync_deadlines
(osfmk/i386/etimer.c)

timer_queue_expire()
(osfmk/kern/timer_call.c)

pmCPUDeadline()
(osfmk/i386/pmCPU.c)

Assert interrupts disabled check

CS register for user mode/kernel mode

Calls setPop() to set hardware deadline (the

next timer interrupt) on current CPU’s Local

APIC (see figure 12-9)

CPU timer expired?

Record next deadline

PM deadline expired?

uint64_t timer_queue_expire(mpqueue_head_t queue,
                  uint64_t deadline)
{
timer_call_lock_spin(queue); // acquire lock
while (!queue_empty(&queue->head)) {
  call=TIMER_CALL(queue_first(&queue->head));
 // Only process if soft deadline expired
    if (call->soft_deadline <= deadline) {
        timer_call_func_t func;
        timer_call_param_t param0, param1;

 // dequeue this callout and invoke it
        timer_call_entry_dequeue(call);
        func = CE(call)->func;
        param0 = CE(call)->param0;
        param1 = CE(call)->param1;
        (*func)(param0, param1);
...
 } else break; // queue is sorted by deadline,
                // no sense in looping anymore
} // end while
// If still have (not-yet expired) deadlines,
// return earliest to our caller
if (!queue_empty(&queue->head))
   deadline = CE(call)->deadline;
else
   deadline = UINT64_MAX;
timer_call_unlock(queue); // release lock
return(deadline)
}

FIGURE 11-6: Timer interrupt processing in XNU

Setting the Hardware Pop
Deadline timers must be communicated to the hardware level, so as to request the hardware to gener-
ate the next timer interrupt when they expire. This is why both cases (i.e., scheduling a timer event 
and acting on timer expiration) involve a call to etimer_resync_deadlines(). This function checks 
on whether either timer or power management deadlines are pending (as they may be rescheduled 
post expiration). If either type of deadline is found, the function schedules the next interrupt to the 
earlier of the two by calling setPop() (osfmk/i386/rtclock.c). If no deadline is pending, setPop() 
is called with a value denoting EndOfAllTime. setPop() uses the rtc_timer global, which sets the 
timer on the CPU’s local APIC. Figure 11-7 shows the fl ow of etimer_resync_deadlines.

etimer_resync_deadlines
(osfmk/i386/etimer.c)

setPop
(osfmk/i386/rtclock.c)

rtc_lapic_set[*]_timer
(osfmk/i386/rtclock_native.c)

lapic_set_timer_fast
(osfmk/i386/lapic_native.c)

Calls setPop() with the earliest deadline of :
….Current CPU’s rtclock_timer->deadline
….PMCPUGetDeadline()
….EndOfAllTime (if no other deadline)

If EndOfAllTime: rtc_timer->set (0,0) (clear timer)
Else : rtc_timer->set(time, now);

Calls TmrCvt (converts delta to bus ticks)

Call LAPIC_WRITE (wraps legacy
PIC MMIO or x2apic wrmsr)

FIGURE 11-7: Setting the hardware pop
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EndOfAllTime is, quite literally, the end of time as we know it. It is set in 
etimer.h to 264–1. Given that there are only some 31.5 million seconds in 
a year, (224.91 or so), this allows for almost 240 years to pass, or about 1012,
which — by some estimates — will be around the time the universe may crunch 
back into the singularity whence it originated (or expand faster than light could 
catch up). The Earth will be long gone by then, incinerated by the sun (which 
will have decayed as well).

EXCEPTIONS

Recall our low-level discussion of processor traps and exceptions in Chapter 9, one of the kernel’s 
responsibilities is the processing of these events, and in that respect all modern kernels are similar. 
What is different is the particular approach each kernel may take to achieve this functionality.

Mach takes a unique approach to exceptions implemented over the already-existing message-passing 
architecture. This model, presented in the following section, is a lightweight architecture and does 
not actually handle (that is, process and possibly correct) the exception. This is left for an upper 
layer, which, as you will see in Chapter 13, is BSD.

The Mach Exception Model
The designers of the Mach exception-handling facility mention[1], among others, these factors:

 ‰ Single facility with consistent semantics: Mach provides only one exception-handling mecha-
nism, for all exceptions, whether user defi ned, platform agnostic, or platform specifi c. Excep-
tions are grouped into exception types, and specifi c platforms can defi ne specifi c subtypes.

 ‰ Cleanliness and simplicity: The interface is very elegant (if less effi cient), relying on Mach’s 
already well-defi ned architecture of messages and ports. This allows extensibility for debug-
gers and external handlers — and even, in theory, network-level exception handling.

In Mach, exceptions are handled via the primary facility of the kernel: message passing. An excep-
tion is little more than a message, which is raised (that is, with msg_send()) by the faulting thread 
or task, and caught (that is, with msg_recv()) by a handler. The handler can then process the 
exception, and either clear the exception (that is, mark the exception as handled, and continue) or 
decide to terminate the thread.

Unlike other models, wherein the exception handler runs in the context of the faulting thread, Mach 
runs the exception handler in a separate context by making the faulting thread send a message to a 
predesignated exception port and wait for a reply. Each task may register an exception port, and this 
exception port will affect all threads of the same task. Additionally, individual threads may register 
their own exception ports, using thread_set_exception_ports. Usually, both the task and thread 
exception ports are NULL, meaning exceptions are not handled. Once created, these ports are just 
like any other ports in the system, and they may be forwarded to other tasks or even other hosts.

When an exception occurs, an attempt is made to raise the exception fi rst to the thread exception 
port, then to the task exception port, and fi nally, to the host (i.e., machine-level registered default) 
exception port. If none of these result in KERN_SUCCESS, the entire task is terminated. As noted, 
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however, Mach does not provide exception processing logic — only the framework to deliver the 
notifi cation of the exception.

Implementation Details
Exceptions usually begin their life as processor traps. To process traps, every modern kernel installs 
trap handlers. These are low-level functions installed by the kernel’s assembly-language core and 
matching the underlying processor architecture, as described in Chapter 8. 

Recall that Mach does not maintain a hardware abstraction layer, yet it aims to provide as clean-cut 
a dichotomy as possible between the machine-specifi c and the machine-agnostic parts. The exception 
codes are included in separate fi les pertaining to specifi c architectures and included in the compilation 
of XNU manually. Architecture-independent exception codes are #defined in <mach/exception_
types.h>. These codes are common to all platforms, and an #include of <mach/machine
/exception.h> provides support for machine-specifi c subcodes. In the XNU open source, this fi le is 
a stub containing an #include for i386/x86_64’s common <mach/i386/exception.h>, and fails 
compilation (#error architecture is not supported) for all other platforms. For iOS, however, Apple 
defi nes a <mach/arm/exception.h>, which can be found in the iPhone SDK’s usr/include.

Listing 11-19 shows the common Mach exceptions.

LISTING 11-19: Mach architecture-independent exceptions from <mach/exception_types.h>

#define EXC_BAD_ACCESS          1       /* Could not access memory */
                /* Code contains kern_return_t describing error. */
                /* Subcode contains bad memory address. */

#define EXC_BAD_INSTRUCTION     2       /* Instruction failed */
                /* Illegal or undefined instruction or operand */

#define EXC_ARITHMETIC          3       /* Arithmetic exception */
                /* Exact nature of exception is in code field */

#define EXC_EMULATION           4       /* Emulation instruction */
                /* Emulation support instruction encountered */
                /* Details in code and subcode fields   */

#define EXC_SOFTWARE            5       /* Software generated exception */
                /* Exact exception is in code field. */
                /* Codes 0 - 0xFFFF reserved to hardware */
                /* Codes 0x10000 - 0x1FFFF reserved for OS emulation (Unix) */

#define EXC_BREAKPOINT          6       /* Trace, breakpoint, etc. */
                /* Details in code field. */

#define EXC_SYSCALL             7       /* System calls. */

#define EXC_MACH_SYSCALL        8       /* Mach system calls. */

#define EXC_RPC_ALERT           9       /* RPC alert */

#define EXC_CRASH               10      /* Abnormal process exit */

// Mountain Lion/iOS Add code 11 (constant unknown) for ledger resource exceptions
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Likewise, the Mach exception handler, exception_triage() (in osfmk/kern/exception.c), is a 
generic handler responsible for converting exceptions into Mach messages. In both iOS and OS X it 
is called from abnormal_exit_notify (osfmk/kern/exception.c), with EXC_CRASH from BSD’s 
proc_prepareexit (bsd/kern/kern_exit.c) whenever a process exits with a core dump. Its invo-
cation elsewhere in the kernel, however, is architecture dependent.

On i386/x64, the i386_exception() function (from osfmk/i386/trap.c) calls exception_
triage() (shown in Figure 11-8). i386_exception() itself can be called from several locations:

 ‰ Low level Interrupt Descriptor Table (IDT) handlers — idt.s and idt64.s call i386_
exception()for kernel mode exceptions by using the CCALL3 and CCALL5 macros (the 
latter passes fi ve arguments, although i386_exception() only takes three).

 ‰ user_trap() (osfmk/i386/trap.c) — Itself called from the IDT handlers, it calls i386_
exception() with a code.

 ‰ mach_call_munger_xx functions (i386 and x64, both in osfmk/bsd_i386.c) — These call 
i386_exception() with EXC_SYSCALL on an invalid Mach system call.

 ‰ fpextovrflt (osfmk/i386/fpu.c) — A specifi c FPU fault, this is called when the fl oating 
point processor generates a memory access fault, either from user-mode or kernel mode.

exception_triage()

IDT handlers

i386_exception()

user_trap

abnormal_exit_notify

fpextovrflt

FIGURE 11-8 Exception Triage on OS X

On ARM, it seems that there is no equivalent arm_exception, because exception_
triage() is called directly by the low-level exception handlers:

 ‰ fleh_swi — The system call handler, it calls exception_triage with EXC_SYSCALL on an 
invalid system call, or EXC_BAD_ACCESS.

 ‰ sleh_undef — This is called from fleh_undef, the undefi ned instruction handler, on an 
undefi ned instruction.

 ‰ sleh_abort (called from fleh_prefabt or fleh_dataabt, for instruction prefetch or data 
abort handlers) — From a processor instruction or data abort, it calls exception_triage 
with a code of EXC_BAD_ACCESS.
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exception_triage() works the main exception logic, which — being at the Mach message 
level — is the same for both architectures. This function attempts to deliver the exception in the 
manner described previously — thread, task, and fi nally, host — using exception_deliver() (also 
in osfmk/kern/exception.c).

Each thread or task object, as well as the host itself, has an array of exception ports, which are ini-
tialized (usually to IP_NULL), and may be set using the xxx_set_exception_ports() call, where 
xxx is thread, task, or host. The former two are both defi ned in osfmk/kern/ipc_tt.c, and the lat-
ter in ipc_host.c. Their prototypes are all highly similar:

set_exception_ports(xxx_priv_t   xxx_priv,   // xxx is thread, task, or host
        exception_mask_t         exception_mask,
        ipc_port_t               new_port,
        exception_behavior_t     new_behavior,
        thread_state_flavor_t    new_flavor)

The “behaviors” (see Table 11-12) are machine-independent indications of what type of message will 
be generated on exception. Each behavior has a (possibly operating system–specifi c) “fl avor.”

TABLE 11-12: Exception behaviors (defi ned in exception_types.h)

BEHAVIOR PURPOSE

EXCEPTION_DEFAULT Passes thread identity to exception handler.

EXCEPTION_STATE Passes thread register state to exception handler. Specifi c 

“fl avors” are in mach/ARCH/thread_status.h, and include 

THREAD_STATE_X86, THREAD_STATE_X64, and possibly 

THREAD_STATE_ARM in iOS.

EXCEPTION_STATE_IDENTITY Passes both identity and state to exception handler.

The behaviors are implemented by corresponding functions: [mach]_exception_raise for 
EXCEPTION_DEFAULT, [mach]_exception_state_raise for EXCEPTION_STATE, and so on where the 
function names are the same as the behavior constants (albeit lowercase), and [mach] functions are 
used instead, if the exception code is a 64-bit code. 

The various behaviors are handled at the host level by hard-coded exception catchers, catch_
[mach]_exception_xxx. As before, the function names map to the behaviors (and the [mach]
variants are for the 64-bit mach_exception_data_t). These functions, all in </bsd/uxkern/
ux_exception.c>, eventually convert the exception to the corresponding UNIX signal by calling 
ux_exception, and deliver it to the faulting thread by threadsignal, as discussed in Chapter 12. 

The exception ports are the mechanism that enables one of OS X’s most important features — the 
crash reporter. The launchd(8) registers its exception ports, and — as ports are inherited across 
forking — the same exception ports apply to all of its children. Launchd sets ReportCrash as the 
MachExceptionHandler. This way, when an exception occurs in a launchd job, the crash 
reporter can be automatically started on demand. Debuggers also make use of exception ports to 
trap exceptions and break on errors. The following experiment demonstrates aspects of exception 
handling.
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Experiment: Mach Exception Handling
To try exception handling for yourself, code the basic example shown in Listing 11-20:

LISTING 11-20: Mach sample exception handling program, step 1

#include <mach/mach.h>
#include <mach/port.h>            // port rights
#include <mach/exception.h>
#include <mach/exception_types.h> // EXC_MASK_*
#include <mach/task.h>            // mach_task_self, etc
#include <stdio.h>                // fprintf..

mach_port_t      myExceptionPort; // Global, for reasons which will become clear later

void signalHandler (int SigNum)
{
   printf("Got signal %d\n", SigNum);
   exit(1);

} // signalHandler

void causeSomeException(int WantUNIXSignals)
{

  char *nullPtr = NULL;
  // If we want UNIX signals, also install a signal handler
  if (WantUNIXSignals) signal(11, signalHandler);

  // Null pointer dereference will result in SIGSEGV, 11. 
  // You can try other exceptions (e.g. zero-divide), but
  // remember to change the signal number (e.g. SIGFPE, 8)
  nullPtr[0] = 1;

} // end causeSomeException

void catchMACHExceptions(mach_port_t  TargetTask)
{
  // Simple code to catch exceptions occuring in TargetTask.
  // In step 1, code simply catches, and does nothing.
  kern_return_t  rc;

  exception_mask_t myExceptionMask;

  // create an exception port
  rc = mach_port_allocate (mach_task_self(), MACH_PORT_RIGHT_RECEIVE, &myExceptionPort);

  if (rc != KERN_SUCCESS) { fprintf (stderr, "Unable to allocate exception port\n"); 
exit(1); }

  // We next call port_insert_right to allow MAKE_SEND, which is required for
  // set_exception_ports
  rc = mach_port_insert_right (mach_task_self(),
                               myExceptionPort, // mach_port_name_t
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                               myExceptionPort, // mach_port_poly_t
                               MACH_MSG_TYPE_MAKE_SEND);

  if (rc != KERN_SUCCESS) { fprintf(stderr,"Unable to insert right\n"); exit(2); }

  myExceptionMask = EXC_MASK_ALL;

  // Now set this port as the target task's exception port
  rc = task_set_exception_ports(TargetTask,
                                myExceptionMask,
                                myExceptionPort,
                                EXCEPTION_DEFAULT_IDENTITY, // Msg 2403
                                MACHINE_THREAD_STATE);

  if (rc != KERN_SUCCESS) { fprintf(stderr,"Unable to set exception\n"); exit(3); }

   // For now, do nothing.

} // end catchMACHExceptions

void main (int argc, char **argv)
{

   int arg, wantUNIXSignals = 0, wantMACHExceptions = 0;

   for (arg = 1; arg < argc; arg++)
     {
         if (strcmp(argv[arg], "-m") == 0) wantMACHExceptions++;
         if (strcmp(argv[arg], "-u") == 0) wantUNIXSignals++;
     }

   // Example first starts capturing our own exceptions. Step 2 will soon
   // illustrate other tasks, so pass ourself as parameter for now

   if (wantMACHExceptions) catchMACHExceptions(mach_task_self());

   causeSomeException(wantUNIXSignals);

   fprintf(stderr,"Done\n"); // not reached

}

This simple code offers you three choices:

 ‰ No arguments — Code will run with the default exception handling.

 ‰ -u — Use this if you want UNIX signals. UNIX signals (in this example, SIGSEGV, Segmen-
tation Fault) will be caught by the signal handler.

 ‰ -m — Use this if you want Mach exception handling. Mach exceptions will be caught by the 
special setting of exception ports.

Running this code as is will result in a crash if neither the Mach exception nor resulting UNIX sig-
nal is caught. Running it with -u will indeed catch the UNIX signal, as expected. With -m, however, 
the code will hang, rather than crash. Take a moment to contemplate why that may be. 
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The program is hanging because it has triggered an exception, and the message is sent to its regis-
tered exception port. There is no active receiver on this port, however, and therefore the message 
hangs indefi nitely on the port. Mach exception handling occurs before UNIX exception handling, 
and therefore the UNIX signal does not get to your process. Because we asked for EXC_MASK_ALL,
you can replace the crash with other faults, such as a zero divide. You can also experiment with the 
EXC_ constants, shown in Listing 11-19.

The program as shown here is useless — it catches an exception, but does not do any handling. 
A much more useful approach would be to actually do something when notifi ed of an exception. To 
achieve this, use mach_msg to create an active listener on the exception port. This can be accomplished 
by another thread in the same program, though a more interesting effect is achieved if a second pro-
gram altogether implements the exception handling part. This is similar to launchd(1)’s registration 
of processes’ exception ports, by means of which it can launch CrashReporter. The modifi cations 
required to turn Listing 11-20 into an external exception handler are shown in Listing 11-21:

LISTING 11-21: Mach sample exception handling program, step 2

// Adding an exception message listener:

static void *exc_handler(void *ignored) {

   // Exception handler – runs a message loop. Refactored into a standalone function
   // so as to allow easy insertion into a thread (can be in same program or different)

   mach_msg_return_t rc;

   fprintf(stderr, "Exc handler listening\n");

  // The exception message, straight from mach/exc.defs (following MIG processing)
  // copied here for ease of reference.
  typedef struct {
                mach_msg_header_t Head;
                /* start of the kernel processed data */
                mach_msg_body_t msgh_body;
                mach_msg_port_descriptor_t thread;
                mach_msg_port_descriptor_t task;
                /* end of the kernel processed data */
                NDR_record_t NDR;
                exception_type_t exception;
                mach_msg_type_number_t codeCnt;
                integer_t code[2];
                int flavor;
                mach_msg_type_number_t old_stateCnt;
                natural_t old_state[144];
        } Request;

    Request exc;

    for(;;) {

        // Message Loop: Block indefinitely until we get a message, which has to be
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        // an exception message (nothing else arrives on an exception port)

        rc = mach_msg(
            &exc.Head,
            MACH_RCV_MSG|MACH_RCV_LARGE,
            0,
            sizeof(Request),
            myExceptionPort, // Remember this was global – that's why.
            MACH_MSG_TIMEOUT_NONE,
            MACH_PORT_NULL);

        if(rc != MACH_MSG_SUCCESS) {  /*... */ return; }; 

     // Normally we would call exc_server or other. In this example, however, we wish
     // to demonstrate the message contents:

     printf("Got message %hd. Exception : %d Flavor: %d. Code %d/%d. State count is %d\n" 
,
             exc.Head.msgh_id, exc.exception, exc.flavor, 
             exc.code[0], exc.code[1], // can also print as 64-bit quantity 
             exc.old_stateCnt);

#ifdef IOS

   // The exception flavor on iOS is 1 

   // The arm_thread_state (defined in the SDK's <mach/arm/_structs.h>) 
   // and contains r0-r12, sp, lr, pc and cpsr (total 17 registers). Its count is 17
   // In this example, we print out CPSR and PC.

   struct arm_thread_state *atsh   = &exc.old_state;

   printf ("CPSR is %p, PC is %p, etc.\n", atsh->cpsr, atsh->pc);

#else // OS X

   struct x86_thread_state *x86ts = &exc.old_state;

   printf("State flavor: %d Count %d\n", x86ts->tsh.flavor, x86ts->tsh.count);

   if (x86ts->tsh.flavor == 4) // x86_THREAD_STATE64
    {
       printf ("RIP: %p, RAX: %p, etc.\n",
            x86ts->uts.ts64.__rip, x86ts->uts.ts64.__rax);
    }
   else {
      // Could be x86_THEAD_STATE32 on older systems or 32-bit binaries
      ...
     }
#endif

continues
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     // You are encouraged to extend this example further, to call on exc_server and
     // perform actual exception handling. But for our purposes, q.e.d.
     exit(1);
    }
} // end exc_handler

…
…

void catchMACHExceptions(mach_port_t  TargetTask)
{
…
  // at the end of catchMachExceptions, spawn the exception handling thread
  pthread_t     thread;
  pthread_create(&thread,NULL,exc_handler,NULL);

} // end catchMACHExceptions

// and simplify the main to be:
int main()
{

   int rc;

   mach_port_t  task;

   // Note: Requires entitlements on iOS, or root on OS X!
   rc = task_for_pid(mach_task_self(),atoi(argv[argc -1]), &task);
   catchMACHExceptions(task);
   sleep (1000);  // Can also loop endlessly. Processing will be in another thread
}

To test this code on arbitrary programs, create a simple program to sleep for a few seconds, then 
crash (pick your poison: NULL pointer dereferencing, zero division, etc.). While the program sleeps, 
quickly attach the exception handling program. The code will show you something similar to out-
puts 11-3 and 11-4, on OS X and iOS, respectively (note that the iOS binary needs to be pseudo-
signed to allow the task_for_pid-allow/get-task-allow entitlements).

OUTPUT 11-3: Output of modifi ed exception handling sample, on OS X

root@Ergo (/tmp)# cat /tmp/a.c
int main (int argc, char **argv) {
  int c = 24;
  sleep(10);
  c = c /0;
  printf ("Boom\n"); // Not reached
  return(0);
}

LISTING 11-21 (continued)
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root@Ergo (/tmp)# cc /tmp/a.c -o a
/tmp/a.c: In function 'main':
/tmp/a.c:4: warning: division by zero # Duh!
/tmp/a.c:5: warning: incompatible implicit declaration of built-in function 'printf'

root@Ergo (/tmp)# /tmp/a  &
[1] 67934

# Attaching to the program, while it sleeps. (Note we are root)
root@Ergo (/tmp)$ ./exc 67934  &
Exc handler listening
Got message 2403. Exception : 3 Flavor: 7 Code: 1/0
State: 44 bytes State flavor: 4 Count 42
RIP: 0x100000ee8, RAX: 0xffff, etc.

morpheus@Ergo (/tmp)$ gdb ./a
Program received signal EXC_ARITHMETIC, Arithmetic exception.
0x0000000100000ee8 in main ()
(gdb) info reg
rax            0xffff  65535
…
rip            0x100000ee8   0x100000ee8 <main+88>
…

OUTPUT 11-4: Output of modifi ed exception handling sample, on iOS

root@Padishah (…/test)# cat a.c
int main()
{
 char *c = 0L;
 sleep(10);
 c[0] = 1;
 return(0); // not reached
}

root@Padishah (…/test)# ./a &
[1] 2978

root@Padishah (…/test)# ./exc 2978  &
Exc handler listening
Got message 2403. Exception : 1 Flavor: 1 Code 2/0. State count is: 17
CPSR is 0x10, PC is 0x2250, etc.

root@Padishah (…/test)# gdb ./a
…
Program received signal EXC_BAD_ACCESS, Could not access memory.
Reason: KERN_PROTECTION_FAILURE at address: 0x00000000
0x00002250 in main ()
…

Exception ports are revisited in Chapter 13, which shows how XNU’s BSD layer converts the low 
level Mach exception to the well known UNIX Signals.

3: EXC_ARITHMETIC 
1: EXC_I386_DIV

Comparing with 
GDB:  perfect 
match

1: EXC_BAD_ACCESS 
2: KERN_PROTECTION_FAILURE

Again, compare with GDB.
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SUMMARY

Mach is the microkernel core of XNU. Although Mach is relatively obscure and poorly documented 
architecture, it still dominates XNU in both OS X and iOS. The chapter thus aimed to demystify 
and clearly explain the architecture by focusing on its primitive abstractions: at the machine level 
(host, processor, processor_set, clock), application level (tasks, threads), scheduling (schedulers and 
exceptions), and virtual memory (pagers).

Implementing additional layers on top of these abstractions is possible. In Chapter 12 you will see 
the main “personality” XNU exposes to the user, which is the BSD layer. This layer, which uses 
Mach for its underlying primitives and abstractions, exposes the popular POSIX API to applica-
tions, making OS X compatible with many other UNIX implementations. Mach is still, however, the 
core of XNU, and is present in both OS X and iOS.
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12
Commit to Memory:
Mach Virtual Memory

The most important resource a kernel manages aside from the CPU itself (see Chapter 11, 
“Mach Scheduling”) is memory. Mach, like all kernels, devotes a large portion of its code to 
efficiently handling virtual memory (VM).

This chapter delves into Mach’s powerful VM primitives, as well as the extensible framework 
of external virtual memory managers, which is used in XNU.

We begin by examining the virtual memory architecture, at a glance. We then discuss physical 
memory management, followed by an overview of the myriad memory allocators the kernel 
offers. Finally, we discuss pagers and custom memory managers.

VIRTUAL MEMORY ARCHITECTURE

The most important mechanism provided by Mach is the abstraction of virtual memory, 
through memory objects and pagers. As with scheduling and the Mach primitives, we are 
dealing with an abstraction layer here, with low-level primitives meant to be utilized by an 
upper layer which, in XNU’s case, is BSD.

The implementation is intentionally broad and generic. It is composed of two layers: the hard-
ware-specific aspects, on top of which are built hardware agnostic, and common aspects. OS 
X and iOS use a nearly identical underlying mechanism, with the hardware agnostic layer (and 
the overlying BSD mechanisms) the same, and only the architecture-specific portion changed 
to the semantics of ARM virtual memory.

This section builds on the discussion of virtual memory started in Chapter 4, “Process 
Internals,” so if you’ve skipped that chapter and are wondering about the nomenclature, it is 
defined there. This chapter offers a detailed look at the internals of memory management, and 
how the commands covered in Chapter 4 actually work. You might also want to have a look at 
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Chapter 8, which details the kernel’s boot process, and details the initialization of the various com-
ponents listed in this chapter.

The 30,000-Foot View of Virtual Memory
Mach’s VM subsystem is, justifiably, as complex and detail-ridden as the virtual memory it seeks 
to manage. From a high-level view, however, you can see two distinct planes, the virtual and the 
physical.

The Virtual Memory Plane 
The virtual memory plane handles the virtual memory management in a manner that is entirely 
machine agnostic and independent. Virtual memory is represented by several key abstractions:

 ‰ The vm_map (vm_map.h): Represents one or more regions of virtual memory in a task’s 
address space. Each of the regions is a separate vm_map_entry, maintained in a doubly 
linked list of vm_map_links.

 ‰ The vm_map_entry (vm_map.h): This the key structure, yet it is accessed only within the 
context of its containing map. Each vm_map_entry is a contiguous region of virtual memory. 
Each such region may be protected with specifi c access protections (the usual r/w/x pertain-
ing to virtual memory pages). Regions may also be shared between tasks. A vm_map_entry
usually points to a vm_object, but may also point to a nested vm_map, i.e. a submap.

 ‰ The vm_object (vm_object.h): Used to connect a vm_map_entry with the actual backing 
store memory. It contains a linked list of vm_pages, as well as a Mach port (called a memory_
object) to the appropriate pager, by means of which the pages may be retrieved or fl ushed. 

 ‰ The vm_page (vm_page.h): This is the actual representation of the vm_object or a part 
thereof (as identifi ed by an offset into the vm_object). The vm_page may be resident, 
swapped, encrypted, clean, dirty, and so on.

Mach allows for more than one pager. In fact, by default three or four pagers exist. Mach’s pagers 
are considered external entities: dedicated tasks, somewhat akin to the kernel-swapping threads 
one finds on other systems. Mach’s design allows for pagers to be separate kernel tasks, or even 
user mode ones. Likewise, the underlying backing store can reside on disk swap (handled by the 
default_pager in OS X), can be mapped from a file (and handled by the vnode_pager), a device 
(and its device_pager), or even (though unused in OS X) a remote machine.

Note that in Mach, each pager handles the paging request of pages which belong to it, but that 
request must be made by a pageout daemon. These daemons (in reality, kernel threads) maintain 
the kernel’s page lists and decide which pages need to be flushed. There is, therefore, a separation 
between the paging policy, which the daemons maintain, and the paging operation, which the pag-
ers implement.

The Physical Memory Plane 
The physical memory plane handles the mapping to physical memory, because virtual memory even-
tually has to be stored somewhere. Only one abstraction exists here — the “pmap” — but it is an 
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important one, because it offers a machine-independent interface. This interface hides underneath 
it the platform specifics, which allow paging operations at the processor level — the hardware page 
table entries (PTEs), translation lookaside buffers (TLBs), and so on. 

The Bird’s Eye View
Figure 12-1 shows a closer, yet somewhat simplified view of how all these objects connect. It might 
be a bit overwhelming at first (and remember, it is the simplified view!), but the rest of this chapter 
aims to make sense of it, and discuss each of the abstractions, in detail.

From task

struct vm_map

Platform

dependent 

struct pmap

struct vm_object struct vm_object

struct vm_page

Union: vm_map/vm_object

Recursive 

submap

struct vm_map

struct vm_map_entry struct vm_map_entry struct vm_map_entry

Union: vm_map/vm_object

is_submap = false;is_submap = false

Union: vm_map/vm_object

is_submap = true;

struct vm_map_links

vm_map_entry *prev vm_map_entry *next vm_map_entry *prev

vm_map_entry *next

vm_map_entry *prev

vm_map_entry *next vm_map_entry *next vm_map_entry *next

queue_head_t memq

ppnum_t phys_page;

vm_object_t object

vm_offset_t offset

memory_object_t pager memory_object_t pager

queue_head_t memq

flags

flags

queue_chain_t listq;

ppnum_t phys_page;

vm_object_t object

vm_offset_t offset

queue_chain_ t listq;

……

more flags

vm_map_entry *hint

vm_map_entry *first_free

boolean_t jit_entry_exists

flags

pmap_t pmap;

vm_map_size_t size;

int ref_count;

Quick lookup and free space hints

Pager Interface

offset_t paging_offset

memory_object_control_t

pager_control;

struct vm_pageout_queue (page lists)

queue_head_t  pgo_pending

queue_chain_t pageq; queue_chain_ t pageq;

Unsigned int pgo_laundry;

1. Scan page list

2. for each page, call

corresponding pager to flush

page to backing store

…

data_return (page out)

data_request (page in)

…

Pageout iothread

FIGURE 12-1: The menagerie that is the Mach VM
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Every Mach task has a virtual memory space of its own, which is held in its “map” member of its 
struct task. This field is a vm_map struct. This struct is defined in osfmk/vm/vm_map.h as shown 
in Listing 12-1:

LISTING 12-1: The vm_map struct

struct vm_map_header {
        struct vm_map_links     links;          /* first, last, min, max */
        int                     nentries;       /* Number of entries */
        boolean_t               entries_pageable;
                                                /* are map entries pageable? */
        vm_map_offset_t         highest_entry_end_addr; /* The ending address of the 
                                                        /* highest allocated 
                                                        /* vm_entry_t */
#ifdef VM_MAP_STORE_USE_RB
        struct rb_head  rb_head_store;
#endif
};

struct _vm_map {
        lock_t                lock;           /* uni- and smp-lock */
        struct vm_map_header  hdr;            /* Map entry header */
#define min_offset            hdr.links.start /* start of range */
#define max_offset            hdr.links.end   /* end of range */
#define highest_entry_end     hdr.highest_entry_end_addr
        pmap_t                pmap;           /* Physical map */
        vm_map_size_t         size;           /* virtual size */
        vm_map_size_t         user_wire_limit;/* rlimit on user locked memory */
        vm_map_size_t         user_wire_size; /* current size of user locked memory in
                                              /* this map*/
        int                   ref_count;      /* Reference count */
#if     TASK_SWAPPER
        int                   res_count;      /* Residence count (swap) */
        int                   sw_state;       /* Swap state */
#endif  /* TASK_SWAPPER */
        decl_lck_mtx_data(,   s_lock)         /* Lock ref, res fields */
        lck_mtx_ext_t         s_lock_ext;
        vm_map_entry_t        hint;           /* hint for quick lookups */
        vm_map_entry_t        first_free;     /* First free space hint */
        unsigned int            
        /* boolean_t */       wait_for_space:1,  /* Should callers wait for space? */
        /* boolean_t */       wiring_required:1, /* All memory wired? */
        /* boolean_t */       no_zero_fill:1,    /* No zero fill absent pages */
        /* boolean_t */       mapped:1,          /*has this map been mapped */
        /* boolean_t */       switch_protect:1,  /* Protect from write faults while
                                                 /* switched */
        /* boolean_t */       disable_vmentry_reuse:1, // entry alloc. Monotonically
                                                       // increases 
        /* boolean_t */       map_disallow_data_exec:1,// set NX bit, if possible
        /* reserved */        pad:25;
        unsigned int          timestamp;      /* Version number */
        unsigned int          color_rr;       /* next color (not protected by a lock) */
#if CONFIG_FREEZE // default freezer — we get to that later.
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        void                  *default_freezer_toc;
#endif
        boolean_t             jit_entry_exists; // used for dynamic codesigning (iOS)
} ;

The vm_map represents the total memory of vm_map.size bytes, maintained in a list (vm_map.hdr
.links) of vm_map.hdr.nentries entries. Each of the links is a vm_map_entry, representing a 
contiguous chunk of virtual memory, with plenty of details about the page range, as shown in 
Listing 12-2:

LISTING 12-2: A vm_map_entry

struct vm_map_entry {
        struct vm_map_links     links;          /* links to other entries */
#define vme_prev                links.prev
#define vme_next                links.next
#define vme_start               links.start
#define vme_end                 links.end

        struct vm_map_store     store;
        union vm_map_object     object;         /* object I point to */
        vm_object_offset_t      offset;         /* offset into object */
        unsigned int
        /* boolean_t */         is_shared:1,    /* region is shared */
        /* boolean_t */         is_sub_map:1,   /* Is "object" a submap? */
        /* boolean_t */         in_transition:1, /* Entry being changed */
        /* boolean_t */         needs_wakeup:1,  /* Waiters on in_transition */
        /* vm_behavior_t */     behavior:2,     /* user paging behavior hint */
                /* behavior is not defined for submap type */
        /* boolean_t */         needs_copy:1,   /* object need to be copied? */
                /* Only in task maps: */
        /* vm_prot_t */         protection:3,   /* protection code */
        /* vm_prot_t */         max_protection:3,/* maximum protection */
        /* vm_inherit_t */      inheritance:2,  /* inheritance */
        /* boolean_t */         use_pmap:1,     /* nested pmaps */
        /*
         * IMPORTANT:
         * The "alias" field can be updated while holding the VM map lock
         * "shared".  It's OK as along as it's the only field that can be
         * updated without the VM map "exclusive" lock.
         */
        /* unsigned char */     alias:8,         /* user alias */
        /* boolean_t */         no_cache:1,      /* should new pages be cached? */
        /* boolean_t */         permanent:1,      /* mapping can not be removed */
        /* boolean_t */         superpage_size:3, /* use superpages of a certain size */
        /* boolean_t */         zero_wired_pages:1, // zero out wired pages on entry
                                                    // deletion 
        /* boolean_t */         used_for_jit:1,     // added for dynamic codesigning
                                                    // (iOS)
        /* unsigned char */     pad:1;            /* available bits */
        unsigned short          wired_count;      /* can be paged if = 0 */
        unsigned short          user_wired_count; /* for vm_wire */
};
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The key element in the vm_map_entry is the vm_map_object, a union which either holds another 
vm_map (as a submap) or a vm_object_t (Because it is a union, determining its contents requires a 
separate field, the is_sub_map boolean). The vm_object is a huge, but opaque structure (defined in 
osfmk/vm/vm_object.h, but not readily visible anywhere outside the VM system), which contains 
all the data necessary to deal with the underlying VM.

In the interest of keeping the avid reader avid (and saving a tree or two), we’ll stop short of showing 
the vm_object listing — the structure is, after all, fairly well documented in the header file. Most 
of the fields in it are bit-wise flags, denoting the underlying memory state (wired, physically con-
tiguous, persistent, etc.) or counters (reference, resident, wired, and so on). Three fields, however, 
deserve specific mention:

 ‰ memq: Holds the linked list of struct vm_page objects, each corresponding to a resident 
virtual memory page. Though an object can correspond to a single page, more often than not 
containing an object takes quite a few pages, which is why each page links back to an object 
at a given offset.

 ‰ pager: Is a memory_object structure, which is a Mach port to the pager. A pager connects 
the non-resident pages to the backing store — a memory-mapped fi le, device, or swap, which 
holds the pages when they are not in memory.  In other words, the pagers (as there can be 
more than one) are charged with moving data in and out of memory, to their backing store. 
Pagers are of extreme importance to the virtual memory subsystem, and are discussed in their 
own section later in this chapter. 

 ‰ internal: is one of the many bit-fi elds in the vm_page, and is true if it is used internally by the 
kernel. This bit affects which pageout queue the page ends up in.

The vm_page is a smaller structure, with many bit fields. It participates in two different lists: its 
listq field points to a list of related pages of the same vm_object, and is used by the VM Map 
layer. Its pageq field points to one of the kernel’s page lists, which is used by the kernel’s pageout 
threads. The vm_page also contains a pointer back to its owner vm_object, which is used by the 
kernel’s pageout threads to contact its pager when the pageout thread decides to flush this page. 

A particularly important vm_map instance is the kernel_map. This is the virtual memory map of the 
kernel space, and it is used frequently to determine user space or kernel space memory access.

The User Mode View
As with the task and thread APIs discussed in the previous chapter, Mach allows for a remarkable 
user-level view of virtual memory. User mode can remain blissfully unaware of the gory details, 
keeping API calls to a vm_map_t level, (which is itself an opaque mach_port_t) and just ask for spe-
cific address ranges, using the rich API presented next.

In Table 12-1, the vm_map_t is actually a task parameter; that is, you would pass in a Mach task, 
whose corresponding VM map would be affected by the calls. There exist variants of these calls 
with and without the mach_ prefix: The former is considered to be the “newer” set of APIs (for both 
32- and 64-bit), but either set generally works, as in many cases they end up using the same underly-
ing implementation in the kernel.
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TABLE 12-1: Mach User-Mode Visible Calls of the VM Subsystem (osfmk/mach/mach_vm.h)

VM  SUBSYSTEM FUNCTION DESCRIPTION

mach_vm_region(vm_map_t  map,

 mach_vm_address_t  *address,               

 mach_vm_size_t     *size,                 

 vm_region_flavor_t flavor,                

 vm_region_info_t   info,                  

 mach_msg_type_number_t *cnt,                 

 mach_port_t   *object_name);         

Displays information on VM region of task map, at 

address according to flavor. Currently, only the 

VM_BASIC_INFO_64 fl avor is supported. info con-

tains the returned information, in the form of count 

entries of structs corresponding to the fl avor.

vmmap(1) uses this extensively; see example.

This function calls vm_map_region() internally, 

which calls on vm_map_lookup_entry()to fi nd the 

corresponding entry, and copy its properties into 

the info struct.

mach_vm_region_recurse (

   vm_map_t    map,

   mach_vm_address_t *address,

    mach_vm_size_t   *size,

    uint32_t        *depth, 

vm_region_recurse_info_t info,

mach_msg_type_number_t  *infoCnt);

Similar to mach_vm_region, but also recurses into 

submaps, up to the depth specifi ed.

mach_vm_allocate(

            vm_map_t  map,

   mach_vm_address_t *address,

      mach_vm_size_t size,

                 int flags);

Allocates size bytes in map, according to flags. 

Address is an in/out parameter — i.e. the kernel will 

attempt to allocate at the address specifi ed, unless 

VM_FLAGS_ANYWHERE is specifi ed.

Note that map is usually mach_task_self(), but  

given the right permissions, could be any task on 

the system! When used on mach_task_self() this 

is the underlying system call used by malloc() and 

its ilk.

In pre-Leopard OS X, this was the underlying call 

supporting user mode’s malloc(). It calls vm_map_

enter() internally.

mach_vm_deallocate

        (vm_map_t    map,

 mach_vm_offset_t    start,

        mach_vm_size_t  size);

Inverse of vm_allocate. 

In pre-Leopard OS X, this was the underlying call 

supporting user mode’s free(). Calls vm_map_

remove() internally.

mach_vm_protect(vm_map_t map, 

mach_vm_offset_t       start,

mach_vm_size_t  size,

boolean_t set_maximum,

  vm_prot_t  new_protection);

Sets the protection of the memory region from 

start to start+size in map to either the maximum 

defi ned (if set_maximum) or new_protection. 

Implements BSD’s mprotect(2). Calls vm_map_

protect() internally.

continues
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VM  SUBSYSTEM FUNCTION DESCRIPTION

mach_vm_inherit(

      vm_map_t     map,

 mach_vm_offset_t start,

    mach_vm_size_t  size,

   vm_inherit_t new_inherit)

Sets inheritance fl ags new_inherit in the specifi ed 

range (start to start+size) of the specifi ed map.

Implements BSD’s minherit(2). Calls vm_map_

inherit() internally.

mach_vm_read(vm_map_t  map,

mach_vm_address_t       addr,

mach_vm_size_t  size,

pointer_t    *data,

mach_msg_type_number_t*dsize);

memcpy from foreign task: Reads size bytes of 

memory from addr in map into data (of dsize 

bytes).  

Uses vm_map_copyin() internally.

mach_vm_read_list

 (vm_map_t map,

vm_read_entry_t data_list,

 natural_t count)

Copies list data_list of count addresses from the 

target map.

Loops over data_list and uses vm_map_cop-

yin() and vm_map_copyout() internally.

mach_vm_write(vm_map_t  map,

       vm_address_t address, 

       pointer_t  data,

unused mach_msg_type_number_t)

memcpy to foreign task: Writes data into address 

in map.

Uses vm_map_copy_overwrite().

mach_vm_copy(vm_map_t    map,

mach_vm_address_t            source,

mach_vm_size_t         size,

mach_vm_address_t      dest)

memcpy in foreign task: Copy size bytes from 

source to dest in map. Unlike mach_vm_write, 

both source and dest are in the foreign map.

Implemented using vm_map_copy_in() and 

vm_map_copy_overwrite().

mach_vm_read_overwrite

   (vm_map_t  map,

 mach_vm_address_t       address,

mach_vm_size_t  size,   

mach_vm_address_t       data,

mach_vm_size_t  *data_size)

Similar to vm_read, but overwrites the data pointer 

in the current map. Whereas vm_read would allo-

cate more memory in the current task’s map, vm_

read_overwrite simply overwrites memory in it.

Uses vm_map_copy_overwriteinternally, rather 

than vm_map_copy_in.

mach_vm_msync(vm_map_t    map,

mach_vm_address_t address,

mach_vm_size_t  size,

vm_sync_t               sync_flags);

Synchronizes region, (address)-

(address+size), in map according to 

sync_flags.

Used by BSD’s msync(2) system call, and calls on 

vm_map_msync internally.

mach_vm_behavior_set

   (vm_map_t     map,

 mach_vm_offset_t        start,

  mach_vm_size_t  size,

 vm_behavior_t new_behavior);

Sets paging behavior on range (start-

(start+size)) in map to new_behavior.

Used by BSD’s madvise(). Calls on vm_map_

behavior_set internally.

TABLE 12-1 (continued)
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VM  SUBSYSTEM FUNCTION DESCRIPTION

mach_vm_map (

   vm_map_t target_task,    

   mach_vm_address_t *address,

    mach_vm_size_t size,

    mach_vm_offset_t mask,

int flags,

mem_entry_name_port_t object,

memory_object_offset_t offset,

boolean_t copy,

vm_prot_t cur_protection,

vm_prot_t max_protection,

vm_inherit_t inheritance);

Creates a new memory mapping (as mmap(2) 

does). Maps object to address space of tar-

get_task, at address, for size bytes, according 

to flags. If object is NULL, the map is a zero-fi lled, 

anonymous memory. 

Flags can include: 

   VM_MAP_ANYWHERE, allowing the kernel to deter-

mine the address

  VM_MAP_OVERWRITE, allowing the kernel to over-

write an existing address

 and other fl ags from <mach/vm_statistics.h>. 

The address will be aligned as specifi ed in the

mask.

The mapping can optionally create a Copy of object 

if set (otherwise mapping is direct), and set protec-

tion (VM_PROT_READ, _WRITE, _EXECUTE) to 

cur_protection, with max_protection being the 

maximum achievable. Likewise, inheritance con-

trols this mapping availability to child tasks, if set, by 

VM_INHERIT_SHARE, _COPY (on write), or _NONE.

Actual work done by the kernel private vm_map_

enter_mem_object(), which also underlies BSD’s 

mmap(2)

mach_vm_machine_attribute(

vm_map_t map,

mach_vm_address_t    addr,

mach_vm_size_t       size,

vm_machine_attribute_t attr,

vm_machine_attribute_val_t* value);

Sets machine-specifi c attr/value in map for region 

addr-(addr+size).

Calls vm_map_machine_attribute() internally.

mach_vm_remap(vm_map_target,

mach_vm_offset_t *address,

mach_vm_size_t  size,   

mach_vm_offset_t  mask,

  int   flags,

 vm_map_t        src,

mach_vm_offset_t mem_address,

boolean_t        copy,

vm_prot_t *cur_protection,

vm_prot_t *max_protection,

vm_inherit_t inheritance);

Remaps memory in task, or between tasks (that is, 

from smap to tmap, which may be the same). Also is 

used to change permissions of a memory mapping.

Uses vm_map_remap() internally.

continues
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VM  SUBSYSTEM FUNCTION DESCRIPTION

mach_make_memory_entry(

  vm_map_t target_task,

  memory_object_size_t *size,

  memory_object_offset_t offset,

  vm_prot_t permission,

  mem_entry_name_port_t 

*object_handle,

  mem_entry_name_port_t 

parent_handle);

Create a “name” reference for a memory region, for 

later referencing, sharing or changing this region’s 

settings. The named entry can be passed to another 

task over IPC.

mach_vm_map_page_query

(vm_map_t               map, 

mach_vm_offset_t offset,

 int         *disposition,

 int    *ref_count);

Queries information — ref_count and disposition 

on the page specifi ed by offset in map.

A passthrough vm_map_page_query_internal().

mach_vm_page_query

(vm_map_t target_map,

   mach_vm_offset_t offset,

   integer_t *disposition,

   integer_t *ref_count);

Query residency information about a page. Provides 

reference count of page in ref_count, and VM_

PAGE_QUERY_PAGE_* fl ags in disposition.

Used by BSD’s mincore(2), which translates the 

VM_PAGE_QUERY_PAGE_* fl ags to MINCORE_* fl ags.

mach_vm_page_info

(vm_map_t target_task,

mach_vm_address_t address,

vm_page_info_flavor_t flavor,

vm_page_info_t info,

mach_msg_type_number_t *iCnt);

Returns info corresponding to mapped page at 

address in task.

Only fl avor supported is VM_PAGE_INFO_BASIC.

Not to be confused with vm_page_info(), which 

is a function supported only #if MACH_VM_DEBUG, 

and provides virtual/physical mapping information 

(used by host_virtual_physical_table()).

mach_vm_purgable_control(

   vm_map_t     map,

   mach_vm_offset_t address,

   vm_purgable_t   control,

   int    *state);

Controls purgeable settings of vm_map and underly-

ing objects. Purgeable objects may be lost — freed 

without committing to a backing store — on low 

memory conditions.

TABLE 12-1 (continued)
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One of the issues addressed by jailbreakers in their iOS kernel patches is the 
removal of various custom security measures imposed by Apple on memory map 
handling. Specifi cally, the vm_map_protect() and vm_map_enter() are inten-
tionally broken so as to disallow memory regions which are both executable 
and writable (with the exception of Just-In-Time (JIT) mappings allowed for 
dynamic-codesigning entitlements). This is meant to discourage hackers from cre-
ating code on-the-fl y. You can see this for yourself in the code (though why Apple 
left it public, eludes this author) for vm_map_enter(), from osfmk/vm/vm_map.c:

#if CONFIG_EMBEDDED
        if (cur_protection & VM_PROT_WRITE){
                if ((cur_protection & VM_PROT_EXECUTE) && !(flags 
                & VM_FLAGS_MAP_JIT)){
                        printf("EMBEDDED: %s curprot cannot be
                        write+execute. turning off execute\n",
                        __PRETTY_FUNCTION__);
                        cur_protection &= ~VM_PROT_EXECUTE;
                }
        }
#endif /* CONFIG_EMBEDDED */

Similarly, in the same fi le, the implementation of vm_map_protect() makes it so 
that an executable page cannot be made writable:

#if CONFIG_EMBEDDED
                if (new_prot & VM_PROT_WRITE) {
                       if ((new_prot & VM_PROT_EXECUTE) && !
                        (current->used_for_jit)) {
                                printf("EMBEDDED: %s can't have
                                both write and exec at the same 
                                time\n", __FUNCTION__);
                                new_prot &= ~VM_PROT_EXECUTE;
                        }
                }
#endif

Jailbreakers simply patch both functions, so as to NOP out the check in vm_map_
enter() and the fl ag clearing in vm_map_protect(). By patching the low-level 
Mach APIs, they handle both Mach calls and BSD.

An important function that was left out of osfmk/mach/mach_vm.h  (and therefore Table 11-1) is 
[mach_]vm_wire(). It is defined instead in osfmk/mach/host_priv.h (and implemented in osfmk
/vm/vm_user.c as shown in Listing 12-3:
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LISTING 12-3: mach_vm_wire, from osfmk/vm/vm_user.c:

/*
 * NOTE: these routine (and this file) will no longer require mach_host_server.h
 * when mach_vm_wire and vm_wire are changed to use ledgers.
 */
#include <mach/mach_host_server.h>
/*
 *      mach_vm_wire
 *      Specify that the range of the virtual address space
 *      of the target task must not cause page faults for
 *      the indicated accesses.
 *
 *      [ To unwire the pages, specify VM_PROT_NONE. ]
 */
kern_return_t
mach_vm_wire(
        host_priv_t             host_priv,
        vm_map_t                map,
        mach_vm_offset_t        start,
        mach_vm_size_t  size,
        vm_prot_t               access)

The function allows its caller to “hard-wire” virtual memory (read: part of a vm_map), so that it 
remains resident and unpageable. Because this affects the host’s RAM and thereby impacts other 
programs as well, it is defined as a privileged host level operation (ergo the host_priv port as its 
first argument). The function has yet, at this time of writing, to be converted to using Mach ledgers 
(see Chapter 10), but it is possible that in Mountain Lion it finally will.

Many of Mach VM functions are also functionally equivalent to POSIX system calls. In fact, BSD 
memory management system calls (in bsd/kern/kern_mman.c) are usually implemented directly 
over the Mach system calls. This is indicated in the table. For example, BSD’s msync(2) calls 
mach_vm_msync. madvise(2) calls mach_vm_behavior_set(). The mlock(2)/munlock(2) calls 
are simple wrappers over mach_vm_wire(), and so on. User mode memory allocation, which used 
to be implemented over the Mach calls, has been moved to POSIX. Chapter 13 discusses the POSIX 
memory management calls.

The Mach APIs, however, are far stronger than those offered by POSIX, particularly due to the ease 
with which they allow one task to invade another’s address space. Permissions are required for this 
(specifically, the foreign task’s port, which is the “map” argument in Table 12-1’s Mach calls). Barring 
this minor technicality, however, these calls offer virtually boundless power. Indeed, many process 
invasion and thread injection techniques in OS X rely on these Mach calls, not on those of BSD.

Experiment: Emulating vmmap(1) with mach_vm_region_recurse
The mach_vm_region_recurse is the main Mach call used in vmmap(1) and GDB’s show regions
command. You can see a good example of its usage in the GDB sources (specifically, macos_debug_
regions(), in gdb/macosx/macosx-nat-inferior-debug.c). The output of vmmap(1) is, for the 
most part, that of vm_region64 with VM_REGION_BASIC_INFO , as shown in Listing 12-4:
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LISTING 12-4: The VM_REGION_BASIC_INFO_64 struct, from <mach/vm_region.h>

struct vm_region_basic_info_64 {
        vm_prot_t               protection;     // VM_PROT_* flags
        vm_prot_t               max_protection; // likewise, for max possible
        vm_inherit_t            inheritance;    // VM_INHERIT_[SHARE|COPY|NONE]
        boolean_t               shared;          
        boolean_t               reserved;
        memory_object_offset_t  offset;
        vm_behavior_t           behavior;       // VM_BEHAVIOR_*, like madvise(2)
        unsigned short          user_wired_count;
};

Constructing a quick and dirty implementation of vmmap(1) is straightforward, by relying on this 
call, as is shown in Listing 12-5:

LISTING 12-5: A simple implementation of vmmap(1)

// Region listing code adapted from GDB's macosx_debug_regions, from open source GDB

void show_regions (task_t task, mach_vm_address_t address)
{
  kern_return_t kr;
  vm_region_basic_info_data_t info, prev_info;
  mach_vm_address_t prev_address;
  mach_vm_size_t size, prev_size;

  mach_port_t object_name;
  mach_msg_type_number_t count;

  int nsubregions = 0;
  int num_printed = 0;
  int done = 0;

  count = VM_REGION_BASIC_INFO_COUNT_64;
  // Call mach_vm_region, which obtains the vm_map_entry containing the address,
  // and populates the vm_region_basic_info_data_t with its statistics

  kr = mach_vm_region (task, &address, &size, VM_REGION_BASIC_INFO,
                       (vm_region_info_t) &info, &count, &object_name);
  if (kr != KERN_SUCCESS)
    {
      printf ("Error %d - %s", kr, mach_error_string(kr));
      return;
    }
  memcpy (&prev_info, &info, sizeof (vm_region_basic_info_data_t));
  prev_address = address;
  prev_size = size;
  nsubregions = 1;

  while (!done)

continues
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    {
      int print = 0;

      address = prev_address + prev_size;

      /* Check to see if address space has wrapped around. */
      if (address == 0)
        { 
        print = done = 1;
        }

      if (!done)
        {
          // Even on iOS, we use VM_REGION_BASIC_INFO_COUNT_64. This works.

          count = VM_REGION_BASIC_INFO_COUNT_64;

          kr =
            mach_vm_region (task, &address, &size, VM_REGION_BASIC_INFO,
                              (vm_region_info_t) &info, &count, &object_name);

          if (kr != KERN_SUCCESS)
            {
               fprintf (stderr,"mach_vm_region failed for address %p - error %d\n",
               address, kr);
               size = 0;
               print = done = 1; // bail on error, but still print
            }
        }

      if (address != prev_address + prev_size)
        print = 1;
  // Print if there has been any change in region settings
      if ((info.protection != prev_info.protection)
          || (info.max_protection != prev_info.max_protection)
          || (info.inheritance != prev_info.inheritance)
          || (info.shared != prev_info.reserved)
          || (info.reserved != prev_info.reserved))
        print = 1;

      if (print)
        {
          int   print_size;
          char *print_size_unit;
          if (num_printed == 0)
            printf ("Region ");
          else
            printf ("   ... ");

LISTING 12-5 (continued)
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          /* Quick hack to show size of segment, which GDB does not */
          print_size = prev_size;
          if (print_size > 1024) { print_size /= 1024; print_size_unit = "K"; }
          if (print_size > 1024) { print_size /= 1024; print_size_unit = "M"; }
          if (print_size > 1024) { print_size /= 1024; print_size_unit = "G"; }
          /* End Quick hack */

          // the xxx_to_yyy functions merely change the flags/bits to a more readable
          // string representation. Their implementation is left as an exercise to
          // the reader

          printf (" %p-%p [%d%s](%s/%s; %s, %s, %s) %s",
                           (prev_address),
                           (prev_address + prev_size),
                           print_size,
                           print_size_unit,
                           protection_bits_to_rwx (prev_info.protection),
                           protection_bits_to_rwx (prev_info.max_protection),
                           unparse_inheritance (prev_info.inheritance),
                           prev_info.shared ? "shared" : "private",
                           prev_info.reserved ? "reserved" : "not-reserved",
                           behavior_to_xxx (prev_info.behavior));

          if (nsubregions > 1)
            printf (" (%d sub-regions)", nsubregions);

          printf ("\n");

          prev_address = address;
          prev_size = size;
          memcpy (&prev_info, &info, sizeof (vm_region_basic_info_data_t));
          nsubregions = 1;

          num_printed++;
        }
      else
        {
          prev_size += size;
          nsubregions++;
        }

      if (done)
        break;
    }

} // end show_regions
void main(int argc, char **argv)
{
        struct vm_region_basic_info vmr;
        kern_return_t   rc;
        mach_port_t     task;

continues
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        mach_vm_size_t  size = 8;
        vm_region_info_t        info = (vm_region_info_t) malloc(10000);
        mach_msg_type_number_t  info_count;
        mach_port_t             object_name;
        mach_vm_address_t       addr =1;
        int pid;
        if (!argv[1]) { printf ("Usage: %s <PID>\n"); exit (1);}
        pid = atoi(argv[1]);

        // Obtain task port, using task_for_pid().
        rc = task_for_pid(mach_task_self(),pid, &task);

        if (rc) { 
             fprintf (stderr, "task_for_pid() failed with error %d - %s (Am I entitled?)
             \n", rc,
             mach_error_string(rc)); 
             exit(1); 
                }
        printf ("Task: %d\n", task);
        show_regions (task, addr);
        printf("Done\n");

}

You are encouraged to try this code in OS X, and especially in iOS — wherein vmmap(1) is a much 
needed binary. In iOS, however, running this code will fail in the task_for_pid() call, even if you are 
root! One extra step is required — getting past the kernel’s task_for_pid() protection, by entitling 
your code to use task_for_pid(). To do this, you can use the entitlement file from Chapter 3, which 
enables the task_for_pid-allow entitlement. Try putting in “0” as the PID for a pleasant surprise.

This vmmap(1) example in Listing 12-5 can easily be adapted to be even more 
intrusive, including dumping the process memory map to disk, and even writing 
to it. Amit Singh’s excellent website contained a program called gcore to dump 
an active process’ memory map to a core compatible format, which can be then 
inspected with GDB. This book provides a companion tool, corerupt, which 
expands these abilities further in order to provide support for iOS, as well as 
dumping encrypted segments or modifying the active memory image!

PHYSICAL MEMORY MANAGEMENT

Although the kernel, like user space, operates almost exclusively in the virtual address space, virtual 
memory must inevitably be translated into physical addresses. The machine’s RAM is, in effect, a 
window into virtual memory, providing access to finite, often disjointed regions of virtual memory, 

LISTING 12-5 (continued)
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up to however much memory the machine has. The rest of the virtual memory is either lazily allo-
cated, shared, or swapped to external stores, most often the disk.

Physical memory management, however, is specific to the underlying architecture. Although the 
concepts of virtual and physical memory are inherently the same across all architectures, the under-
lying implementations are full of idiosyncrasies. XNU builds on Mach’s physical memory abstrac-
tion layer, called pmap. This layer, by its very design, allows for a uniform interface to the physical 
memory, which hides the architecture specifics. This is naturally of great use to XNU, which was 
previously adapted to the physical memory landscape of PowerPC, is now primarily on Intel, and — 
in iOS — is built on ARM. In the words of Rashid and Tevanian themselves, a pmap implementor 
“needs to know very little about the way Mach functions, but will need to know very much about 
underlying architecture.”[1]

The pmap layer of the x86 architecture, as well as the now-deprecated PowerPC, are both part of 
the open-source XNU employed in OS X. The same, lamentably, cannot be said for ARM. This 
section thus focuses more on the interface, which is largely the same in all cases, and shows some 
implementation specifics on the Intel architecture.

The PMAP APIs
Mach’s pmap is logically comprised of two sublayers: 

 ‰ The machine-independent layer: Provides a set of APIs that are largely machine agnostic, 
These APIs, defi ned in <osfmk/vm/pmap.h>, require only that the machine support the basic 
concepts of VM paging. Note, we say “largely,” because the header isn’t perfectly free of 
#ifdef’s for _i386 and __LP64__, though it does remain at a higher level. The VM layer 
only sees and passes around a pmap_t, which is a pointer to a struct pmap, effectively a 
void pointer.

 ‰ The machine-dependent layer: Ties pmap to a specifi c implementation, and deals with the 
nooks and crannies of the underlying architecture. These are the set of #defines specifi c to 
the particular hardware, such as PTE (page table entry) macros, bitmasks, registers (Intel’s 
CR3 and ARM’s c7-c8), as well as the defi nition of the basic struct pmap, (in osfmk/_
arch_/pmap.h), which the pmap_t is only a reference to. 

This layer is tied to the machine-independent one via #ifdefs and #includes: From <osfmk/
machine/pmap.h>, which in turn includes the hardware specific header; that is, <osfmk/i386/
pmap.h>, ppc, arm, and so on. Additionally, the implementation of the machine-independent func-
tions, from osfmk/vm/pmap.h , is in the machine-dependent pmap.c file, which is in osfmk/_arch_/
pmap.c.

In object-oriented terms, the machine-independent layer can be considered to be the interface to 
pmap, and the machine-dependent layer is the implementation. From a software-engineering stand-
point, as long as the interface does not change, its clients (i.e, the Mach VM subsystem) can remain 
blissfully unaware of the details. The pmap specifics are thus opaque to Mach’s VM. This maxi-
mizes portability, but does come at the cost of performance.

Table 12-2 shows some pmap APIs, from the machine independent layer:
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TABLE 12-2: Some of the pmap APIs, from osfmk/vm/pmap.h

PMAP FUNCTION USED FOR

pmap_t pmap_create  

(vm_map_size_t   size,

 boolean_t       is_64bit);

A constructor for pmap_t objects. Note the pmap_t 

(struct pmap) is architecture dependent, and there-

fore the returned value is opaque to the caller.

The size argument is always 0 for a hardware-

backed pmap. The second argument — is_64bit 

— is used only on Intel 32-bit platforms (__i386__).

The pmap_t is created (the struct pmap is allocated 

from the pmap zone, discussed in the section, 

“Mach Zones,” later this chapter). Additionally, any 

hardware page table entries are initialized. An inter-

nal reference count is also set to 1.

void pmap_reference(pmap_t  pmap); Increases the reference count of a pmap_t.  

Throughout the kernel this is only used by kmem_

suballoc(), which (as you will see later) can be 

used to allocate memory as a suballocation of an 

existing allocation.

void  pmap_destroy(pmap_t pmap); Decreases the reference count of a pmap_t. This 

also serves as the destructor of pmap_t objects, 

when the reference count drops to 0.

void  pmap_enter[_options] 

     ( pmap_t            pmap,

       vm_map_offset_t   v,

        ppnum_t          pn,

        vm_prot_t        prot,

        unsigned int     flags,

        boolean_t        wired,

      [unsigned int      options]);

Establishes a mapping from virtual address v to 

physical page number pn in pmap. Sets MMU page 

protection to prot (the standard rwx page permis-

sions). The fl ags can include VM_MEM_GUARDED and 

VM_MEM_NOT_CACHEABLE, which toggle the page 

cacheability. Wired marks the page as such, as in 

resident and not swappable. 

Uppercase wrapper macros are available for both 

_enter variants, which fi rst ensure the page is not 

encrypted.

void   pmap_page_protect

          (ppnum_t phys,

            vm_prot_t       prot);

Changes VM_PROT bits on physical page number 

phys according to prot.

void pmap_zero_page

   (ppnum_t         pn);
Zeros physical page
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PMAP FUNCTION USED FOR

unsigned int 

pmap_disconnect(ppnum_t pa)
Disconnects a previous page mapping (and returns 

VM_MEM_MODIFIED and VM_MEM_REFERENCED 

fl ags, if set)

void pmap_remove(pmap_t map,

        addr64_t        s64,

        addr64_t        e64);

Removes addresses from s64 through e64.

Internally, this method converts the s64–e64 

range to a set of page table entries, and calls 

pmap_remove_range().

void pmap_switch(pmap_t tpmap); Switches to a new pmap. On Intel, this merely 

disables interrupts and calls set_dirbase(), 

which changes the value of CR3, unless switching 

between related threads, or between kernel and 

user (with CR3 shared). Most switching is done by 

the PMAP_[DE]ACTIVATE family of macros, which 

on Intel is set_dirbase() as well.

void *pmap_steal_memory

(vm_size_t size);
“Steals” physical memory before VM is fully 

initialized

The pmap’s low-level memory functions, which accept pnum_t arguments, can operate directly on 
physical pages.  

The pmaps can be nested (so as to contain other pmaps). This is a fairly common technique, which 
is relied upon heavily to allow the sharing of memory — both implicit (shared libraries) and explicit 
(mmap(2)). Also, similarly to the kernel_map vm_map, there exists a global kernel_pmap, which 
holds the physical memory pages used by the kernel.

API Implementation Example on Intel Architecture
To further comprehend how pmap can present a machine-independent interface to its clients, con-
sider a specific case — page entry bits on the Intel architecture, as shown in Figure 12-2. The illus-
tration specifically follows VM_MEM_SUPERPAGE and VM_PROT_WRITE (osfmk/mach/vm_prot.h), but 
you can also deduce VM_NOT_CACHEABLE and other flags as well.

Figure 12-2 shows how the flags in osfmk/vm/pmap.h are translated (by pmap_enter, in osfmk/
i386/x86_common.c) to the specific page entry bits for Intel PTEs, as defined in the Intel architec-
ture manuals. The conversion is done in the platform-specific implementation of pmap_enter(),
which maintains the platform-independent interface, flags, and options. Many other pmap functions 
are implemented in this manner.

The pmap_t implementation on Intel architectures is defined in osfmk/i386/pmap.h as in Listing 
12-6. The reader is encouraged to make a segue here to the appendix in this book, which refreshes 
the Intel architecture implementation of virtual memory.
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#define INTEL_PTE_VALID         0x00000001
#define INTEL_PTE_WRITE         0x00000002
#define INTEL_PTE_RW            0x00000002
#define INTEL_PTE_USER          0x00000004
#define INTEL_PTE_WTHRU         0x00000008
#define INTEL_PTE_NCACHE        0x00000010
#define INTEL_PTE_REF           0x00000020
#define INTEL_PTE_MOD           0x00000040
#define INTEL_PTE_PS            0x00000080
#define INTEL_PTE_PTA           0x00000080
#define INTEL_PTE_GLOBAL        0x00000100
#define INTEL_PTE_WIRED         0x00000200
#define INTEL_PDPTE_NESTED      0x00000400
#define INTEL_PTE_PFN           PG_FRAME

#define INTEL_PTE_NX           (1ULL << 63)
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osfmk/i386/pmap.h flags

#define VM_MEM_GUARDED          0x1   /* (G) Guarded Storage */
#define VM_MEM_COHERENT         0x2   /* (M) Memory Coherency */
#define VM_MEM_NOT_CACHEABLE    0x4   /* (I) Cache Inhibit */
#define VM_MEM_WRITE_THROUGH    0x8   /* (W) Write-Through */

...
#define VM_MEM_SUPERPAGE        0x100// ...

osfmk/vm/pmap.h flags:

pmap_enter(
..
boolean_t superpage = flags & VM_MEM_SUPERPAGE;
...
if (flags & VM_MEM_NOT_CACHEABLE) {

if (!(flags & VM_MEM_GUARDED))
template |= INTEL_PTE_PTA;

template |= INTEL_PTE_NCACHE;
}

if (pmap != kernel_pmap)
template |= INTEL_PTE_USER;

if (prot & VM_PROT_WRITE)
template |= INTEL_PTE_WRITE;

if (set_NX)
template |= INTEL_PTE_NX;

if (superpage)
template |= INTEL_PTE_PS;

pmap_store_pte(pte, template);
...

osfmk/i386/pmap_x86_common.c:

Address of page frame...

FIGURE 12-2: Translation of platform-independent pmap fl ags to platform-dependent ones 
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LISTING 12-6: The Intel pmap_t implementation:

struct pmap {
        decl_simple_lock_data(,lock)    /* lock on map */
        pmap_paddr_t    pm_cr3;         /* physical addr */
        boolean_t       pm_shared;
        pd_entry_t      *dirbase;       /* page directory pointer */
#ifdef __i386__
        pmap_paddr_t    pdirbase;       /* phys. address of dirbase */
        vm_offset_t     pm_hold;        /* true pdpt zalloc addr */
#endif
        vm_object_t     pm_obj;         /* object to hold pde's */
        task_map_t      pm_task_map;
        pdpt_entry_t    *pm_pdpt;       /* KVA of 3rd level page */
        pml4_entry_t    *pm_pml4;       /* VKA of top level */
        vm_object_t     pm_obj_pdpt;    /* holds pdpt pages */
        vm_object_t     pm_obj_pml4;    /* holds pml4 pages */
#define PMAP_PCID_MAX_CPUS      (48)    /* Must be a multiple of 8 */
        pcid_t          pmap_pcid_cpus[PMAP_PCID_MAX_CPUS];
        volatile uint8_t pmap_pcid_coherency_vector[PMAP_PCID_MAX_CPUS];
        struct pmap_statistics  stats;  /* map statistics */
        int             ref_count;      /* reference count */
        int             nx_enabled;     // Data Execution Prevention
};

MACH ZONES

Zones are Mach’s (and XNU’s) idea of what Linux calls memory caches, and Windows call Pools 
(q.v. Windows has its ExAllocatePool/WithTag). Zones are memory regions used for the quick 
allocation and deallocation of frequently used objects of fixed size. The Zone API is internal to the 
kernel and cannot be accessed from user mode. Nonetheless, zones are used extensively in Mach.

This section discusses kernel zones, which are entirely different from and not to 
be confused with malloc() zones (i.e. malloc_create_zone(3) and friends). 
The latter are in user mode, part of the C runtime library, and well documented 
in man pages.

To display zones, you can use the zprint(1) command. the command relies on the mach_zone_
info() functionality exposed by the host port. Lion adds a task_zone_info() function, display-
ing zone utilization by a particular task (and also enables zprint(1)’s –p switch, which displays a 
zone listing for a particular process). Since zprint(1) is open source and fairly short, the intrigued 
reader is encouraged to have a look at its source.
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The Mach Zone Structure
A zone is a structure defined in osfmk/kern/zalloc.h, as shown in Listing 12-7:

LISTING 12-7 : Mach zones

struct zone {
        int             count;          /* Number of elements used now */
        vm_offset_t     free_elements;  // Linked list of free elements
        decl_lck_mtx_data(,lock)        /* zone lock */
        lck_mtx_ext_t   lock_ext;       /* placeholder for indirect mutex */
        lck_attr_t      lock_attr;      /* zone lock attribute */
        lck_grp_t       lock_grp;       /* zone lock group */
        lck_grp_attr_t  lock_grp_attr;  /* zone lock group attribute */
        vm_size_t       cur_size;       /* current memory utilization */
        vm_size_t       max_size;       /* how large can this zone grow */
        vm_size_t       elem_size;      /* size of an element */
        vm_size_t       alloc_size;     /* size used for more memory */
        uint64_t        sum_count;      /* count of allocs (life of zone) */
        // the following italicized fields can be changed with zone_change()
        unsigned int
        /* boolean_t */ exhaustible :1, /* (F) merely return if empty? */
        /* boolean_t */ collectable :1, /* (F) garbage collect empty pages */
        /* boolean_t */ expandable :1,  /* (T) expand zone (with message)? */
        /* boolean_t */ allows_foreign :1,/* (F) allow non-zalloc space */
        /* boolean_t */ doing_alloc :1, /* is zone expanding now? */
        /* boolean_t */ waiting :1,     /* is thread waiting for expansion? */
        /* boolean_t */ async_pending :1,/* asynchronous allocation pending? */
#if CONFIG_ZLEAKS
        /* boolean_t */ zleak_on :1,   /* Are we collecting allocation info? */
#endif  /* ZONE_DEBUG */  // they mean CONFIG_ZLEAKS — mistake in source 
        /* boolean_t */ caller_acct: 1,/* account allocation/free to caller? */  
        /* boolean_t */ doing_gc :1,    /* garbage collect in progress? */
        /* boolean_t */ noencrypt :1;
        int             index;  /* index into zone_info arrays for this zone */
        struct zone *   next_zone;      /* Link for all-zones list */
        call_entry_data_t  call_async_alloc; /* callout for asynch alloc */
        const char      *zone_name;     /* a name for the zone */

#if     ZONE_DEBUG
        queue_head_t    active_zones;   /* active elements */
#endif  /* ZONE_DEBUG */

#if CONFIG_ZLEAKS
        uint32_t num_allocs;    /* alloc stats for zleak benchmarks */
        uint32_t num_frees;     /* free stats for zleak benchmarks */
        uint32_t zleak_capture; /* per-zone counter for capturing every N allocations */
#endif /* CONFIG_ZLEAKS */
};

Aside from the plentiful debug information (which is enabled on zones only if XNU is compiled 
with CONFIG_ZLEAKS), a zone is really a rather small structure containing a linked list of free ele-
ments, and the zone statistics.
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To create and handle zones, Mach offers several functions, all defined in the same header file, and 
implemented in osfmk/kern/zalloc.c as shown in Table 12-3.

TABLE 12-3: Zone Functions from osfmk/kern/zalloc.h

ZONE FUNCTION DESCRIPTION

zone_t   zinit(                                        

vm_size_t       size,                                        

vm_size_t       maxmem,         

vm_size_t       alloc,                                               

const char      *name);

Returns a new zone named name, which can hold 

elements of size bytes. If the zone is full, an addi-

tional alloc bytes will be allocated.

Allocation of the zone is done asynchronously by 

the thread_call_daemon (and the call_async_

alloc data).

void *zalloc(zone_t zone);

void *zalloc_noblock

             (zone_t zone);

void *zalloc_canblock

  (zone_t     zone,

   boolean_t       canblock);

Allocates an element from the zone. The ele-

ment allocated is of the fi xed size set when the 

zone was created, by zinit. Both the former use 

the last, passing canblock = TRUE and FALSE, 

respectively.

void zcram(

register zone_t         zone,

         void           *newaddr,

         vm_size_t      size)

Adds (“crams”) the memory at newaddr, of size 

bytes to the zone specifi ed by zone.

void zfree(

    zone_t          zone,

    void            *elem);

Frees the element pointed to by elem, which must 

be in the zone specifi ed by zone. Free elements 

may be garbage collected.

void zone_change

(zone_t          zone,

 unsigned int    item,

 boolean_t       value);

Changes zone properties by setting corresponding 

fi eld in zone to value. 

Z_NOENCRYPT: Zone is unencrypted during hiber-

nation (true for virtually all zones)

Z_EXHAUSTIBLE: Zone is of fi nite size, and may be 

empty.

Z_COLLECT: Toggles garbage collection

Z_EXPAND: Zone may be expanded

Z_FOREIGN: Zone can contain non-zalloc()ed 

object

Z_CALLERACCT: The calling thread will be held 

accountable, memory quota-wise, for zone 

allocations.

All zones memory is effectively pre-allocated in the call to zinit() (by a call to kernel_memory_
allocate(), which is a low-level allocator, discussed in the next section). Calls to zalloc() are 
effectively wrappers over a REMOVE_FROM_ZONE macro, which returns the next element from the 
zone’s free list (and resorts to kernel_memory_allocate() of the zone’s alloc_size bytes, if the 
zone is full). A zfree() uses the opposite macro, ADD_TO_ZONE. Both functions also perform a fair 
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amount of sanity checking, which hasn’t helped much so far: Zone allocation bugs in the past have 
provided several exploitable memory corruptions. The more important client of zalloc() is the ker-
nel’s kalloc(), which allocates from kalloc.* zones (discussed in the next section). BSD’s mcache
mechanism (see Chapter 13) also allocates from its own zone (also called mcache), as do BSD kernel 
zones, which are built directly over the Mach ones.

Zone Setup During Boot
Zones are set up during the kernel boot by two calls from vm_mem_bootstrap() (refer to Chapter 8 
for the full details on this function)

 ‰ The fi rst, to zone_bootstrap(), sets up the master zone (“zones”) wherein all other zone 
data is stored. 

 ‰ The second, to zone_init(), initializes the zone subsystem locks and pages (using 
zone_page_init()).

The zone handling functions are in osfmk/kern/zalloc.c. Individual zones can then be created by 
various subsystems. 

The zone_init() function takes an argument — zsize. This argument is set by default to one 
quarter of maxmem, but may be overridden by a kernel command-line argument (specified in MB), in 
which case it must be between ZONE_MAP_MIN and ZONE_MAP_MAX. You can set these values as part 
of the kernel configuration (that is, using CONFIG_*) macros.

There are quite a few zones in XNU — about 120 in SL and more than 170 in Lion. These zones 
are, for the most part, created by their corresponding subsystem’s init function during the kernel 
boot. Table 12-4 lists but a few.

TABLE 12-4: Some of the More Important Mach Zones Used in OS X

ZONE NAME ALLOCATED BY USED FOR

Alarms clock_service_create()

osfmk/kern/

clock_oldops.c

Clock alarms.

buf headers

buf.nn
Bufzoneinit

bsd/vfs/vfs_bio.c
VFS buff ers. The nn zones 

are powers of two, from 512 

through 8192.

dtrace.dtrace_probe_t dtrace_init

bsd/dev/dtrace/dtrace.c
DTrace probes.

ipc spaces

ipc tree entries

ipc ports

ipc port sets

ipc_bootstrap

osfmk/ipc/ipc_init.c
Various Inter Process 

Commication constructs. 
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ZONE NAME ALLOCATED BY USED FOR

kalloc.nn

kalloc.large (fake zone)

kalloc_init

osfmk/kern/kalloc.c

osfmk/kern/zalloc.c

Kernel allocations. Zones are 

created for powers of 2 from 

16 to 8192, as well as a “large” 

zone. Calls to  kalloc() 

then allocate from the corre-

sponding zone, or use kmem_

alloc() if too large. 

iOS 5 also has zones which are 

not powers of 2. 

kernel_stacks (fake zone) osfmk/kern/zalloc.c Records kernel stack utilization.

maps

non-kernel.map.entries

(iOS: VM map entries)

kernel.map.entries

(iOS: reserved VM map entries)

map.copies

vm_map_init() osfmk/vm/

vm_map.c
Zones used for the various 

kernel vm_map.

mcache

mcache.bkt_nn

mcache.audit

mcache_init

bsd/kern/mcache.c
BSD’s Mcaches, which are 

implemented over zones.

Tasks task_init

osfmk/kern/task.c
Mach task objects.

Threads thread_init

osfmk/kern/thread.c
Mach thread objects.

page_tables

(fake zone)

osfmk/kern/zalloc.c PTEs. This is among the largest 

zones in the kernel on i386/

x86_64.

Pmap map_init

osfmk/x86_64/pmap.c
Page maps.

Uthreads uthread_zone_init

bsd/kern/kern_fork.c
BSD Thread objects.

Zones zone_bootstrap()

osfmk/kern/zalloc.c
The “zone of zones,” where all 

zone data is stored.

Zone Garbage Collection
If the system is low on memory, zones may undergo garbage collection. This is handled by consider_
zone_gc()(from osfmk/kern/zalloc.c) which is called by the vm_pageout_garbage_collect
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thread. consider_zone_gc may choose to invoke the zone garbage collection (zone_gc) in one of 
the following situations:

 ‰ zfree() has freed an element in a zone that was more than one page, and the system vm_
pool is low

 ‰ It has been a while since zone_gc last ran, as specifi ed by zone_gc_time_throttle.

 ‰ The system is hibernating, and hibernate_flush_memory() has been called.

These situations are depicted by the Figure 12-3.

zfree:

if (zone->elem_size >= PAGE_SIZE

&& vm_pool_low()){ 

zone_gc_forced = TRUE;

Consider_zone_gc (int force);

if (zone_gc_allowed &&

(zone_gc_allowed_by_time_throttle ||

zone_gc_forced || force))

zone_gc:

Perform two passes over all Z_COLLECTIBLE zones

Pass 1: over elements  Pass 2: over pages

Then reclaim and kmem_free() the pages

vm_pageout_garbage_collect(int collect)

consider_machine_collect()

consider_zone_gc();

consider_machine_adjust()…. 

vm_pageout_scan(int collect)

encounters low memory

or decides to garbage collect

thread_wakeup((event_t) 

&vm_pageout_garbage_collect)

zone_gc_forced

The vm_pageout_thread
The vm_pageout_garbage_collect thread

hibernate_flush_memory():

…

consider_zone_gc(1);

…

FIGURE 12-3 Zone garbage collection
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The garbage collection is a two-pass process, wherein the system first goes over all zones (skipping 
over zones marked as non-collectable), examining their free lists and seeing which objects can be 
claimed. On the second pass, the objects are translated into pages: Objects that share a page with 
non-freed objects are of no use to the system, as only full pages can be freed. Finally, when the pages 
to be freed are determined, they can be freed by a simple kmem_free().

Zone Debugging
In the unlikely case you will ever need to, it is possible to debug zones — past the simple functional-
ity provided zprint(1) command — in several ways:

 ‰ Compile with CONFIG_ZLEAKS: This, as you saw, allocates more data per struct zone to 
check on memory leaks. CONFIG_ZLEAKS also makes zleaks toggleable from the BSD layer 
and user mode by means of sysctl(8) calls on the kern.zleaks (as defi ned in bsd/kern/
kern_malloc.c).

 ‰ Toggle zone element checking: with the –zc boot argument

 ‰ Toggle zone poisoning: with the –zp boot argument

 ‰ Save zone info in each task: with the –zinfop boot argument

 ‰ Specifi c zone logging boot arguments: by using zlog you can specify the exact name of a 
zone to log, and with zrecs you can specify how many records will be kept in the log 
(up to 8000).

KERNEL MEMORY ALLOCATORS

The VM abstractions detailed thus far are important, yet when kernel code needs to allocate mem-
ory, especially within its own vm_map (that is, the kernel_map), it needs to rely on actual allocator 
functions, that can allocate the virtual memory as well as back it up with physical pages. This sec-
tion covers the rich hierarchy of allocators in XNU (with one exception, BSD’s cache and slab allo-
cators), shown in Figure 12-4:

kernel_memory_allocate()
All kernel memory allocation paths (save contiguous physical memory), sooner or later, end up using 
a single function, kernel_memory_allocate(). This function, defined in osfmk/vm/vm_kern.c,
performs the actual allocation of memory, handling both the vm_map and the pmap. It is shown in 
Listing 12-8:
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size == kmz ->kz_elemsize

(osfmk/vm/vm_kern.c)

kmem_alloc_*

(osfmk/vm/vm_kern.c)

IOMallocAligned

(iokit/Kernel/IOLib.cpp)

zalloc() and zget_space()

(osfmk/kern/zalloc.c)

kalloc()

(osfmk/vm/vm_kern.c)

IOMalloc()

(iokit/Kernel/IOLib.cpp)
IOKit:

BSD _MALLOC()

(bsd/kern/kern_malloc.c)

MALLOC_ZONE()

(bsd/kern/kern_malloc.c)

size != kmz ->kz_elemsize

kern_os_malloc()

(libkern/c++/OSRuntime.cpp)

OSMalloc()

(osfmk/vm/vm_kern.c)

cpm_allocate()

(osfmk/vm/vm_resident.c)

kmem_alloc_contig() only

OSRunTime new operator

(libkern/c++/OSRuntime.cpp)

LibKern

Mach

KMA_LOMEM
kernel_memory_allocate()

FIGURE 12-4: The XNU memory allocator hierarchy

LISTING 12-8: kernel_memory_allocate(), from osfmk/vm/vm_kern

/*
 * Master entry point for allocating kernel memory.
 * NOTE: this routine is _never_ interrupt safe.
 *
 * map          : map to allocate into
 * addrp        : pointer to start address of new memory
 * size         : size of memory requested
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 * flags        : options
 *                KMA_HERE              *addrp is base address, else "anywhere"
 *                KMA_NOPAGEWAIT        don't wait for pages if unavailable
 //                                     (returns KERN_RESOURCE_SHORTAGE instead)
 *                KMA_KOBJECT           use kernel_object
 *                KMA_LOMEM             support for 32 bit devices in a 64 bit world
 *                                      if set and a lomemory pool is available
 *                                      grab pages from it... this also implies
 *                                      KMA_NOPAGEWAIT
 //   And also:
 //               KMA_NOENCRYPT          Do not encrypt the pages (calls
 //               pmap_set_noencrypt())
 //               KMA_GUARD_[FIRST|LAST] Place guard pages before or after the
 //               allocation
 */

kern_return_t
kernel_memory_allocate(
        register vm_map_t       map,
        register vm_offset_t    *addrp,
        register vm_size_t      size,
        register vm_offset_t    mask,
        int                     flags);

This function finds a large enough virtual address space in the vm_map it is handed, and takes 
memory from the wired list to satisfy the allocation. In some cases (specifically, calls from stack_
alloc()), flags to kernel_memory_allocate() may specify a request for guard pages — before or 
after the actual allocation. These are similar in principle to those of user mode’s libgmalloc
.dylib — and are virtual-only pages marked non-accessible, so as to trigger a page fault on access. 
Getting guard pages therefore only requires space in the vm_map, but no physical backing (and hence 
no pmem).

A simplified flow of kernel_memory_allocate() is shown in Figure 12-5:

The actual allocation of the physical page is done by looking at one of two free lists: the per-pro-
cessor free list (using vm_page_grab(), which uses the PROCESSOR_DATA macro to get a page from 
free_pages list), or the low memory free list (using vm_page_grablo(), which queries the vm_
lopage_queue_free list). The latter case is rarely encountered, only when specific physical memory 
regions (less than 16MB) are required. The vm_page_grablo()function calls on cpm_
allocate(), which is used to allocate contiguous physical memory by stealing pages directly from 
the free list. The cpm_allocate() function (from osfmk/vm/vm_resident.c ) is rarely called 
on: It is otherwise only called from kmem_alloc_contig(), vm_map_enter() (for superpages) or 
vm_map_enter_cpm().

The kernel_memory_allocate() function is also seldom called directly. Exceptions include early 
startup (when there is little choice), kernel stack allocations, and IOKit’s IOMallocAligned(),
which requires specific aligned memory. In all other cases, wrappers are used, the most significant 
of which is kmem_alloc().
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Stack allocations may request additional guard pages

before or after the allocations.These are fictitious

pages (i.e. only PTEs) and require no physical

backing – only virtual space.

Find space to insert all the pages in target’s vm_map.vm_map_find_space()
(osfmk/vm/vm_map.c)

vm_page_insert()
(osfmk/vm/vm_resident.c)

if(!(flags && KMA_KOBJECT)) vm_object_allocate()
(osfmk/vm/vm_object.c)

PMAP_ENTER()

if (!(flags && KMA_GUARD_*))

adjust allocation size for fill pages and get

fictitious pages (vm_page_grab_guard())

Grab pages one by one, and link to wired_page_list,

until wired_page_count is satisfied. Pages are grabbed

from per CPU free list (vm_page_grab) or global low page

queue (vm_page_grab_lo) if KMA_LOMEM was requested.

If unsuccessful, this can block indefinitely (using a call to

vm_page_wait(THREAD_UNINT), until the page is

obtained).

If KMA_NOPAGEWAIT was specified, the function will not

block, and fails with KERN_RESOURCE_SHORTAGE
immediately.

Get page by vm_page_grab[lo]
(osfmk/vm/vm_resident.c).

If successful, continue.

if KMA_NOPAGEWAIT – fail

otherwise, VM_PAGE_WAIT() and repeat.

While pages added have not satisfied, and we have

remaining pages in wired_page_list: insert them one by

one to the target vm_map and the kernel_pmap (using

the PMAP_ENTER macro). If we run out of pages, panic.

A similar loop also handles the insertion of the guard

pages (but does not call PMAP_ENTER for them, as they

have no physical backing).

Call vm_object_allocate()to alloc a

new object, unless we can use the kernel_object.

out

in

for(i =0;
i< wired_page_count;

i++)

out

in

pg_offset < fill_start + fill_size

Add page to wired_page_list

FIGURE 12-5: Simplifi ed fl ow of kernel_memory_allocate()
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kmem_alloc() and Friends
The most common memory allocator in Mach is provided by the kmem_alloc()family of 
functions in osfmk/kern/vm_kern.c, which wrap kernel_memory_allocate(), as shown in 
Figure 12-6.

kmem_alloc kmem_alloc_aligned kmem_alloc_kobject

kernel_memory_allocate

(map, addrp, size, 0, 0);

kernel_memory_allocate

(map, addrp, size, size -1, KMA_KOBJECT)

kernel_memory_allocate

(map, addrp, size,0, KMA_KOBJECT)

kernel_memory_allocate()

FIGURE 12-6: The Kmem_malloc family of functions.

All the kmem_alloc types shown in Figure 12-6 share the same prototype, taking as their three 
arguments a map, an in/out address pointer, and a size argument. The map argument in these func-
tions is commonly the kernel_map vm_map, unless pageable memory is requested. As shown in the 
figure, these functions are layered on top of kernel_memory_allocate(), discussed previously.

Other kmem_alloc_* functions exist, which are not implemented over kernel_memory_allocate(). 
These functions are:

 ‰ kmem_alloc_contig() — for contiguous physical memory (implemented over 
cpm_allocate()).

 ‰ kmem_alloc_pageable() (allocated over vm_map_enter()), which allocates non-wired 
memory. Non-wired memory, however, may be paged out without warning.

 ‰  kmem_alloc_pages() can be used to allocate new pages in an existing object, and wraps 
vm_page_alloc() (which itself is just a wrapper over the vm_page_grab()/vm_page_
insert() of kernel_memory_allocate().

Using kmem_alloc() is quite expensive, particularly due to physical map backing: Recall, the under-
lying implementation of kernel_memory_allocate() may block indefinitely. More often, then, the 
faster kalloc() alternative (built over the more efficient mechanism of zones) is used.

kalloc
Once Mach zones are initialized, they may be used for quick kernel internal allocations, as is 
provided by the kalloc_() family of functions. These functions are all defined in osfmk/kern/
kalloc.h as shown in Listing 12-9.
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LISTING 12-9: Some of the kalloc functions in osfmk/kern/kalloc.h 

extern void *kalloc(vm_size_t   size);
extern void *kalloc_noblock(vm_size_t   size);
extern void  kfree(void          *data,                 vm_size_t     size);

These functions are functionally equivalent to user-mode malloc() and free(), but utilize zones 
and can thus offer nonblocking functionality, as in the kalloc_noblock() function. Because the 
zone memory is pre-allocated,  kalloc() allocation is simply a call through to zalloc_
canblock() on the corresponding zone (one of the kalloc.nn zones, shown in Table 12-4). The 
zones themselves are set up by kalloc_init(), which is called from vm_mem_bootstrap()during 
system startup (as shown in Chapter 6). If kalloc() is called with a size larger than the maximum 
zone, it calls kmem_alloc() instead (and must block). Likewise, if kfree() detects the size of the 
block freed does not match one of the zones, it calls kmem_free(instead of zfree()).The kal-
loc()function keeps track of the largest block size it is required to allocate in a global, and kfree()
ignores attempts to free blocks larger than that size. Internally, a krealloc() function is defined as 
well, but neither it nor a kget() function is used. 

Overall, this mechanism is quite similar to Linux’s kmalloc(), which also allocates memory in a 
fast, potentially non-blocking manner. Also like it, kalloc() sizes are rounded to the nearest power 
of two, which can be quite wasteful (for example, 4,098 bytes actually consume 8,192 bytes).

In iOS 5, kalloc zones are also available in sizes which are not powers of 2. Listing 12-10 shows 
the output of zprint from an iOS 5.0 host:

LISTING 12-10: kalloc zones. The bold zones are iOS specifi c

root@podicum (/)# zprint kalloc 
zone name                 size   size   size  #elts  #elts inuse  size count
-------------------------------------------------------------------------------
kalloc.8                     8    60K    60K   7680   7776  7392    4K   512 C
kalloc.16                   16    88K   121K   5632   7776  5332    4K   256 C
kalloc.24                   24   334K   410K  14280  17496 14034    4K   170 C
kalloc.32                   32   124K   128K   3968   4096  3541    4K   128 C
kalloc.40                   40   255K   360K   6528   9216  6374    4K   102 C
kalloc.48                   48    87K   192K   1870   4096  1408    4K    85 C
kalloc.64                   64   120K   256K   1920   4096  1612    4K    64 C
kalloc.88                   88   229K   352K   2668   4096  2382    4K    46 C
kalloc.112                 112   118K   448K   1080   4096   884    4K    36 C
kalloc.128                 128   168K   512K   1344   4096  1133    4K    32 C
kalloc.192                 192    94K   768K    504   4096   454    4K    21 C
kalloc.256                 256   168K  1024K    672   4096   580    4K    16 C
kalloc.384                 384   551K  1536K   1470   4096  1253    4K    10 C
kalloc.512                 512    40K   512K     80   1024    42    4K     8 C
kalloc.768                 768    82K   768K    110   1024   101    4K     5 C
kalloc.1024               1024   104K  1024K    104   1024    79    4K     4 C
kalloc.1536               1536    99K  1536K     66   1024    55   12K     8 C
kalloc.2048               2048    84K  2048K     42   1024    41    4K     2 C
kalloc.3072               3072    72K  3072K     24   1024    18   12K     4 C
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kalloc.4096               4096   136K  4096K     34   1024    32    4K     1 C
kalloc.6144               6144   258K   576K     43     96    41   12K     2 C
kalloc.8192               8192   144K 32768K     18   4096    16    8K     1 C
kalloc.large             59163  2657K  2906K     46     50    46   57K     1  

The kalloc function is the most widely used memory allocator in XNU, with many wrappers, 
including:

 ‰ IOKit’s IOMalloc (iokit/Kernel/IOLib.cpp): Directly wrapping kalloc() but also add-
ing a call to IOStatisticsAlloc macro, which records the allocations (for ioalloccount(8), as 
discussed in chapter 18)

 ‰ Libkern’s kern_os_malloc(libkern/c++/OSRuntime.cpp): A direct wrapper over kal-
loc(), which prepends the block size to the allocation. This function is itself wrapped by the 
new operator.

 ‰ BSD’s _MALLOC (bsd/kern/kern_malloc.c): used for various allocations in the BSD layer, 
discussed in Chapter 13. Similar to kern_os_malloc(), it also prepends the block size to the 
allocation.

OSMalloc
Mach exports yet another family of memory allocation functions, OSMalloc. The OSMalloc soror-
ity, though implemented alongside kalloc in osfmk/kern/kalloc.c, is actually defined in 
libkern/libkern/OSMalloc.h as shown in Listing 12-11.

LISTING 12-11: OSMalloc functions, as defi ned in libkern/libkern/OSMalloc.h

typedef struct __OSMallocTag__ * OSMallocTag;

// First get a tag — this actually uses kalloc() 
extern OSMallocTag OSMalloc_Tagalloc(const char * name,
                                     uint32_t    flags);
// Then allocate with it:
extern void * OSMalloc(uint32_t    size, OSMallocTag tag);
// The following two are equivalent:
extern void * OSMalloc_nowait(uint32_t    size,  OSMallocTag tag);
extern void * OSMalloc_noblock (uint32_t    size, OSMallocTag tag);
// Freeing memory requires the tag, as well:
extern void OSFree(void      * addr, uint32_t    size, OSMallocTag tag);
// Finally, free tag
extern void OSMalloc_Tagfree(OSMallocTag tag);

The key concept in OSMalloc is that of the tag, an opaque type, which must be allocated first. 
Once the caller is in possession of the tag, it can be passed to one of the OSMalloc functions (either 
the blocking or non-blocking varieties) to allocate the memory. The memory can be freed (using 
OSFree()), and when the tag is no longer required, it, too, can be freed. The OSMalloc memory 
is allocated with kmem_alloc_pageable, if the tag flags allow it (specifying OSMT_PAGEABLE). 
Otherwise, it is allocated with kalloc(), from wired memory. Alternatively, the noblock/nowait
functions (which are functionally equivalent) call on kalloc_noblock() for wired memory.
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The tag itself is part of a linked list of tags, each with a reference count. Allocations increment the 
reference count of the tag. Listing 12-12 shows the structure of a tag.

LISTING 12-12: OSMalloc tags

typedef struct _OSMallocTag_ {
    queue_chain_t   OSMT_link;
    uint32_t        OSMT_refcnt;
    uint32_t        OSMT_state;
    uint32_t        OSMT_attr;
    char            OSMT_name[OSMT_MAX_NAME];
} * OSMallocTag;

MACH PAGERS

Sooner or later, it happens to the best: The memory requirements of processes exceed the available 
amount of RAM, and the system has to find a way to back up inactive pages and remove them from 
RAM, at least temporarily, to make more RAM available for active ones.

In other operating systems, this is the role of dedicated kernel threads. Linux, for example, has 
pdflush and kswapd. In Mach, these dedicated tasks are called pagers, and may be in-kernel 
threads, or even external user mode (or remote) servers.

A Mach pager is a memory manager, charged with the task of backing up virtual memory to a back-
ing store of a particular type. The backing store holds the content of the memory pages when they 
need to be swapped out, due to insufficient RAM, and recovered, when RAM becomes available 
again. This is required only for these pages which are “dirty,” i.e. have changed in RAM, and there-
fore must be saved to prevent data loss.

Note, that the pagers listed here merely implement the paging operation of the memory objects they 
are tied to. They do not manage or control the system’s paging policy. Doing so is the role of the vm_
pageout daemon, which is the role that kernel_bootstrap_thread() assumes once it completes 
(as discussed in Chapter 8). The vm_pageout daemon is discussed in more detail at the end of this 
chapter.

The Mach Pager interface
Although there are several types of pagers, all present the same interface to the kernel. The pag-
ers all expose particular routines, and perform operations on memory objects. Mach’s original 
design treated pagers as fully external entities, and defined the External Memory Manager Interface 
(EMMI), to specify the types of Mach messages pagers use to communicate with the kernel. The 
MIG specifications for pagers can still be found in osfmk/mach, as shown in Table 12-5:
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TABLE 12-5: MIG Files in osfmk/mach Specifying Mach Pager Interfaces

FILE SPECIFIES

memory_object.defs Subsystem 2200, specifying initialization, termination and the 

core routines involved in the object lifecycle, all of which oper-

ate on a memory_object_t.

memory_object_control.defs Subsystem 2000, specifying additional memory object opera-

tions, operating on a memory_object_control_t argument.

memory_object_default.defs Subsystem 2250, consisting of a single routine, memory_

object_create(), which is used to construct a new memory 

object.

memory_object_name.defs Unused.

In practice, however, you have seen that XNU takes significant shortcuts and deviations from the 
microkernel design of Mach, in order to achieve greater efficiency. The pagers in XNU are therefore 
implemented in-kernel, and instead of over messages, the pager interface is implemented as function 
calls. Much like the Mach thread schedulers, the Mach pagers are defined as objects and implement 
a set of well-known methods, or operations. These operations correspond to the MIG routines in 
memory_object.defs, and are defined in osfmk/mach/memory_object_types.h in a struct 
memory_object_pager_ops as shown in Table 12-6. 

TABLE 12-6: Pager Operations

PAGER METHOD USED FOR

memory_object_reference

 (memory_object_t mem_obj)
Marks mem_obj as referenced. This is required 

for the LRU of the vm_pageout daemon, dis-

cussed later.

memory_object_deallocate

 (memory_object_t mem_obj)
Deallocates the memory object mem_obj.

memory_object_init

 (memory_object_t mem_obj,

  memory_object_control_t  

  mem_control, 

  memory_object_cluster_size_t size))

Initializes a new memory object of size bytes, 

with mem_control data. The pager is expected 

to set the object’s IPC class (IKOT_MEMORY_

OBJECT) and tie its operations to it (as function 

pointers).

memory_object_terminate

  (memory_object_t mem_obj);
Terminates (destroys) memory object mem_obj.

continues
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PAGER METHOD USED FOR

memory_object_data_request

(memory_object_t mem_obj,  

 memory_object_offset_t offset,

 memory_object_cluster_size_t length,

 vm_prot_t desired_access,

 memory_object_fault_info_t 

fault_info);

Handles a page-in request (a request for mem_

obj at address off set of length bytes). The 

kernel is requesting the pager to provide a page 

from the backing store.

memory_object_data_return

(memory_object_t mem_obj,

 memory_object_offset_t offset,

 memory_object_cluster_size_t size,

 memory_object_offset_t 

*resid_offset,

 int *io_error,

 boolean_t dirty,

 boolean_t kernel_copy,

 int upl_flags);

Handles a page-out request (a request for mem_

obj at address off set of length bytes). The 

kernel is “returning” the dirty page to the pager, 

which is expected to commit it to the backing 

store.

memory_object_data_initialize

(memory_object_t mem_obj,  

 memory_object_offset_t offset,

 memory_object_cluster_size_t size);

Similar to data_return, but allows initialization 

of mem_obj. In practice, unimplemented in pag-

ers (results in panic).

memory_object_data_unlock

(memory_object_t mem_obj,

 memory_object_offset_t offset,

 memory_object_size_t size,

 vm_prot_t desired_access);

Change permissions on mem_obj to 

desired_access.

memory_object_synchronize

(memory_object_t mem_obj,

 memory_object_offset_t offset,

 memory_object_size_t size, 

 vm_sync_t sync_flags);

Synchronize mem_obj to backing store accord-

ing to sync_fl ags (equivalent to fl ushing a page).

memory_object_map(

memory_object_t mem_obj,

vm_prot_t prot);

Map pages in the mem_obj with the protections 

specifi ed.

memory_object_last_unmap

(memory_object_t mem_obj);
Called when the last mapping of mem_obj is 

removed. 

memory_object_data_reclaim

(memory_object_t mem_obj,

boolean_t reclaim);

Request pager to reclaim page. In practice, left 

NULL by most pagers.

TABLE 12-6 (continued)
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In the preceding table, the two most important operations are data_request (for swap in) and 
data_return (for swap out). A pager does not have to implement all the methods listed in the table. 
In fact, some memory managers panic if certain methods are called.

Additional memory object operations are defined on an opaque memory_object_control_t type. 
These include getting/changing attributes, locking, and UPL related requests (more on UPLs later). 
Both types, the memory_object_t and the memory_object_control_t, are defined in osfmk/
mach/memory_objects_types.h, as shown in Listing 12-13:

LISTING 12-13: Memory objects, as defi ned in osfmk/memory_object_types.h

/*
 * Temporary until real EMMI version gets re-implemented
 */

#ifdef  KERNEL_PRIVATE

struct memory_object_pager_ops; /* forward declaration */

typedef struct          memory_object {
        unsigned int    _pad1; /* struct ipc_object_header */
#ifdef __LP64__
        unsigned int    _pad2; /* pad to natural boundary */
#endif
        const struct memory_object_pager_ops    *mo_pager_ops;
} *memory_object_t;

typedef struct          memory_object_control {
        unsigned int    moc_ikot;  /* struct ipc_object_header. Must be 
                                   /* IKOT_MEM_OBJ_CONTROL */
#ifdef __LP64__
        unsigned int    _pad; /* pad to natural boundary */
#endif
        struct vm_object *moc_object;
} *memory_object_control_t;

As an old adage goes, the most permanent things in life start out as “temporary,” and so, 
apparently, is the implementation of memory objects: Operations on a memory_object_t in 
Table 12-6 are redirected to the implementing pager (via the mo_pager_ops field of the struc-
ture). Other operations, which require a memory_object_control_t argument, convert their 
argument into a struct vm_object (described earlier in this chapter), by means of a memory_
object_control_to_vm_object() call, which really just returns the moc_object field of the 
control structure.

The different pagers implement their own memory objects by extending the memory object. Their 
pager object implementations must align with the memory_object_t, but the implementation is free 
to add more fields, as shown in Figure 12-7
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pager_header

pager_ops

ref_count

control_handle

device_handle

size

flags

device_pager_t

pager_header

pager_ops

pager_queue

ref_count

is_ready

is_mapped

pager_control

backing_object

crypt

apple_protect_pager_t

pager_header

pager_ops

ref_count

control_handle

vnode_handle

vnode_pager_t

pager_header

pager_ops

pager_queue

ref_count

is_ready

is_mapped

pager_control

swapfile_vnode

swapfile_pager_t

vs_pager_header

vs_pager_ops

vs_control

vs_lock

vs_next_seqno

vs_seqno

vs_writers

vs_readers

flags

vs_async_pending

vs_errors

vs_clshift

vs_size

vs_map_lock

vs_dmap/vs_imap

vstruct_t

FIGURE 12-7

These pagers are all discussed shortly, but before we can turn to them, we must first consider 
another important data structure required for paging — the Universal Page List.

Universal Page Lists
Mach uses the Universal Page List (UPL) structure to maintain information about pages in imple-
mentation-agnostic lists. The “Universal” term implies the pages can be backed on any backing store 
type. The UPL structure is generally hidden from most other kernel components, with the exception 
of the pagers (primarily, the page out daemon) and some BSD components (notably, filesystems and 
the Unified Buffer Cache). It is defined as shown in Listing 12-14.
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LISTING 12-14: The Universal Page List

struct upl {
        decl_lck_mtx_data(,     Lock)   /* Synchronization */
        int             ref_count;
        int             ext_ref_count;
        int             flags;
        vm_object_t     src_object; /* object derived from */
        vm_object_offset_t offset;
        upl_size_t      size;       /* size in bytes of the address space */
        vm_offset_t     kaddr;      /* secondary mapping in kernel */
        vm_object_t     map_object;
        ppnum_t         highest_page;
        void*           vector_upl;
#if     UPL_DEBUG
        uintptr_t       ubc_alias1;
        uintptr_t       ubc_alias2;
        queue_chain_t   uplq;       /* List of outstanding upls on an obj */

        thread_t        upl_creator;
        uint32_t        upl_state;
        uint32_t        upl_commit_index;
        void    *upl_create_retaddr[UPL_DEBUG_STACK_FRAMES];

        struct  ucd     upl_commit_records[UPL_DEBUG_COMMIT_RECORDS];
#endif  /* UPL_DEBUG */
};

The UPL serves to link the virtual addresses with the actual physical pages, somewhat like a 
Windows Memory Descriptor List (MDL), or IOKit’s IOMemoryDescriptor. The corresponding 
physical page properties are recorded in the UPL. This API is not used directly, passing through sev-
eral layers of abstraction, even for the few components, which are UPL-aware. 

The MIG file osfmk/mach/upl.defs contains the definitions of some UPL operations. All the oper-
ations are implemented in osfmk/vm/vm_pageout.c, and shown in Table 12-7:

TABLE 12-7: UPL Operations

OPERATION USED TO

upl_create (int type, 

           int flags, 

           upl_size_t size);

Create a new UPL. Usually wrapped by other 

functions.

continues
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OPERATION USED TO

upl_deallocate(upl_t upl);

upl_destroy(upl_t upl);
Decrement reference count of a UPL, destroying 

if count drops to 0.

upl_clear_dirty(upl_t  upl,  

boolean_t       value)
Explicitly mark the UPL clear or dirty (according 

to value). Used by Apple Protect pager to pre-

vent swap out of pages

upl_abort[range]

(upl_t            upl,      

 upl_offset_t     offset, 

 upl_size_t       size, 

 int              error, 

 boolean_t        *empty);

 upl_commit[_range]

(upl_t                   upl, 

upl_offset_t             offset, 

upl_size_t               size,

int                      flags,  

upl_page_info_t          *page_list,

mach_msg_type_number_t   cnt, 

boolean_t                *empty);

Abort or commit changes to a UPL or part 

thereof, from off set to size bytes (rounded to 

nearest page).  

The upl_abort() and upl_commit are wrap-

pers over their corresponding _range coun-

terparts, specifying an off set of 0 and a size of 

upl->size.

Pager Types
XNU contains the same pagers in iOS and OS X (this includes the swapfile pager, even though iOS 
has no real swap to speak of). iOS also contains an experimental new pager, called the Default 
Freezer. These pagers are shown in Table 12-8.

TABLE 12-8: Memory Pagers in XNU 

MEMORY PAGER DEFINED IN USED FOR

Default pager default_pager/* Anonymous memory 

VNode Pager  …/bsd_vm.c Memory mapped fi les 

Device pager …/device_vm.c Device backed I/O

Swapfi le pager …/vm_swapfile_pager.c Handles specifi c swapfi le mapping attempts 

to prevent reading swap fi le data by memory 

mappings

Apple-protected 

pager

…/vm_apple_protect Apple-specifi c extension; Provides support for 

memory (and specifi cally, binary) encryption

TABLE 12-7 (continued)
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MEMORY PAGER DEFINED IN USED FOR

Freezer (iOS, 

found in Lion 

kernel sources, 

but not enabled 

by default)

…/default_freezer.c iOS specifi c extension to support “freezing” 

processes.

Although Mach allows for pagers to be defined externally using the EMMI, these pagers are all in-
kernel threads.

The Default Pager
The default pager is, as its name implies, the basic pager in Mach and XNU. It is defined in osfmk/
default_pager/ in the following files, shown in Table 12-9:

TABLE 12-9: Default Pager Files  

FILE SPECIFIES

default_pager.c Implementation

default_pager_internal.h Data structures

diag.h Diagnostics (statistics) lock

default_pager_alerts.defs MIG subsystem 2295: containing one message (default_

pager_space_alert) used to notify of high and low water mark 

events

default_pager_object.defs MIG subsystem 2275: messages used to communicate with 

default server

default_pager_types.defs Data types used in other MIG fi les

dp_backing_store.c Backing store support

dp_memory_object.c Implementation of default pager’s operations

The default pager is started by one of two Mach traps (macx_swapon() or macx_triggers(), both 
discussed later). If either trap detects that the pager is not initialized (i.e. default_pager_init_
flag is zero), it calls on start_def_pager(), which calls on default_pager_initialize() (both 
in osfmk/default_pager/default_pager.c).

When the default pager initializes, it creates a vstruct_zone for its pager objects, and registers a 
Mach port using host_default_memory_manager() (defined in osfmk/vm/memory_object.c). 
Clients wishing to communicate with it can call the same function to obtain its ports, and send it 
one of the messages (defined in default_pager_objects.defs). The port can also be obtained 
from user mode (via same Mach message, on the host’s privileged port). The pager itself maintains 
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communication with the dynamic_pager(8) (discussed towards the end of this chapter), a user mode 
accomplice which handles adding, deleting and adjusting swap files. This user mode daemon, however, 
communicates back with the default_pager using dedicated Mach traps, rather than messaging.

Although the default pager port is accessible from user mode, in most cases it is not meant to be 
used directly. Its only official user mode client is the dynamic_pager(8). For those clients wish-
ing to request information, the information message default_pager_info_64 was wrapped by the 
macx_swapinfo() Mach trap. This trap, though, has since been wrapped as well, by the sysctl(2)
interface and kern.swapusage MIB.

As a side effect of the port registration, a new kernel thread, vm_pageout_iothread_internal, is 
started by a call to vm_pageout_internal_start(). This is a dedicated thread which is used to 
page out vm_objects that are used internally by the kernel (discussed in the next section, under 
“The Pageout Daemon”).

The Vnode Pager
The vnode pager is responsible for supporting the memory mapping of files. When files are memory 
mapped, their contents need to be read from the file system. When the memory mapped files are 
dirtied in memory, they need to be written back to the file system. The pager is implemented in 
osfmk/vm/bsd_vm.c.

When a vnode is created (using vnode_create(), as discussed in Chapter 15, “Files and 
Filesystems”), VFS calls on the Unified Buffer Cache ubc_info_init() function to handle the 
buffering required for the file’s contents. This method, in turn, calls vnode_pager_setup (), which 
simply calls vnode_object_create() to create a new pager memory object, and tie the supplied 
vnode handle to it. The vnode pager’s data_request and data_return methods respectively wrap 
vnode_pagein() and vnode_pageout().

The Device Pager
The device pager is responsible for supporting the memory mapping of devices. It is similar in con-
cept to the vnode pager, but is closely integrated with IOKit. The device_pager_setup() (called 
from IOKit’s IOGeneralMemoryDescriptor::doMap()) creates a new pager memory object, and ties 
the supplied device handle to it. The device pager’s data_request and data_return methods then 
call device_data_action() (again implemented in IOKit’s iokit/Kernel/IOMemoryDescriptor
.cpp) to read or write data, respectively from or to the device. Similarly, IOMemoryDescriptor::
handleFault() calls back on device_pager_populate_object().

The Swapfi le Pager
The swapfile pager’s name is misleading — this is not the pager charged with swapping (the default 
pager is). In fact, it is meant to discourage attempts to directly map the swap file. If a user process 
does try to map a swap file, the mapping is associated with the swapfile pager, rather than the 
default, as shown in Listing 12-15:
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LISTING 12-15: Redirection of swap mmap(2) requests, from bsd/kern/kern_mman.c:

int mmap(proc_t p, struct mmap_args *uap, user_addr_t *retval)
{
   struct fileproc *fp;
   register struct         vnode *vp;
   // ...
   int fd = uap->fd;
   // ...
   err = fp_lookup(p, fd, &fp, 0);
   // ...
   vp = (struct vnode *)fp->f_fglob->fg_data;
   // ...
            if (vnode_isswap(vp)) {
                        /*
                         * Map swap files with a special pager
                         * that returns obfuscated contents.
                         */
                        control = NULL;
                        pager = swapfile_pager_setup(vp);
                        if (pager != MEMORY_OBJECT_NULL) {
                                control = swapfile_pager_control(pager);
                        }
           ...
}

The swapfile pager implements the swapfile_pager_data_request() method, which just returns 
zeroed pages (by explicitly memset()using), as Listing 12-16 shows:

LISTING 12-16: The implementation of the swapfi le pager’s data request (osfmk/vm/vm_
swapfi le_pager.c)

kern_return_t  
swapfile_pager_data_request(
        memory_object_t         mem_obj,
        memory_object_offset_t  offset,
        memory_object_cluster_size_t            length,
#if !DEBUG
        __unused
#endif
        vm_prot_t               protection_required,
        __unused memory_object_fault_info_t mo_fault_info)
{
            //...

        /*
         * Reserve a virtual page in the kernel address space to map each
         * destination physical page when it's its turn to be processed.
         */
        vm_object_reference(kernel_object);     /* ref. for mapping */

continues
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        kr = vm_map_find_space(kernel_map,
                               &kernel_mapping,
                               PAGE_SIZE_64,
                               0,
                               0,
                               &map_entry);
        // ...
        dst_vaddr = CAST_DOWN(vm_offset_t, kernel_mapping);
        dst_ptr = (char *) dst_vaddr;
        /*
         * Gather in a UPL all the VM pages requested by VM.
         */
        mo_control = pager->pager_control;

        upl_size = length;
        upl_flags =
                UPL_RET_ONLY_ABSENT |
                UPL_SET_LITE |
                UPL_NO_SYNC |
                UPL_CLEAN_IN_PLACE |    /* triggers UPL_CLEAR_DIRTY */
                UPL_SET_INTERNAL;
        pl_count = 0;
        kr = memory_object_upl_request(mo_control,
                                       offset, upl_size,
                                       &upl, NULL, NULL, upl_flags);
        // ...
        /*
         * Fill in the contents of the pages requested by VM.
         */
        upl_pl = UPL_GET_INTERNAL_PAGE_LIST(upl);
        pl_count = length / PAGE_SIZE;
        for (cur_offset = 0; cur_offset < length; cur_offset += PAGE_SIZE) {
                ppnum_t dst_pnum;

                if (!upl_page_present(upl_pl, (int)(cur_offset / PAGE_SIZE))) {
                        /* this page is not in the UPL: skip it */
                        continue;
                }

                /*
                 * Establish an explicit pmap mapping of the destination
                 * physical page.
                 * We can't do a regular VM mapping because the VM page
                 * is "busy".
                 */
                dst_pnum = (ppnum_t)
                        upl_phys_page(upl_pl, (int)(cur_offset / PAGE_SIZE));
                assert(dst_pnum != 0);
                pmap_enter(kernel_pmap,
                           kernel_mapping,
                           dst_pnum,
                           VM_PROT_READ | VM_PROT_WRITE,
                           0,

LISTING 12-16 (continued)
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                           TRUE);

                memset(dst_ptr, '\0', PAGE_SIZE);  // explicit zeroing of pages
                /* add an end-of-line to keep line counters happy */
                dst_ptr[PAGE_SIZE-1] = '\n';

}

The pager cannot handle page-out requests, and will panic if its data_return function is called. 

The Apple Protect Pager
A specific external memory manager of great importance is the Apple Protect pager. This is the memory 
pager responsible for implementing Apple’s code encryption mechanism. This pager is somewhat simi-
lar to the swapfile pager (having likely been copied from it), but instead of zeroed out pages, it returns 
pages after invoking a decryption function on them. The pager contains an additional field, a pager_
crypt_info structure, defined in <osfmk/kern/page_decrypt.h> as shown in Listing 12-17:

LISTING 12-17: page_crypt_info structure from osfmk/kern/page_decrypt.h

/*
 *Interface for text decryption family
 */
struct pager_crypt_info {
        /* Decrypt one page */
        int     (*page_decrypt)(const void *src_vaddr, void *dst_vaddr,
                                unsigned long long src_offset, void *crypt_ops);
        /* Pager using this crypter terminates - crypt module not needed anymore */
        void    (*crypt_end)(void *crypt_ops);
        /* Private data for the crypter */
        void    *crypt_ops;
};

The page_decrypt field is a function pointer, a hook, which can be externally set for various decryp-
tion modules. This mechanism enables Apple to plug-in encryption modules in order to decrypt memory 
that is declared as “protected.”  OS X’s XNU has a default module, the DSMOS, kernel extension.* In 
iOS the corresponding modules are FairPlayIOKit and TextEncryptionFamily, which links to it. In either 
case, the Apple Protect pager is totally oblivious of the decryption logic: When a data request arrives, it 
calls on page_decrypt() function to do all the work, as shown in Listing 12-18.

LISTING 12-18: Apple Protect data request

kern_return_t apple_protect_pager_data_request(
        memory_object_t         mem_obj,
        memory_object_offset_t  offset,
        memory_object_cluster_size_t            length,
#if !DEBUG
        __unused
#endif

*DSMOS is an acronym for “Don’t Steal Mac OS X.” This module has a very rigid (and threatening!) license, 
preventing any reverse engineering of it. Therefore, the detail of memory decryption stops here.

continues
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        vm_prot_t               protection_required,      
        memory_object_fault_info_t mo_fault_info)
{
...

                /*
                 * Decrypt the encrypted contents of the source page
                 * into the destination page.
                 */
                ret = pager->crypt.page_decrypt((const void *) src_vaddr,
                                                (void *) dst_vaddr,
                                                offset+cur_offset,
                                                pager->crypt.crypt_ops);

if (ret) {
                        /*
                         * Decryption failed.  Abort the fault.
                         */
                        retval = KERN_ABORTED;
                } else {
                        /*
                         * Validate the original page...
                         */
                        if (src_page->object->code_signed) {
                                vm_page_validate_cs_mapped(
                                        src_page,
                                        (const void *) src_vaddr);
                        }
                        /*
                         * ... and transfer the results to the destination page.
                         */
                        UPL_SET_CS_VALIDATED(upl_pl, cur_offset / PAGE_SIZE,
                                             src_page->cs_validated);
                        UPL_SET_CS_TAINTED(upl_pl, cur_offset / PAGE_SIZE,
                                           src_page->cs_tainted);
                }

Decrypted pages are never marked dirty, and therefore never swapped out to disk (which would 
defeat the entire purpose of the encryption, if a plaintext copy could be excavated from the swap 
file!). In fact, the Apple Protect pager cannot handle data return (read, page-out) requests and 
panic()s if this method is called.

Although this mechanism can be used for various kinds of encrypted memory, Apple currently uses 
it for encrypting binaries. Recall (from Chapter 3) that Mach-O segments can be protected. The ker-
nel’s Mach-O handler, load_segment(), checks whether the SG_PROTECTED_VERSION_1 flag is set 
for a segment. If it is, it calls unprotect_segment().

LISTING 12-18 (continued)
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If XNU is compiled with CONFIG_CODE_DECRYPTION, as it is by default, then unprotect_segment()
calls the Apple protect pager, as shown in Listing 12-19.

LISTING 12-19: unprotect_segment() from bsd/kern/mach_loader.c

#if CONFIG_CODE_DECRYPTION

#define APPLE_UNPROTECTED_HEADER_SIZE   (3 * PAGE_SIZE_64)

static load_return_t
unprotect_segment(
        uint64_t        file_off,
        uint64_t        file_size,
        struct vnode    *vp,
        off_t           macho_offset,
        vm_map_t        map,
        vm_map_offset_t map_addr,
        vm_map_size_t   map_size)
         
        struct pager_crypt_info crypt_info;
         
        crypt_info.page_decrypt = dsmos_page_transform;
        crypt_info.crypt_ops = NULL;
        crypt_info.crypt_end = NULL;
#pragma unused(vp, macho_offset)
        crypt_info.crypt_ops = (void *)0x2e69cf40;
        kr = vm_map_apple_protected(map,
                                            map_addr,
                                            map_addr + map_size,
                                            &crypt_info);

       }

        if (kr != KERN_SUCCESS) {
                return LOAD_FAILURE;
        }
        return LOAD_SUCCESS;
}

The vm_map_apple_protected() calls on apple_protect_pager_setup(), which iterates over the 
the AP pager’s queue, and either looks for the object (if existing), or creates a new one. This way, 
when the vm_map is retrieved using a data_request, the AP pager can invoke the decryption func-
tion supplied. 

As previously noted, while the effort in encrypting binaries in this way is a valiant one, it can be 
defeated quite easily. Mach’s powerful vm_map APIs, which can be used outside the task, enable 
reading the task’s memory directly, in which the memory is already decrypted — this is one of the 
things that the corerupt tool, presented in the chapter, can do. An even easier way is to force inject 
a library using DYLD_INSERT_LIBRARIES (as was discussed in Chapter 4), and just read the memory 
from inside the task. This is the reason why, despite App Store binaries being encrypted, iOS app 
piracy is thriving.
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The Default Freezer (iOS)
The Default Freezer, a new addition in iOS, can be found in the Lion sources, though the com-
piled kernel does not use it (and, at this time of writing, it doesn’t look like Mountain Lion will 
be using it, either). It will allow the system to selectively freeze a virtual memory image of a 
given task and restore it on demand. Note the use of future tense, “will” — this is still an evolv-
ing implementation.

The discussion in this subsection relies mostly on the open source of XNU, 
which (probably intentionally) leaks code segments dealing with hibernation, 
and some inspection of the kernel binary. The source, however, remains behind 
the iOS kernel version, and hibernation is virtually undocumented. The infor-
mation herein is, therefore, subject to change, though the general ideas are likely 
to remain as described. 

The rationale for doing this can be found in mobile environments. Indeed, iOS’s nemesis, Android, 
has this feature.† On systems with relatively low amounts of physical memory and no real swap, it 
is only a matter of time before a user, running too many applications, will also run out of memory. 
Applications in a mobile environment, however, most often have no real need to execute when 
not in the foreground. This is because the mobile platform normally only allows one app to be in 
foreground mode and use the screen. When the user switches between apps, the app can be “fro-
zen,” put in the background, then “thawed” as it resumes. Because the frozen app is not running in 
between the freeze and thaw operations, it can also, in theory, be killed altogether, then restored to 
the same register state and virtual memory image at a later time.

This ability is thus designed for iOS (think of all those times one switches away Angry Birds to answer 
a phone call, for example). Although Lion boasts a similar feature (resuming processes where the user 
left off), in OS X the implementation is done through the CoreFoundation framework, and is really 
a matter of saving the application state (in the Saved Application State directory). In iOS, the resump-
tion of processes is performed by the the Default Freezer. The freezer is implemented in osfmk/vm/
default_freezer.c, and is enabled if XNU is compiled with CONFIG_FREEZE.  It is integrated into 
the kernel memorystatus mechanism (also known as Jetsam, discussed in Chapter 13), and provides 
new iOS specific system calls, such as pid_suspend() and pid_resume(). Note, that the current 
implementation of the freezer seems incomplete (for example, pid_suspend() cannot directly freeze a 
specific process) Chapter 13 discusses the mechanism in more detail.

PAGING POLICY MANAGEMENT

The Mach pager types discussed previously perform the dirty work of paging a memory object to or 
from its corresponding backing store, but they do not act on their own accord. They merely await 
callbacks (their published data_request and data_return methods). A separate entity must be able 
to direct them, and make the decision as to which pages should be committed. 

†Note that Android’s implementation is totally entirely different. Dalvik applications’ programming model 
places the responsibility of saving state (as a “bundle”) at the hands of the application, which responds to 
events. If the application is killed and restarted, its memory is reinitialized, not restored, but the application 
is passed the previous state, and may resume from it.
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The Pageout Daemon
The pageout daemon isn’t really a daemon, but a thread. Not just any thread: When kernel_
bootstrap_thread() completes the kernel initialization and has nothing more to do, it literally 
becomes the pageout daemon, by a call to vm_pageout(), which never returns. The thread (with the 
help of a few others) manages the page swapping policy, deciding which pages need to be written 
back to their backing store.

vm_pageout thread:
The vm_pageout() function (in osfmk/vm/vm_pageout.c) converts the kernel_bootstrap_thread
to the pageout daemon, by effectively resetting the thread. The function sets the thread’s priority, 
initializes various paging statistics and parameters, and then spawns two more threads: The exter-
nal iothread, and the garbage collector (a third, internal iothread, was started when the default 
pager is registered). 

When the set up is done, vm_pageout() finally calls vm_pageout_continue(), which periodically 
wakes up to perform the vm_pageout_scan(). This is a massive, entangled function, which main-
tains four page lists (referred to as page queues). Every vm_page in the system is tied to one of these 
four by means of its pageq field:

 ‰ vm_page_queue_active: Pages recently active, and resident.

 ‰ vm_page_queue_inactive: Pages not recently active, and therefore candidates for paging 
out. These pages may be paged out, or reactivated, depending on their usage.

 ‰ vm_page_queue_free: The free page list. These are pages that were inactive, but have been 
laundered (page out).

 ‰ vm_page_queue_speculative: Pages which were speculatively mapped, as the result 
of a read-ahead. These are inactive, but are likely to be used very soon. This queue is 
composed of many “bins” (from VM_PAGE_MIN_SPECULATIVE_AGE_Q) VM_PAGE_MAX_

SPECULATIVE_AGE_Q), and will generally be shielded from vm_pageout_scan() for a like 
number of milliseconds. Pages gradually age until they fall to inactive status, and join the 
vm_page_queue_inactive.

The function works to meet target values for all queues, maintained in the vm_page_[active|
inactive|free|speculative]_target variables, and then blocks the thread. If the current values 
(maintained in similarly named count variables) fall below the targets, the thread is woken up. The 
check is usually performed as the last stage of a vm_page_grab()or other page operation.

The pageout daemon’s statistics can be obtained by a call to host_statistics[64], (osfmk/kern/
host.c) with the HOST_VMINFO[64] request, as is shown in the next experiment:

Experiment: Virtual Memory Statistics
Recall from Chapter 4 the discussion of the vm_stat(1) command, used to display kernel virtual 
memory statistics. The kernel keeps these statistics in a vm_statistics struct, defined in osfmk/
mach/vm_statistics.h as shown in Listing 12-20:
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LISTING 12-20: vm_statistics64 struct, from vm_statistics.h

struct vm_statistics64 {
        natural_t       free_count;             /* # of pages free */
        natural_t       active_count;           /* # of pages active */
        natural_t       inactive_count;         /* # of pages inactive */
        natural_t       wire_count;             /* # of pages wired down */
        uint64_t        zero_fill_count;        /* # of zero fill pages */
        uint64_t        reactivations;          /* # of pages reactivated */
        uint64_t        pageins;                /* # of pageins */
        uint64_t        pageouts;               /* # of pageouts */
        uint64_t        faults;                 /* # of faults */
        uint64_t        cow_faults;             /* # of copy-on-writes */
        uint64_t        lookups;                /* object cache lookups */
        uint64_t        hits;                   /* object cache hits */

        /* added for rev1 */
        uint64_t        purges;                 /* # of pages purged */
        natural_t       purgeable_count;        /* # of pages purgeable */

        /* added for rev2 */
        /*
         * NB: speculative pages are already accounted for in "free_count",
         * so "speculative_count" is the number of "free" pages that are
         * used to hold data that was read speculatively from disk but
         * haven't actually been used by anyone so far.
         */
        natural_t       speculative_count;      /* # of pages speculative */

} __attribute__((aligned(8)));

The vm_stat(1) command therefore has very little work — just get the statistics using a host_
statistics64 call on mach_host_self(), and print it out. The code (which is part of Darwin’s 
system-cmds package) has been little changed from Avadis Tevanian’s original Mach code, having 
just been ported to Mac OS X and expanded to 64 bits. This is shown in Listing 12-21:

LISTING 12-21: Using vm_statistics64 in vm_stat (from system_cmds-541/vm_stat.tproj/vm_
stat.c)

void get_stats(vm_statistics64_t stat)
{
     unsigned int count = HOST_VM_INFO64_COUNT;
     kern_return_t ret;
     if ((ret = host_statistics64 (mach_host_self(), 
                                   HOST_VM_INFO64,
                                   (host_info64_t) stat,
                                   &count) != KERN_SUCCESS)) {
          fprintf(stderr, "%s: failed to get statistics. Error %d\n", pgname,ret);
          exit(EXIT_FAILURE);
          }
}
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Taking this code and embedding it in your own main() is straightforward. A simple printf() of the 
structure fields from Listing 12-4, and there you have it — a quick implementation of vm_stat(1).

vm_pageout iothreads
The internal and external iothreads each look at a corresponding vm_pageout_queue_ts, which are 
initialized by vm_pageout() as well. The vm_pageout_queue_internal is reserved for internal VM 
objects (i.e. those created by the kernel, are maintained by default pager, and have their internal
flag set to true), and the vm_pageout_queue_external is used for all other VM objects. 

Both threads employ the same thread function, vm_pageout_iothread_continue(), but on differ-
ent queues. This function (technically, a continuation), loops over its queue, dequeueing each page, 
getting its corresponding pager (from its vm_object reference), and calling the pager’s 
memory_object_data_return() function.  This enables the pageout threads to be decoupled from 
the actual paging implementation, for which the pager is solely responsible.

Garbage Collection Thread:
The garbage collection thread (vm_pageout_garbage_collect())  is occasionally woken up on its 
continuation by vm_pageout_scan().  It handles garbage collection in three areas:

 ‰ stack_collect(): Pages from the kernel stack (implemented in osfmk/kern/stack.c)

 ‰ consider_machine_collect(): For machine dependent pages. In OS X, this is a null func-
tion (implemented in osfmk/i386/pcb.c)

 ‰ consider_buffer_cache_collect(): if the function is indeed defi ned. To defi ne the func-
tion, the caller uses vm_set_buffer_cleanup_callout(). The BSD layer registers the 
buffer_cache_gc() in the bufinit() function. (Both are defi ned bsd/vfs/vfs_bio.c).

 ‰ consider_zone_gc(): For zone garbage collection, as discussed earlier in this chapter (This 
function is implemented in osfmk/kern/zalloc.c)

The garbage collection thread also calls consider_machine_adjust() (again, a null function in OS 
X). Finally, just before blocking on its continuation, it calls consider_pressure_events() (defined 
in bsd/kern/vm_pressure.c), which falls through to vm_dispatch_memory_pressure() (in the 
same file). This mechanism is tied into the BSD layer’s Jetsam mechanism (somewhat akin to Linux’s 
low memory killer), which is explored in Chapter 13.

XNU’s paging code contains calls to VM_CHECK_MEMORYSTATUS, especially in the osfmk/vm/vm_
resident.c functions (vm_page_release(), vm_page_grab(), and friends). In OS X, this is just 
an empty macro. In iOS, where physical memory is scarce and there is no swap, this macro calls vm_
check_memorystatus(), which wakes up the kernel_memorystatus thread, also part of Jetsam.

Handling Page Faults
The vm_pageout() daemon only handles one direction of swapping — from the physical memory 
out to the backing store. The other direction, paging in, is handled when a page fault occurs. The 
logic is quite complicated, but can be simplified as follows:
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 ‰ The machine level trap handler (Intel: user/kernel_trap(), ARM: sleh_abort) calls vm_
fault()if the trap reason is a page fault. 

 ‰ The vm_fault() function calls vm_page_fault() to handle the actual faulting page, and 
retrieve it from the backing store. This is done, as can be expected, by looking up the vm_
page’s corresponding vm_object, and obtaining the pager port from it. The pager’s data_
request function then does the work of paging in the contents from the backing store. A 
page-in operation also decrypts the page (if it resides on encrypted swap) as well as validates 
its code signature, if any.

 ‰ PMAP_ENTER() inserts the page into the task’s pmap.

Note, that there can be many types of page faults, and the behavior described above can be antici-
pated only when the fault is of a non-resident page type — that is, cases where the page is in the 
vm_map, but not in the pmap. Other cases of page faults include:

 ‰ Invalid access: Access to an address which is not mapped into the process address space 
(read: in the task’s vm_map). This is what usually happens when a stray pointer is derefer-
enced. This results in a SIGSEGV to the process.

 ‰ Page protection fault: Access to an address which is mapped, but whose page protection 
mask forbids the requested access. This is generally the case with trying to jump to an 
address in a data segment (enforced by NX/XD in Intel, or the XN bit in ARM), or when try-
ing to write (or read) to a non-writable (or non-readable) page. This results in a SIGBUS to 
the process (Debuggers use this mechanisms to insert watchpoints).

 ‰ Copy-On-Write: A page may also be marked read-only, so that if a task attempts to write 
to it, the fault is trapped, and the page may then be copied before the write operation is 
retried. This is a very common tactic to allow sharing of memory in a way that enables 
saving RAM. Most of the task’s vm_map is shared in this way (as the process loads many 
shared libraries). The fault in this case is because of the kernel’s “laziness” in not having 
pre-allocated a private copy of the page. The page fault handling code therefore handles 
this transparently in a manner similar to the above, and the task remains unaware that any-
thing even happened.

Pre-Leopard, the page fault logic also contained mechanisms for detection of the “task 
working set,” used to pre-fetch non-contiguous pages related to the faulting task. This was 
meant as a read-ahead mechanism, to reduce subsequent page faults which result when a 
task is brought in from swap. This is no longer the case.

The dynamic_pager(8) (OS X)
Recall the dynamic_pager, discussed in Chapter 4. The dynamic_pager(8) is a user mode daemon, 
which maintains the system swap file, by default /private/var/vm/swapfile. The name is some-
what misleading, as this daemon isn’t one of the actual pagers from Table 12-9, and therefore does not 
directly control paging operations. Rather, when the kernel’s default_pager needs to resize or oth-
erwise modify swap file settings in ways which require user mode intervention, it is called upon from 
kernel space. 
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The daemon communicates with the default_pager over Mach messages, and uses Mach 
traps to control system swapping. Specifically, when the daemon starts, it registers the HOST_
DYNAMIC_PAGER_PORT (a host special port). It can also register a port as an alert port (using the 
macx_triggers trap) to get messages from the kernel. The kernel can then send messages to the 
daemon, which performs the required support operations in user mode (namely, creating, resiz-
ing or removing a file), and can invoke Mach traps to inform the kernel. These traps are actu-
ally defined as part of the BSD layer, in bsd/vm/dp_backing_file.c, as shown in Table 12-10.

TABLE 12-10: Mach Traps Used By the dynamic_pager(8) Program

MACH TRAP USAGE

macx_swapon

(uint64_t       filename,

 int            flags,

 int            size,

 int            priority);

Starts swapping to a given fi le.

Mach interface for BSD’s swapon(). This is a wrapper, which 

communicates with default_pager.

Calls default_pager_backing_store _create() and 

default_pager_add_file().

macx_swapoff

(uint64_t       filename

 int            flags);

Stops swapping to the given fi le. Calls 

default_pager_backing_store_delete().

macx_triggers

(int          hi_water,

 int           low_water,

 int          flags,

 mach_port_t  alert_port);

Sets callbacks for high and low water marks (used for the –H 

and –L switches, respectively). This is a fall through to mach_

macx_triggers(). Also used to set encryption on swap, if 

UseEncryptedSwap is set in the dynamic_pager’s plist. The 

dynamic_pager also uses this to registers its port as the 

alert_port, to which the kernel will send messages on high/

low water marks.

SUMMARY

This chapter focused on one of Mach’s (and, by extension, XNU’s) most important and complicated, 
yet least understood systems — virtual memory. In particular, we elaborated on the machine-inde-
pendent virtual memory layer, which enables the Mach core to adapt to multiple architectures, and 
the machine-specific physical memory, pmap, which binds to them. Through the high-level abstrac-
tion of vm_map, which represents the task address space, virtual memory regions may be allocated, 
adjusted, shared, and freed according to need.

Additionally, we discussed kernel memory allocator mechanisms, especially those based on Mach 
zones, which allow a higher level of abstraction, akin to the user mode’s malloc(3).

The chapter then turned to paging, with an exploration of Mach’s pagers, which allow to extend 
the backing store of virtual memory onto swap, memory mapped files, devices or even remote hosts. 
All five pagers, common to OS X and iOS, were discussed, as well as iOS’s new Default Freezer. We 
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concluded with an explanation of the workings of the pageout daemon and the dynamic pager, both 
performing important operations despite misleading names.

As this chapter concludes, so does the detailed subsection of this book dealing with Mach. The next 
chapters focus on the various components of the BSD layer (Chapter 13), advanced BSD primitives 
(Chapter 14), and then the subsystems of files (VFS, Chapter 15) and networking (Chapter 17).

REFERENCES

1. Rashid, Tevanian, Young, Golub, Baron, Black, Bolosky, and Chew, CMU. “Machine-
Independent Virtual Memory Management of Paged Uniprocessor and Multiprocessor 
Architectures,” ACM October, 1987
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BS”D — The BSD Layer

Mach is merely a microkernel. Although some of its application programming interfaces (APIs) 
are exposed to user mode, developers mainly use the much more popular API of POSIX, 
which is implemented by the BSD layer of Mach.

This chapter discusses the BSD layer in considerable depth. “Considerable” because BSD by 
itself is a complicated design spanning many implementations, notably FreeBSD and its various 
sister operating systems. XNU largely conforms to 4.4BSD, and so, in places where this book 
leaves off for brevity, refer to the BSD documents[1] listed in the references for this chapter.

This chapter starts with the discussion of the standards that BSD implements. It then dis-
cusses, in order, the fundamental objects of BSD: processes, threads, and the executable 
programs that create them. It then continues to talk about process control calls, in particular 
ptrace(2), and the undocumented policy control functions.

The chapter concludes by discussing UNIX signals, and how they correspond with the proces-
sor traps and Mach exceptions discussed in Chapter 11. Discussion of more advanced topics, 
or features that are Apple proprietary, is left for the next chapter. 

INTRODUCING BSD

Even before its incarnation in XNU, Mach was closely integrated with BSD. Mach traps 
and services alone cannot provide for a full operating system, and by design are not meant 
to. After all, they do not include something as fundamental as a fi le system. Another layer 
needs to build on top of these primitives the well-known abstractions of fi les, devices, users, 
groups, and more. The layer originally chosen in Mach, and kept in XNU, is BSD.

BSD and POSIX user mode developers in OS X can remain blissfully ignorant of the Mach lay-
ers. Even though the Mach APIs are still accessible in user mode via the Mach traps discussed 
Chapters 11 and 12, XNU’s primary “personality” is that of BSD, and the system exposes the 
full set of POSIX system calls. Though the fact is little known, Mac OS X received offi cial 
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UNIX03[2] certifi cation in Leopard, something that most UNIX-like systems, including Linux, 
cannot really claim. (Apple received this certifi cation from The Open Group in May 2007 and is due 
for renewal as this book goes to print).

One Ring to Bind Them
The UNIX03 certifi cation means that OS X conforms to the Single UNIX specifi cation, com-
monly referred to as SUS. Following the great divide, UNIX has proliferated into so many versions 
and fl avors that developers could no longer write portable code without having to consider OS 
idiosyncrasies.

FIGURE 13-1:  The logo of The Open Group, holders of the UNIX trademark (with apologies to NH)

The need for a reuniting standard emerged to once more allow portability, enabling developers to 
write code they can deploy on multiple operating systems, conforming to said standard. Portability 
is of two types:

 ‰ Source-level compatibility: This type implies that, even though the underlying architecture 
might be different, all the common system APIs are identical. As such, compiling code cleanly 
on the operating system–compatible compiler must be possible so as to create a binary that 
executes with the exact expected behavior.

 ‰ Binary compatibility: This type is a stronger requirement than source-level compatibility and 
implies that the program, once compiled, could be moved from one standards-compliant 
operating system to the other (assuming the same underlying machine architecture) and 
would run seamlessly.

Somewhat surprisingly, OS X makes no attempt for binary compatibility. In fact, at the time of 
this writing, binary compatibility is impossible by design because the native binary format of OS 
X is still the venerable Mach-O executable, which is yet another legacy of OS X’s NextSTEP roots. 
Indeed, other UNIX-like systems, such as BSD, Linux, and Solaris, are somewhat closer to this in 
that they all agree on the Executable and Library Format (ELF), which is the de facto standard in 
UNIX-like environments, save OS X.

UNIX03 demands only source-level compatibility, however. With OS X declared compliant, 
SUS-conforming sources, which rely on common and standardized APIs, are guaranteed to be able 
to compile neatly on OS X.
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Note that the standards compliance ensures only compatibility for the minimum approved standard. 
It does not imply the compliant system cannot expose its own idiosyncratic APIs, at the cost of 
breaking compatibility with other operating systems. Indeed, OS X has many such APIs that don’t 
even begin to compile on other operating systems. Mach-O is just one. It is therefore going to be a 
long time before non-Apple operating systems can execute OS X binaries. 

What’s in the POSIX Standard?
SUS v3 is aligned with another standard, POSIX (known also by another name, IEEE Std 1003.1-
2001). Table 13-1 shows some of what the standard includes.

TABLE 13-1: Single UNIX specifi cation components

SUS PART MAN SECTION CONTAINS

Base defi nitions 

(XBD)

4, 5, 7 Conventions that are expected of a UNIX system. This lengthy 

tome contains 13 chapters describing everything from environ-

ment variables and regular expression syntax through the com-

mon fi le system, devices, and tty specifi cations found on UNIX. 

Additionally, the last chapter lists the constants, macros, and 

data structures exposed by the operating system. These are 

available to the developer as the familiar #include fi les in 

/usr/include. The well-known <unistd.h> and <stdlib

.h>, alongside programmatic lynchpins such as <stdio.h>, 

<string.h>, and nearly 100 other header fi les are included in 

this part of the standard. 

System Interfaces 

(XSH)

2, 3 The APIs exposed by the system. Drawing on the standard data 

structures and constants from XBD, this specifi cation defi nes 

the system calls (section 2 of the manual) and library calls (sec-

tion 3 of the manual).

Base Utilities (XCU) 1, 6, 8 The shell (the familiar bash, ksh, and csh, at a bare minimum) 

with some 150 command-line utilities making up the familiar 

contents of the bin and sbin directories. From the man per-

spective, XCU contains sections 1 (user commands) and 8 (sys-

tem administration commands).

Implementing BSD
To expose the BSD APIs, XNU actually borrows code from the BSD code-base itself. Much of the 
kernel code in the bsd/ directory is the original BSD code, which still contains the required copy-
right of the BSD license. The BSD license is considered to be very permissive, which allows Apple to 
close off its operating system on a whim, as it has indeed done in iOS.

Like the original NeXTSTEP ancestor, which was Mach 2.5 tied to 4.3 BSD, so is xnu now based 
on Mach 3.0, and tied to 4.4 BSD (and sharing a common code base ancestry with FreeBSD).
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XNU Is Not Fully BSD
Although XNU exports a fully functional BSD layer and API, it is not a full BSD implementation. 
Parts of it, such as the Virtual Filesystem Switch (VFS) and network architecture, were copied 
fully, but others were either partially ported or completely omitted. A few of the well-known BSD 
APIs, such as sbrk() and swapon(), are missing. Additionally, XNU’s kexts (kernel extensions) are 
incompatible with BSD’s kmods (kernel modules), and I/O Kit is entirely unique in XNU. As a con-
sequence, OS X remains a BSD-like system (and, in the UNIX genealogy, clearly sides with the BSD 
branch, rather than AT&T’s), but cannot be considered fully BSD. 

PROCESSES AND THREADS

The primitives and algorithms of Mach scheduling — tasks and threads — are discussed in great 
detail in Chapter 10. As mentioned, Mach provides these primitives as low-level abstractions with a 
deliberately basic and incomplete API, on top of which the upper layers are expected to implement 
the full functionality.

BSD takes the two primitives and structures them into the well-known concepts of process and thread
from the UNIX landscape. This section goes on to discuss the specifi c BSD implementation of pro-
cesses and threads, and how it ties to the underlying Mach layer. Note that this builds on the basic 
concepts of processes in UNIX, which were introduced in Chapter 4. If you are somewhat unfamiliar 
with these concepts, you might want to review Chapter 3 before going on with this chapter.

BSD Process Structs
Mach provides a rich abstraction of tasks and threads, but is still incomplete and leaves much to be 
desired. A BSD process can be uniquely mapped to a Mach task, but it contains more than the basic 
scheduling and statistics information the Mach task offers. Most notably, BSD processes contain fi le 
descriptors and signal handlers. Processes also support the complex genealogy linking them with 
their parents, siblings, and children.  

BSD maintains these features of a process and many more by means of a struct proc, which is yet 
another mammoth structure, defi ned in bsd/sys/proc_internal.h. XNU’s version of the struct
proc is similar to that of BSD, but contains many idiosyncratic fi elds, relating to DTrace support, 
code signing, work queues, and other specifi c features. Rather than fi ll page after page with a listing 
of this huge structure, Table 13-2 highlights the important fi elds (shaded rows denote parameters 
which copy over on process fork():

TABLE 13-2: Important fi elds of the struct proc (not in order)

FIELD PURPOSE

LIST_ENTRY(proc) p_list; Ties proc to list of all running processes.

pid_t p_pid, p_ppid, p_pgrpid; PID, PPID, and PGRP of this process.

uid_t p_uid, p_ruid, p_svuid,       

gid_t p_gid, p_rgid, p_svgid; 
UIDs and GIDs (current, real and saved) of process.
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FIELD PURPOSE

void *          task; Pointer to underlying 

Mach task.

char            p_stat;          Process status (letter shown in PS).

struct  proc *  p_pptr; Pointer to parent process 

(this->p_pptr->p_pid == this->ppid).

LIST_ENTRY(proc) p_pglist;

LIST_ENTRY(proc)

                p_sibling;

LIST_ENTRY(proc)

               p_children;         

Fellow members in same PGRP, siblings (other pro-

cesses which are children of same ppid), and children of 

this process (which are all siblings to one another).

LIST_ENTRY(proc) p_hash;          Pointer to process hash chain entry.

TAILQ_HEAD(, uthread) 

                p_uthlist;

All of the BSD threads in to this process.

TAILQ_HEAD( ,eventqelt) 

                p_evlist;

Events associated with this process.

struct filedesc *p_fd; Open fi le descriptors. The int fd from user space is an 

index into this p_fd array.

struct sigacts *p_sigacts; Signal behaviors.

struct  plimit *p_limit;

struct  timeval 

               p_rlim_cpu;

Process resource limits (from setrlimit(2)). The remaining 

CPU time is maintained separately.

pid_t   si_pid;                        

u_int   si_status;                      

u_int   si_code;                        

uid_t   si_uid;

Fields initialized from last SIGCHLD in case this process 

has spawned children and needs to collect their exit 

code.

u_int   p_argslen;

int     p_argc;

Length and number of command-line arguments.

char p_comm[MAXCOMLEN+1];

char p_name[(2*MAXCOMLEN)+1]; 

Command line and process name.

user_addr_t *user_stack; Address of user mode stack.

continues
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FIELD PURPOSE

u_char  p_priority;

u_char  p_resv0;

char    p_nice;

u_char  p_resv1;

BSD priority and nice fi elds, as well as calculated fi elds.

struct  vnode *p_textvp;

off_t   p_textoff; 

uint8_t p_uuid[16];

Pointer to vnode of executable that is making up this 

process image and the off set in it.

The UUID is copied from the Mach-O LC_UUID.

sigset_t p_sigmask;

sigset_t p_sigignore;

sigset_t p_sigcatch;

Signals masked, ignored and caught by this process. 

(sigmask is deprecated).

int     p_mac_enforce; Is process subject to MAC 

enforcement?

uint32_t p_csflags; Code-signing fl ags (discussed later).

int    p_iopol_disk; In iOS controls process I/O policy for disk.

int p_aio_total_count; int 

p_aio_active_count;

TAILQ_HEAD

( , aio_workq_entry ) 

           p_aio_activeq; 

TAILQ_HEAD

( , aio_workq_entry ) 

              p_aio_doneq;

Asynchronous I/O support: Counts and lists of AIO 

requests.

struct lctx *p_lctx;    LIST_

ENTRY(proc) p_lclist;
Support for login contexts: pointer to 

current login context, and processes in that context.

user_addr_t  p_threadstart;

int     p_pthsize;

void *  p_pthhash;

Pthread support. Size of thread, thread function, and 

pointer to pthread waitqueue hash.

user_addr_t   p_wqthread;

void         *p_wqptr;

int   p_wqsize; 

boolean_t     p_wqiniting; 

lck_spin_t    p_wqlock;   

Work queue support (discussed in more detail in the 

next chapter).

*Bold rows imply parameters that copy over on process fork()

TABLE 13-2 (continued)
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The structure is so massive it requires several disjoint locks to protect access to its various fi elds, and 
the lists it participates in. The process lock (PL) locks the entire structure, but there exist a process 
spin lock (PSL), a fi le descriptor lock (PFDL), and others that lock the groups and siblings. 

Process Lists and Groups
XNU maintains processes in struct proclist variables, which are really nothing more than 
linked lists of struct proc. There are two such lists and a special iterator function to traverse 
them, as shown in Listing 13-1.

LISTING 13-1: proclists in XNU, from bsd/sys/proc_internal.h  (implementation in bsd/kern/
kern_proc.c)

LIST_HEAD(proclist, proc);

/* defns for proc_iterate */
#define PROC_ALLPROCLIST        1   /* walk the allproc list (procs not exited yet) */
#define PROC_ZOMBPROCLIST       2   /*  walk the zombie list */
#define PROC_NOWAITTRANS        4   /* do not wait for transitions (checkdirs only)  */

extern struct proclist allproc;     /* List of all processes. */
extern struct proclist zombproc;    /* List of zombie processes. */
...
int proc_iterate(int flags,                     //  PROC_* flags, above
                 int (*callout)(proc_t,void *), // funciton to execute on each item
                 void *arg,                     // 2nd argument to callout
                 int (*filterfn)(proc_t,void *),// function to decide callout execution 
                 void *filterarg);              // 2nd argument to be passed to filterfn

Processes may also belong to a process group, in which case an additional struct pgrp is used, as 
shown in Listing 13-2:

LISTING 13-2: Process group declaration in bsd/sys/proc_internal.h (implemented in bsd/kern/
kern_proc.c)

// In the following, LL implies LIST_LOCK, and PGL implies Process Group Lock, which
// are system wide locks used to protect structure fields against concurrent access

struct  pgrp {
   LIST_ENTRY(pgrp)  pg_hash;      /* Hash chain. (LL) */
   LIST_HEAD(, proc) pg_members;   /* Pointer to pgrp members. (PGL) */
   struct  session * pg_session;   /* Pointer to session. (LL ) */
   pid_t             pg_id;        /* Pgrp id. (static) */
   int               pg_jobc;      /* # procs qualifying pgrp for job control (PGL) */
   int               pg_membercnt; /* Number of processes in the pgrocess group (PGL) */
   int               pg_refcount;  /* number of current iterators (LL) */
   unsigned int      pg_listflags; /* (LL) */
   lck_mtx_t         pg_mlock;     /* mutex lock to protect pgrp */
};
..
..
/* defns for pgrp_iterate */
#define PGRP_DROPREF            1

continues
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#define PGRP_BLOCKITERATE       2
..
..
// pgrp_iterate is used to iterate over the pgrp->pg_members list
extern int pgrp_iterate(struct pgrp * pgrp, // pgrp to iterate over
               int flags, 
               int (*callout)(proc_t , void *), // function to execute on each item
               void *arg,                       // 2nd argument to be passed to callout
               int (*filterfn)(proc_t , void *),// function to decide callout execution
               void *filterarg);                // 2nd argument to be passed to filterfn

The iterator functions, both proc_iterate() and pgrp_iterate(), operate very similarly, as they 
both traverse linked lists. The former function looks at the allproclist (if PROC_ALLPROCLIST is 
set in fl ags) and at the zombproclist (if PROC_ZOMBPROCLIST is set in fl ags), whereas the latter looks 
at the pg_members fi eld of the pgrp.

The iterators both accept a filterfn, a pointer to a function, which, if set, will be called for each 
process in the list, along with an optional filterarg. If the function returns a non-zero value (or 
no function exists to begin with), the callout function will be applied on the process in question, 
with an optional calloutarg. A good example of how this mechanism is used can be found in the 
process-killing logic, implemented by killpg1() bsd/kern/kern_proc.c, which is also described 
in the “Signals” section of this chapter.

Threads
Processes serve as containers, but the actual execution units of a binary are threads. Mach provides 
the thread primitive, but — yet again — it is insuffi cient for the requirements of higher level operat-
ing systems. A richer, more standardized API therefore needs to be provided by XNU.

The BSD Thread Object
BSD thread objects are defi ned as instances of a struct uthread, which is defi ned in bsd/sys/
user.h. Again, we are dealing with an overwhelming, large structure with inline structures that 
further inhibit readability. Listing 13-3 attempts to simplify as much as possible, by highlighting the 
important fi elds:

LISTING 13-3: The struct uthread, from bsd/sys/user.h 

struct  uthread {
   /* syscall parameters, results and catches */
   u_int64_t uu_arg[8]; /* arguments to current system call */
   int     *uu_ap;      /* pointer to arglist */
   int uu_rval[2];

   /* thread exception handling */
   int     uu_exception;
   mach_exception_code_t uu_code;  /* ``code'' to trap */
   mach_exception_subcode_t uu_subcode;
   char uu_cursig;               /* p_cursig for exc. */

   /* support for syscalls which use continuations */
   struct _select { .. } uu_select;

LISTING 13-2 (continued)
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   union {
    struct _kqueue_scan { } ss_kqueue_scan; /* saved state for kevent_scan() */
    struct _kevent { }   ss_kevent;         /* saved state for kevent()      */
    } uu_kevent;
    struct _kauth { } uu_kauth;
              ..
    /* internal support for continuation framework */
    int (*uu_continuation)(int);
    int uu_pri;
    int uu_timo;
    caddr_t uu_wchan;                /* sleeping thread wait channel */
    const char *uu_wmesg;            /* ... wait message             */
    int uu_flag;

    int uu_iopol_disk;               /* disk I/O policy */ // iOS only

    struct proc * uu_proc; // parent to owning process
    void * uu_userstate;

// ...
// signal stuff (uu_sig* fields)
struct vfs_context uu_context;   /* thread + cred */

    sigset_t  uu_vforkmask;          /* saved signal mask during vfork */

    TAILQ_ENTRY(uthread) uu_list;   /* List of uthreads in proc */
    struct kaudit_record    *uu_ar; /* audit record */
    struct task*    uu_aio_task;    /* target task for async io */

    lck_mtx_t       *uu_mtx;

    // throttled I/O support…

    struct kern_sigaltstack uu_sigstk;
    int             uu_defer_reclaims;
    int             uu_notrigger;  // should this thread trigger automount?
    vnode_t         uu_cdir;         /* per thread CWD */
    int             uu_dupfd;        /* fd in fdesc_open/dupfdopen */

    // JOE_DEBUG's stuff..

    // DTRACE support ..

    void *          uu_threadlist;
    char *          pth_name; // used for pthread_setname_np (over proc_info)
    struct ksyn_waitq_element  uu_kwe;     // use*d* for pthread synch 
};

A mysterious developer, forever known as JOE laced BSD thread handling 
code all over XNU with conditional logic for debugging. If you peek at bsd/
sys/user.h, bsd/vfs/vfs_subr.c, and bsd/vfs_bio.c, you will see quite 
a few #ifdef JOE_DEBUG statements. None of them are in the release kernel, 
because JOE_DEBUG is #defined to 0 in osfmk/i386/loose_ends.c. Nonethe-
less, the #ifdefs have been around for a while now (at least since XNU 792), 
and are still in the Lion kernel sources.
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User mode threads begin with a call to pthread_create. This function doesn’t do too much, 
as its main functionality provided by the bsdthread_create system call, whose implemen-
tation is in bsd/kern/pthread_synch.c. bsdthread_create() is basically a long wrapper 
over Mach’s thread create. It is the underlying Mach layer that creates the thread object. 
bsdthread_create() merely goes on to set up its stack, if a custom stack is specified, its 
(machine-specific) thread state, and custom scheduling parameters, if any. Figure 13-2 shows 
this flow in more detail.

pthread_create

__bsdthread_create Invoke system call #360 – bsdthread_create()

Create a new Mach thread using thread_create

Increase thread’s reference count (for creator), convert to port

If bsdthread_create_args->flags & PTHREAD_START_CUSTOM:

mach_vm_map or mach_vm_allocate a custom stack
mach_vm_protect (..VM_PROTECT_NONE) stack guard page
mach_vm_fault() the new thread’s stack and pthread_t struct

Set up i386 or x86_64 (iOS: ARM) thread state

If bsdthread_create_args->flags & PTHREAD_START_SETSCHED:

Set thread scheduling parameters using thread_policy_set

Resume new thread (schedule it)

Deallocate creator reference to new thread

#360

bsdthread_create

thread_create

thread_reference

Set up thread state

thread_resume

thread_deallocate

Set up custom
thread stack

Set up thread
scheduling

FIGURE 13-2: Flow of thread creation

Mapping to Mach
As you saw in Chapter 11, the underlying Mach microkernel is what actually implements the 
primitives for the massive process and thread structures. Every Mach task contains a bsd_info
pointer to its corresponding BSD proc structure, and likewise, Mach threads contain a uthread
fi eld pointing to the corresponding struct uthread. These pointers are void, so Mach functions 
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need not know the specifi cs of the BSD structures. Similarly, the BSD process points back to its 
corresponding task using a task fi eld (again, a void *), and a BSD thread (uthread) points to the 
corresponding Mach thread using a vc_thread * fi eld, which is itself a subthread of a fi eld called 
uu_context. This is shown in Figure 13-3. 

TAILQ_ENTRY(uthread) uu_list

Mach Plane

BSD Plane

TAILQ_HEAD (,uthread) p_uthlist

queue head t threads

queue_chain_t task_threads

void  *task 

void *bsd info 

The Mach task_t The Mach thread_t

The BSD uthreadThe BSD  proc_t 

FIGURE 13-3: Mach processes and threads, mapped to BSD threads

Even though the pointers are straightforward to follow, helper functions, such as get_bsdtask_
info(task_t) and get_bsdthread_info(thread_t), which are both in osfmk/kern/bsd_kern.c), 
exist. They help preserve the implementation abstraction. On top of them, other functions, such as 
current_proc() in bsd/kern/bsd_stubs.c, can be implemented (essentially by wrapping get_bsd-
task_info() on the current_task).

From the Mach side, the Mach call of task_for_pid() (bsd/vm/vm_unix.c) exists for mapping 
a BSD PID to the underlying Mach task port. This call used to include PID 0 (the Mach kernel_
task), but now rejects this argument as invalid. The task_for_pid() call is deprecated, and in 
iOS also requires special entitlements (and therefore requires code-signing the binary, and root per-
missions for a process not owned by you). This is for (obvio us) security reasons: Getting the 
task port of an arbitrary PID opens a Pandora’s box of mischief and malice, enabling (among other 
things) one to read and modify that task’s memory image. The coreruption tool, presented in Chap-
ter 12, demonstrates just how powerful these abilities are. As noted earlier in this book, obtaining 
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the kernel_task’s port (for PID 0) is tantamount to omnipotence, which is why jailbreakers patch 
the call and re-enable PID 0. 

In XNU, all kernel threads are Mach threads and have no corresponding BSD processes. That is, 
their uthread * is NULL, and they are contained in the kernel_task. Likewise, the kernel_task
has no BSD process identifi er (save PID 0, as just described).

PROCESS CREATION

Chapter 4 discussed binary loading by the kernel and dyld fairly in depth, but did not go through 
the actual detail from the kernel perspective. This section picks up where Chapter 4 left off, by 
discussing this perspective in depth.

The User Mode Perspective
The UNIX model (with which OS X complies) does not support the concept of a “new” or “empty” 
process. In UNIX, a process cannot be created, only duplicated using the fork() system call. 
fork() is a special system call in that it is called once, but returns twice:

 ‰ In the child process, fork() returns 0.

 ‰ In the parent process, fork() returns the PID of the child.

If the fork() operation fails, fork() returns only in its calling process, with a return value of -1, and 
with errno set appropriately, usually EAGAIN or ENOMEM.

The child process is an exact duplicate of its parent, with a few notable exceptions:

 ‰ File descriptors, though having the same numbers and pointing to the same fi les, are copies 
of the original descriptors. This means that subsequent calls that modify the descriptors (e.g., 
lseek() or close()) affect only the process that made them. 

 ‰ Resource limits, as per getrlimit(2) or ulimit(1), are inherited by the child, but utiliza-
tion is set to zero. 

 ‰ The memory image of the child seems (from the virtual memory perspective) private to the 
child but is, in fact (from the physical memory perspective), shared with the parent, using the 
same physical pages in memory. The virtual privacy is assured by setting the copy-on-write 
bit on the pages, so that either process — child or parent — attempting a write to a page trig-
gers a page fault. In handling the page fault, the kernel duplicates the page, creating a sepa-
rate physical copy of the same page, and breaking the mapping. 

The last point, physically sharing the same memory pages, greatly facilitates process creation, 
as no memory is actually copied during the creation of the child, but does incur the overhead of 
duplicating the page tables and setting copy-on-write. A duplicate process, however, is seldom 
of any use. Most child processes continue to overwrite the entire memory space with a new 
memory image — that of the executable being loaded. A somewhat more effi cient system call, 
vfork(), was created to take advantage of this fact by skipping any address space operations, 
essentially making any access to process memory in the child illegal. This is fi ne because this 
memory is overwritten with the new executable image anyway. vfork(), however, is largely 
considered deprecated. 
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A third system call, posix_spawn(), has been defi ned in the POSIX standard to facilitate process 
creation and subsequent image execution. This system call is defi ned in <spawn.h>, as shown in 
Listing 13-4.

LISTING 13-4: posix_spawn 

int posix_spawn(pid_t *restrict pid,        // OUT pointer to spawned process pid 
 const char *restrict path,                 // absolute or relative path to the image
 const posix_spawn_file_actions_t *file_act,// set up by posix_spawn_file_actions_init()
 const posix_spawnattr_t *restrict attrp,   // set up by posix_spawnattr_init()
 char *const argv[restrict],                // argv[0], or full argv[] command-line
 char *const envp[restrict]);               // environment pointer (same as in exec*e)

There are several advantages in using posix_spawn over the traditional fork()/exec() model, 
including that it enables using one system call, rather than two. Additionally, posix_spawn() allows 
fi ne-grained control over attribute and fi le descriptor inheritance, achieved via the third and fourth 
parameters: file_actions and the spawn attributes, as shown in Listing 13-5.

LISTING 13-5: posix_spawn_fi le_actions_t and posix_spawnattr_t manipulation

int posix_spawn_file_actions_init(posix_spawn_file_actions_t *file_actions);
int posix_spawn_file_actions_addopen

(posix_spawn_file_actions_t *restrict file_actions, 
     int filedes, const char *restrict path, 
    int oflag, mode_t mode);
int posix_spawn_file_actions_adddup2(posix_spawn_file_actions_t *file_actions, 
                                     int filedes, int newfiledes);
int posix_spawn_file_actions_addclose(posix_spawn_file_actions_t *file_actions, 
                                      int filedes);
int posix_spawn_file_actions_destroy (posix_spawn_file_actions_t *file_actions);
int posix_spawnattr_init(posix_spawnattr_t *attr);
int posix_spawnattr_getflags(const posix_spawnattr_t *restrict attr,
                             short *restrict flags);
int posix_spawnattr_getpgroup(const posix_spawnattr_t *restrict attr, 
                               pid_t *restrict pgroup);
int posix_spawnattr_getsigmask(const posix_spawnattr_t *restrict attr,
                               sigset_t *restrict sigmask);
int posix_spawnattr_setflags(posix_spawnattr_t *attr, short flags);
int posix_spawnattr_setpgroup(posix_spawnattr_t *attr, pid_t pgroup);
int posix_spawnattr_setsigmask(posix_spawnattr_t *restrict attr,
                               const sigset_t *restrict sigmask);
int posix_spawnattr_destroy(posix_spawnattr_t *attr);

The Kernel Mode Perspective
Regardless of the system call used — fork(), vfork(), or posix_spawn() — all paths in the ker-
nel converge in the same underlying implementation, called fork1(), as shown in Figure 13-4. Its 
behavior, however, differs based on its third parameter — kind — for which each function passes a 
different value. These values are shown in Table 13-3:

int fork1 (proc_t parent_proc, thread_t *child_threadp, int kind); 
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TABLE 13-3: fork1() “kinds” and their behavior

KIND PROCESS CREATED ADDRESS SPACE

PROC_CREATE_FORK Complete Copied (on write)

PROC_CREATE_VFORK Partial Newly created

PROC_CREATE_SPAWN Complete Lazy (Invalid)

It is fork1() that eventually creates the new process by creating a new Mach task for the  process. 
Though it serves as a focal point for the three functions it quickly splits back into the three distinct cases 
by switch()ing on its kind argument, which indicates which one of the three called it, as shown in Fig-
ure 13-5. For vfork, it calls forkproc(), discussed in the following section. Otherwise, cloneproc() is 
preferred. The latter wraps over forkproc(), but performs many more tasks, as will be discussed.

posix_spawn() and fork() calls are handled in the same way, save dup’ing the parent process’s 
thread state into the child_thread, which is done only in fork by thread_dup(). Following the 
call to clone/forkproc, fork1() marks the child as forked, but not exec()ed (using the AFORK set-
ting on its p_acflag fi eld), and if not posix_spawn()ed, handles DTrace.

PROC_CREATE_SPAWNPROC_CREATE_VFORK

#66

vfork(..) fork()

#2

posix_spawn(..)

#244

fork1()

PROC_CREATE_FORK

FIGURE 13-4  All paths leads to fork1()

fork1()

forkproc()

PROC_CREATE_SPAWN
PROC_CREATE_VFORK PROC_CREATE_FORK

cloneproc()

spawn = 1 

forkproc()

fork_create_child() Create the Mach task_t and thread_t for this 

Initialize a BSD proc_t, but not a real process 

pinsertchild() Insert process into process list, link to parent 

End of the road for vfork() – 

No Mach task/thread created
unless execve() is called, later. 

FIGURE 13-5: Fork() and demultiplexing the various process creation calls
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The forkproc() Function
The forkproc() function is in charge of doing the work of initializing the new process’s proc_t
structure, whether from fork(), vfork(), or posix_spawn(). It proceeds in the 
following way:

 ‰ Allocates the child_proc proc_t from the M_PROC zone, and bzeros it.

 ‰ Allocates the child’s statistics (p_stats) and signal actions (p_sigacts).

 ‰ Allocates the interval timer callout (p_rcall).

 ‰ Gets a PID for the child, accommodating for possible wrapping of the PID past PID_MAX
(99999). Inserts in the PID hash table.

 ‰ Initializes other process fi elds. Most of these are bcopy()ed directly from the parent, from 
in between the parent’s p_startcopy (set to p_argslen) and p_endcopy pointers (p_aio_
totalcount). Some are fi ltered out. For example, the only p_flags inherited are P_LP64,
P_TRANSLATED, P_AFFINITY, P_DISABLE_ASLR, and P_PROFIL.

 ‰ Copies all the parent’s fi le descriptors, using fdcopy().

 ‰ Copies System V shared memory from the parent (#if SYSV_SHM), using shmfork().

 ‰ Copies the parent’s resource limits (as in ulimit(1) or setrlimit(2)) using 
proc_limitfork().

 ‰ Memsets the p_stats from pstat_startzero (p_ru)  to endzero (p_start) using bzero(),
and record p_start (the process start time) to be now.

 ‰ If the parent has defi ned signal actions (p_sigacts), copies them over, or else initializes the 
child’s to be all NULL.

 ‰ Sets child’s controlling terminal, if any.

 ‰ Blocks all signals by proc_signalstart (child_proc,0) and marks as in transition (using 
proc_transstart(child_proc,0)).

 ‰ Initializes the child’s thread list (p_uthlist) and asynchronous I/O queues.

 ‰ Inherits the parent’s code-signing fl ags.

 ‰ Copies the parent’s work queue information.

 ‰ If the parent is in the login context, (and #if CONFIG_LCTX), adds the child as well, using 
enterlctx();.

Note that one very important aspect is missing from this function — the creation of the actual 
process and thread at the Mach level. This is not done in the case of a vfork(), but only in 
fork() and posix_spawn(). This is why forkproc() is only called directly from vfork(),
and is otherwise wrapped by cloneproc() (discussed next), which also creates the required 
Mach constructs. A vfork()ed process has no corresponding Mach task or thread. Only if it 
is followed by an execve() will those items be created for it. In fact, a vfork() process has no 
raison d’etre other than next calling execve(), because this system call was originally designed 
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for this purpose. Its task_t and thread_t (as can be obtained with mach_task_self() and 
mach_thread_self(), respectively) are exactly those of its parent, as is the vm_map. Only if a 
later call to execve() results in a Mach-O image activation will a Mach task and thread even-
tually be created.

The cloneproc() function:
The cloneproc() function is called only on PROC_CREATE_SPAWN or PROC_CREATE_FORK. Because 
we are interested in a “real” fork, rather than vfork(), it calls forkproc(), but then performs other 
operations, as well. It proceeds as follows: 

 ‰ Calls forkproc() on the parent_proc. This function, discussed earlier, returns a child_proc 
proc_t, which will eventually become the child process’s fully populated control block.

 ‰ Calls fork_create_child() to create the child process’s uthread.

This function creates the new Mach task (using task_create_internal()) and Mach 
thread (using thread_create), performs housekeeping (such as setting or clearing the vm_
map 32-/64-bitness), and ties the bsd proc_t to the Mach task. The memory_inherit fl ag 
is handled by task_create_internal(). If, for some reason this fails, it calls forkproc_
free() on the child_proc to deconstruct the new child, effectively a stillborn. Otherwise, 
the Mach thread_t created will eventually be returned to the caller. These tasks were all 
previously carried out by procdup(), which has been removed in recent kernels.

 ‰ Sets the 64-bitness of the child according to the parent’s P_LP64.

 ‰ Calls pinsertchild() on the parent_proc and the newly born child_proc. This func-
tion ties the two by inserting the child process into the parent’s p_children list and also 
announces the child to the world by inserting it into the allproc list. It has an additional 
side effect of clearing the P_LIST_INCREATE fl ag from the child’s p_listflag. This fl ag, set 
during forkproc(), hides the child from proc_ref_locked().

Loading and Executing Binaries
If a process can be likened to a body, then the binary executing in it can be likened to a brain. Sim-
ply giving birth to a new process by fork() would hardly be useful, unless the executing image 
could be replaced with another, by means of an exec(). The heart of process creation, therefore, 
lies in loading and executing the binary. 

Executable Formats
Somewhat like Linux, the kernel contains designated handlers for various executable formats 
it supports. Whereas Linux calls these binary formats (or binfmt), OS X calls them execsw.
Though very similar in function, in Linux these handlers are more powerful, primarily in that 
they can be dynamically registered using register_binfmt. Even more powerful in Linux 
is that registration can be done from within a kernel module, in effect making Linux able to 
handle any executable format, at least in theory. Figure 13-6 compares the Linux binfmt with 
the OS X execsw:
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struct list_head lh; 

struct module *module; 

int(*load_binary)

 (struct linux_binprm *,

 struct pt_regs * regs);

int(*load_shlib)(struct file *);

int(*core_dump)(struct
 coredump_params *cprm);

unsigned long min_coredump;

Linux: struct linux_binfmt OS X: struct execsw

int(*ex_imgact)

 (struct image_params*);

const char *ex_name;

Dynamic Registration: register_binfmt

Pre-registered: ELF, script, som, ..

No dynamic registration (hardcoded)

Pre-registered: Mach-O, FAT, interpreter 

FIGURE 13-6: Comparison of Linux and OS X binary format handlers

By contrast, OS X execsw structs are hard-coded. In bsd/kern/kern_exec.c, you can fi nd the defi -
nition shown in Listing 13-6.

LISTING 13-6: “Image activators” for executable formats in bsd/kern/kern_exec.c 

/*
 * Our image activator table; this is the table of the image types we are
 * capable of loading.  We list them in order of preference to ensure the
 * fastest image load speed.
 *
 * XXX hardcoded, for now; should use linker sets
 */
struct execsw {
        int (*ex_imgact)(struct image_params *);
        const char *ex_name;
} execsw[] = {
        { exec_mach_imgact,             "Mach-o Binary" },
        { exec_fat_imgact,              "Fat Binary" },
#ifdef IMGPF_POWERPC   /* Deprecated as of Leopard, unsupported in Lion */
        { exec_powerpc32_imgact,        "PowerPC binary" },
#endif  /* IMGPF_POWERPC */
        { exec_shell_imgact,            "Interpreter Script" },
        { NULL, NULL}
};

So, although the code does hint at Apple’s eventual intent to make executable formats extensible, 
at present — unlike Linux — they are very much set, offering only the native Mach-O, fat binaries, 
and the generic script interpreter (all of which were discussed in Chapter 4). This architecture is 
still fairly extensible; all it takes to extend a binary format is to add another execsw entry, but this 
would mandate kernel recompilation.
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Image Parameters
The image_params expected by an execsw image activator are defi ned in bsd/sys/imgact.h as 
shown in Listing 13-7.

LISTING 13-7: Image_params for execsw image activators

struct image_params {
   user_addr_t     ip_username_fname;          /* argument */
   user_addr_t     ip_user_argv;           /* argument */
   user_addr_t     ip_user_envv;           /* argument */
   int             ip_seg;                 /* segment for arguments */
   struct vnode    *ip_vp;                 /* file */
   struct vnode_attr       *ip_vattr;      /* run file attributes */
   struct vnode_attr       *ip_origvattr;  /* invocation file attributes */
   cpu_type_t      ip_origcputype;         /* cputype of invocation file */
   cpu_subtype_t   ip_origcpusubtype;      /* subtype of invocation file */
   char            *ip_vdata;              /* file data (up to one page) */
   int             ip_flags;               /* IMGPF_* bit flags specifying options */
   int             ip_argc;                /* argument count */
   int             ip_envc;                /* environment count */
   int             ip_applec;              /* apple vector count */
   char            *ip_startargv;          /* argument vector beginning */
   char            *ip_endargv;            /* end of argv/start of envv */
   char            *ip_endenvv;            /* end of envv/start of applev */
   char            *ip_strings;            /* base address for strings */
   char            *ip_strendp;         /* current end pointer */
   int             ip_argspace;         /* remaining space of NCARGS limit(argv+envv) */
   int             ip_strspace;         /* remaining total string space */
  // The following are used for fat binaries
  user_size_t     ip_arch_offset;         /* subfile offset in ip_vp */
   user_size_t     ip_arch_size;           /* subfile length in ip_vp */

// The following two context;        /* VFS context */
        struct nameidata *ip_ndp;               /* are used for interpreters (!#) 

char            ip_interp_buffer[IMG_SHSIZE];   /* interpreter buffer space */
   int             ip_interp_sugid_fd;             /* fd for sugid script */

   /* Next two fields are for support of architecture translation... */
   char            *ip_p_comm;             /* optional alt p->p_comm */
        struct vfs_context      *ip_vfs_
 current nameidata */
        thread_t        ip_new_thread;          /* thread for spawn/vfork */

        struct label    *ip_execlabelp;         /* label of the executable */
        struct label    *ip_scriptlabelp;       /* label of the script */
        unsigned int    ip_csflags;             /* code signing flags */
        void            *ip_px_sa;
        void            *ip_px_sfa;
        void            *ip_px_spa;
};

Architecture Handlers
Up until the release of Lion, OS X still had limited support for multiple architectures — both Intel 
(i386/x86_64) and PowerPC. This was required for backward compatibility with PPC, which was — 
until its fall from grace in Tiger and later extinction in Lion — the native architecture of OS X.
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During the transition period, support for PPC was handled somewhat similarly to the way interpret-
ers are: When a PPC binary was detected, it was replaced by its corresponding handler — in this 
case, a binary originally called translate, and then renamed Rosetta.

From the kernel perspective, this meant utilizing a struct exec_archhandler, defi ned in bsd/
machine/exec.h as follows:

struct exec_archhandler {
        char path[MAXPATHLEN];
        uint32_t fsid;
        uint64_t fileid; };

The only handler defi ned in the kernel was Rosetta, defi ned in bsd/kern/bsd_init.c as follows:

struct exec_archhandler exec_archhandler_ppc = {
        .path = "/usr/libexec/oah/RosettaNonGrata",
};

Support for PPC is now removed, but, in theory, the exec_archhandler could be reused some 
time in the future by Apple. One clever use of it would be to introduce ARM architecture sup-
port to OS X, which could enable (with a great deal of translation) running iOS binaries on OS 
X or vice versa.

Sequence of Steps in Executing an Image
Armed with all this information, we can now piece together, step by step, the process of executing 
an image, as shown in Figure 13-7.

#59

User space

Kernel space

__mac_execve()

#380

posix_spawn(..)exec_activate_image();

exec_fat_imgact exec_mach_imgact exec_shell_imgact

Loop over execsw

Read file

load_machfile(..)

#244

execl(..); execle(..); execlp(..); execv(..) execvP(..)

execve(..)__mac_execve(..); posix_spawn(..)

execve(..)

FIGURE 13-7: Flow of the various process execution functions in OS X
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User mode has several options in launching a new executable:

 ‰ Using the exec* family of functions, as listed in Table 13-4.

TABLE 13-4: exec* variants

EXEC* SUFFIX LETTER DENOTES

l (list) Arguments to the executed program are passed one by one, in a list, with 

the end of the list specifi ed by a NULL argument. Because arguments are 

passed left to right, the fi rst argument will be at the top of the stack (or, 

alternatively, in the fi rst register), and the library call can keep inspecting the 

stack until it fi nds NULL.

v (vector) Arguments to the executed program are passed in a vector — a char *argv[], 

much like the standard argv[] found in C programs.

exec* SUFFIX LETTER DENOTES

e (environment) The set of environment variables is also passed to the program, as a char

*envp[]. The program can access these either by declaring envp[] as an 

additional parameter or calling getenv(3)/setenv(3).

p (path) The program name — the fi rst argument — can be specifi ed as a relative 

name (i.e., with no path separators), in which case the library call will search 

for the program in the directories listed in the PATH environment variable.

P (path) This option is similar to the lowercase p, but the library function accepts a 

second parameter, a char * specifying the search path (thereby overriding 

any setting of the PATH environment variable).

All the exec* variants in Table 13-4 are really just library function wrappers over the system 
call, execve(), which is why there is no need for an execve() library function.

 ‰ Calling the execve() system call directly, if there is no need for argument list setup code. 
The execve() function, however, is itself only a pass through to __mac_execve().

 ‰ Calling __mac_execve() directly. This is, as one can guess, an extension, which is not 
POSIX compliant. __mac_execve() differs from the standard execve() by only one param-
eter — an additional fi eld in its second argument, macp, which is a mandatory access control 
(MAC) label. Normally, execve() falls right through to it, specifying this label to be USER_
ADDR_NULL, as shown in Listing 13-8.

LISTING 13-8: execve

int
execve(proc_t p, struct execve_args *uap, int32_t *retval)
{
        struct __mac_execve_args muap;
        int err;

        muap.fname = uap->fname;
        muap.argp = uap->argp;
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        muap.envp = uap->envp;
        muap.mac_p = USER_ADDR_NULL;
        err = __mac_execve(p, &muap, retval);

        return(err);
}

mac_execve, despite the misleading name, is not an OS X–specifi c call. It is a part of BSD’s 
MAC architecture, which forms the basis for the seatbelt/sandbox mechanism, as discussed 
in Chapter 3, and elaborated on from the kernel perspective in Chapter 14. 

 ‰ Calling posix_spawn() takes care of the fork() operation as well. This system call 
allows fi ner granularity of process attribute inheritance from the parent to the child — 
namely, fi le descriptors, process group ID, user and group ID, signal masking/behavior, 
and scheduling.

Eventually, all the image-loading work is performed by exec_activate_image(). This function 
takes an image_params pointer as an argument and proceeds in the following way:

1. Gets the proc_t structure from the saved VFS context fi eld.

2. execargs_alloc allocates kernel memory for user-space arguments and the fi rst page of 
image.

3. exec_save_path saves the program path (and fi xes up arguments).

4. Gets the image’s inode fi le using the NDINIT macro (in bsd/sys/namei.h) and namei().

5. Ensures thread safety by making sure no other thread in the calling process is calling exit()
or the like. It calls proc_transstart() (from bsd/kern/kern_proc.c) to raise the P_
LINTRANSIT fl ag, signifying an image transition is about to occur.

6. Checks the permissions on the inode about to be loaded. These are the standard +x per-
missions, along with any SetUID/SetGID, which we may need to allow (but not for 
interpreters).

7. Calls vn_rdwr on the inode to read its fi rst page into memory.

8. Attempts to detect the image type by looping over the execsw[] array. The execsw handlers 
return one of the following error codes:

 ‰ Error 0: The image was handled by the execsw[] handler and loaded. The only han-
dler to return 0, at present, is exec_mach_imgact, the Mach-O image loader.

 ‰ Error -1: The image is unrecognized. This is returned by all handlers if the handler 
cannot handle or does not recognize the image. The next execsw[] handler, if any, 
will be tried. Otherwise, exec_activate_image propagates the -1 to its caller, which 
returns an ENOEXEC to user mode.

 ‰ Error -2: This error is returned only by the exec_fat_imgact and is returned if 
image is encapsulated (i.e., a fat binary). In this case, exec_fat_imgact also retrieves 
the preferred binary architecture from the fat archive, and this step is retried.

 ‰ Error -3: This error is reserved for the exec_shell_imgact and is returned if the 
image is an interpreter. In this case, exec_shell_imgact redirects to the inode of 
the interpreter fi le (that is, it loads the path specifi ed after the !#), and the process is 
retried from step 6.
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Looking at Figure 13-7, you can clearly see that all image-loading paths either terminate with an error 
or eventually result in a Mach image. Fat binaries are merely treated as archives of other images, and 
interpreters would redirect to load the interpreter fi rst, which again brings us to the Mach image case. 
The following section covers this case in depth, picking up where Chapter 4 left off.

The book’s website has a detailed experiment on extending XNU to recognize other types of binaries.

Mach-O Binaries
The Mach-O loading logic in XNU is still largely the same as it was in its inception back in 1988 in 
NeXT. Apple has made a few changes over the years, most notably for code decryption, but the base 
of the Mach-O fi le format has changed very little over the years.

Apple has wrapped that logic by means of exec_mach_imgact(), which as the previous section 
described, is the registered handler for Mach binaries. This function fi rst reads the Mach header, 
and then parses its architecture (32-bit or 64-bit) and fl ags. The function refuses DYLIB and 
BUNDLE fi les — those are maintained by dyld(1) in user mode. It then goes on to apply posix_
spawn() arguments, if any. After this, it makes sure the binary is right for the current architecture 
by grading the binary.

Before the actual loading of the Mach fi le commences, the function checks its imgp fl ags for 
IMGPF_SPAWN and the bsdthread_info uu_flag for UT_VFORK. If any of these are true, it calls 
fork_create_child() (discussed earlier in this chapter, as part of the fork operation) to create a 
new Mach task and thread for this process. This is required because neither of these is created in 
a vfork().

The main function handling the loading of Mach-O is load_machfile() in bsd/kern/
mach_loader.c.

This function is defi ned as shown in Listing 13-9.

LISTING 13-9: load_machfi le() , from bsd/kern/mach_loader.c

load_return_t load_machfile(
    struct image_params     *imgp,    // Image parameters as set by exec_mach_imgact
    struct mach_header      *header,  // Mach-O header (overlaid on imgp->ip_vdata)
    thread_t                thread,   // current_thread();
    vm_map_t                new_map,  // get_task_map() for vfexec or spawn, else NULL
    load_result_t           *result); // out parameter, returning load operation data

The load_machfile() function is responsible for setting up the memory map that will eventually be 
loaded by the various LC_SEGMENT commands. It proceeds as follows:

1. If new_map is a NULL_MAP or the ipgp fl ags state IMGPF_SPAWN, load_machfile() creates a 
new vm_map by fi rst creating a new pmap using pmap_create(), and then vm_map_create().
Otherwise, use the new_map parameter as the vm_map.

2. Harden virtual memory security fi rst. This is done in two steps:

a. Disallow the execution of data segments. This step is similar to Window’s Data Execu-
tion Prevention (DEP) and is set if the Mach header fl ags state MH_NO_HEAP_EXECUTION
and unless the imgp fl ags specifi cally set IMGPF_ALLOW_DATA_EXEC.
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b. Set up address space layout randomization. This step generates a random aslr_offset
slide value for the image unless the imgp fl ags specifi cally set IMGPF_DISABLE_ASLR.

3. Call parse_machfile, which does the hard work of actually parsing the load commands.

4. If parsing fails, forget it — vm_map_deallocate() the map, if created. Return with failure.

5. Otherwise, if a new map has been created, commit to the new map, using swap_task_map(),
which places the new map as the active one, and then vm_map_deallocate() the previ-
ous map. This step also involves terminating the old task and any threads it might contain 
(because their memory is invalid, anyway).

The heart of load_machfile is parse_machfile. This function is defi ned as shown in Listing 13-10.

LISTING 13-10: parse_machfi le

load_return_t
parse_machfile(
        struct vnode       *vp,     // vnode pointer from imgp
        vm_map_t            map,    // map, as initialized by load_machfile
        thread_t            thread, // thread, from load_machfile
        struct mach_header *header, // header, from load_machfile
        off_t               file_offset, // Architecture offset 
        off_t               macho_size,  // Architecture binary size
        int                 depth, // recursion level. Started at 0.
        int64_t             aslr_offset, // generated by load_..
        load_result_t       *result);

load_machfile() calls parse_machfile, with most of the parameters copied directly from its own 
arguments (thread and header), from its imgp (vp, file_offset, and macho_size), or from values 
it sets up (map, depth set to 0, and slide). 

The parsing operation is a potentially recursive one, which is why it is started with depth set to 0, 
and incremented on subsequent calls. The maximum depth allowed is 6, after which a  
LOAD_FAILURE is returned. The parse_machfile() function proceeds as follows:

1. Checks header to determine 64-bitness.

2. Fails if depth is greater than 6.

3. Validates architecture mask, or return LOAD_BADARCH.

4. Switches on the header’s fi letype fi eld:

 ‰ Allows MH_OBJECT, EXECUTE, or PRELOAD only for depth of 1.

 ‰ Allows MH_FVMLIB or MH_DYLIB only for a depth greater than 1.

 ‰ Allows MH_DYLINKER only for a depth of exactly 2.

 ‰ Otherwise, fails (return LOAD_FAILURE).

5. Maps all the load commands into memory by rounding to page size and by calling vn_
rdwr(), or fail with LOAD_IOERROR.

6. If the header fl ags state MH_PIE, or dyld is being loaded, applies the aslr_offset.
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7. Performs three passes. In each, while there are still load commands to execute, switches on 
each load command, and act on it:

 ‰ On LC_SEGMENT/LC_SEGMENT_64, load_segment(), mapping the segment directly 
into memory according to the segment directions.

 ‰ On LC_UNIXTHREAD, load_unixthread(), which itself calls load_threadentry()
and load_threadstate().

 ‰ On LC_LOAD_DYLINKER, if in pass 3 and depth is exactly 1, saves it (in the dlp
variable).

 ‰ On LC_UUID, copy the UUID into the result.

 ‰ On LC_CODE_SIGNATURE, if in pass 1, load_code_signature() but do not 
validate yet.

 ‰ On LC_ENCRYPTION_INFO, set_code_unprotect() (using the Apple Protect Pager, 
discussed in Chapter 11). If the decryption is unsuccessful, kill the poor process.

 ‰ All other load commands are ignored, being the responsibility of the DYLINKER
(dyld).

8. If, after the three passes, there is a saved dynamic linker command (in dlp), load the dynamic 
linker into the new map, possibly adjusting by the ASLR offset. The load_dylinker()
function recursively calls parse_machfile().

When parse_machfile() is successful, it sets its load_result_t parameter, which is then passed 
back to load_machfile and, eventually, to the caller, as shown in Listing 13-11.

LISTING 13-11: load_result returned from load_machfi le

typedef struct _load_result {
        user_addr_t             mach_header;
        user_addr_t             entry_point; // set by load_unixthread()
        user_addr_t             user_stack; // set by load_unixthread()
        mach_vm_address_t       all_image_info_addr;
        mach_vm_size_t          all_image_info_size;
        int                     thread_count;
        unsigned int
                /* boolean_t */ unixproc        :1, // by load_unixthread()
                                dynlinker       :1, // by load_dylinker()
                                customstack     :1, // by load_unixthread()
                                validentry      :1, // by load_segment()
                         /* unused */           :0;
        unsigned int          csflags; // code-signing flags, by load_code_signature();
        unsigned char   uuid[16]; // parse_machfile, on LC_UUID
        mach_vm_address_t       min_vm_addr;
        mach_vm_address_t       max_vm_addr;
} load_result_t;
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If load_machfile() returns success, exec_mach_imgact picks up after it and does additional 
housekeeping. Specifi cally, it performs the following actions:

 ‰ Sets the ulimit –m (MEM_LOCK) by calling vm_map_set_user_wire_limit.

 ‰ Sets code-signing fl ags: 

 ‰ CS_HARD: Refuse to load invalid pages

 ‰ CS_KILL: Kill process if any pages are invalid

 ‰ CS_EXEC_*: Same as previous, but follow execve(2)

(This does not enforce anything yet: The actual code-signing enforcement is called 
from Mach’s VM page fault handler, which calls cs_invalid_page (bsd/sys/
kern_proc.c) to enforce the policy) 

 ‰ Sets up system memory areas and a custom stack, if any

 ‰ Sets the entry point (the register state from LC_UNIXTHREAD)

 ‰ Sets the process new name (p->comm)

 ‰ Delivers any delayed signals

PROCESS CONTROL AND TRACING

As discussed in Chapter 5, Mach offers extensive tracing facilities, fi rst and foremost of them being 
DTrace. Chapter 5 discounted another mechanism, ptrace(2), which is (deliberately) only partially 
functional in OS X and iOS.

ptrace (#26)
BSD and other UNIX systems offer a one-stop system call called ptrace(2) to support process  tracing 
and debugging. Much like an ioctl(2), it is a highly generic call that you can use for  multiple opera-
tions. It is defi ned as follows:

int     ptrace(int request, pid_t pid, caddr_t addr, int data);

The caller needs to specify a request (one of the values in Table 13-5) and a process ID to which this 
request will apply. The caller may also specify two additional arguments — addr and data — that 
are dependent on the request.  

This system call is highly useful for both debugging and reverse engineering, and in Linux, for 
example, is used by gdb, the system call tracer (strace) and the library call tracer (ltrace).

Although ptrace(2) is available on XNU and its prototype is the same as in other systems, its 
functionality is greatly reduced, not to say crippled. <sys/ptrace.h> defi nes the standard request 
codes (which are slightly different from those you may know from Linux), but XNU only supports 
those you see in Table 13-5, which are used for debugger program tracing.
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TABLE 13-5: ptrace request codes supported by XNU

PTRACE REQUEST

(LINUX EQUIVALENT)

USED FOR

PT_TRACE_TRACEME

(TRACEME)

Declaring tracing by the process’s parent.

PT_CONTINUE

(CONT)
Continuing on next (addr == 1) or other (specify addr) instruction. 

Also, optionally deliver signal specifi ed by data.  

PT_KILL

(KILL)
Killing the target process. 

Equivalent to PT_CONTINUE(…., SIG_KILL).

PT_STEP

(SINGLESTEP)
Single-stepping the target process.

PT_ATTACH

(ATTACH)
Specifying the target PID to attach to in order to start tracing. Must be 

process owner (same UID) or root.

PT_DETACH

(DETACH)
Specifying target PID to detach from in order to stop tracing. Traced pro-

cess is freed to continue on its own.

PT_DENY_ATTACH

(N/A)

Apple proprietary: Specifi ed by a process that does not want to be med-

dled with (all arguments are ignored). iTunes and other Apple processes 

use this.

Unlike Linux, wherein the true power of ptrace lies in being able to read (and write) a foreign 
process memory, XNU’s ptrace implementation (in bsd/kern/mach_process.c) silently ignores 
these options. Thanks to the Mach APIs, however, achieving comparable functionality is possible, as 
shown in Table 13-6.

TABLE 13-6: ptrace request codes that are unavailable, but can be emulated using Mach APIs

PTRACE REQUEST

(LINUX EQUIVALENT)

USED FOR EMULATED BY

PT_READ_I

(PEEKTEXT)
Reading an integer from the process I

(instruction) space.

PT_READ_D

(PEEKDATA)

Reading an integer from the process D 

(data) space.

vm_map_read()

PT_READ_U

(PEEKUSER)

Reading from the process U (user) space 

(registers). 
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PTRACE REQUEST

(LINUX EQUIVALENT)

USED FOR EMULATED BY

PT_WRITE_I

(POKETEXT)

Writing an integer from the process I 

(instruction) space.

PT_WRITE_D

(POKEDATA)

Writing an integer from the process D

(instruction) space.

vm_map_write()

PT_WRITE_U

(POKEREG)

Writing to the process U (user) space.

PT_GETREGS

(GETREGS)

Obtaining thread register state. thread_get_state()

PT_SETREGS

(SETREGS)

Modifying thread register state . thread_set_state()

proc_info (#336)
The undocumented proc_info system call was described in Chapter 5, and is mentioned here 
again for the random access reader. The system call, well deserving of its own fi le (bsd/kern/
proc_info.c), is a wonderfully useful one, providing an amalgam of many diagnostic and control 
functions. Most of these functions indeed relate to process and thread information, yet it seems that 
Apple’s developers decided to throw in some additional functionality. One such example is call num-
ber 4, proc_kernmsgbuf (available from user mode’s libproc as proc_kmsgbuf), which displays 
the kernel’s message buffer, thereby having little to do with processes and threads. User mode’s lib-
proc exports most, but not all of proc_info’s functionality. Nifty features like setting process and 
thread names (akin to Linux’s prctl(2) PR_SET_NAME), remain virtually undocumented (though 
available via LibC’s pthread_setname_np).

Policies
OS X and iOS support the notion of I/O and execution policies. This is somewhat of a diffi cult 
choice of word, however, since the main use of policies is in the context of the Mandatory Access 
Control Framework (MACF), discussed previously in Chapter 3, and re-examined in the Chapter 
14. In the context of this discussion, however, a policy is a set of execution rules relating primarily 
to performance, and not to security.

iopolicysys (#322)
The proprietary iopolicysys system call has been available since Leopard, but remains hidden 
among the many system calls of XNU. It is used by LibSystem’s (technically, libC’s) get/set_
iopolicy_np(3), and the manual page provides ample documentation. 
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The only I/O policy Apple provides at this time is IOPOL_TYPE_DISK, for local device I/O, and the 
scope a policy can be applied on is either that of the thread, or the entire process. The policy can 
have values of NORMAL (best-effort), THROTTLE (bandwidth-restricted), or PASSIVE (on behalf of 
other processes). 

process_policy (#323)
Another virtually undocumented system call is process_policy. This is a new addition in Lion 
and iOS that allows the enforcement of execution policies on processes. The currently defi ned poli-
cies, from bsd/sys/process_policy.h, are shown in Table 13-7, but the implementation in Lion 
is partial. Unlike other header fi les in bsd/sys, this header is not exported to user mode. The main 
client of the system call is (as with proc_info) libproc. The various functions, however, are not 
publicly declared in <libproc.h> which concentrates on the proc_info wrappers, and instead 
declared in the non-exported libproc_internal.h.

You can get a good idea of the system call’s usage by looking at bsd/kern/process_policy.c,
or downloading Darwin’s LibC and looking at Darwin/libproc.c and the libproc_internal.h
header. Doing so will reveal a discrepancy between LibC and XNU, as Apple has left out some of 
the iOS code (#ifdef TARGET_OS_EMBEDDED) hinting at features and fl ags not supported in OS X’s 
XNU. The open source (and, therefore, OS X) implementation of this system call is woefully incom-
plete (and even includes a typo or two in function names!) 

TABLE 13-7: Process policies

PROCESS POLICY SCOPE

PROC_POLICY_BACKGROUND Handles background execution of App. Natu-

rally more applicable in iOS, where SpringBoard 

uses this for applications when the home button 

is pressed.

PROC_POLICY_HARDWARE_ACCESS Controls access to disk, GPU, network, and 

CPU. Inert on OS X.

PROC_POLICY_RESOURCE_STARVATION Controls process behavior when the system is 

extremely low on resources (e.g. VM Pressure).

PROC_POLICY_RESOURCE_USAGE Sets limits on resource usage. The code hints 

at resources like wired and virtual memory, net-

work, disk, and even power, but in practice the 

only resource enabled is CPU utilization.

PROC_POLICY_APP_LIFECYCLE Sets various attributes of the lifecycle, such 

as PID binding, device state, and others. 

 Non-existent in OS X’s XNU.

PROC_POLICY_APPTYPE Type of app — Active, Inactive, background, 

non-UI.
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Process Suspension/Resumption
Mac OS and iOS occasionally depart from the POSIX APIs to offer specifi c systems calls. Process sus-
pension and resumption are excellent (system calls #433 and 434) examples of this (The system calls 
have been renumbered from #430, #431 in Snow Leopard to their present numbers in Lion and iOS).

The idea of suspending a process, effectively stopping it for an indefi nite amount of time during 
its execution until resumed, is not new to UNIX users, who are likely familiar with the STOP and 
TSTP signals (the former more commonly known to users as Ctrl-Z). This, however, is not what 
suspension is about in OS X and iOS: As early as Snow Leopard, XNU offered — in addition to the 
signals — the custom system calls to enable this feature. 

Initially, these system calls were no more than simple wrappers over the Mach APIs of task_
suspend() and task_resume(). In iOS 5, however, they were integrated with the Mach default_
freezer (discussed in the Mach VM chapter) and the process hibernation mechanism (discussed in 
Chapter 14). This enables a process to be selectively frozen and thawed by means of the system calls, 
which is a decision usually left up to iOS’s launcher, SpringBoard. In Lion the integration is still 
#ifdef’ed out, as it requires the CONFIG_FREEZE option. Disassembly of iOS 5 and later shows this 
feature is very much enabled in it. 

SIGNALS

Mach already provides low-level handling of traps by means of the exception mechanism, which was 
previously discussed in Chapter 11. The BSD layer builds its signal handling on top of the excep-
tion primitives. Hardware-generated signals are caught by the Mach layer and translated into their 
corresponding UNIX signals. In order to maintain a unifi ed mechanism, operating  system and user-
generated signals are actually converted into Mach exceptions fi rst, and then into signals. 

The UNIX Exception Handler
When the fi rst BSD (and user mode process) is started (by bsdinit_task() in bsd/kern/bsd_
init.c) the function also sets up a special Mach kernel thread called ux_handler by calling ux_
handler_init from bsd/uxkern/ux_exception.c, as shown in Listing 13-12.

LISTING 13-12: ux_handler_init in bsd/uxkern/ux_exception.c

void
ux_handler_init(void)
{
        thread_t        thread = THREAD_NULL;
        ux_exception_port = MACH_PORT_NULL;  // global, defined ibid.

       // spin off ux_handler in a new Mach thread
        (void) kernel_thread_start((thread_continue_t)ux_handler, NULL, &thread);
        thread_deallocate(thread);

       // Lock the process list (not allowing any processes to be created, 

continues
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       // including bsdinit_task(), which called us) until ux_exception_port 
       //is registered by ux_handler
        proc_list_lock();
        if (ux_exception_port == MACH_PORT_NULL)  {
          (void)msleep(&ux_exception_port, proc_list_mlock, 0, "ux_handler_wait", 0);
        }

        proc_list_unlock();

}

Only after ux_handler_init returns does bsdinit_task() go on to register the ux_exception_
port, as shown in Listing 13-13.

LISTING 13-13: bsdinit_task() exception handling

void bsdinit_task(void)
{
    proc_t p = current_proc();
    struct uthread *ut;
    thread_t thread;

    process_name("init", p); // set our process name to "init" (this gets changed later
// in load_init_program() to launchd)

    ux_handler_init();       // spin off Unix exception handler thread

    thread = current_thread();

   // when ux_handler_init() returns, ux_handler() is executing in a separate thread
   // and registers the ux_exception_port.

    (void) host_set_exception_ports(host_priv_self(),
                                   EXC_MASK_ALL & ~(EXC_MASK_RPC_ALERT),
                                   (mach_port_t) ux_exception_port,
                                   EXCEPTION_DEFAULT| MACH_EXCEPTION_CODES,
                                   0);

    ut = (uthread_t)get_bsdthread_info(thread);

    bsd_init_task = get_threadtask(thread);
    init_task_failure_data[0] = 0;

#if CONFIG_MACF
        mac_cred_label_associate_user(p->p_ucred);
        mac_task_label_update_cred (p->p_ucred, (struct task *) p->task);
#endif

// go on to load the init program, launchD.
    load_init_program(p);

}

LISTING 13-12 (continued)
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By calling host_set_exception_ports, the bsdinit_task() redirects all Mach exception mes-
sages to ux_exception_port, which is held by the ux_handler() thread. True to the Mach para-
digm, exception handling for PID 1 will be handled out of process by ux_handler(). Because all 
subsequent user mode processes are descendants of PID 1, they will automatically inherit the excep-
tion port, thereby assigning ux_handler() responsibility for every Mach exception that occurs in a 
UNIX process on the system.

ux_handler() is a fairly simple function, which makes sense given the amount of exceptions it 
needs to process. As one would expect, it sets up the ux_handler_port on entry, and then enters an 
endless Mach message loop. The message loop receives the Mach exception messages, and then calls 
mach_exc_server() to handle the exception, as shown in Listing 13-14.

LISTING 13-14: ux_handler(), in bsd/uxkern/ux_exception.c

void
ux_handler(void)
{
    task_t              self = current_task();
    mach_port_name_t    exc_port_name;
    mach_port_name_t    exc_set_name;

    /* self->kernel_vm_space = TRUE; */
    ux_handler_self = self;

    /*
     *  Allocate a port set that we will receive on.
     */
    if (mach_port_allocate(get_task_ipcspace(ux_handler_self), 
        MACH_PORT_RIGHT_PORT_SET, 
        &exc_set_name) != MACH_MSG_SUCCESS)
            panic("ux_handler: port_set_allocate failed");

    /*
     *  Allocate an exception port and use object_copyin to
     *  translate it to the global name.  Put it into the set.
     */
    if (mach_port_allocate(get_task_ipcspace(ux_handler_self),
        MACH_PORT_RIGHT_RECEIVE, 
        &exc_port_name) != MACH_MSG_SUCCESS)
        panic("ux_handler: port_allocate failed");
    if (mach_port_move_member(get_task_ipcspace(ux_handler_self),
                        exc_port_name,  exc_set_name) != MACH_MSG_SUCCESS)
        panic("ux_handler: port_set_add failed");
    if (ipc_object_copyin(get_task_ipcspace(self), exc_port_name,
                        MACH_MSG_TYPE_MAKE_SEND,
                        (void *) &ux_exception_port) != MACH_MSG_SUCCESS)
                panic("ux_handler: object_copyin(ux_exception_port) failed");

    proc_list_lock();
    thread_wakeup(&ux_exception_port);
    proc_list_unlock();

    /* Message handling loop. */
continues
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    // No problem with getting into an endless loop here, since ux_handler() runs in its
    // own thread, and the mach_msg_receive() function blocks anyway. 
    for (;;) {
        // inline structure definitions make for great readability.. This
        // is likely a vestige of MIG's automatic code generation
        struct rep_msg {
                mach_msg_header_t Head;
                NDR_record_t NDR;
                kern_return_t RetCode;
        } rep_msg;
        struct exc_msg {
                mach_msg_header_t Head;
                /* start of the kernel processed data */
                mach_msg_body_t msgh_body;
                mach_msg_port_descriptor_t thread;
                mach_msg_port_descriptor_t task;
                /* end of the kernel processed data */
                NDR_record_t NDR;
                exception_type_t exception;
                mach_msg_type_number_t codeCnt;
                mach_exception_data_t code;
             /* some times RCV_TO_LARGE probs */
                char pad[512];
        } exc_msg;
        mach_port_name_t        reply_port;
        kern_return_t    result;

        exc_msg.Head.msgh_local_port = CAST_MACH_NAME_TO_PORT(exc_set_name);
        exc_msg.Head.msgh_size = sizeof (exc_msg);

        result = mach_msg_receive(&exc_msg.Head, MACH_RCV_MSG,
                             sizeof (exc_msg), exc_set_name,
                             MACH_MSG_TIMEOUT_NONE, MACH_PORT_NULL,
                             0);

        if (result == MACH_MSG_SUCCESS) {
            reply_port = CAST_MACH_PORT_TO_NAME(exc_msg.Head.msgh_remote_port);

// mach_exc_server will call mach_exception_raise(), which will be caught
          // by mach_catch_exception_raise() – where the signal handling logic is.
            if (mach_exc_server(&exc_msg.Head, &rep_msg.Head)) {
                result = mach_msg_send(&rep_msg.Head, MACH_SEND_MSG,
                   sizeof (rep_msg),MACH_MSG_TIMEOUT_NONE,MACH_PORT_NULL);
                if (reply_port != 0 && result != MACH_MSG_SUCCESS)
                   mach_port_deallocate(get_task_ipcspace(ux_handler_self), reply_port);
            }

        }
        else if (result == MACH_RCV_TOO_LARGE)
                /* ignore oversized messages */;
      else // any other result is unexpected, and thereby constitutes a panic
                panic("exception_handler");
    } // end message loop
} // end ux_handler()

LISTING 13-14 (continued)
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The messages are caught by catch_mach_exception_raise(), defi ned in the same fi le as shown in 
Listing 13-15

LISTING 13-15: catch_mach_exception_raise, in bsd/uxkern/ux_exception.c

kern_return_t
catch_mach_exception_raise(
        __unused mach_port_t exception_port,
        mach_port_t thread,
        mach_port_t task,
        exception_type_t exception,
        mach_exception_data_t code,
        __unused mach_msg_type_number_t codeCnt
)
{
    mach_port_name_t thread_name = CAST_MACH_PORT_TO_NAME(thread);
    mach_port_name_t task_name = CAST_MACH_PORT_TO_NAME(task);
   ..
if (th_act != THREAD_NULL) {

            /*
             *  Convert exception to unix signal and code.
             */
            ux_exception(exception, code[0], code[1], &ux_signal, &ucode);

            ut = get_bsdthread_info(th_act);
            sig_task = get_threadtask(th_act);
            p = (struct proc *) get_bsdtask_info(sig_task);

            /* Can't deliver a signal without a bsd process */
            if (p == NULL) {
                    ux_signal = 0;
                    result = KERN_FAILURE;
            }
  if (code[0] == KERN_PROTECTION_FAILURE &&
                ux_signal == SIGBUS) {
               // handle specifically stack overflow
               …
       }
/*
 *  Send signal.
             */
            if (ux_signal != 0) {
                        ut->uu_exception = exception;
                        //ut->uu_code = code[0]; // filled in by threadsignal
                        ut->uu_subcode = code[1];
                        threadsignal(th_act, ux_signal, code[0]);
            }

            thread_deallocate(th_act);
     ..
     /*
    *  Delete our send rights to the task port.
     */
    (void)mach_port_deallocate(get_task_ipcspace(ux_handler_self), task_name);
..
}
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At a higher level, the fl ow can be pictured roughly as shown in Figure 13-8.

Hardware-Generated Signals
Hardware-generated signals begin their life as processor traps. These are, naturally, platform spe-
cifi c. ux_exception (bsd/uxkern/ux_exception.c) is responsible for translating traps into signals. 
To handle the machine-specifi c cases, it tries machine_exception (bsd/dev/i386/unix_signal.c). 
If the function  cannot convert the signal, ux_exception handles generic cases.

mach_msg_receive

mach_exc_server

mach_msg_sendmach_exc_raise

exception_deliver()

ux_exception()

threadsignal()..

catch_mach_exception_raise

Hardware fault

act_set_astbsd();

Faulting thread Exception handler

MIG msg
kernel trap handler

FIGURE 13-8: Mach Exception handling and conversion to UNIX signals

The Mach exceptions previously discussed in Chapter 11 are mapped to UNIX signals as shown in 
Table 13-8:

TABLE 13-8: Mapping Mach exceptions to UNIX S

MACH EXCEPTION UNIX SIGNAL

EXC_BAD_INSTRUCTION ILL

EXC_EMULATION EMT

EXC_BREAKPOINT TRAP

EXC_ARITHMETIC FPE

KERN_BAD_ACCESS SEGV(KERN_INVALID_ADDRESS)

BUS (else)

EXC_SOFTWARE SYS (EXC_UNIX_BAD_SYSCALL)

PIPE (EXC_UNIX_BAD_PIPE)

ABRT (EXC_UNIX_ABORT)

KILL (EXC_SOFT_SIGNAL)
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Software-Generated Signals
When the signal is not generated by hardware, it actually begins its life as a signal generated 
by one of two APIs: kill(2) or pthread_kill(2). These functions send a signal to a process 
or a thread, respectively. kill(2) accepts a PID argument, which is interpreted as shown in 
Table 13-9:

TABLE 13-9 Kill arguments and their meanings

KILL ARGUMENT MEANING

Greater than 0 Process identifi er. Kill invokes psignal(p,signum)

0 Current process group. Kill invokes killpg1() with pgid = 0

-1 All processes (broadcast). Kill invokes killpg1() with pgid = 0 and 

all = 1

Less than -1 Process group. Kill invokes killpg1() with pgid = -(pid) (i.e., value 

fl ipped to positive)

killpg1() uses the process list iteration functions (described previously in this chapter) to walk 
either the global process list, or the one associated with the pgrp. The fi lter function employed is 
killpg1_pgrpfilt, which fi lters out PIDs less than 2 (thus making the init process, launchd,
unsignalable) , any zombie processes or processes marked as system. The callout function used is 
killpg1_callback(), which calls cansignal() to check kill permissions, and then goes on to 
call psignal() if cansignal() returns TRUE on the process in question. This fl ow is depicted in 
Figure 13-9:

pthread_kill()

psignal_uthread()

psignal_internal()

kill()

killpg1()

psignal(p, signum)

proc_iterate()

killpg1_callback

psignal_internal(p, NULL, NULL, 0, signum)

psignal_internal(PROC_NULL,

TASK_NULL, thread, PSIG_THREAD,

signum)

Signaled thread wakes up
with a UNIX exception 

uap->pid <= 0 uap->pid > 0

act_set_astbsd();

FIGURE 13-9: Handling signals from user mode

c13.indd 535c13.indd   535 10/5/2012 4:19:17 PM10/5/2012   4:19:17 PM



536 x CHAPTER 13  BS”D — THE BSD LAYER

Signal Handling by the Victim
Whether it’s a hardware-generated or other signal, both execution paths end in act_set_bsdast().
This causes the process being signaled to wake up (more accurately, one of its threads does) with its 
execution redirected to ast_taken() (see Chapter 11), which in turn calls the bsd_ast(). The fl ow 
of bsd_ast is shown in Figure 13-10. 

bsd_ast(thread_t)

Handle SIGVTALRM

Handle SIGXCPU

while (signum = issignal(p)) 

postsig(signum);

Get signal from ut->uu_siglist, ignoring SIG_IGN 

proc lock(p); 

sig_try_locked(p);

proc_signalstart(p,1);

If catcher == SIG_DFL 

If sigprop of this signal marks SA_CORE

coredump();

Release locks, and call exit1(): 

exit1 (p, W_EXITCODE(0, signum), (int *)NULL); 

Default action
sendsig (p,

catcher,

signum,

returnmask,

code)

exit1()…

proc_signalend(p,1);

proc unlock(p); 

proc_signalend(p,1)

proc_unlock(p);

FIGURE 13-10: Signal handling by the signaled process/thread, from bsd_ast()

SUMMARY

This chapter described in depth the BSD layer, which serves as XNU’s primary interface to user 
mode. This layer presents a standardized POSIX-compliant interface, and a developer can expect to 
fi nd everything present in other UNIX SUSv3 systems. Although OS X implements BSD on top of 
Mach, the developer remains blissfully unaware of the Mach internals, and instead deals with the 
higher-level abstractions of processes and threads, rather than the low-level primitives. The next 
chapter will further discuss signals, IPC objects, and devices.
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14
Something Old, Something New: 
Advanced BSD Aspects

XNU inherits much more than process and threads objects from BSD. The user mode POSIX 
APIs for shared memory and memory management, as well as signals, all wrap the underlying 
Mach abstractions covered in the previous chapters.

Apple has made signifi cant improvements to BSD in certain areas, most notably TrustedBSD’s 
Mandatory Access Control framework, which (as discussed in Chapter 3) serves as the sub-
strate for Apple’s sandbox and policy control modules. 

This chapter picks up where its predecessor left off. We examine fi rst BSD’s memory 
management, as well as Apple’s unique Memorystatus mechanism (known as Jetsam). We then 
focus on the kernel perspective of those features previously touched on in Chapter 3: Sysctl, 
work queues, and the Mandatory Access Control Framework. The chapter explains what 
happens behind the scenes in all these OS X and iOS specifi c technologies that are used from 
user mode. 

MEMORY MANAGEMENT

As you saw in Chapter 12, virtual memory management is carried out by the Mach layer, 
which controls the pagers and exports the various vm_ and mach_vm_ messages to user mode. 
User mode developers, however, mostly know the standard POSIX calls, so the Mach calls 
need to be encapsulated. Likewise, the BSD layer itself uses its own memory management 
functions.
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POSIX Memory and Page Management System Calls 
POSIX offers the programmer several APIs for managing and maintaining tighter control over vir-
tual memory pages. XNU implements the calls shown in Table 14-1, which are all implemented in 
bsd/kern/kern_mman.c (corresponding to <sys/mman.h>).

TABLE 14-1: Page Management System Calls in POSIX

# SYSTEM CALL USE

197 void * mmap(void *addr,

size_t len,

int prot,

int flags,

int fd,

off_t offset);

Maps a region of memory

Calls vm_map_enter_mem_object() for 

anonymous (flags |= MAP_ANON) or 

 vm_map_enter_mem_object_con-

trol() for fi le (flags |= MAP_FILE) 

mapping

73 int munmap(void   *addr, size_t len); Calls mach_vm_deallocate()

75 int madvise(void *addr,

size_t len,

int advice);

(also: posix_madvise)

Provides non-obligating advice to OS as 

to how the memory pages from addr to 

addr+len will be accessed:

Invokes mach_vm_behavior_set and 

translates advice.

The POSIX MADV_* constants are 

changed to corresponding VM_

BEHAVIOR_* constants. 

78 int mincore

(caddr_t addr,

 size_t len,

 char            *vec);

Returns vector vec specifying residency 

fl ags of pages containing addr to addr+len. 

Flags are:

MINCORE_INCORE — resident

MINCORE_REFERENCED — referenced by 

process 

MINCORE_MODIFIED — modifi ed by 

process

MINCORE_REFERENCED_OTHER — refer-

enced externally 

MINCORE_MODIFIED_OTHER — modifi ed 

externally

Calls mach_vm_page_query()

250 int minherit

(caddr_t addr,

size_t len,

int inherit);

Sets inheritance of pages containing 

addr to addr+len to VM_INHERIT_

NONE, _COPY, or _SHARE

Calls mach_vm_inherit()
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# SYSTEM CALL USE

203

204

int mlock

(const void     *addr,

 size_t len);

int munlock

(const void *addr,

 size_t len);

Locks/unlocks virtual pages contain-

ing addr to addr+len in physical 

memory — that is, makes them resident 

(wired)

Invokes vm_map_wire()

324

325

int mlockall(void);

int munlockall(void);

Locks/unlocks all virtual pages of 

process. Not supported by OS X 

(- ENOSYS)

74 int mprotect

(void            *addr,

size_t len,

int prot);

Sets prot fl ags on virtual pages contain-

ing addr to addr+len. Flags can be:

PROT_NONE: ---

PROT_READ: r--

PROT_WRITE: -w-

PROT_EXEC: --x

Invokes mach_vm_protect()

65 int msync(void   *addr,

          size_t len,

          int flags);

Flush/sync pages containing addr to 

addr+len according to fl ags:

MS_ASYNC: asynchronously

MS_SYNC: synchronously (block)

MS_INVALIDATE: invalidating caches

Invokes mach_vm_msync()

As shown in the table, all these functions are really wrappers over the Mach VM primitives 
discussed in Chapter 12, which deals with Mach Virtual Memory. The functions all perform basic 
sanity checks, and then go on to obtain the current Mach memory map (by a simple call to 
current_map()) and invoke the underlying Mach function.

BSD Internal Memory Functions
The BSD layer requires its own memory management functions, which are naturally layered over 
those of Mach. These functions used extensively in the BSD portion of XNU, but not exported to 
user mode.

BSD’s MALLOC and Zones
BSD code uses functions which closely resemble user mode’s malloc() and friends. (See 
Listing 14-1.)
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LISTING 14-1: BSD malloc functions, from bsd/sys/malloc.h

extern void     *_MALLOC(size_t       size,
                          int         type,
                          int         flags); // M_NOWAIT or M_ZERO

extern void _FREE(void           *addr,
                        int           type);

extern void     *_REALLOC(void       *addr,
                        size_t        size,
                        int           type,
                        int           flags);

extern void     *_MALLOC_ZONE(size_t  size,
                        int           type,
                        int           flags);

extern void _FREE_ZONE(void      *elem,
                        size_t        size,
                        int           type);

Figure 12-4, which discussed the various memory allocation techniques in XNU, showed (among 
other things) the mappings between the BSD layer allocations and the underlying low-level 
functions. 

The BSD zones built on top of Mach zones (see Chapter 12), defi ned in a kmzones[] array of 
struct kmzones. Lion has around 114 zones, defi ned in sys/malloc.h as shown in Listing 14-2: 

LISTING 14-2: BSD kmzones defi ned in bsd/sys/malloc.h

/*
 * Types of memory to be allocated (not all are used by us)
 */
#define M_FREE          0       /* should be on free list */
#define M_MBUF          1       /* mbuf */
#define M_DEVBUF        2       /* device driver memory */
#define M_SOCKET        3       /* socket structure */
#define M_PCB           4       /* protocol control block */
#define M_RTABLE        5       /* routing tables */
#define M_HTABLE        6       /* IMP host tables */
#define M_FTABLE        7       /* fragment reassembly header */
#define M_ZOMBIE        8       /* zombie proc status */
#define M_IFADDR        9       /* interface address */
#define M_SOOPTS        10      /* socket options */
#define M_SONAME        11      /* socket name */
#define M_NAMEI         12      /* namei path name buffer */
#define M_GPROF         13      /* kernel profiling buffer */
#define M_IOCTLOPS      14      /* ioctl data buffer */
#define M_MAPMEM        15      /* mapped memory descriptors */
#define M_CRED          16      /* credentials */
#define M_PGRP          17      /* process group header */
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#define M_SESSION       18      /* session header */
#define M_IOV32         19      /* large iov's for 32 bit process */
#define M_MOUNT         20      /* vfs mount struct */
#define M_FHANDLE       21      /* network file handle */
#define M_NFSREQ        22      /* NFS request header */
#define M_NFSMNT        23      /* NFS mount structure */
#define M_NFSNODE       24      /* NFS vnode private part */
#define M_VNODE         25      /* Dynamically allocated vnodes */
#define M_CACHE         26      /* Dynamically allocated cache entries */
#define M_DQUOT         27      /* UFS quota entries */
#define M_UFSMNT        28      /* UFS mount structure */
#define M_SHM           29      /* SVID compatible shared memory segments */
#define M_PLIMIT        30      /* plimit  structures */
#define M_SIGACTS       31      /* sigacts structures */
#define M_VMOBJ         32      /* VM object structure */
#define M_VMOBJHASH     33      /* VM object hash structure */
#define M_VMPMAP        34      /* VM pmap */
#define M_VMPVENT       35      /* VM phys-virt mapping entry */
#define M_VMPAGER       36      /* XXX: VM pager struct */
#define M_VMPGDATA      37      /* XXX: VM pager private data */
#define M_FILEPROC      38      /* Open file structure */
#define M_FILEDESC      39      /* Open file descriptor table */
#define M_LOCKF         40      /* Byte-range locking structures */
#define M_PROC          41      /* Proc structures */
#define M_PSTATS        42      /* pstats  proc sub-structures */
#define M_SEGMENT       43      /* Segment for LFS */
#define M_LFSNODE       44      /* LFS vnode private part */
#define M_FFSNODE       45      /* FFS vnode private part */
#define M_MFSNODE       46      /* MFS vnode private part */
#define M_NQLEASE       47      /* XXX: Nqnfs lease */
#define M_NQMHOST       48      /* XXX: Nqnfs host address table */
#define M_NETADDR       49      /* Export host address structure */
#define M_NFSSVC        50      /* NFS server structure */
#define M_NFSUID        51      /* XXX: NFS uid mapping structure */
#define M_NFSD          52      /* NFS server daemon structure */
#define M_IPMOPTS       53      /* internet multicast options */
#define M_IPMADDR       54      /* internet multicast address */
#define M_IFMADDR       55      /* link-level multicast address */
#define M_MRTABLE       56      /* multicast routing tables */
#define M_ISOFSMNT      57      /* ISOFS mount structure */
#define M_ISOFSNODE     58      /* ISOFS vnode private part */
#define M_NFSRVDESC     59      /* NFS server socket descriptor */
#define M_NFSDIROFF     60      /* NFS directory offset data */
#define M_NFSBIGFH      61      /* NFS version 3 file handle */
#define M_MSDOSFSMNT    62      /* MSDOS FS mount structure */
#define M_MSDOSFSFAT    63      /* MSDOS FS fat table */
#define M_MSDOSFSNODE   64      /* MSDOS FS vnode private part */
#define M_TTYS          65      /* allocated tty structures */
#define M_EXEC          66      /* argument lists & other mem used by exec */
#define M_MISCFSMNT     67      /* miscfs mount structures */
#define M_MISCFSNODE    68      /* miscfs vnode private part */
#define M_ADOSFSMNT     69      /* adosfs mount structures */
#define M_ADOSFSNODE    70      /* adosfs vnode private part */
#define M_ANODE         71      /* adosfs anode structures and tables. */
#define M_BUFHDR        72      /* File buffer cache headers */

continues
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#define M_OFILETABL     73      /* Open file descriptor table */
#define M_MCLUST        74      /* mbuf cluster buffers */
#define M_HFSMNT        75      /* HFS mount structure */
#define M_HFSNODE       76      /* HFS catalog node */
#define M_HFSFORK       77      /* HFS file fork */
#define M_ZFSMNT        78      /* ZFS mount data */
#define M_ZFSNODE       79      /* ZFS inode */
#define M_TEMP          80      /* misc temporary data buffers */
#define M_SECA          81      /* security associations, key management */
#define M_DEVFS         82
#define M_IPFW          83      /* IP Forwarding/NAT */
#define M_UDFNODE       84      /* UDF inodes */
#define M_UDFMNT        85      /* UDF mount structures */
#define M_IP6NDP        86      /* IPv6 Neighbour Discovery*/
#define M_IP6OPT        87      /* IPv6 options management */
#define M_IP6MISC       88      /* IPv6 misc. memory */
#define M_TSEGQ         89      /* TCP segment queue entry, unused */
#define M_IGMP          90
#define M_JNL_JNL       91  /* Journaling: "struct journal" */
#define M_JNL_TR        92  /* Journaling: "struct transaction" */ 
#define M_SPECINFO      93      /* special file node */
#define M_KQUEUE        94      /* kqueue */
#define M_HFSDIRHINT    95      /* HFS directory hint */
#define M_CLRDAHEAD     96      /* storage for cluster read-ahead state */
#define M_CLWRBEHIND    97      /* storage for cluster write-behind state */
#define M_IOV64         98      /* large iov's for 64 bit process */
#define M_FILEGLOB      99      /* fileglobal */
#define M_KAUTH         100     /* kauth subsystem */
#define M_DUMMYNET      101     /* dummynet */
#ifndef __LP64__
#define M_UNSAFEFS      102     /* storage for vnode lock state for unsafe FS */
#endif /* __LP64__ */
#define M_MACPIPELABEL  103     /* MAC pipe labels */
#define M_MACTEMP       104     /* MAC framework */
#define M_SBUF          105     /* string buffers */
#define M_EXTATTR       106     /* extended attribute */
#define M_LCTX          107     /* process login context */
/* M_TRAFFIC_MGT 108 */
#if HFS_COMPRESSION
#define M_DECMPFS_CNODE 109     /* decmpfs cnode structures */
#endif /* HFS_COMPRESSION */
#define M_INMFILTER     110     /* IPv4 multicast PCB-layer source filter */
#define M_IPMSOURCE     111     /* IPv4 multicast IGMP-layer source filter */
#define M_IN6MFILTER    112     /* IPv6 multicast PCB-layer source filter */
#define M_IP6MOPTS      113     /* IPv6 multicast options */
#define M_IP6MSOURCE    114     /* IPv6 multicast MLD-layer source filter */
#define M_LAST          115     /* Must be last type + 1 */

The zones are set by kmeminit() (from bsd_init() during boot). For each zone, kmeminit() calls 
the underlying Mach zinit() and sets a 1 MB zone accountable to the caller (i.e. Z_CALLERACCT). 
_MALLOC_ZONE then calls zalloc_noblock (if the element size requested is exactly that of the zone’s) 
or zalloc(). Likewise, FREE_ZONE calls through to zfree() or kfree().

LISTING 14-2 (continued)
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Mcache and Slab Allocators
BSD offers another very effi cient method of memory allocation, based on caches. This mechanism 
is known as mcache, and its implementation is in bsd/kern/mcache.c. The default implementation 
is built on top Mach zones providing the pre-allocated cache memory, but it is extensible for use 
with any back end slab allocator. The main advantage of using the mcache mechanism is its speed: 
The memory is allocated and maintained in a per-CPU cache, which enables mapping to the CPU’s 
physical cache, greatly speeding up access.

The main client of this allocation system is the mbuf logic in the kernel. The mbufs (or memory buf-
fers, in their full name), are often-reusable buffers of virtual memory, which represent network data 
(i.e. packets). The logic and structures behind mbufs are explored in Chapter 17. 

Memory Pressure
As noted in Chapter 12 in the discussion of the PageOut daemon, the Mach VM layer supports the 
notion of VM pressure, which is defi ned as the condition wherein the system is dangerously low on 
available RAM. The handling of VM pressure is delegated to the BSD layer, and the layer also offers 
a system call (vm_pressure_monitor (#296) in bsd/vm/vm_unix.c), which directly wraps that of 
Mach. The fi le also contains several vm namespace MIBs, including the pressure indicator (vm
.memory_pressure) and the PageOut daemon’s targets.

When consider_pressure_events is called (by the PageOut daemon’s garbage collection 
thread), the BSD layer takes over, and calls on vm_try_pressure_candidates (also in bsd/kern/
vm_pressure.c). Candidates are those processes that have requested pressure notifi cations, by 
specifying an EVFILT_VM/NOTE_VM_PRESSURE combination in a call to kevent, or have had that 
done for them (iOS Objective-C apps, for example, which do so in the low level initialization of 
libdispatch). 

For each candidate on the list, the system queries the resident page count (using task_info), and 
sends a NOTE_VM_PRESSURE knote (which triggers a kevent on its kqueue, as discussed later in this 
chapter) to a process whose resident page count is the highest (and exceeds the minimum of VM_
PRESSURE_MINIMUM_RSIZE, set at 10 MB). 

A candidate process is expected to respond to the pressure notifi cation, which iOS Objective-C apps 
also do. Objective-C’s garbage collection makes use of libauto, which calls on libdispatch to 
create a VM pressure dispatch source. The handler for this source calls malloc_zone_pressure_
relief (as discussed in Chapter 4 under “Heap Allocations”). The Objective-C runtime also calls 
the app’s didReceiveMemoryWarning callback, allowing the application to purge caches (as lib-
cache does) and other unnecessary, but nice-to-have RAM. 

Sometimes, alas, all this is not enough. Processes can’t always fi nd memory to discard. When 
the cooperative approach fails, desperate times call for desperate measures. This is when Jetsam 
kicks in.

Jetsam and Hibernation are both moving targets: undocumented and internal 
Apple APIs, which are constantly undergoing modifi cation by Apple.
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Jetsam (iOS)
OS X and iOS implement a low-memory condition handler called Jetsam, or by another name 
Memorystatus (in bsd/kern/kern_memorystatus.c). This mechanism, somewhat similar in 
concept to Linux’s “Out-Of-Memory” killer (known as oom), was originally used to kill pro-
cesses consuming too much memory. The Jetsam name refers to the act of killing top memory 
consuming processes and jettisoning their memory pages. It seems Apple is moving towards the 
“Memorystatus” nomenclature, so this section will adopt it, as well.

XNU exports Memorystatus to user mode apps through <sys/kern_memorystatus.h>, and it’s 
interesting to see this header evolve through subsequent versions of OS X. Most iOS developers 
remain oblivious to its presence, but are still indirectly affected by it, as their apps as their apps may 
be subject to sudden termination.

Memorystatus is implemented in bsd/kern/kern_memorystatus.c, and offers the functions shown 
in Table 14-2. Note that, in the Lion sources, these are still named jetsam_*, but this might change 
in future releases.

TABLE 14-2: Memorystatus Functions, from bsd/kern/kern_memorystatus.c

FUNCTION USAGE

jetsam_task_page_count

(task_t task)

Helper function used to compute a count of pages 

used by task (calls task_info and returns 

resident_size divided by PAGE_SIZE)

jetsam_flags_for_pid

(pid_t pid)

Returns fl ags for specifi ed pid from the 

jetsam_priority_list 

jetsam_snapshot_procs(void) Records all vm page counters and traverses all pro-

cesses (allproc) to record a snapshot, with a count 

of pages (using jetsam_task_page_count) and 

fl ags (using jetsam_flags_for_pid)

jetsam_kill_hiwat_proc(void) Kills (or suspends) processes whose page count 

exceeds the high-water mark

jetsam_kill_top_proc(void) Kills (or suspends) top memory-consuming processes

Memorystatus maintains two lists: a snapshot list, which captures the state of all processes in the 
system and how many pages they consume, and a priority list, which holds the candidate pro-
cesses  to be killed. The lists can be queried (in iOS) from user mode via sysctl(2)1, and the latter 
list can even be set from user mode. launchd(1) is one such process which uses this mechanism: 
jobs may contain a <JetsamPriorities> key, which can specify the JetsamMemoryLimit and 
JetsamPriority (this is apparently used at present only for syslogd). 

1 If XNU is compiled with DEVELOPMENT or DEBUG settings, a third exported sysctl enables jetsam 
diagnostic mode.
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By any name you call it, Memorystatus/Jetsam is more critical for iOS, and iOS seems to be a few 
steps ahead in its implementation. It is likely that the next version of iOS will also improve on it, 
possibly adding more user mode control mechanisms, or improving on sysctl(2).

Process Hibernation (iOS)
In iOS 5 (and Lion, but only #if CONFIG_FREEZE), Jetsam/Memorystatus is integrated with the 
default freezer, which enables it to freeze, rather than kill the process. This provides for a much bet-
ter user experience, because no data is lost and the process may be safely resumed when memory 
conditions improve. If CONFIG_FREEZE is defi ned, it enables the compilation of the following func-
tions, shown in Table 14-3.

TABLE 14-3: Freezer-related Function (iOS only)

FUNCTIONS LOCATED IN USED FOR

default_freezer_* osfmk/vm/

default_freezer.c
The default freezer 

implementation.

vm_object_pack

vm_object_pack_pages

vm_object_unpack

vm_object_pagein

vm_object_pageout

osfmk/vm/vm_object.c Packing or unpacking indi-

vidual pages, which involves 

calling the default_freezer 

pack/unpack functions.

vm_map_freeze

vm_map_thaw

vm_map_freeze_walk

osfmk/vm/vm_map.c Freezing or thawing the mem-

ory pages of a given VM map. 

Walking just iterates over the 

pages and checks which ones 

can be frozen.

task_freeze

task_thaw

osfmk/kern/task.c Freezing and thawing a task 

(calling vm_map_freeze 

or vm_map_thaw on the 

task->map).

jetsam_send_

hibernation_note

jetsam_hibernate_top_

proc

bsd/kern/

kern_memorystatus.c
Enables jetsam to freeze, 

rather than kill processes that 

match a given criteria. The 

hibernation note is a kernel 

event notifying of the pending 

hibernation of a PID.

The CONFIG_FREEZE setting also enables a new thread, the kernel_hibernation_thread. Note 
that, in this context, hibernation refers to per-process hibernation, and not to system hibernation. 
This thread wakes up when signaled (by kern_hibernation_wakeup), and checks if it needs to per-
form hibernation for processes. Memorystatus checks are performed on most vm_page_* operations 
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(in osfmk/vm/vm_resident.c), by calls to the VM_CHECK_MEMORYSTATUS, which is defi ned in bsd/
sys/kern_memorystatus.h to be a no-op on OS X, and a call to vm_check_memorystatus
(osfmk/vm/vm_resident.c) in iOS (i.e. #if CONFIG_EMBEDDED). This function body is also only 
defi ned for iOS, as can be seen in Listing 14-3:

LISTING 14-3: VM Memorystatus checks conducted on page operations

void vm_check_memorystatus()
{
#if CONFIG_EMBEDDED
        static boolean_t in_critical = FALSE;
        static unsigned int last_memorystatus = 0;
        unsigned int pages_avail;

        if (!kern_memorystatus_delta) {
            return;
        }

        pages_avail = (vm_page_active_count + 
                      vm_page_inactive_count + 
                      vm_page_speculative_count + 
                      vm_page_free_count +
                      (VM_DYNAMIC_PAGING_ENABLED(memory_manager_default) ? 0 :
                                              vm_page_purgeable_count));
        if ( (!in_critical && (pages_avail < kern_memorystatus_delta)) ||
             (pages_avail >= (last_memorystatus + kern_memorystatus_delta)) ||
             (last_memorystatus >= (pages_avail + kern_memorystatus_delta)) ) {
            kern_memorystatus_level = pages_avail * 100 / atop_64(max_mem);
            last_memorystatus = pages_avail;

            // This wakes up the memorystatus thread (as does pid_hibernate) 
            thread_wakeup((event_t)&kern_memorystatus_wakeup);

            in_critical = (pages_avail < kern_memorystatus_delta) ? TRUE : FALSE;
        }
#endif
}

Actual process hibernation is carried out by calling jetsam_hibernate_top_proc, which freezes 
the underlying task (by calling task_freeze). Freezing involves walking the vm_map of the task, 
and passing it to the default freezer. User mode can also control hibernation by calling pid_sus-
pend() and/or pid_resume (both in bsd/vm/vm_unix.c). iOS also defi nes pid_hibernate,
which currently ignores its argument, and only wakes up the hibernation thread (i.e. signals 
kern_hibernation_wakeup).

Kernel Address Space Layout Randomization
Mountain Lion contains a new feature that is likely to go unnoticed by most of its users: Kernel address 
space layout randomization. While irrelevant for most applications, it has some paramount conse-
quences. If and when it is introduced into iOS (iOS 6, most likely), it might spell the end of jailbreaking.
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The concept of user mode ASLR was described in detail in Chapter 4. Once unheard of, ASLR has 
become a prerequisite for any operating system attempting to defeat hackers and stop malware try-
ing to perform code injection. This, by now almost trite, technique involves an attacker embedding 
readily executable binary code in the input of some unsuspecting program, then overwriting a func-
tion pointer (often, a function’s return address), to divert the program fl ow into the injected code.

The leading defense against code injection was Data Execution Prevention (DEP, also referred to as 
W^X, XD in Intel, and XN in ARM), which has made code injection signifi cantly more diffi cult, 
though not impossible, for hackers. As the bar for entry was raised, hackers adapted by revamping 
an old technique. As described in Shacham’s Black Hat 2008 presentation[1], return oriented pro-
gramming is now a de facto standard technique for malicious code execution, but on reusing exist-
ing program code (commonly, LibC), by emulating the stack layout of valid program calls. The term 
stems from the fact that, as far as the program is concerned, the injected code is a sequence of func-
tion calls, which return from one function into the other. The overwritable stack segment is used 
for directing this sequence of calls, but does not contain any code that gets executed. This method, 
therefore, effectively defeats DEP. 

If the address space is properly randomized, it becomes next to impossible to fi nd any code to return 
to. It also becomes unlikely the attacker can guess any specifi c kernel address to overwrite, even if 
an overfl ow or other vulnerability does enable such an overwrite. This is especially important in the 
kernel, where code injection can lead to total system compromise and, in iOS, to device jailbreaking. 
ASLR Mountain Lion is therefore the fi rst operating system to introduce kernel mode ASLR, and it 
seems a sure bet that iOS 6 will follow. 

The implications for the kernel code are minimal: Instead of using fi xed addresses, the code can 
shift to relative addresses, which are based on the current location of the program, held in Intel’s IP 
or ARM’s PC. The kernel is loaded by EFI or iBoot with a vm_kernel_slide value, like dyld’s slide 
(described in Chapter 4), and everything proceeds normally. (Prelinked modules (kexts) are also 
subjected to the slide.) 

The implications for malware or jailbreaking, however, are far reaching and more severe. At the 
time of writing, there is no clever workaround for proper ASLR. As a bonus, reverse engineering 
becomes somewhat harder (as the IP relative addresses can be set in several ways, instead of leaving 
fi xed offsets for strings and function names).

Mountain Lion exports a new system call, kas_info (#439), which can be used to query the value of 
the kernel slide. This system call might not remain for too long, (especially in iOS) because leaking 
the value of the slide defeats the entire purpose of randomization.

Even with KASLR, pre-A5 devices will still be fully jailbreakable. This is 
because the vulnerability allowing the jailbreak is in iBoot itself, allowing the 
direct patching of the kernel. In this case, run-time addresses matter little, as 
jailbreakers can prepare a custom IPSW of a patched kernel. That said, it’s only 
a matter of time before Apple removes support for those devices, the way it no 
longer supports the very fi rst generation of the iPhone.
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WORK QUEUES

Work queues are a mechanism developed in OS X to facilitate multithread support for applications 
and scale to multiple CPUs. This mechanism is not exported directly to user mode (and hence was 
not mentioned in Chapter 3), but is nonetheless important, as it provides the foundation for Apple’s 
Grand Central Dispatch (GCD). This section does not discuss how to use GCD (though a good 
reference exists in Apple Developer[2] and in a book devoted to multithreading[3]). Rather, it focuses 
on how GCD itself uses XNU’s services2. Work queues are provided through two undocumented 
system calls: workq_open (#367) and workq_kernreturn (#368), both implemented (along with all 
other work queue functions) in bsd/kern/pthread_synch.c. The workq_open system call is used 
to create a work queue and is wrapped by LibC’s pthread_workqueue_create_np (and further by 
GCD and libdispatch’s dispatch_get_global_queue). It doesn’t take any arguments. The workq_
kernreturn system call is used for pretty much everything else, and can control the work queue, by 
specifying one of three currently defi ned options:

 ‰ WQOPS_QUEUE_ADD — The caller may specify an item (as the second argument) to be 
executed by the work queue. This item corresponds to the block or function to be executed 
(or dispatched, in GCD parlance). The caller may also request affinity (currently ignored), 
and specify a prio between up to WORKQUEUE_NUMPRIOS (currently 4), as well as an 
overcommit bit. These queues are listed in bsd/sys/pthread_internal.h as shown in 
Listing 14-3:

LISTING 14-3: Global work queues in XNU

#define WORKQUEUE_HIGH_PRIOQUEUE    0       /* high priority queue */
#define WORKQUEUE_DEFAULT_PRIOQUEUE 1       /* default priority queue */
#define WORKQUEUE_LOW_PRIOQUEUE     2       /* low priority queue */
#define WORKQUEUE_BG_PRIOQUEUE      3       /* background priority queue */

If these seem somewhat familiar, it’s for a good reason: They are the same global work 
queues offered by GCD (though with different DISPATCH_QUEUE_PRIORITY_* constants). 
Libdispatch actually creates two copies of each queue, with the additional copy set to over-
commit, though these are not exported to callers directly. In this way, the application’s main 
queue is really just a reference to the default queue, with overcommit set. The overcommit 
bit (which is also accessible via the undocumented pthread_workqueue_attr_[get/set]
overcommit_np) denotes that new threads may be created for this queue. This strategy is 
generally discouraged, as more threads than the CPUs can handle slow down the program. 
GCD supports the idea of overcommit through the only valid fl ag for dispatch_get_
global_queue (DISPATCH_QUEUE_OVERCOMMIT), but Apple’s documentation hides that fact 
and claims the fl ag must be zero. 

 ‰ WQOPS_THREAD_SETCONC: This controls work queue concurrency and is wrapped by 
pthread_workqueue_requestconcurrency_np().

2 GCD and libdispatch can also operate in the absence (or disablement) of work queues, in which case they 
fall to a thread pool model. This can be forced by setting the LIBDISPATCH_DISABLE_KWQ variable. 
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 ‰ WQOPS_THREAD_RETURN: This detaches from the work queue and terminates thread. It is 
wrapped by pthread’s workqueue_exit(), in a call to the internal _pthread_workq_return.

The work queue set up logic (triggered as the result of item addition) is quite unique in XNU. The 
main work is performed by wq_runitem, which calls on setup_wqthread to manually construct the 
work queue thread’s state, register by register. This is followed by waking up the thread in its new 
persona. The state setup is shown in Listing 14-4: 

LISTING 14-4: Setting a work queue thread’s state

int setup_wqthread(proc_t p, thread_t th, user_addr_t item, int reuse_thread, 
                   struct threadlist *tl)
{
#if defined(__i386__) || defined(__x86_64__)
        int isLP64 = 0;

        isLP64 = IS_64BIT_PROCESS(p);
        /*
         * Set up i386 registers & function call.
         */
              // very similar to x86_64 case, so omitted

} else {
            x86_thread_state64_t state64;
            x86_thread_state64_t *ts64 = &state64;

            ts64->rip = (uint64_t)p->p_wqthread; // Thread will resume from this point
            ts64->rdi = (uint64_t)(tl->th_stackaddr + PTH_DEFAULT_STACKSIZE + 
                                                      PTH_DEFAULT_GUARDSIZE);
            ts64->rsi = (uint64_t)(tl->th_thport);
            ts64->rdx = (uint64_t)(tl->th_stackaddr + PTH_DEFAULT_GUARDSIZE);
            ts64->rcx = (uint64_t)item;
            ts64->r8 = (uint64_t)reuse_thread;
            ts64->r9 = (uint64_t)0;

             /*
              * set stack pointer aligned to 16 byte boundary
              */
             ts64->rsp = (uint64_t)((tl->th_stackaddr + PTH_DEFAULT_STACKSIZE + 
                                     PTH_DEFAULT_GUARDSIZE) - C_64_REDZONE_LEN);

             // This had better work, or else..
             if ((reuse_thread != 0) && (ts64->rdi == (uint64_t)0))
                     panic("setup_wqthread: setting reuse thread with null pthread\n");

           // Call architecture specific thread state setting (osfmk/i386/pcb_native.c)
           thread_set_wq_state64(th, (thread_state_t)ts64);
        }
#else
#error setup_wqthread not defined for this architecture //unless you have iOS sources.
#endif
        return(0);
}
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The proc_info system call (described in detail in Chapter 5 and in the previous chapter) 
provides the PROC_PIDWORKQUEUEINFO fl avor, which displays work queues in a given process. 
This is also available through libproc’s proc_pidinfo(), and returns information as shown in 
Listing 14-5:

LISTING 14-5: The structure returned for PROC_PIDWORKQUEUEINFO

struct proc_workqueueinfo {
        uint32_t     pwq_nthreads;       /* total number of workqueue threads */
        uint32_t     pwq_runthreads;     /* total number of running workqueue threads */
        uint32_t     pwq_blockedthreads; /* total number of blocked workqueue threads */
        uint32_t     pwq_state; // new in Lion and later
};

/*
 *      workqueue state (pwq_state field)
 */
#define WQ_EXCEEDED_CONSTRAINED_THREAD_LIMIT    0x1
#define WQ_EXCEEDED_TOTAL_THREAD_LIMIT          0x2

BSD HEIRLOOMS REVISITED

Chapter 3 discussed the many technologies in OS X and iOS derived from and inspired by BSD, 
albeit from the user mode and administrator perspective. The rest of this chapter revisits these same 
technologies, but explores their kernel-level implementation in XNU.

Sysctl
BSD, like many other UNIX systems, offers a uniform interface for getting and setting kernel vari-
ables, called sysctl(8). Unlike systems such as Linux, however, this is the only way to get access to 
the variables, for lack of a user-visible fi le representation in a /proc fi le system. The sysctl command 
was discussed in Chapter 3; this section discusses its implementation. As a reminder, the sysctl
parameters are divided into the namespaces shown in the Table 14-4. With the exception of security, 
they are all defi ned in bsd/sys/sysctl.h, which is made available to user space as <sys/sysctl.h>:

TABLE 14-4: The sysctl Top-level Namespaces

SYSCTL NAMESPACE USED FOR

CTL_KERN Kernel variables and settings, such as the version string, process limits, and 

so on.

CTL_VM Virtual memory manager settings and statistics.

CTL_VFS Virtual fi le system switch settings. Discussed in Chapter 15, which deals with 

fi le systems.
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SYSCTL NAMESPACE USED FOR

CTL_NET Network settings. Subdivided into net.link.*, net.inet.*, net.inet6.*, 

and further into transport layer protocols. Discussed in Chapter 17, which 

deals with networking.

CTL_DEBUG Debug settings.

CTL_HW Hardware settings: physmem, cpufrequency, and so on. Naturally, these are 

read-only.

CTL_MACHDEP Machine-dependent settings. These diff er greatly from OS X to iOS, and are 

further subdivided into cpu, pmap, memmap, and others.

CTL_USER User-level identifi ers.

_security

(security/

mac_internal.h)

Security settings. Currently only contains one sub-namespace, mac, which 

confi gures the MAC layer. Discussed in detail in this chapter. 

XNU has two main fi les for dealing with sysctl(), bsd/kern/kern_newsysctl.c, which is the 
implementation of the architecture generic sysctls, and bsd/dev/<arch>/sysctl.c, which contains 
machine-specifi c ones (i.e. the machdep.* sysctls). Pre-SL kernels contained a ppc/ arch directory, 
and iOS likely contains an arm/ one, but the only one present in the open source version is i386/.

The sysctls are maintained in sysctl_oid structures, defi ned in bsd/sys/sysctl.h as shown in 
Listing 14-5.

LISTING 14-5: sysctl oid implementation 

struct sysctl_oid {
        struct sysctl_oid_list *oid_parent;
        SLIST_ENTRY(sysctl_oid) oid_link;
        int             oid_number;
        int             oid_kind;
        void            *oid_arg1;
        int             oid_arg2;
        const char      *oid_name;
        int             (*oid_handler) SYSCTL_HANDLER_ARGS;
        const char      *oid_fmt;
        const char      *oid_descr; /* offsetof() field / long description */
        int             oid_version;
        int             oid_refcnt;
};

New sysctls may be constructed by calling a specialized macro, SYSCTL_OID, which defi nes the 
sysctl, initializes its fi elds, and informs the linker of it. Using one of the macros built on top of it, 
however, is easier (see Table 14-5):
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TABLE 14-5: sysctl Type Declaration Macros

SYSCTL MACRO USED FOR

SYSCTL_DECL Declaring a top-level entry. XNU uses it for the types defi ned Table 13-sysc. 

Kernel extensions (for example, VMWare) use it for private namespaces.

SYSCTL_OID Raw OIDs. Seldom used directly. May specify type as “N,” “A,” “I,” “IU,” “L,” 

or “Q,” corresponding to the SYSCTL_* constants shown in this table.

SYSCTL_NODE Container nodes.

SYSCTL_STRING Leaf nodes, containing char * data. sysctl_handle_string() is called.

SYSCTL_COMPAT_INT

SYSCTL_INT

Leaf nodes, compatibility (old API) or preferred API for signed integer data

SYSCTL_COMPAT_

UINT

SYSCTL_UINT

Leaf nodes, compatibility (old API) or preferred API for unsigned integer 

data.

SYSCTL_LONG Leaf nodes, with long integer data. sysctl_handle_long() called as 

handler.

SYSCTL_QUAD Leaf nodes, with quad word data — i.e. 64-bit integers. sysctl_handle_

quad() is called as handler.

SYSCTL_OPAQUE Leaf nodes, with unspecifi ed data. Some void * with given length. 

sysctl_handle_opaque() is called as handler.

SYSCTL_STRUCT Leaf nodes, with structure data. sysctl_handle_opaque() is called as 

handler.

SYSCTL_PROC Leaf nodes, but caller specifi es own handler function.

An additional macro, SYSCTL_PROC, is used to declare leaf handlers, which are the callback func-
tions that the kernel invokes when user space issues a sysctl. Defi ning your own handler thus 
becomes a fairly straightforward matter, involving two steps:

1. Defi ne the SYSCTL_NODE by which your handler will be called: 

SYSCTL_NODE(parent, // _kern, _debug, or your own top level namespace..
            OID_AUTO, // request OID assignment by kernel
            myname, // your name 
            flags, // access: CTLFLAG_*, bitwise OR'ed
            0, // handler
            "sysctl description"); // some description

Optionally, you may want to defi ne a SYSCTL_DECL top-level namespace, as well:

SYSCTL_DECL(myname);

You may skip this step altogether if you are only adding a leaf to an already-existing 
sysctl node.

2.  Defi ne the actual sysctl leaf your handle is supposed to implement. Here, you have two 
options:
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a. Use one of the types from Table 14-5. This installs a default handler for you, and all you 
need to specify is the variable that holds the sysctl data. You lose, however, the ability 
to get a callback notifi cation on value read or change. Almost all these macros are highly 
similar. For example, if you wanted an integer, you would specify the following:

SYSCTL_INT (parent, // node created or used in step 1.
            nbr, // OID_AUTO: so as not to worry about numbers
            name, // name of leaf
            access, //CTL_* flags: _RW, _ANYBODY… etc
            ptr, // address of variable holding this data
           val, // Used if ptr is NULL. Leaf is then read-only
            descr); // textual description

b. Defi ne the leaf as a SYSCTL_PROC, specifying the handler implementation. You then 
need to implement the handler as follows:

SYSCTL_PROC(parent, // node created or used in step 1
            nbr, // OID_AUTO, as usual
            name, // name of leaf
            access, // CTL_* flags, as above
            ptr, // pointer to variable data
            arg, // argument to handler
            handler, // pointer to your own handler
            fmt, // "A", "I", "IU", … as above
            descr);

The advantage of the latter approach is in getting the notifi cation whenever some operation is 
attempted on the sysctl. This is somewhat like Linux, in which /proc and /sys fi le system handlers 
can listen in on access or changes to the exported data, and execute some operation when they occur.

Kqueues
Kqueues have been introduced into BSD, as an alternative to the poll(2)/select(2) model, which 
is deemed insuffi ciently scalable. Devised by Jonathan Lemon of the FreeBSD project[4], they are 
described as a “generic event delivery mechanism, which allows an application to select from a 
wide range of event sources, and be notifi ed of activity on these sources in a scalable and effi cient 
manner.” An emphasis is placed on the extensibility of the interface, allowing the addition of any 
number of future event sources, without changes to the programming interface. 

XNU exports two system calls for kqueues: The fi rst, kqueue (#362) creates the kqueue, which is 
basically a fi le descriptor. The second, kevent/kevent64 (#363 or #369, respectively) is used for set-
ting event fi lters and reading from the kqueue. An example of their usage was presented in Listing 3-1.

The kernel implementation of kqueues is self-contained in a single fi le, bsd/sys/kern_event.c. The 
kqueue, as a fi le descriptor, is defi ned by its fi leops, which are tied to the fi le descriptor when the 
kqueue is created. This is shown in the implementation of kqueue(2) in Listing 14-6.

LISTING 14-6: The implementation of kqueue(2), from bsd/sys/kern_event.c

int kqueue(struct proc *p, __unused struct kqueue_args *uap, int32_t *retval)
{
        struct kqueue *kq;
        struct fileproc *fp;

continues

c14.indd 555c14.indd   555 10/1/2012 6:19:12 PM10/1/2012   6:19:12 PM



Book Title   <Chapter No>   V1 - MM/DD/2010 Page 556

556 x CHAPTER 14  SOMETHING OLD, SOMETHING NEW: ADVANCED BSD ASPECTS

        int fd, error;

        // allocate file structure fp as file descriptor fd
        error = falloc(p, &fp, &fd, vfs_context_current());
        if (error) {
                return (error);
        }
        // allocate actual kqueue
        kq = kqueue_alloc(p);
        if (kq == NULL) {
                fp_free(p, fd, fp);
                return (ENOMEM);
        }

        fp->f_flag = FREAD | FWRITE; // make descriptor readable/writable
        fp->f_type = DTYPE_KQUEUE; // mark descriptor type as a queue
        fp->f_ops = &kqueueops; // tie kqueue operations to file operations
        fp->f_data = (caddr_t)kq; // tie kqueue to file structure

        // kqueue is not really backed by a file, so release unnecessary parts
        proc_fdlock(p);
        procfdtbl_releasefd(p, fd, NULL);
        fp_drop(p, fd, fp, 1);
        proc_fdunlock(p);

        *retval = fd;                // return fd to user
        return (error);
}

Both the kevent(2) and kevent64(2) calls end up using the same function, kevent_internal,
which either sets the event fi lter (if supplied), or uses Mach continuations to block until an event 
arrives. The kernel event notifi cations themselves are known as knotes, and in that respect a kqueue 
can be seen as a linked list of knotes. A knote may belong to several kqueues, and the kqueues are 
the mechanism by means of which the user fi ltering is performed.

If XNU is compiled with socket support (which it is, by default), the bsd/kern/kern_event.c fi le 
also contains the implementation of kernel event sockets. These are referred to as kevs, but are actu-
ally part of a different mechanism, called system sockets (discussed in greater detail in Chapter 17). 
The corresponding user mode header fi le, <sys/kern_event.h>, refers to system sockets, and it is 
<sys/event.h>, which contains the exports for kevents.

Auditing (OS X)
Recall the discussion of auditing in Chapter 3, from the administrator’s perspective. The chapter 
introduced the user commands of praudit(1) and the special audit device, /dev/auditpipe.
From the kernel perspective, auditing is simply a matter of lacing the system call invocation logic 
(Listing 14-7) with several macros:

LISTING 14-6 (continued)
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 ‰ AUDIT_SYSCALL_ENTER: Called right before the invocation of AUNIX system call from the 
sysent table. The macro takes three arguments: the system call code (number), the BSD pro-
cess, and thread objects responsible for the call. 

 ‰ AUDIT_ARG: Called inside the system call implementation. This takes the operation 
(argument typedef), and a variable number of arguments, corresponding to those of the 
system call.

 ‰ AUDIT_SYSCALL_EXIT: Called right after the system call implementation. Arguments are the 
same as those of ENTER, along with the return value of the system call.

LISTING 14-7: Auditing support in unix_syscall (bsd/dev/i386/systemcalls.c)

void unix_syscall(x86_saved_state_t *state)
{
   // ... 
   AUDIT_SYSCALL_ENTER(code, p, uthread);
   error = (*(callp->sy_call))((void *) p, (void *) vt, &(uthread->uu_rval[0]));
   AUDIT_SYSCALL_EXIT(code, p, uthread, error);
   // ...
}

Additional macros exist for auditing Mach traps, but those are only used when a BSD call results in 
a Mach call and, even then, for only select Mach traps.

The auditing macros are defi ned in bsd/security/audit/audit.h. The macros check the value of 
the audit_enabled global variable, so as to avoid the need for any overhead if auditing is disabled. 
The administrator can toggle the value of this variable using the auditon(2) system call with the 
A_SETCOND command.

If auditing is indeed enabled, the macros either create a new kaudit_record (eventually calling 
audit_new), or use an existing audit record, if one can be found on the BSD thread’s uu_ar fi eld. An 
audit record is fi nalized by a call to audit_commit, which moves the audit record to an audit_q.
Once the record is on the queue, the thread’s uu_ar is reset. 

In addition to placing the record in the audit_q, audit_commit also signals a condition variable, 
audit_worker_cv. Doing so wakes up the dedicated audit worker thread by continuation, and it 
processes the record (in audit_worker_process_record) by calling kaudit_to_bsm, which con-
verts it into an OpenBSM-compatible format. The record can then be directly written (from the 
kernel) to the audit fi le, submitted to any audit pipes, and, as of Lion, to the audit session devices (by 
audit_sdev_submit, in audit_session.c). It is then freed. This is shown in Listing 14-8.

LISTING 14-8: Audit worker thread record processing

/*
 * Given a kernel audit record, process as required.  Kernel audit records
 * are converted to one, or possibly two, BSM records, depending on whether
 * there is a user audit record present also.  Kernel records need be
 * converted to BSM before they can be written out.  Both types will be
 * written to disk, and audit pipes.
 */

continues
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static void audit_worker_process_record(struct kaudit_record *ar)
{
   // …

// Convert to BSM record format
   error = kaudit_to_bsm(ar, &bsm);
   switch (error) {
     /// error handling on all codes is basically a goto out
   } 

   // 
   // Write directly to the file. The audit_vp is the vnode of the audit file
   //
   if (ar->k_ar_commit & AR_PRESELECT_TRAIL) {
          AUDIT_WORKER_SX_ASSERT();
          audit_record_write(audit_vp, &audit_ctx, bsm->data, bsm->len);
      }

//
   // Send to any /dev/auditpipe instances
   //
   if (ar->k_ar_commit & AR_PRESELECT_PIPE)
          audit_pipe_submit(auid, event, class, sorf,
          ar->k_ar_commit & AR_PRESELECT_TRAIL, bsm->data,
          bsm->len);

//
   // Send to any /dev/auditsessions device instances (new in Lion) 
   // 
   if (ar->k_ar_commit & AR_PRESELECT_FILTER) {
    /*
     *  XXXss - This needs to be generalized so new filters can
     *  be easily plugged in.
     */
     audit_sdev_submit(auid, ar->k_ar.ar_subj_asid, bsm->data,
      bsm->len);
   }

        kau_free(bsm);
out:
        if (trail_locked)
                AUDIT_WORKER_SX_XUNLOCK();
}

The audit_vp is an interesting example of kernel code writing directly to fi les, without user mode 
intervention. This is a necessary shortcut, due to the security sensitive nature of auditing.

Mandatory Access Control
Chapter 3 introduced the user mode view of the Mandatory Access Control (MAC), a powerful 
security feature Apple imported from TrustedBSD. That view, however, is extremely limited, as 

LISTING 14-7 (continued)
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enforcement can be reliably carried out only by the kernel. This section discusses the implementation 
of MAC, delving deeper into its two main implementations: OS X’s sandbox and iOS’s entitlements.

MAC Policies
A MAC policy is visible to the user only as an opaque object. In the kernel, however, the policy is a 
mac_policy_conf structure, defi ned in security/mac_policy.h. A policy module is expected to 
register this structure on entry using mac_policy_register, and deregister (using mac_policy_
unregister) on exit. A MAC_POLICY_SET macro is available to emit all this code automatically, as 
shown in Listing 14-9:

LISTING 14-9: the MAC_POLICY_SET macro from security/mac_policy.h

#define MAC_POLICY_SET(handle, mpops, mpname, mpfullname, lnames, lcount, slot, lfl
ags, rflags) \
  static struct mac_policy_conf mpname##_mac_policy_conf = {      \
   .mpc_name               = #mpname,     /* Policy name */      \
   .mpc_fullname           = mpfullname,  /* Policy official name */   \
   .mpc_labelnames         = lnames,  /* Label names (char **) */     \
   .mpc_labelname_count    = lcount,  /* Count of label names */   \
   .mpc_ops                = mpops,  /* Policy operations (see below) */ \
   .mpc_loadtime_flags     = lflags, /* MPC_LOADTIME_FLAG_* constants */  \
   .mpc_field_off          = slot,   /* int * holding policy slot, or NULL */     \
   .mpc_runtime_flags      = rflags  /* only MPC_RUNTIME_FLAG_REGISTERED defined */ \
     };                                                              \
                                                                        \
        static kern_return_t                                            \
        kmod_start(kmod_info_t *ki, void *xd)                           \
        {                                                               \
                return mac_policy_register(&mpname##_mac_policy_conf,   \
                    &handle, xd);                                       \
        }                                                               \
                                                                        \
        static kern_return_t                                            \
        kmod_stop(kmod_info_t *ki, void *xd)                            \
        {                                                               \
                return mac_policy_unregister(handle);                   \
        }                                                               \
  extern kern_return_t _start(kmod_info_t *ki, void *data);       \
        extern kern_return_t _stop(kmod_info_t *ki, void *data);        \
                                                                        \
        KMOD_EXPLICIT_DECL(security.mpname, POLICY_VER, _start, _stop)  \
        kmod_start_func_t *_realmain = kmod_start;                      \
        kmod_stop_func_t *_antimain = kmod_stop;                        \
        int _kext_apple_cc = __APPLE_CC__

The key fi eld in the mac_policy_conf  structure is mpc_ops, which is a pointer the mac_policy_
ops structure. This is a gargantuan struct of well over 300 function pointers, which each policy 
module is expected to either implement, or leave NULL. The function pointers cover virtually every 
operation in the system, following a naming convention of mpo_object_operation_call, where:
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 ‰ object is the object type: fi le (really, descriptor), port, socket, sysvsem, proc, vnode (fi le)

 ‰ operation is either “label” or “check.” The “label” operation corresponds to a label related 
operation. The “check” operation corresponds to authorizing a system call or trap.

 ‰ call is, for a check, usually the name of the system call (or Mach trap) the access check 
relates to. For label, one of the stages of the label lifecycle, usually init, associate and 
destroy, and sometimes other specifi c verbs.

When XNU calls on the MAC layer to validate an operation, the MAC layer calls on the policy 
modules, in turn, for validation. All MAC checks follow roughly the same template. As an example, 
consider a highly useful mac_vnode_check_signature, which is responsible for the enforcement of 
code signing. This is shown in listing 14-10:

LISTING 14-10: mac_vnode_check_signature, from security/mac_vfs.h

int
mac_vnode_check_signature(struct vnode *vp, unsigned char *sha1,
                          void * signature, size_t size)
{
        int error;

        // if either security.mac.vnode_enforce or security.mac.proc_enforce sysctls 
        // are 0 (false), we just return 0 as well, never getting to the check.

        if (!mac_vnode_enforce || !mac_proc_enforce)
                return (0);

       // Otherwise, walk policy module list,execute mpo_vnode_check_signature for each
        MAC_CHECK(vnode_check_signature, vp, vp->v_label, sha1, signature, size);
        return (error);
}

The MAC_CHECK macro (defi ned in security/mac_internal.h) walks through the policy list to vali-
date the operation by each of the registered modules. This walk, however, will be performed only 
if the global mac_xxx_enforce checks are true. Setting any of the security.mac.xxx_enforce
variables (shown in Output 3-3) to 0 causes the resulting mac_xxx_enforce variable in the kernel to 
be false, and thus all the related checks of the subsystem to return 0 (i.e. a “go ahead”), rather than 
actually performing the check, which may result in an error.  

Recall from Chapter 3, that the MAC layer exports sysctl(2) MIB variables, which allow the 
administrator to selectively disable enforcement. Looking back at the listing, it is easy to see how 
this is performed: If either mac_vnode_enforce or mac_proc_enforce are false, then the check is 
short circuited and returns 0 (“go ahead”) on the operation.

APPLE’S POLICY MODULES

Even though the MAC framework is reasonably well documented and used by third-party software 
in FreeBSD, in OS X and iOS it mostly caters to Apple itself, due to the relative dearth of anti-mal-
ware and security software (a situation which is starting to change). MAC’s primary use in OS X is 
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for the sandbox mechanism (formerly seatbelt), and in iOS MAC enables the rigid code signing and 
entitlements which enable Apple to protect their precious from the horrors of third party code. 

Sandbox.kext
The sandbox kernel extension for OS X has been reversed by Dionysus Blazakis, who has thor-
oughly documented his fi ndings in a paper presented at BlackHat DC 2011[5]. His analysis, however, 
is for Snow Leopard’s version (34.1), as Lion was not yet released at the time. Lion’s version is con-
siderably newer (177.3), and Mountain Lion’s newer still, at 189. The iOS 5.1 version seems to be an 
almost direct port of the OS X one, with several differences:

 ‰ The iOS sandbox reports a slightly older version (154.9) than Lion’s (177.3).

 ‰ The iOS Sandbox is tightly coupled with AppleMobileFileIntegrity (discussed next).

 ‰ iOS has no qtn-* keys (required for the quarantine feature of OS X), as the system does not 
support this notion. There are also no user-preference* keys.

 ‰ By default, the sandbox restricts all third-party applications (from /private/var/mobile/
Applications) to their directory. This is the well known “jail” that jailbreakers break out 
of, by patching the sandbox evaluation logic. 

 ‰ In the OS X version, applications can be unsandboxed. This is not the case with iOS.

The sandbox kernel extension sometimes requests the services of /usr/libexec/sandboxd.
This daemon, which is started by launchd(1), claims host special port #14 (still #defined at 
HOST_SEATBELT_PORT).

As mentioned in Chapter 3, Sandbox.kext implements a tinySCHEME-like dialect for defi n-
ing authorization and operation permissions. This textual format is compiled in user mode on-
the-fl y, and then submitted to the kernel for later policy approvals. It is the role of a second kext, 
AppleMatch.kext, to perform the policy and regular expression matching.

The Sandbox policy is a static defi nition, and can be found easily thanks to the hardcoded strings 
“sandbox” and “Seatbelt sandbox policy.” Apple has graciously left these in plain text (along 
with all too many other strings!). Locating the reference to the policy name leads you to the 
policy structure, and locating the policy structure leads you straight to the sandbox initialization 
function.

The book’s companion jtool, introduced in Chapter 4, has a powerful search 
feature in Mach-O objects. This feature is exceptionally useful if you’re trying 
to fi nd strings, which can lead you to the more “interesting” parts of a binary. 
Using the –f switch, jtool can be asked to perform a fast search for a string, and 
reveal its location not only in the fi le, but also in the resulting memory segment. 
Using the -fr switch will also reveal where the string is referenced, which is usu-
ally in or around the function that uses it. 
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AppleMobileFileIntegrity.kext
iOS has a far more stringent security mechanism than its older sister. Unlike OS X, wherein 
code signing is optional, iOS will blatantly kill -9 any process that is not properly code signed. 
XNU is not to be blamed for this; it’s just following orders. The role of “bad cop” is played by 
AppleMobileFileIntegrity.kext. Like Sandbox.kext, AFMI has a henchman in user mode: 
/usr/libexec/amfid. This daemon is started from launchd, which also registers for it host special 
port #18 (HOST_AMFID_PORT). The daemon accepts messages from AMFI, and assists it with tasks 
tasks are best implemented in user mode.

Reverse engineering initializeAppleMobileFileIntegrity (which is called from the kext’s 
_Start function, and does all its work) reveals that it calls mac_policy_register, as all policy 
modules must. The policy it is mostly NULL, but contains callbacks for the following:

 ‰ mpo_vnode_check_exec: AMFI’s callback returns 1 (allowing execution for the vnode) but 
not before setting the code signing fl ags (CS_HARD and CS_KILL). This ensures that all pro-
cesses will have to go code signature checks, and can always die another later if the need arises.

 ‰ mpo_vnode_check_signature: This is the main logic of AMFI, which uses the amfid and its 
own in-kernel signature cache to validate the code signature of a fi le. If this function returns 
true, then Listing 14-10 returns true as well, and the binary is allowed. This is also why this 
check (specifi cally, the in-kernel cache check) is a favorite target for patching.

 ‰ mpo_proc_check_get_task: This protects task_for_pid calls, which as described earlier 
in this book enable obtaining the task’s port (and complete control over it). The hook checks 
two entitlements (get-task-allow and task_for_pid-allow, as well as a call to check if 
unrestricted debugging is enabled (using the amfid), and returns true if any of the above is 
affi rmative.

 ‰ mpo_proc_check_run_cs_invalid: This checks if the get-task-allow, run-invalid-
allow, or run-unsigned-code entitlements are set, or if unrestricted debugging is enabled. 
If this check returns true, cs_allow_invalid (from bsd/sys/kern_proc.c) clears the CS_
KILL, CS_HARD, and CS_VALID bits, and returns true as well, allowing unsigned code.

AMFI recognizes several boot arguments, which it parses (using PE_parse_boot_argn), that can 
disable some checks. These are listed in Table 14-6. Bear in mind, however, that there is no known 
way to pass boot-args to XNU on A5-devices and later.

TABLE 14-6: AMFI Boot Arguments

AMFI BOOT ARGUMENT USAGE

PE_i_can_has_debugger Global boot argument used throughout XNU to denote 

debugger attachment is permitted. Disables most checks.

cs_debug Disables code signing.

cs_enforcement_disable Disables enforcement of code singing; check is still per-

formed, but neutered.
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amfi_allow_any_signature Allow any signature on code, not just Apple’s.

amfi_unrestrict_task_for_pid Allow task_for_pid regardless of whether the process 

has the get-task-allow and task_for_pid-allow 

entitlements.

amfi_get_out_of_my_way Just disable AMFI altogether. Apparently Apple’s own devel-

opers get tired of AMFI’s meddling every now and then.

Other policy modules may be dynamic, but AppleMobileFileIntegrity is certainly not. Although 
the kext has a stop function, any attempt to unload it will result in a kernel panic (“Cannot unload 
AMFI — policy is not dynamic”). Likewise, if for some reason it cannot initialize, it panics the ker-
nel, complaining that “AMFI failed to initialize. This would compromise system security.”

You can locate AMFI in a manner similar to the one described for the Sandbox: Searching for 
references to “Apple Mobile File Integrity” will lead you right to initializeAppleMobileFile
Integrity, as shown in Output 14-1:

OUTPUT 14-1: Locating AMFI in the iOS 5 kernelcache using jtool

morpheus@Ergo (/)$ jtool -fr "Apple Mobile File Integrity" ~/iOS/iOS.5.0.0.kernelcache
Searching for string "Apple Mobile File Integrity" and all references to it:
 - Found at file offset: 0x5ae5ba, Memory: 0x805f15ba (Segment: __PRELINK_TEXT)
References to 0x805f15ba:
 - Reference found at file offset: 0x5a1144, Memory: 0x805e4144(Segment: __PRELINK_TEXT)

SUMMARY

This chapter discussed advanced aspects of XNU’s BSD layer. It began by reviewing BSD memory 
management, both the POSIX exported calls and the internal functions used. It further covered 
dealing with memory pressure, and touched on kernel address space layout randomization (KASLR), 
a feature soon to appear in Mountain Lion, and very likely iOS 6.

We continued with a review of the kernel perspective of several BSD features, such as sysctl(2),
kqueues and auditing. Finally, the spotlight moved to the kernel implementation of the Mandatory 
Access Control Framework (MAC), and the implementation of two important policy modules: the 
Sandbox and iOS’s AMFI.

Our discussion of the BSD layer is only beginning, as we turn our gaze towards two important sub-
systems: File Systems (Chapter 15), and Networking (Chapter 17).
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15
Fee, FI-FO, File: File Systems 
and the VFS

One of the kernel’s major responsibilities is handling data, both the user's and of the system's. 
To this end, data is organized into fi les and directories, which reside on fi le systems of various 
types. 

XNU’s BSD layer is responsible for implementing fi le systems and does so using a framework 
known as the Virtual File System Switch, or VFS. This framework, which has its origins with 
(the now deceased) Sun’s Solaris operating system, has become a standard interface used in 
UNIX between the kernel and various fi le system implementations, both local and remote.

PRELUDE: DISK DEVICES AND PARTITIONS

OS X and iOS follow the BSD convention of treating the hard disks as device nodes. Each disk 
can be accessed as a block device (/dev/disk#) or a character (raw) device (/dev/rdisk#). 
Likewise, partitions — or “slices” in UNIX-speak — can be accessed in a similar manner, 
both block and character, as /dev/[r]disk#s#.

Normally, disks and partitions are block devices. It is over the block device representation that 
the system can then mount(2) a fi le system. The raw mode is used primarily by low-level pro-
grams such as fsck(8) and pdisk(8), which need to seek and write directly to blocks. 

Disk drivers also offer a standard ioctl(2) interface, defi ned in <sys/disk.h>, to allow for 
various query operations. The header is pretty well documented and defi nes the codes shown 
in Listing 15-1.
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LISTING 15-1: The standard disk ioctl codes from <sys/disk.h>

 /* Definitions
 /*
 /* ioctl                                 description
 /* ------------------------------------- ---------------------------------------
 /* DKIOCEJECT                            eject media
 /* DKIOCSYNCHRONIZECACHE                 flush media
 /*
 /* DKIOCFORMAT                           format media
 /* DKIOCGETFORMATCAPACITIES              get media's formattable capacities
 /*
 /* DKIOCGETBLOCKSIZE                     get media's block size
 /* DKIOCGETBLOCKCOUNT                    get media's block count
 /* DKIOCGETFIRMWAREPATH                  get media's firmware path
 /*
 /* DKIOCISFORMATTED                      is media formatted?
 /* DKIOCISWRITABLE                       is media writable?
 /*
 /* DKIOCREQUESTIDLE                      idle media
 /* DKIOCDISCARD                          delete unused data
 /*
 /* DKIOCGETMAXBLOCKCOUNTREAD             get maximum block count for reads
 /* DKIOCGETMAXBLOCKCOUNTWRITE            get maximum block count for writes
 /* DKIOCGETMAXSEGMENTCOUNTREAD           get maximum segment count for reads
 /* DKIOCGETMAXSEGMENTCOUNTWRITE          get maximum segment count for writes
 /* DKIOCGETMAXSEGMENTBYTECOUNTREAD       // get max segment byte count, reads
 /* DKIOCGETMAXSEGMENTBYTECOUNTWRITE      // get max segment byte count, writes
 /*
 /* DKIOCGETMINSEGMENTALIGNMENTBYTECOUNT  get minimum segment alignment in bytes
 /* DKIOCGETMAXSEGMENTADDRESSABLEBITCOUNT get maximum segment width in bits
 /*
 /* DKIOCGETPHYSICALBLOCKSIZE             get device's block size
 /* DKIOCGETCOMMANDPOOLSIZE               get device's queue depth
 /*/

Using these is straightforward, as demonstrated by Listing 15-2:

LISTING 15-2: Using <sys/disk.h> ioctls to query information on a disk 

#include <sys/disk.h> // disk ioctls are here..
#include <errno.h>    // errno!
#include <stdio.h>    // printf, etc..
#include <string.h>   // strncpy..
#include <fcntl.h>    // O_RDONLY
#include <stdlib.h>   // exit(), etc..

#define BUFSIZE 1024

// Simple program to demonstrate use of DKIO* ioctls:
// Usage: ... /dev/disk1 or ... disk1

void main (int argc, char **argv)
{
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    uint64_t bs, bc,rc;
    char fp[BUFSIZE];
    char p[BUFSIZE];

    strncpy (p, argv[1], BUFSIZE);
    if(p[0] != '/') {
        snprintf(p, BUFSIZE -10,  "/dev/%s", p);
    }

    int fd = open(p, O_RDONLY);
    if(fd == -1) {
        fprintf(stderr, "%s: unable to open %s\n", argv[0], p);
        perror ("open");
        exit (1);
    }

    rc = ioctl(fd, DKIOCGETBLOCKSIZE, &bs);
    if (rc < 0)
        {
           fprintf (stderr, "DKIOCGETBLOCKSIZE failed\n"); exit(2); 
        }
        else {
                fprintf (stderr, "Block size:\t%d\n",bs);
        }
    
    rc = ioctl(fd, DKIOCGETBLOCKCOUNT, &bc);
    fprintf (stderr, "Block count:\t%ld\n", bc);

    rc = ioctl(fd, DKIOCGETFIRMWAREPATH, &fp);
   fprintf (stderr, "Fw Path:\t%s\nTotal size:\t%ldM\n", fp, (bs * bc) / (1024 * 1024));
    

}

Note that obtaining the disk device for ioctl() requires read permission, which is normally not 
granted to non-root (or non-group operator) users.

Partitioning Schemes
File systems do not exist on their own. They reside in partitions on the disk. Every disk has at least 
one partition, and partitions can be individually formatted to contain fi le systems. In some cases, it 
is possible to have a fi le system span multiple partitions. A partitioning scheme defi nes the disk lay-
out, logically segmenting the disk into one or more areas (hence, partitions) of contiguous sectors. 
Usually, this involves reserving the fi rst several sectors of a disk for the partition table, which lists 
the areas (starting sector and sector count) and the fi le system type of each partition.

OS X traditionally supported three partitioning schemes:

 ‰ Master Boot Record (MBR) partitioning: MBR is a legacy of the old days of the PC XT and 
AT and is still widely used today. This partitioning scheme relies on a BIOS, is very limited 
(up to four partitions), and is 32-bit (for a maximum of 4 billion sectors), but it is supported 
across the board by all operating systems.
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 ‰ Apple Partition Map: A custom, Apple-only scheme. Originally widespread in PPC-based 
Macs, it is also a 32-bit scheme and is Apple proprietary. It is now largely deprecated 
in favor of the next scheme, GPT, but still used for formatting Classic and Nano iPod 
devices.

 ‰ GUID Partition Table (GPT): A 64-bit scheme, which allows it to be used for disk sizes well 
into the exabyte range and beyond. It also effectively relieves any maximum partition restric-
tions. This is especially important: Both MBR and APT, being 32-bit schemes, allow for a 
maximum addressable 232 sectors. Given the standard sector size is 512 bytes, this allows 
for disk sizes of up to 2 TB. Apple’s default partitioning scheme has thus moved to a 64-bit 
architecture. GPT is also part of the EFI standard, which works well because Apple’s Intel 
hardware is EFI-based. 

Some 32-bit systems, however (most notably Windows XP), still cannot support GPT. OS 
X on Intel, being EFI, supports it natively. As of 10.4, and as detailed in Apple Tech Note 
TN2166[4] (“Secrets of the GPT”), GPT has been favored by Apple as the default partition-
ing scheme.

 ‰ Lightweight Volume Manager (LwVM): An Apple-proprietary partition scheme, used in iOS 
5 and later (as well as some older Apple TVs). Although it is proprietary and undocumented, 
it is fairly simple and has been reverse-engineered.

Kernel extensions can implement additional or custom partition schemes, by inheriting from IOKit’s 
IOPartitionScheme class (itself a subclass of IOStorage, which contains it). 

The MBR Partitioning Scheme
The Master Boot Record scheme, the last relic of the 16-bit days, is fast losing ground yet remains 
the default partitioning scheme in all other operating systems save OS X and 64-bit Windows. It 
is, without a doubt, the simplest partitioning scheme available. It reserves the fi rst sector of the 
disk — the boot sector — for up to 440 bytes of bootstrap code that the BIOS uses to start up 
the machine. The 440 bytes typically read through the partition table, located at offset 446, and 
jump to the beginning of the partition, the Partition Boot Record, wherein operating system–spe-
cifi c code resides. The partition table is a fi xed size — 64 bytes. This leaves only two more usable 
bytes — which are fi xed to 0x55AA — the MBR signature.

The MBR table is kept very simple. Because it is always 64 bytes, it allows for no more than four 
“primary” partition entries. Each entry is exactly 16 bytes long and describes the partition type, 
size, and address. The entries in the table provide the partition start and end address in one of 
two formats: Cylinder/Head/Sector (C/H/S) coordinates, or — more commonly — in Large Block 
Address (LBA) offsets. The latter is more often used, as the C/H/S scheme is limited to what, by 
today’s standards, are fairly small drives.

If you have a portable hard drive, chances are it is MBR-formatted, and you can try the following in 
a terminal on the raw disk device (note that you will need to be root for read access). If not, you can 
always use OS X hdiutil to create an MBR-based image, as shown in Output 15-1. (Disk images, 
or .dmg fi les, are discussed later in this chapter.) 
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OUTPUT 15-1: Creating an MBR disk image with hdiutil

root@Ergo (/)# hdiutil create -layout MBRSPUD -megabytes 64 /tmp/testMBR.dmg
...............................................................................
created: /tmp/testMBR.dmg

root@Ergo (/)# ls -l /tmp/testMBR.dmg 
-rw-r--r--@ 1 root  wheel  67108864 Jun 19 10:53 /tmp/testMBR.dmg

Using the od command, we can dump the fi le system; we care only about the fi rst block, (up to offset 
0x200):

root@Ergo (/)# od -A x -t x1    /tmp/testMBR.dmg | more
0000000    00  00  00  00  00  00  00  00  00  00  00  00  00  00  00  00
*
00001b0    00  00  00  00  00  00  00  00  00  00  00  00  00  00  00  fe
00001c0    ff  ff  af  fe  ff  ff  01  00  00  00  ff  ff  01  00  00  00
00001d0    00  00  00  00  00  00  00  00  00  00  00  00  00  00  00  00
*
00001f0    00  00  00  00  00  00  00  00  00  00  00  00  00  00  55  aa

Seeing as the image we created isn’t bootable, the fi rst 440 (0x1b8) bytes are all zero. Following 
them is an optional 32-bit disk signature (none in our case) and another reserved 2 bytes. At the 
unusual offset of 0x1be is the partition table — unusual, because it is aligned on a 16, not a 32-bit 
boundary. Each entry is 16 bytes, and in the preceding example we have only one. Examining the 
previous output, and the record format below in Figure 15-1, you should quickly reach the conclu-
sion that the partition is an HFS+ partition (0xAF), which is not bootable (0x00), starts at LBA block 
1, and spans 131,071 blocks (64 MB).

offset

Type Filesystem

0x00

0x07

0x83

0x0B

0xAF

Bootable flag (0×80)

Partition Type

.. ...

.. ...

Cylinder

Head of last sector

Sector

LBA address of first sector

Number of sectors

NTFS/ex Fat

Fat 32

Linux Ext

HFS+

Cylinder (10 bits)
Head (6 bits) of first sector
Sector (8 bits)

0x01

0x04

0x05

0x06

0x07

0x08

0x0C

Purpose

FIGURE 15-1: MBR partition format.

From the simple example provided, it should be obvious why MBR is a dying breed. It is not 32-bit 
optimized, it is limited to four primary partitions, extracting the C/H/S is not straightforward 
(requires multiple bit shifts), and the addressing and it is limited to 1023 cylinders, 63 heads, and 
254 sectors. The only thing that permits MBR’s survival so far is using LBA (Large Block Access) 
addresses of blocks, rather than C/H/S, as LBA can address up to 2 TB — but that, too, is fast 
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becoming an obstacle as disk space grows ever more abundant by the day. Apple ran into these and 
other limitations fairly early on, which is why it adopted its own partitioning scheme — the Apple 
Partition Scheme.

The Apple Partitioning Scheme
The Apple Partitioning Scheme (APM) was designed by Apple as an alternative to MBR, meant to 
address the limitation of the four primary partitions and allow for LBA. Nowadays, you’re gen-
erally less likely to run into any disks formatted with the Apple Partitioning Scheme, unless you 
have a PPC-based Mac or an iPod Classic or Nano. However, it is possible here, too, to use OS X’s 
hdiutil tool to create a DMG fi le that is APM-formatted. You can then follow along on your device 
using the commands shown here in Output 15-2:

OUTPUT 15-2: Creating and attaching an Apple Partition Map formatted disk image  

root@Minion (/)# hdiutil create -layout SPUD -megabytes 256 /tmp/testAPM.dmg
...............................................................................
created: /tmp/xx.dmg

root@Minion (/)# ls -l /tmp/testAPM.dmg 
-rw-r--r--@ 1 root  wheel  268435456 Jun 19 07:13 /tmp/testAPM.dmg

root@Minion (/)# hdid –nomount /tmp/testAPM.dmg
/dev/disk4               Apple_partition_scheme              
/dev/disk4s1             Apple_partition_map                 
/dev/disk4s2             Apple_HFS

root@Minion (/)# diskutil partitionDisk disk4 APM HFS+ "Test HFS+" 25% hfsx \
                      "Test HFSX" 25% jhfs+ "Journaled+" 25% free "ignored" 25%
Started partitioning on disk4
Unmounting disk
[  \   \   \   \   \   \   \   \   \   \   \   \   \   \  ] 
[  \   \   \   \   \   \   \   \   \   \   \   \   \   \  ] 
Creating partition map
Waiting for disks to reappear
Formatting disk4s2 as Mac OS Extended with name Test HFS+
Formatting disk4s3 as Mac OS Extended (Case-sensitive) with name Test HFSX
Formatting disk4s4 as Mac OS Extended (Journaled) with name Journaled+
[ / 0%..10%..20%..30%..40%..50%..60%..70%..80%........... ] 
Finished partitioning on disk4
/dev/disk4
   #:                       TYPE NAME                    SIZE       IDENTIFIER
   0:     Apple_partition_scheme                        *268.4 MB   disk4
   1:        Apple_partition_map                         32.3 KB    disk4s1
   2:                  Apple_HFS Test HFS+               67.1 MB    disk4s2
   3:                 Apple_HFSX Test HFSX               67.1 MB    disk4s3
   4:                  Apple_HFS Journaled+              67.1 MB    disk4s4
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root@Minion (/)# hdid -nomount /tmp/testAPM.dmg/dev/disk4
               Apple_partition_scheme 
/dev/disk4s1             Apple_partition_map                 
/dev/disk4s2             Apple_HFS                           /Volumes/Test HFS+
/dev/disk4s3             Apple_HFSX                          /Volumes/Test HFSX
/dev/disk4s4             Apple_HFS                           /Volumes/Journaled+

You might also want to take a look at IOApplePartitionScheme.h in the 
IOStorageFamily driver (http://www.opensource.apple.com/source/
IOStorageFamily/IOStorageFamily-24/IOApplePartitionScheme.h).

In the example, we created a 256 MB disk image, initially with one partition, and then repartitioned 
it to three — each containing a separate fi le system type. Because the partition map itself uses up a 
partition (in the preceding example, /dev/disk4s1), we end up with four partitions, the usable ones 
being /dev/disk4s2 through /dev/disk4s4. Technically, there is one more partition — to hold the 
free space, as there is a requirement in APM that all blocks on the disk be covered by a partition. 
The free space, however, is not accessible as a device node (that is, there is no /dev/disk4s5 in the 
preceding example).

At the disk level, APM reserves the fi rst block of the disk, block 0, for a special Driver Descriptor 
Map. This block 0, as defi ned in <IOStorage/IOApplePartitionScheme.h>, is identifi able by a 
fi xed signature of ER (0x4552). The block is left largely unused, with the structure occupying only 
82 out of the 512 of the block bytes. Typically, most of the structure fi elds are left as zero as well, 
with the only two important ones being the signature, blocksize, and block count, as you can see in 
Figure 15-2.

typedef struct Block0 {

UInt16 sbSig;  /* (unique value for block zero, 'ER')*/

UInt16 sbBlkSize;  /* (block size for this device)  */

UInt32 sbBlkCount /* (block count for this device)  */

UInt16 sbDevType; /* (device type) */

UInt16 sbDevId;  /* (device id) */

UInt32 sbDrvrData; /* (driver data) */

UInt16 sbDrvrCount; /* (driver descriptor count) */

DDMap sbDrvrMap[8]; /* (driver descriptor table) */

root@Ergo (/)# od -A x -t x1 /dev/disk4 | head -3
0000000    45  52  02  00  00  08  00  00  00  00  00  00  00  00  00  00
0000010    00  00  00  00  00  00  00  00  00  00  00  00  00  00  00  00
*    (rest is all zeroed out) 

FIGURE 15-2: APM’s Block 0 
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As you can see from the previous example, our disk block size is 512 bytes (0x0200), and the disk 
contains 524,288 (0x80000) blocks — which is right on the mark, for a total of 256 MB.

The partition map can be found in the fi rst block (offset 0x200 for a 512-byte block size). Each entry 
in it occupies one block. If you count one entry for the map itself, and another for the free space 
(Apple_Free), there will always be two more entries than usable partitions for example, fi ve entries 
for the three in our example. (See Figure 15-3.)

bash-3.2# od -A x -t xl /dev/disk4
00000000 45 52 02 00 00 08 00 00 00 00 00 00 00 00 00 00
00000010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
...
0000200 50 4d 00 00 00 00 00 05 00 00 00 01 00 00 00 3f
0000210 41 70 70 6c 65 00 00 00 00 00 00 00 00 00 00 00
0000220 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0000230 41 70 70 6c 65 5f 70 61 72 74 69 74 69 6f 6e 5f
0000240 6d 61 70 00 00 00 00 00 00 00 00 00 00 00 00 00
0000250 00 00 00 00 00 00 00 3f 00 00 00 03 00 00 00 00
0000260 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
*

0000400 50 4d 00 00 00 00 00 05 00 00 00 04 00 02 00 00
0000410 54 65 73 74 20 48 46 53 2b 00 00 00 00 00 00 00
0000420 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0000430 41 70 70 6c 65 5f 48 46 53 00 00 00 00 00 00 00
0000440 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0000450 00 00 00 00 00 02 00 00 40 00 00 33 00 00 00 00
0000460 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
*

Physical block start: 64 blocks

5 Map Entries:
Partition Map (1)
Partitions (3)
Free space (1)

Physical block start: 1 block (0×200)

Type: Apple_ HFS Size: 0×20000 blocks (64MB) Flags:
Valid, Allocated (0×03)
Readable Writeable (0×30)
Reserved  (0×40000000) 

Name: Test HFS+

Signature: PM

Size: 0×0000003F (31.5K)

Name: Apple

Type:
Apple_Partition_Map

Flags:
Valid, Allocated (0×03)

FIGURE 15-3: Apple Partition Map

The GPT Partitioning Scheme
The Globally Unique Identifi er Partition Table (GUID PT, or GPT, for short), was developed as 
part of the Extensible Firmware Interface specifi cation. When Apple moved to an Intel-based 
architecture, it made sense to adopt GPT rather than modify APM for larger disks. Indeed, Apple’s 
Tech Note TN2166 effectively deprecated APM, stating that Apple could imagine disks with 2 TB 
becoming standard. While still ahead of its time, GPT is now used in OS X and in iOS alike.

GPT is fully specifi ed as part of the Extensible Firmware Interface standard. EFI has already been 
discussed in detail in Chapter 6. The full specifi cation of EFI also provides comprehensive detail of 
GPT. The system administration command gpt(8) can be used to manipulate GPT tables (although 
only to add/remove/label partitions, not resize them). (See Output 15-3.)

c15.indd   572c15.indd   572 10/1/2012   2:37:48 PM10/1/2012   2:37:48 PM



Prelude: Disk Devices and Partitions x 573

OUTPUT 15-3: The output of gpt(8). –v prints the fi rst line, with device details

root@ergo (/)# gpt  -v show -l /dev/disk0s1
gpt show: /dev/disk0s1: mediasize=209715200; sectorsize=512; blocks=409600
   start    size  index  contents
       0       1         MBR
409599         

To provide some backward compatibility with MBR, the fi rst sector (LBA 0) of any GPT-
formatted disk contains a “protective MBR.” This defi nes for legacy operating systems 
the entire disk as an unknown partition (type 0xEE), thus preventing misclassifi cation as an 
unformatted disk.

The actual GPT resides in the second sector (LBA 1). This sector contains the GPT header, 
which begins with the GPT magic string EFI PART (0x45 0x46 0x49 0x20 0x50 0x41 0x52 
0x54) and contains the partition map details. Following the header is the partition map, which 
is simply an array of entries. These structures are defi ned in the IOKit framework’s storage/
IOGUIDPartitionScheme.h, as illustrated in Listing 15-3. 

LISTING 15-3: The GPT header, from the IOKit framework’s storage/IOGUIDPartitionScheme.h

struct gpt_hdr
{
    uint8_t  hdr_sig[8];
    uint32_t hdr_revision;
    uint32_t hdr_size;
    uint32_t hdr_crc_self;
    uint32_t __reserved;
    uint64_t hdr_lba_self;
    uint64_t hdr_lba_alt;
    uint64_t hdr_lba_start;
    uint64_t hdr_lba_end;
    uuid_t   hdr_uuid;
    uint64_t hdr_lba_table;
    uint32_t hdr_entries;
    uint32_t hdr_entsz;
    uint32_t hdr_crc_table;
    uint32_t padding;
};

struct gpt_ent
{
    uuid_t   ent_type;
    uuid_t   ent_uuid;
    uint64_t ent_lba_start;
    uint64_t ent_lba_end;
    uint64_t ent_attr;
    uint16_t ent_name[36];
};
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GPT partitions can be named (or “labeled”), which allows for more fl exibility when defi ning boot 
partitions. This avoids unbootable system scenarios that may result from rearranging the partitions 
or adding/removing disks.

Lightweight Volume Manager
The Lightweight Volume Manager (LwVM) is an Apple-proprietary partitioning scheme, which has 
inherited GPT as the default in iOS 5. It is conceptually somewhat similar to GPT but allows for 
partition encryption as well.

The proprietary format has been reverse-engineered by the developers of OpeniBoot and is known 
to be somewhat similar to Listing 15-4:

LISTING 15-4: The LwVM header

#define MAX_PARTITIONS     12

struct LwVM_MBR
{
  guid_t magic;             // One of two LwVM Magic "types"
  guid_t guid;              // 128-bit GUID for this device
  uint64_t mediaSize;       // Media size
  uint32_t numPartitions;   // Number of partitions defined (<= MAX_PARTITIONS)
  uint32_t crc32;           // CRC-32, if specified by a CRC-32 type.
  uint8_t padding[464];     // Padding to 512-byte block 
} ;

// First block is followed by up to MAX_PARTITIONS records (of which
// numPartitions are actually defined)

struct LwVMPartitionRecord {
   guid_t   magic;            // Magic of partition, as per GPT
   guid_t   guid;             // GUID of partition, generated per device
   uint64_t startSector;
   uint64_t endSector;
   uint64_t attributes;
   char partitionName[64];
} ;

// The two types defined in iOS 5.0 iPod4,1: (0x80887910, 0x80887920)

#define LWVM_MAGIC { 0x6A, 0x90, 0x88, 0xCF, 0x8A, 0xFD, 0x63, 0x0A, 0xE3, 0x51, 
0xE2, 0x48, 0x87, 0xE0, 0xB9, 0x8B } 

#define LWVM_NO_CRC_MAGIC { 0xB1, 0x89, 0xA5, 0x19, 0x4F, 0x59, 0x4B, 0x1D, 0xAD, 
0x44, 0x1E, 0x12, 0x7A, 0xAF, 0x45, 0x39 } 

The only known attribute is encrypted, which specifi es that the partition is encrypted and needs to be 
decrypted by the kernel.

For example, consider the output of od(1) in Output 15-4 on an iOS 5 system from a 64 GB device 
(the author’s iPod Touch 64GB), with two partitions.
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OUTPUT 15-4: The output of od(1) from an iOS 5 64 GB iPod, with LwVM fi elds highlighted and 
explained

root@Podicum (/)# od –A x -t x1  /dev/rdisk0  | more

0000000 6a 90 88 cf 8a fd 63 0a e3 51 e2 48 87 e0 b9 8b
0000010 a8 e9 b0 f0 ba 20 bf cc d5 bd f8 46 d5 b1 76 58
0000020 00 80 34 09 0f 00 00 00 02 00 00 00 ad ab 86 28
0000030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

*

0000200 48 46 53 00 00 00 11 aa aa 11 00 30 65 43 ec ac
0000210 8f 52 e0 a1 a1 1f 4a 88 e1 1a fc e7 8c b0 60 6a
0000220 00 80 00 00 00 00 00 00 00 e0 04 67 00 00 00 00
0000230 00 00 00 00 00 00 00 00 53 00 79 00 73 00 74 00
0000240 65 00 6d 00 00 00 00 00 00 00 00 00 00 00 00 00
0000250 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
*        
0000280 48 46 53 00 00 00 11 aa aa 11 00 30 65 43 ec ac
0000290 f0 ab dd 89 55 24 33 6f 24 d8 51 7b 11 af db f4
0000300 00 e0 04 67 00 00 00 00 00 80 00 e8 0e 00 00 00
0000310 00 00 00 00 00 00 01 00 44 00 61 00 74 00 61 00
0000320 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

          Attributes (first partition -  none, second partition encrypted)

LwVM is handled in iOS by a dedicated kernel extension, LightweightVolumeManager.kext (com
.apple.driver.LightweightVolumeManager), which, like all kexts in iOS, is prelinked into the 
kernel.

CoreStorage
CoreStorage is a new partition type, introduced in Lion, which brings to OS X the much-needed 
support for logical volume management. CoreStorage partitions are logical volumes that can be 
dynamically extended or shrunk, allowing them to span several partitions. CoreStorage also enables 
full disk encryption (commonly referred to as FDE), and is required if FileVault 2’s features are to 
be used. CoreStorage volumes may be created on GPT drives only, and HFS+ partitions must be 
journaled.

At present, the CoreStorage volume format is undocumented, though supported as of Lion. 
Partitions may be created with diskutil(8), which has a new “corestorage” sub-command, 
wherein the commands shown in Output 15-5 may be used:

OUTPUT 15-5: CoreStorage verbs supported in Mountain Lion

root@simulacrum (/)# diskutil corestorage
Usage:  diskutil [quiet] coreStorage|CS <verb> <options>,
        where <verb> is as follows:

     list                     (Show status of CoreStorage volumes)
     info[rmation]            (Get CoreStorage information by UUID or disk)

LWVM Magic 128-bit

Device GUID
CRC-32

# of partitions
Media Size (61,587MB, for a 64G iPod)

HFSX Magic GUID
Partition GUID

"System"

HFSX Magic GUID

Partition GUID

"Data"

continues
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     convert                  (Convert a volume into a CoreStorage volume)
     revert                   (Revert a CoreStorage volume to its native type)
     create                   (Create a new CoreStorage logical volume group)
     delete                   (Delete a CoreStorage logical volume group)
     createVolume             (Create a new CoreStorage logical volume)
     deleteVolume             (Delete a volume from a logical volume group)
     encryptVolume            (Encrypt a CoreStorage logical volume)
     decryptVolume            (Decrypt a CoreStorage logical volume)
     unlockVolume             (Attach/mount a locked CoreStorage logical volume)
     changeVolumePassphrase   (Change a CoreStorage logical volume's passphrase)
diskutil coreStorage <verb> with no options will provide help on that verb

The encryptVolume and decryptVolume verbs are new in Mountain Lion. The deleteVolume com-
mand was present in Lion, though undocumented. Additionally, addDisk, resizeDisk, resizeVol-
ume, resizeStack, and removeDisk — undoubtedly all very useful, remain undocumented in both. 
If you try them, however, help on their usage will be displayed. 

Conversion of a volume to CoreStorage is reversible (and may be undone using the revert verb), so 
long as encryption isn’t involved.

In addition to diskutil, the fsck_cs(8) command is also provided as of Lion to check and 
repair CoreStorage partitions. The actual partition handling logic is provided by a kernel exten-
sion CoreStorage.kext, (also known as com.apple.driver.CoreStorage), with an addition 
CoreStorageFsck plug-in kext. 

Using the gpt(1) command on a CoreStorage disk can display the partition structure. Output 15-6 
shows the result of this command (on Snow Leopard, which does not support CoreStorage) on a 
CoreStorage formatted disk:

OUTPUT 15-6: Running gpt on a CoreStorage formatted disk

root@Ergo (/)# gpt show /dev/disk3
     start      size  index  contents
         0         1         PMBR
         1         1         Pri GPT header
         2        32         Pri GPT table
        34         6         
        40    409600   1  GPT part - C12A7328-F81F-11D2-BA4B-00A0C93EC93B  # EFI System
    409640   3847656   2  GPT part - 53746F72-6167-11AA-AA11-00306543ECAC  # CoreStorage
   4257296    262144   3  GPT part - 426F6F74-0000-11AA-AA11-00306543ECAC  # Apple Boot
   4519440  27183567                                                       # Free Space
  31703007        32         Sec GPT table
  31703039         1         Sec GPT header

Inspecting partitions directly through their raw device reveals the structures associated with 
CoreStorage:

 ‰ The GPT GUID associated with CoreStorage is 53746F72-6167-11AA-AA11-00306543ECAC.
Viewed through the lens of od –x, this would appear as 6f72 5374 6167 11aa 11aa 3000 
4365 acec.

OUTPUT 15-5 (continued)
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 ‰ The CoreStorage volume GUIDs also appear in the CoreStorage partition header. The GUIDs 
of the logical volume and the volume group are located at offset 304 and 320, respectively. 

 ‰ The CoreStorage partition is actually an HFS+ fi le system implementation (HFS+ is covered 
in great detail in Chapter 16). It is not directly mountable, however, and mostly contains fi les 
intended for use by Spotlight. The hfsleuth tool on the book’s companion website, which is 
specifi cally suited for debugging and showing HFS+ fi le system structures, can also be used to 
display CoreStorage partitions.

Reverse engineering CoreStorage, for the purposes of extending it outside OS X, is an ongoing proj-
ect. You are welcome to check the book’s companion website for the latest status and information. 

GENERIC FILE SYSTEM CONCEPTS

Although different fi le systems take totally different approaches to managing fi les on the disk, all 
generally work with the same primitives. The kernel interface to fi les, called the Virtual FileSystem 
Switch (VFS) builds on these concepts.

Files
It should come as no surprise that the most fundamental concept in a fi le system is that of the fi le 
itself. A fi le, from the fi le system’s point of view, is one or more arrays of blocks on the underlying 
media (disk, CD-ROM, or other). In the optimal case, a fi le would be a single, contiguous sequence 
of blocks. More often than not, however, fi les span multiple block ranges. These are generally 
referred to as extents. HFS+ also defi nes clumps, which are the default allocation blocks provided to 
a fi le when it is allocated or expanded.

Regardless of fragmentation, the fi le system must present the appearance of a fi le as a contigu-
ous, freely seekable (random access) area. The requestor need not know anything of the underlying 
implementation. Indeed, some fi le systems are entirely virtual (such as Linux’s /proc) while others 
can be mapped over the network (such as NFS or AFS). The requestor therefore obtains only a fi le 
descriptor (the int fd returned from open(2) or the FILE * returned from fopen(3)), but treats 
this is an opaque handle. The kernel, when serving the fi le requests, translates the handle into an 
identifi er in the fi le system. 

Extended Attributes
In addition to the normal fi le attributes, XNU’s VFS supports the notion of extended attributes. 
These are user (or system) defi ned attributes, which can contain information used by applica-
tions, or — in many cases — the system itself. Extended attributes are used in Darwin to support 
advanced features, such as transparent compression and forks (both discussed in the next chapter), 
as well as Access Control Lists (discussed next).

Permissions
Not all fi les are created equal. Some fi les contain potentially sensitive information, and every self-
respecting fi le system (with the exception of the FAT family) must support permissions. UNIX fi le 
systems, which Mac’s native HFS+ is one of, support the traditional user/group/other read/write/
execute model. This is a fairly primitive model, as it only allows you to set permissions for a single 
user and a single group — casting everybody else into the “other” category. 
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As of OS X 10.4, however, VFS, adds support for fi ner-grained permissions, similar to the well-
known NTFS permissions, but complying with the POSIX 1.e security standard. These are com-
monly referred to as Access Control Lists, or ACLs. OS X allows the setting and modifi cation of 
ACLs using chmod(1). The access control lists can be displayed using ls(1) –e. Files with ACLs 
appear in the output of ls(1) –l with a plus (+) sign. VFS relies on extended attributes to support 
ACLs, and their enforcement is performed by a separate mechanism called KAUTH (bsd/kern/
kern_authorization.c).

Timestamps
A fi le system needs to record timestamps for the various fi les it contains. UNIX calls for three time-
stamps to be maintained: Creation, Modifi cation, and Access. These are the familiar -acm switches 
from the touch(1) command and can be displayed with ls(1) when using –u (access), -U (creation), 
or neither (modifi cation).

Shortcuts and Links
Most UNIX users are familiar with links, both soft (also called “symbolic”) and hard. Soft links are 
created with ln(1) –s, whereas their hard siblings are created without the switch. From the VFS 
perspective, a soft link is a different fi le (i.e. another inode), of type l, containing the name of the fi le 
pointed to. Hard links, on the other hand, are another directory entry, pointing to the same underlying 
fi le (or, as you will see from the VFS perspective, the same inode). Another way of looking at it is that 
hard links exist at the directory level, whereas soft links exist at the fi le level. (See Figure 15-4.)

Filej Inodej

HL to Filej

SL to Filej

Inodej’s data blocks

Inodej

Inodek

Inodek’s data blocks

(name of Filej)

Directory diri

Type:l

The directory is, conceptually, a table of directory
entries, mapping file names to file identifiers (inode #s)

The contents of any given file are
accessed through their inode

A soft link is a separate file (and thus, inode) of type ‘l’,
whose contents point to the file name (i.e. directory entry) 

A hard link is merely another directory
entry, which points to the same inode

FIGURE 15-4: Visualizing hard and soft (symbolic) links

Hard links provide a mechanism, as soft links do, for setting up shortcuts to fi les. Unlike soft links, 
however, hard links prevent the accidental deletion of a fi le, as a fi le will only be removed from 
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the fi le system when the very last link to it has been removed. Table 15-1 illustrates the differences 
between the link types: 

TABLE 15-1: Hard and Soft Links Compared

SOFT HARD

Inode  Diff erent directory entry (dentry) to 

diff erent inode, containing name

Diff erent dentry to same inode

Scope Across fi le systems Same fi le system

Directories Linkable Offi  cially, no (only “.” and ”..“). 

In practice, implementations diff er

On target rm/mv Soft link breaks Hard link persists

On target recreation Soft link “heals” Hard link points to “old” fi le.

Find with find –L -samefile <target> find –samefile <target>

find –inum <targetinodenum>

A detailed discussion on symbolic and hard links can be found in the manual page for symlink(7).

FILE SYSTEMS IN THE APPLE ECOSYSTEM

OS X and iOS both support myriad fi le systems. Essentially, any number of fi le systems can be sup-
ported, thanks to the kernel’s modularity, as long as they all adhere to the standard kernel of VFS 
(which is described next). In this section, we detail those fi le system types.

Unless otherwise stated, fi le systems can be loaded with a mount_xxx command (with xxx being 
the name of the fi le system in question). The actual fi le system support is provided by a kernel 
extension (from /System/Library/Extensions, usually named xxxfs.kext). An additional direc-
tory, /System/Library/Filesystems, holds subdirectories for the specifi c fi le systems, in which 
corresponding “util” binaries are provided for fi le system maintenance.

Native Apple File Systems
Apple has traditionally used its own fi le systems as far back as the earliest days of the Mac. Support 
for these fi le systems is still present in OS X.

Hierarchical File System (HFS)
The Hierarchical File System (HFS) was the native fi le system structure developed by Apple to use 
in the early days of Mac OS, before the present age of OS X. Nowadays, it's an obsolete fi le system, 
having been superseded by HFS+, described next.

Hierarchical File System Plus (HFS+)
As disk storage increased exponentially, HFS proved to be a very limited fi le system. This called 
on Apple to develop quite a few extensions to overcome the limitations, and provide for better, full 
32-bit and potentially 64-bit functionality. The result of these improvements is Hierarchical File 
System Plus (HFS+).
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HFS+ has been, and at the time of writing still is, the native fi le system on Apple’s products. From 
the lowly iPod Nanos through the iPads and Macs, HFS+ (or its case-sensitive variant, HFSX) is 
widely used. Because it is so ubiquitous, this book dedicates the entire next chapter to unraveling its 
inner workings.

Outside Apple’s products, the adoption of HFS+ is low, not to say virtually non-existent. There 
are various implementations of HFS+, most notably for Linux and Windows (including one 
written by the author, but remaining closed source), but as a whole the fi le system has very limited 
adoption.

HFS+ and its variant, HFSX, are both supported in OS X natively, as part of the kernel. The imple-
mentation is in XNU’s bsd/hfs directory.

DOS/Windows File Systems
The non-Apple world has always been dominated by Microsoft — and likewise its fi le systems 
were the de facto standard. Apple had little choice but to support these systems in Mac, and still 
does, to the present day.

File Allocation Table (FAT)
The File Allocation Table (FAT) is one of the simplest and oldest fi le systems in use. Because of its 
relatively low overhead in small volumes, it was the fi le system of choice back in the days of fl oppy 
disks, and — as a result of its simple implementation — is still widely used in mobile media, such as 
SD cards and most USB fl ash drives.

The most recognizable trait of FAT is its short fi le names — what became to be known as 
“8.3” — wherein the fi le name is limited to eight characters, and an optional extension, up to 
three characters. Another limitation of the basic FAT is that it is limited to 2 GB, and — even if 
stretched — cannot go past 4 GB volumes, which are paltry by today’s standards. 

Over the years, Microsoft, the chief developer of FAT, found itself bogged down in the quagmire 
of backward compatibility. This led to FAT being modifi ed into various variants. From the original 
FAT-12 (a 12-bit fi le system suited for use in the 1980s era of 640 k), through FAT-16, or simply, 
“FAT,” which was the native fi le system in most incarnations of DOS. Windows 95 brought along 
VFAT (to accommodate long fi le names), followed by FAT-32 (to overcome the measly 2–4 GB 
volume size, and raise the bar to 2 TB).

FAT, in all of its basic variants discussed so far, is supported in OS X by means of the msdosfs
kernel extension.

Since FAT-32, the most popular FAT type, is still limited to 2 TB volumes — and larger hard drives 
are presently available — it is being phased out in favor of ExFAT, a new system with a theoretical 
limit of 64 ZetaBytes. Because 1 ZetaByte is 270 bytes (or one Giga-TeraByte), ExFAT should last for 
a while. ExFAT has been especially designed for Flash drives, taking into consideration the limita-
tions of the Flash medium.

Mac OS X supports ExFAT as of later releases of Snow Leopard and Lion, with the exfat kernel 
extension and the mount_exfat(8) command.
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NT File System (NTFS)
Windows NT was Microsoft's fi rst multiuser operating system, and FAT (back then, in its 16-bit incar-
nation) proved vastly inadequate for its needs. The main features missing from FAT were permissions
and quotas. Permissions were required to allow discretionary access control to fi les. Quotas are a 
mechanism to restrict users from abusing a shared fi le system and cluttering it up with too many fi les.

To meet both ends, Microsoft introduced the NT File System, which has become the native fi le sys-
tem in all its operating systems as of Windows 2000. 

Apple provides a driver for NTFS — ntfs.kext — but it only supports read-only operations. (Snow 
Leopard had experimental write, but Lion seems to have disabled it.) Both commercial and freeware 
drivers for NTFS exist, offering the much needed full read-write capability.

CD/DVD File Systems
CDs and DVDs have used their own proprietary fi le systems, depending on media type and usage.

The CD-Audio File System (CDDAFS)
Audio CDs can be mounted just like CD-ROMs. The audio tracks themselves appear as fi les, in 
AIFF format. A “cat” on the AIFF fi les provides the raw CD data (which is how iTunes can rip, or 
“import” CD tracks into its library).

If the iTunes database can be consulted, the fi les actually have the same names as the audio track 
they correspond to, and the volume is named like the CD (a wicked cool feature for command line 
users, in one writer’s humble opinion). Otherwise, the generic “Audio CD” is used for the volume 
name, and “# Audio Track” for the tracks (with # being the track number). The track name resolu-
tion is done in user mode (as one would expect), and the names are passed to the mount_cddafs(8)
utility as arguments.

The mounted CD fi le system has an additional, hidden fi le, .TOC.plist, which is generated by the 
kext (CreateNewXMLFile() in AppleCDDAFileSystemUtils.c). The fi le is an XML .plist con-
taining the CD sessions (usually only one) and track listing. Output 15-7 shows such a CD listing:

OUTPUT 15-7: A CDDA FS 

morpheus@Ergo (/)$ ls -a /Volumes/Favorite\ Piano\ Concertos/
.       .TOC.plist             2 Saint-Saëns Op. 29.aiff
..      1 LVB Op. 61a.aiff     3 Bruch Op. 88b.aiff
morpheus@Ergo (..ertos/)$ file 1\ LVB\ Op.\ 61a.aiff 
LVB Op. 61a.aiff: IFF data, AIFF-C compressed audio
morpheus@Ergo (/)$ head .TOC.plist
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/
DTDs/PropertyList-1.0.dtd">
        <plist version="1.0">
        <dict>
        <key>Format 0x02 TOC Data</key>
        <data>
        AGUBAQEAKAAAA.. // Base 64 encoded data, followed by track "map"
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CD-ROM File System (CDFS/ISO-9660)
The CD-ROM File System is supported in the cd9660.kext kernel extension. It is loaded by the 
mount_cd9660 program. “9660” refers to the ISO standard of the same number, which defi nes the 
format used by CD-ROMs (or, at least when CD-ROMs were still widely used).

Universal Disk Format (UDF)
UDF is a fi le system format developed for DVDs. UDF exists in several versions. Mac OS X supports 
all of them — up to and including the latest, 2.60, as of Tiger. 

Network-Based File Systems
Network fi le systems are used to extend storage to reach beyond the local host, and onto remote 
hosts, which may be on the local area network or on the far side of the Internet. 

Up until Snow Leopard, OS X used the private frameworks of URLMount and URLAccess, but 
have since shifted to a public NetFS framework. (Snow Leopard still contains the private frame-
works, but Lion drops them.)

Apple Filing Protocol
Apple’s own Apple Filing Protocol (AFP) was the default network fi le system in Mac OS 8 and 9, 
where it was known as AppleShare. This is an application protocol, originally carried over Apple’s 
proprietary AppleTalk protocol (before Apple joined the rest of humanity in embracing TCP/IP). It 
currently uses TCP ports 427 or 528.

AFP has undergone several revisions, with version 3.0 being released along with the fi rst versions of 
OS X server. Since then, it has been further revised to work in conjunction with HFS+’s extended 
attributes, and, more recently, Apple’s Time Machine for backups. 

AFP URLs adopt the form afp://. In the mount(8) and df(1) commands, AFP fi le systems appear 
as afp_xxx in Output 15-8

OUTPUT 15-8: AFP fi le system mount

morpheus@Ergo (/)$ df
File system                        512-blocks      Used Available Capacity  Mounted on
/dev/disk0s2                       489562928  471302120  17748808    97%    /
..
afp_0W9DWS1qQM2m00kG0H0Pyetl-1.300 1949330784 1556003544 393327240  80%  /Volumes/Nexus

Network File System
Network File System (NFS) is a veteran application level protocol that was developed back in the 
day by Sun Microsystems (now a division of Oracle). NFS, which started life as RFC 1094, under-
went several revisions before becoming the de facto standard network fi le system of choice in UNIX 
with NFSv3 (RFC 1813), and later with NFSv4 (RFC 3010). It has rather recently received improve-
ments for clusters, with NFSv4.1 (RFC 5661). 
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Mac OS supports NFSv3 natively, as part of XNU in the bsd/nfs/ directory. Snow Leopard pro-
vided partial support for NFSv4, and Lion claims full support.

Server Message Block (SMB/CIFS/SMB2)
Microsoft’s network fi le system implementation is built on top of the Server Message Block proto-
col, or SMB. This protocol, which originated in the good old days of LAN Manager and NetBIOS 
(i.e., the 1980s!) is still backward compatible, and relies on NetBIOS (an even more archaic proto-
col, RFC1001-1002, which predates DNS for naming services).

Microsoft rebranded SMB as the rather ambitious Common Internet File System (CIFS), which is by 
no means common on the Internet but defi nitely makes for a more catchy acronym. The differences 
between the two are minor, with the major difference being the ability to run natively over TCP 
(port 445) and do without NetBIOS.

Even reincarnated as CIFS, SMB is still woefully ineffi cient, primarily due to many messages associ-
ated with each transaction. With Vista, the protocol has been further modifi ed, and — back to its 
origin — is now known as SMB2.

SMB and CIFS are both supported with smbfs.kext, which handles all the SMB client requests.

For server features, prior to Lion, Apple has relied on SAMBA, an open source package, to allow OS 
X to emulate Windows in serving shares. This support has been discontinued with Lion, primarily 
due to licensing issues associated with the GNU Public License (GPLv3). Lion now supports SMB 
using an Apple proprietary implementation, called SMBX. The binary (/usr/sbin/smbd) has been 
completely rewritten.

File Transfer Protocol
FTP (RFC959), is one of the Internet’s oldest protocols. In the 1980s and early 1990, it accounted 
for the most traffi c, but has since been pushed back by HTTP and SMTP. OS X still offers support 
for it and even abstracts it so that instead of the usual get and put of an FTP client, FTP server fi les 
can be made visible as regular fi les on an FTP fi le system.

Web Distributed Authoring and Versioning 
Web Distributed Authoring and Versioning (WebDAV) is a proposed extension to HTTP, which 
adds to the latter various methods that can be used to upload fi les (via PUT), create folders (MKCOL), 
and search (PROPFIND). Originally defi ned in RFC2518, WebDAV was criticized for security issues, 
but has become increasingly more popular with the advent of the Cloud computing infrastructures. 
Slightly modifi ed in RFC4918, it serves as the basis for many web-borne fi le systems, most notably 
Microsoft’s Web Folders, Amazon’s S3 services, and Apple’s (now defunct) MobileMe.

Pseudo File Systems
Pseudo fi le systems aren’t fi le systems at all. Rather, they can be seen as one of two types:

 ‰ A fi le-based interface to kernel data structures and devices: Linux-savvy readers are no 
doubt familiar with Linux’s /proc and /sys, which provide a plethora of diagnostic data 
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and kernel parameters. Other UNIX-philes likely know /dev, by means of which the kernel 
exposes its various device drivers. 

 ‰ File system components: These are not fi le systems at all, but they provide mechanisms for 
handling special fi le types or special mount options. BSD’s (and XNU’s) deadfs, specfs, 
FIFOfs, and unionfs fall into this category.

XNU compiles-in support for several pseudo fi le systems. These can be found in the bsd/miscfs
directory and are discussed next.

The devfs File System
The device fi le system is used to host the various BSD device fi les — character and block. These 
fi les are necessary for user-mode representation of hardware devices, allowing utilities to access 
hardware — primarily the disk (/dev/disk## or /dev/rdisk##) and the terminal (/dev/tty##). 
The device fi le system is also home to the fdesc fi lesystem, which lets processes access their own fi le 
descriptors using /dev/fd/## (see mount_fdesc(8) command). 

Typically, the kernel creates devices automatically (responding to plug-and-play events), but the user may 
also create device nodes with the mknod(1) utility or the mknod(2) system call. The block and character 
devices are represented by bdevsw and cdevsw structures (respectively) defi ned in bsd/sys/conf.h.

devfs exports four functions, as shown in Table 15-2.

TABLE 15-2: devfs Exported Functions

DEVFS FUNCTION USED FOR

devfs_make_node Creating a device node (DEVFS_CHAR or DEVFS_BLOCK).

The function returns an opaque handle, which must be kept 

until the device is removed.

devfs_make_node_clone As devfs_make_node, but with a “clone” function used to 

update the device minor on creation.

devfs_remove Remove a previously created device, specifi ed by the handle 

returned by the make function.

devfs_make_link Link to an already existing device. This function is BSD_

KERNEL_PRIVATE, and unused in XNU.

The FIFOfs vnode Type
FIFOs are the UNIX implementation of “named pipes.” Anonymous pipes can be created with the 
pipe(2) system call, but cannot be shared across unrelated processes. Instead, mkfifo(2) can be 
used to create a pipe special fi le. The special fi le exists only to ensure global uniqueness — that is, 
that unrelated processes can access the pipe by some name, which is available system-wide, with no 
naming confl icts.

The FIFOfs implementation is simply a set of vnode operations (in bsd/miscfs/fifofs/fifo_
vnops.c). These operations (discussed in detail later, under VFS) are the callbacks that are executed 
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by the kernel when a corresponding system call is executed on the fi le in question. In the case of 
FIFOfs, these vnode operations override the default vnode operations by nullifying some, void-
ing others, and providing default implementations for the rest. These are declared in bsd/miscfs/
fifofs/fifo.h. This is shown in Output 15-9:

OUTPUT 15-9: The FIFOfs implementation

/*
 * This structure is associated with the FIFO vnode and stores
 * the state associated with the FIFO.
 */
struct fifoinfo {
    unsigned int    fi_flags;
    struct socket   *fi_readsock;
    struct socket   *fi_writesock;
    long        fi_readers;
    long        fi_writers;
        unsigned int    fi_count;
};
...
/*
 * Prototypes for fifo operations on vnodes.
 */
// Note that each of these operations correspondds to a system call,
// or system call with flags:

// e.g. fifo_create for open (..., O_CREAT), fifo_mmap for mmap(2), etc..
int     fifo_ebadf(void *);

#define fifo_create (int (*) (struct  vnop_create_args *))err_create
#define fifo_mknod (int (*) (struct  vnop_mknod_args *))err_mknod
#define fifo_access (int (*) (struct  vnop_access_args *))fifo_ebadf
#define fifo_getattr (int (*) (struct  vnop_getattr_args *))fifo_ebadf
#define fifo_setattr (int (*) (struct  vnop_setattr_args *))fifo_ebadf
#define fifo_revoke nop_revoke
#define fifo_mmap (int (*) (struct  vnop_mmap_args *))err_mmap
#define fifo_fsync (int (*) (struct  vnop_fsync_args *))nullop
#define fifo_remove (int (*) (struct  vnop_remove_args *))err_remove
#define fifo_link (int (*) (struct  vnop_link_args *))err_link
#define fifo_rename (int (*) (struct  vnop_rename_args *))err_rename
#define fifo_mkdir (int (*) (struct  vnop_mkdir_args *))err_mkdir
#define fifo_rmdir (int (*) (struct  vnop_rmdir_args *))err_rmdir
#define fifo_symlink (int (*) (struct  vnop_symlink_args *))err_symlink
#define fifo_readdir (int (*) (struct  vnop_readdir_args *))err_readdir
#define fifo_readlink (int (*) (struct  vnop_readlink_args *))err_readlink
#define fifo_reclaim (int (*) (struct  vnop_reclaim_args *))nullop
#define fifo_strategy (int (*) (struct  vnop_strategy_args *))err_strategy
#define fifo_valloc (int (*) (struct  vnop_valloc_args *))err_valloc
#define fifo_vfree (int (*) (struct  vnop_vfree_args *))err_vfree
#define fifo_bwrite (int (*) (struct  vnop_bwrite_args *))nullop
#define fifo_blktooff (int (*) (struct vnop_blktooff_args *))err_blktooff

continues
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// the following operations are provided for fifos:
int     fifo_lookup (struct vnop_lookup_args *);
int     fifo_open (struct vnop_open_args *);
int     fifo_close (struct vnop_close_args *);
int     fifo_read (struct vnop_read_args *);
int     fifo_write (struct vnop_write_args *);
int     fifo_ioctl (struct vnop_ioctl_args *);
int     fifo_select (struct vnop_select_args *);
int     fifo_inactive (struct  vnop_inactive_args *);
int     fifo_pathconf (struct vnop_pathconf_args *);
int     fifo_advlock (struct vnop_advlock_args *);

The specfs vnode Type
Similar to FIFOs, device special fi les (VBLK and VCHR) are given their “personality” and vnode 
operations by the custom specfs. In much the same way, most of the vnode operations defi ned in 
bsd/miscfs/specfs/specdev.h are nullifi ed or voided, with the rest given default implementa-
tions. This is shown in Output 15-10:

OUTPUT 15-10: Implementations of the specfs

morpheus@Ergo (...xnu/1699.26.8)$  cat bsd/miscfs/specfs/specdev.h | grep ^int
 // the following are BSD_KERNEL_PRIVATE
int spec_blktooff (struct  vnop_blktooff_args *);
int spec_offtoblk (struct  vnop_offtoblk_args *);
int    spec_fsync_internal (vnode_t, int, vfs_context_t);
int spec_blockmap (struct  vnop_blockmap_args *);
int spec_kqfilter (vnode_t vp, struct knote *kn);
 // and the rest are visible kernel-wide
int    spec_ebadf(void *);
int    spec_lookup (struct vnop_lookup_args *);
int    spec_open (struct vnop_open_args *);
int    spec_close (struct vnop_close_args *);
int    spec_read (struct vnop_read_args *);
int    spec_write (struct vnop_write_args *);
int    spec_ioctl (struct vnop_ioctl_args *);
int    spec_select (struct vnop_select_args *);
int    spec_fsync (struct  vnop_fsync_args *);
int    spec_strategy (struct vnop_strategy_args *);
int    spec_pathconf (struct vnop_pathconf_args *);

The deadfs vnode Type
deadfs is used primarily in the implementation of the revoke(2) system call. This system call, 
which is supported only on devices, invalidates all existing open fi le handles on the given device fi le. 
To do so, the kernel maps the vnode operations of the corresponding vnode to the dead_vnodeop_
entries, defi ned in bsd/miscfs/deadfs/dead_vnops.c. Subsequent read/write operations on the 
vnode then fail.

OUTPUT 15-9 (continued)
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The main use of revocation is to instantiate a terminal for login. Because most terminals are pseudo 
terminals, they are created and released frequently, and the system must ensure that a new terminal 
instance has no previous owner.

The unionfs Layering Mechanism
unionfs is a special mechanism for layering: It allows the mounting of more than one fi le system on 
the very same mount point, overlaying one on top of the other, so that both fi le systems’ fi les are 
visible. In the event of confl icting fi les with the same name, the fi le from the top-most mounted fi le 
system in the union hides the one beneath it. Any fi le system can be union-mounted by specifying 
the -o union option to mount.

The union fi le system is not an Apple-specifi c system and exists in Linux as well as BSD. It has none-
theless played a pivotal role in facilitating the jailbreaking of iOS. Comex (who has since defected, 
to work for Apple) used the union technique to speed up the jailbreak time of JailBreakMe 3.0 and 
avoid the need to reboot the device.

MOUNTING FILE SYSTEMS (OS X ONLY)

OS X supports the dynamic mounting and unmounting of fi le systems, using two mechanisms — the 
UNIX standard automount, and the OS X–specifi c diskarbitrationd. OS X also supports the UN*X 
mechanism of /etc/fstab, but it not present unless manually created, and is deprecated.

Automount
OS X’s automount is a direct port of the UNIX automount that can be found in Solaris, BSD, and 
Linux.

The kernel component of automounting is carried out by the autofs.kext kernel extension, which 
registers the autofs fi le system with VFS. It exposes /dev/autofs to user mode.

In user mode, several daemons have to cooperate for the automounting operation to succeed:

 ‰ autofsd: Starts from launchd, is responsible for listening on network confi guration change 
notifi cations and calling automount.

 ‰ autmount: Consults the /etc/auto_master fi le to request particular mounting operations 
and automountd to perform the actual mount.

Disk Arbitration
Even on Macs without network access, automounting is commonplace: The nearly magical auto-
mounting functionality triggered by the addition or removal of a USB device is well known. Simply 
plug in the device, wait for a few seconds, and it appears in the Finder, as well as in /Volumes.

The dirty work behind the plug and play magic is performed by the Disk Arbitration Daemon, the 
aptly named diskarbitrationd. This daemon, started by launchd(8), is responsible for listening 
in on notifi cations from multiple sources, including the kernel — specifi cally I/O Kit. The notifi ca-
tions are primarily for matches on IOMedia class devices, which are devices that represent underly-
ing media, such as USB drives, hard disks, and the like. 
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When a notifi cation is received, the diskarbitrationd queries the fi le system of the device in 
question, and — if it is recognized — proceeds and attempts to mount it, using the correspond-
ing fi le system’s handler.  Third parties can also register with diskarbitrationd using the 
DiskArbitration.framework miscellaneous DARegister* functions, to receive notifi cation of 
disk-related events. These events include disk Appeared, Disappeared, Mount, Unmount, Eject, and 
Peek. The Peek enables its caller to potentially exclusively lock the device (by calling DADiskClaim).

A good way to peek into diskarbitrationd is to start it with the –d command line. This can easily 
be done by editing launchd’s com.apple.diskarbitrationd.plist. Messages are logged to /var/
log/diskarbitrationd.log. A sample log is shown in Output 15-11.

OUTPUT 15-11: Sample log output from diskarbitrationd

14:36:34 server has been started.
14:36:34   console user = none
14:36:34 
14:36:34 filesystems have been refreshed.
14:36:34   created filesystem, id = /System/Library/Filesystems/afpfs.fs/.
14:36:34   created filesystem, id = /System/Library/Filesystems/cd9660.fs/.
14:36:34   created filesystem, id = /System/Library/Filesystems/cddafs.fs/.
14:36:34   created filesystem, id = /System/Library/Filesystems/exfat.fs/.
14:36:34   created filesystem, id = /System/Library/Filesystems/ftp.fs/.
14:36:34   created filesystem, id = /System/Library/Filesystems/hfs.fs/.
14:36:34   created filesystem, id = /System/Library/Filesystems/msdos.fs/.
14:36:34   created filesystem, id = /System/Library/Filesystems/nfs.fs/.
14:36:34   created filesystem, id = /System/Library/Filesystems/nofs.fs/.
14:36:34   created filesystem, id = /System/Library/Filesystems/ntfs-3g.fs/.
14:36:34   created filesystem, id = /System/Library/Filesystems/ntfs.fs/.
14:36:34   created filesystem, id = /System/Library/Filesystems/smbfs.fs/.
14:36:34   created filesystem, id = /System/Library/Filesystems/udf.fs/.
14:36:34   created filesystem, id = /System/Library/Filesystems/ufs.fs/.
14:36:34   created filesystem, id = /System/Library/Filesystems/webdav.fs/.
14:36:34 
14:36:34 iokit [0] -> diskarbitrationd [13]
14:36:34   created disk, id = /dev/disk0s2.
14:36:34   created disk, id = /dev/disk0s1.
14:36:34   created disk, id = /dev/disk0.
14:36:34 
14:36:34 diskarbitrationd [13] -> diskarbitrationd [13]
14:36:34   probed disk, id = /dev/disk0s2, with hfs, ongoing.
14:36:34   probed disk, id = /dev/disk0s2, with hfs, success.
14:36:34
14:36:35 kextd [10]:13827 -> diskarbitrationd [13]
14:36:35   created session, id = kextd [10]:13827.
14:36:35   registered callback, id = 000000010000638F:0000000000000000, kind = 
disk unmount approval.
14:36:35   set client port, id = kextd [10]:13827.
14:36:35 
14:36:35 kextd [10]:14339 -> diskarbitrationd [13]
14:36:35   created session, id = kextd [10]:14339.
14:36:35   registered callback, id = 0000000100005B62:0000000000000000, kind = 
disk appeared.
14:36:35   registered callback, id = 00000001000060E1:0000000000000000, kind = 
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disk description changed.
14:36:35   registered callback, id = 0000000100005A6C:0000000000000000, kind = 
disk disappeared.
14:36:35   set client port, id = kextd [10]:14339.

diskarbitrationd also allows user clients to participate in mount decisions, potentially blocking 
any disk mount attempts. Calling DARegisterDiskMountApprovalCallback allows a programmer 
to not only be notifi ed of a disk mount/unmounts operation but also potentially block it. Blocking is 
a simple matter of creating a dissenter object (using DADissenterCreate), and returning it from the 
approval callback.

The Disk Arbitration framework hides the underlying notifi cation from the kernel driver layer, I/O 
Kit. Rather than using disk arbitration, it is possible to register for notifi cations directly from I/O kit. 
This is discussed in Chapter 19.

DISK IMAGE FILES

OS X makes use of disk images, which typically have a .dmg extension. These fi les are, in essence, 
complete fi le systems — usually HFS+ — in a single fi le. The fi le format is called UDIF — Universal 
Disk Image Format — but, surprisingly, remains undocumented and proprietary to Apple. DMG 
fi les may be internally compressed (usually with bzip2 compression), and can contain internal 
license fi les which Apple’s utilities will display on opening. The format has been reverse-engineered 
suffi ciently, however, to allow for third-party tools such as Catacombae.org’s dmgextractor to offer 
support for most of the DMG fi le format idiosyncrasies.

OS X’s fi nder can automatically attach DMGs when double-clicked (by calling CoreServices’ 
DiskImageMounter.app), as can the hdiutil(1) command, using the attach verb. (The hdiutil 
command can also create DMG fi les, as shown earlier in this chapter.) The attachment is carried out 
by DiskImages.framework, which is a private framework.

The BSD layer offers native support for disk images in its vnode disk driver, which is accessible 
through the user mode /usr/libexec/vndevice command. This command allows attaching a disk 
image to one of the BSD /dev/vn* devices.

Despite the native support, Apple prefers to support DMG fi les through a custom, proprietary kernel 
extension. This extension, IOHDIXController.kext, which registers itself as com.apple.driver
.DiskImages, remains closed source. The advantage of using the external kext is that, unlike the 
vnode disk driver, it can handle compressed and/or encrypted images. While IOHDIXController is 
intentionally undocumented by Apple, it has been suffi ciently reverse engineered to allow — via I/O 
Kit — attaching DMGs, including on iOS. 

Raw DMG Files
The DMG extension is a misleading one. Most DMGs are in proprietary format (sometimes incorrectly 
identifi ed by file(1) as “VAX COFF executable.” Others are raw fi le system images — verbatim 
copies of the fi le system blocks, as output of dd(1), and may be further compressed. Double clicking 
these DMGs (or using the equivalent command, open(1)) will fail to attach them. Using hdiutil(1),
however, you can force attachment by adding -imagekey diskimage-class=CRawDiskImage to the 
command line. This is especially useful in the case of iOS DMGs, which (when decrypted) can be 
mounted in this way, as shown in Output 15-12:
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OUTPUT 15-12: Attaching the raw ramdisk image of an unencrypted iOS 5.1 restore disk

root@Ergo (/)# file ~/iOS/5.1.restore.ramdisk.dmg 
/Users/morpheus/iOS/5.1.restore.ramdisk.dmg: Macintosh HFS Extended version 4 data 
(mounted) last mounted by: '10.0', created: Wed Feb 15 05:26:23 2012, 
last modified: Tue Apr  3 11:16:04 2012, last checked: Wed Feb 15 08:26:23 2012, 
block size: 4096, number of blocks: 4218, free blocks: 0

root@Ergo (/)# hdiutil attach ~/iOS/5.1.restore.ramdisk.dmg
hdiutil: attach failed - not recognized

root@Ergo (/)# hdiutil attach ~/iOS/5.1.restore.ramdisk.dmg 
-imagekey diskimage-class=CRawDiskImage
/dev/disk3                                   /Volumes/ramdisk 

root@Ergo (/)# hdiutil info
image-path      : /Users/morpheus/iOS/5.1.restore.ramdisk.dmg
image-alias     : /Users/morpheus/iOS/5.1.restore.ramdisk.dmg
shadow-path     : <none>
icon-path       : /System/Library/PrivateFrameworks/DiskImages.framework/Resources
   /CDiskImage.icns
image-type      : read/write
system-image    : false
blockcount      : 33748
blocksize       : 512
writeable       : TRUE
autodiskmount   : TRUE
removable       : TRUE
image-encrypted : false
mounting user   : root
mounting mode   : <unknown>
process ID      : 15912
/dev/disk3             /Volumes/ramdisk

Booting from a Disk Image (Lion)
With Lion, OS X offers new boot arguments that allow the user to specify the names of DMG fi les 
to be used as the root fi le system. imageboot_needed() (in bsd/kern/imageboot.c) checks for the 
presence of the boot arguments, and, if found, calls imageboot_setup(). These boot arguments are 
shown in Table 15-3:

TABLE 15-3: Lion Boot Arguments Used in DMG Processing

BOOT ARGUMENT CONTAINS

rp or rp0 or root-dmg Name of DMG fi le to use as root fi le system. In Lion’s install, this is 

BaseSystem.dmg.

rp1 or container-dmg Name of DMG containing the root-dmg. In Lion’s installation, this 

is usually InstallESD.img.

The imageboot_setup() proceeds to call imageboot_mount_image(). The actual loading of 
the DMG is done by di_root_image()(from iokit/bsddev/DINetBootHook.cpp), which loads the 

hdiutil displays fear of attachment..

..unless coerced with -imagekey
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IOHDIXController extension by calling di_load_controller. The function returns a BSD device 
node, the root device, which vfs_mountroot() then mounts as the root fi le system.

THE VIRTUAL FILE SYSTEM SWITCH

As with most UN*X, OS X uses the virtual fi le system switch as its layer of abstraction for all fi le 
systems. The idea behind VFS is to defi ne a common interface for all fi le systems, irrespective of 
their implementations. This interface reduces the fi le system into fundamental structures: the fi le 
system entry, mount entry, and vnode (abstracted inode). Any known fi le system can then be imple-
mented, while maintaining conformance with this interface. This enables the kernel to present the 
very same interface to the various POSIX fi le I/O calls — and, by extension, the user — resulting in 
a seamless integration of multiple fi le systems into the same tree.

It’s interesting to see that, while the VFS is a widely adopted standard across 
many fl avors of UN*X, the implementation can vary greatly. Linux, for exam-
ple, exposes the inode, fi le, directory entry (dentry), and superblock. XNU’s 
VFS is naturally very closely related to BSD’s, but is still with some signifi cant 
differences.

VFS does not care about the underlying implementation of the fi le system. It may be table-based (such 
as FAT) or B-Tree–based (such as NTFS or HFS+). All it requires is that the fi le system implementation 
conform to the set interface and allow the mount operation (linking the fi le system to the UNIX tree) 
and the retrieval of a fi le or directory. The fi le systems may be local or remote, native or foreign — yet 
the user can access them in the exact same way, which is provided by the familiar UNIX utilities 
(ls(1), chmod(1), and friends) as well as the POSIX API (open, readdir, etc.). An implementation 
can always choose to return bogus or default information for features it does not support, a good 
example being NTFS and UDF — neither of which support the UNIX model of permissions. The fi le 
system drivers therefore allow default permissions, which usually allow anyone to read on any fi le. 

The File System Entry
File systems are maintained in the kernel in an array of vfs_fsentry structures. Listing 15-5 
defi nes this structure.

LISTING 15-5: The vfs_fsentry structure, as defi ned in bsd/sys/mount.h

struct vfs_fsentry {
   struct vfsops *vfe_vfsops;     /* vfs operations */
   int            vfe_vopcnt;     
   /* # of vnodeopv_desc being registered (reg, spec, fifo...)*/
   vnodeopv_desc **vfe_opvdescs;  /* null terminated;  */
   int            vfe_fstypenum;  /* historic file system type number */
   char           vfe_fsname[MFSNAMELEN]; /* file system type name */
   uint32_t       vfe_flags;      /* defines the FS capabilities */
   void *         vfe_reserv[2];  /* reserved for future use; set this to zero*/
 };
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File systems are added or removed to the kernel by a call to vfs_fsadd or vfs_fsremove, respec-
tively, similar to Linux’s (un)register_file system(). (See Listing 15-6.)

LISTING 15-6: vfs_fsadd and vfs_fsremove, as defi ned in bsd/sys/mount.h

// Add a File system to VFS — provide vfs_fsentry, get vfs_table_t  handle 
int vfs_fsadd(_in_ struct vfs_fsentry *, _out_ vfstable_t *);
// Remove a File system from VFS, given the vfstable_t handle
int vfs_fsremove(_in_ vfstable_t);

The Mount Entry
The mount entry is a struct mount (defi ned in bsd/sys/mount_internal.h, and exposed to user 
mode only as an opaque type), which represents a mounted fi le system instance. This corresponds, 
somewhat roughly, to the fi le system’s superblock, which is the descriptor holding global fi le system 
attributes. The mount entry also holds the fi le system operations (the struct vfsops, discussed 
later). The structure is shown in Listing 15-7:

LISTING 15-7: A partial detail of the struct mount, from bsd/sys/mount_internal.h

struct mount {
        TAILQ_ENTRY(mount) mnt_list;            /* mount list */
        int32_t         mnt_count;              /* reference on the mount */
        lck_mtx_t       mnt_mlock;              // mutex protecting mount point
        struct vfsops   *mnt_op;                /* operations on fs */
        struct vfstable *mnt_vtable;            /* configuration info */
        struct vnode   *mnt_vnodecovered;       /* vnode we mounted on */
        struct vnodelst mnt_vnodelist;          /* list of vnodes this mount */
        struct vnodelst mnt_workerqueue;        /* list of vnodes this mount */
        struct vnodelst mnt_newvnodes;          /* list of vnodes this mount */
        uint32_t        mnt_flag;               /* flags */
        uint32_t        mnt_kern_flag;          /* kernel only flags */
        uint32_t        mnt_compound_ops;       // Available compound ops 
        uint32_t        mnt_lflag;              /* mount life cycle flags */
        uint32_t        mnt_maxsymlinklen;      /* max size of short symlink */
        struct vfsstatfs  mnt_vfsstat;          /* cache of file system stats */
        qaddr_t         mnt_data;               /* private data */

        /* Cached values of the IO constraints for the device */
        // ...
        // ...

#if CONFIG_TRIGGERS 

        // TRIGGERS is a compile time option which allows the setting of
        // callbacks on mount operations and specific vnodes
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        int32_t         mnt_numtriggers;   /* num of trigger vnodes for this mount */
        vfs_trigger_callback_t *mnt_triggercallback;
        void            *mnt_triggerdata;
#endif
        /* XXX 3762912 hack to support HFS file system 'owner' */
        uid_t           mnt_fsowner;
        gid_t           mnt_fsgroup;

        struct label    *mnt_mntlabel;          /* MAC mount label */
        struct label    *mnt_fslabel;           /* MAC default fs label */

       // Other various cached elements ..

}

Note that a fi le system may be registered (using vfs_fsadd() as previously demonstrated), but not 
necessarily be mounted. Additionally, the same fi le system type may be mounted multiple times (for 
example, if several partitions have the same format type).  

Key in both the mount and vfs_fsentry structures are the vfsops (in mount, mnt_op, and in vfs_
fsentry, vfe_vfsops). These are the standard abstracted operations expected of any fi le system. 
They are defi ned (and rather neatly javadoc’ed) in bsd/sys/mount.h, and shown in Table 15-4.

TABLE 15-4: The vfs operation callbacks

VFS OPERATION USED FOR

int  (*vfs_init)

     (struct vfsconf *);

Called once, when VFS initializes support for the 

fi le system. 

int  (*vfs_mount)

     (struct mount *mp, 

      vnode_t devvp, 

      user_addr_t data,

      vfs_context_t context);

Mounts a fi le system of this type.

int  (*vfs_start)

     (struct mount *mp, 

      int flags, 

      vfs_context_t context);

Makes fi le system active.

int  (*vfs_unmount)

     (struct mount *mp, 

      int           mntflags, 

      vfs_context_t context);

Called when the user performs and umount(8) 

on the fi le system.

(Continues)
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VFS OPERATION USED FOR

int  (*vfs_root)

 (struct mount  *mp, 

  struct vnode **vpp, 

  vfs_context_t  context);

Retrieves a pointer (in vpp) to the root of the fi le 

system mounted on mp.

int  (*vfs_quotactl)

   (struct mount *mp, 

    int           cmds, 

    uid_t         uid, 

    caddr_t       arg, 

    vfs_context_t context);

Called when the user calls quotactl(2).

int  (*vfs_getattr)

   (struct mount    *mp, 

    struct vfs_attr *attr, 

    vfs_context_t    context);

Gets attributes of fi le system mounted at mp into 

attr.

int  (*vfs_setattr)

     (struct mount    *mp, 

      struct vfs_attr *attr,

      vfs_context_t   context);

Sets attribute attr for fi le system mounted 

at mp.

int  (*vfs_sync)

     (struct mount *mp, 

      int           waitfor, 

      vfs_context_t context);

Syncs fi le system at mp, when sync(2) is called. 

If waitfor, return only after sync complete. 

Otherwise, start sync but return immediately.

int  (*vfs_vget)

     (struct mount  *mp, 

      ino64_t        ino, 

      struct vnode **vpp,

      vfs_context_t  context);

Retrieves a fi le’s vnode (in vpp) by the inode 

number ino.

int  (*vfs_fhtovp)

(struct mount  *mp, 

 int            fhlen, 

 unsigned char *fhp, 

 struct vnode **vpp, 

 vfs_context_t  context);

Retrieves the vnode (in vpp) corresponding to 

the fi le handle fhp, of fhlen bytes.

Inverse of vfs_vptofh().

TABLE 15-4 (continued)
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VFS OPERATION USED FOR

int  (*vfs_vptofh)

     (struct vnode  *vp, 

      int           *fhlen, 

      unsigned char *fhp,      

      vfs_context_t context);

Copies into fhp, which is a buff er of fhlen 

bytes, the fi le handle bytes, corresponding to 

the vnode vp. Inverse of vfs_fhtovp().

int  (*vfs_sysctl)

   (int *, 

    u_int, 

    user_addr_t, 

    size_t *, 

    user_addr_t, 

    size_t, 

    vfs_context_t context);

Implementation of a VFS space sysctl(2) 

request.

The vnode object
The vnode object is built on top of the traditional UNIX inode (from the legacy UFS). This is a 
“virtual inode,” containing the information required for retrieving a fi le or directory from the disk. 
The struct vnode is defi ned in bsd/sys/vnode_internal.h, which — like struct mount — is not 
exposed to user mode. This is shown in Listing 15-8: 

LISTING 15-8: The vnode object, from bsd/sys/vnode_internal.h

struct vnode {
        lck_mtx_t v_lock;                     /* vnode mutex */
        TAILQ_ENTRY(vnode) v_freelist;        /* vnode freelist */
        TAILQ_ENTRY(vnode) v_mntvnodes;       /* vnodes for mount point */
        LIST_HEAD(, namecache) v_nclinks;     // names (hard links) of vnode
        LIST_HEAD(, namecache) v_ncchildren;  // cache of named children
         ..
        uint32_t v_listflag;                  // flags,(protected by list_lock) 
        uint32_t v_flag;                      // flags (unprotected)
        uint16_t v_lflag;                     // and more flags (local flags)
        uint8_t  v_iterblkflags;              /* buf iterator flags */
        uint8_t  v_references;                // reference of io_count 
        int32_t  v_kusecount;                 /* count of in-kernel refs */
        int32_t  v_usecount;                  /* reference count of users */
        int32_t  v_iocount;                   /* iocounters */
        void *   v_owner;                     /* act that owns the vnode */
        uint16_t v_type;                      /* vnode type */
        uint16_t v_tag;                       /* type of underlying data */
        uint32_t v_id;                        /* identity of vnode contents */

continues
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        union {
                struct mount    *vu_mountedhere;/* ptr to mounted vfs (VDIR) */
                struct socket   *vu_socket;     /* unix ipc (VSOCK) */
                struct specinfo *vu_specinfo;   /* device (VCHR, VBLK) */
                struct fifoinfo *vu_fifoinfo;   /* fifo (VFIFO) */
                struct ubc_info *vu_ubcinfo;    /* valid for (VREG) */
        } v_un;
        struct  buflists v_cleanblkhd;          /* clean blocklist head */
        struct  buflists v_dirtyblkhd;          /* dirty blocklist head */
        struct klist v_knotes;                  // knotes attached to vnode 
        /*
         * the following 4 fields are protected
         * by the name_cache_lock held in
         * excluive mode
         */

        kauth_cred_t    v_cred;               /* last authorized credential */
        kauth_action_t  v_authorized_actions; // current authorized actions */
        int             v_cred_timestamp;     //
        int             v_nc_generation;      //

        /*
         * back to the vnode lock for protection
         */
        int32_t         v_numoutput;       /* num of writes in progress */
        int32_t         v_writecount;      /* reference count of writers */
        const char *v_name;                /* name component of the vnode */
        vnode_t v_parent;                  /* pointer to parent vnode */
        struct lockf    *v_lockf;          /* advisory lock list head */
#ifndef __LP64__
        struct unsafe_fsnode *v_unsafefs;  /* pointer to struct used to lock */
#else 
        int32_t         v_reserved1;
        int32_t         v_reserved2;
#endif /* __LP64__ */
        int     (**v_op)(void *);          /* vnode operations vector */
        mount_t v_mount;                   /* ptr to vfs we are in */
        void *  v_data;                    /* private data for fs */
#if CONFIG_MACF 
        struct label *v_label;             /* MAC security label */
#endif
#if CONFIG_TRIGGERS
        vnode_resolve_t v_resolve; /* trigger vnode resolve info (VDIR only) */
#endif /* CONFIG_TRIGGERS */
};

A key element in the vnode structure is the struct ubc_info: It can be used to fi nd information on 
this vnode’s objects in the unifi ed buffer cache. The unifi ed buffer cache (implemented in bsd/kern/
ubc_subr.c) is the BSD mechanism for storing cached vnode data, of fi les fetched from disks and 
devices (akin to Linux’s buffer and page caches). The ubc_info links the vnode to a Mach memory_
object_t, the likes of which were discussed in the previous chapter.

LISTING 15-8 (continued)
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Each fi le system can defi ne its own internal node representation but should support the basic rep-
resentation of the vnode, as well as the set of operations defi ned on a vnode — creating, reading, 
writing, deleting. The various vnode operations are maintained in the well-documented bsd/sys/
vnode_if.h, as shown in Listing 15-9.

LISTING 15-9: VNOP_LOOKUP (lookup a vnode in a directory), from bsd/sys/vnode_if.h

__BEGIN_DECLS

struct vnop_lookup_args {
        struct vnodeop_desc *a_desc;
        vnode_t a_dvp;
        vnode_t *a_vpp;
        struct componentname *a_cnp;        vfs_context_t a_context;
};

/*!
 @function VNOP_LOOKUP
 @abstract Call down to a file system to look for a directory entry by name.
 @discussion VNOP_LOOKUP is the key pathway through which VFS asks a 
   file system to find a file.  The vnode should be returned with an iocount 
   to be dropped by the caller.  A VNOP_LOOKUP() calldown can come without
   preceding VNOP_OPEN().
 @param dvp Directory in which to look up file.
 @param vpp Destination for found vnode.
 @param cnp Structure describing filename to find, reason for lookup, 
   and various other data.
 @param ctx Context against which to authenticate lookup request.
 @return 0 for success or a file system-specific error.
 */
#ifdef XNU_KERNEL_PRIVATE
extern errno_t VNOP_LOOKUP(vnode_t, vnode_t *, struct componentname *, vfs_context_t);
#endif /* XNU_KERNEL_PRIVATE */

The actual I/O operations on the vnodes themselves are defi ned in a struct fileops, as shown in 
Listing 15-10:

LISTING 15-10: VNode operations

// in bsd/vfs/vfs_vnops.
struct  fileops vnops =
          { vn_read, vn_write, vn_ioctl, vn_select, vn_closefile, vn_kqfilt_add, NULL };

FUSE — File Systems in USEr Space

One of the main challenges encountered by fi le system developers is that, traditionally, fi le systems 
live in kernel space. This is understandable, as fi le services are part of the kernel’s responsibilities, 
but it does impose the tight constraints of kernel space, which are exacerbated given the usually 
complicated logic and data structures needed by fi le system implementations.
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To alleviate this problem, an open source solution porting fi le system logic into user space has been 
developed. Known as FUSE (File systems in USEr space), it has been implemented on various UNIX 
systems and ported into Mac OS X by Amit Singh (who, among other things, has authored the pre-
vious reference on OS X internals1). Singh’s port became known as MacFUSE2, but was discontin-
ued in 2009 and became incompatible with Lion. A more recent endeavor to pick up where it left off 
is known as OSXFUSE3, and has been modifi ed to work with Lion.

The basic idea in FUSE is that the interaction with the kernel is kept to a bare minimum — by 
means of registering a stub fi le system, whose callbacks are all bridged back into a user mode pro-
cess. It is the user mode process that handles all the fi le system logic and data structures, impacting 
performance somewhat, but benefi tting greatly from nearly boundless virtual memory and the other 
fringe benefi ts in user mode, most notably the decoupling from the OS-idiosyncratic kernel inter-
faces. The user mode process can implement the fi le system in memory, manage it on disk, or even 
call a remote server through FTP, SSH, or other protocols. Because all of this can be done using 
standard POSIX calls, code for FUSE can be relatively straightforward to port in between UNIX 
systems. FUSE links with a portable runtime library, called libfuse.

Table 15-5 shows some of the supported fi le systems in user mode.

TABLE 15-5: File systems supported by OS X FUSE

FILE SYSTEM DESCRIPTION

GrabFS Also known as the WindowFS, this is a read-only fi le system automatically popu-

lated with folders corresponding to all processes that have active Windows. Each 

folder contains .tif fi les. Each fi le, if read, provides an updated screenshot of the 

window it corresponds to. This is an OS X–specifi c fi le system, as it uses Cocoa’s 

CGWindowListCreateImage() to create the capture images.

LoopbackFS Allowing the mounting of any local directory as a separate fi le system under a diff er-

ent mount point.

Procfs A fi le system similar to Linux’s /proc. This is an OS X–specifi c fi le system (Linux’s 

own /proc is kernel-based).

SpotlightFS A fi le system linked to OS X’s spotlight, allowing spotlight searches by simply creat-

ing a folder in the fi le system. The folder is populated on-the-fl y with results from 

Spotlight, much like a Smart Folder. This is an OS X–specifi c fi le system because it 

uses Spotlight.

SSHfs An SSH-based fi le system allowing the mounting of remote fi le systems, with all the 

NFS operations actually being carried over SFTP requests.

The kernel component of FUSE is fairly simple: It registers a VFS (using vfs_fsadd) and exports a 
set of /dev/fuseXX character devices. Operations on this fi le system instance are intercepted by the 
kernel extension and serialized in a message, which is then dispatched to the user mode fi le system.

The user mode fi le systems, on their part, populate a struct fuse_operations with their fi le opera-
tion callbacks, and then call fuse_main() to do the rest of the work. This is shown in Listing 15-11:

c15.indd 598c15.indd   598 10/1/2012 2:37:54 PM10/1/2012   2:37:54 PM



FUSE — File Systems in USEr Space x 599

LISTING 15-11: An example fuse_main()

int main (int argc, char **argv)
{
    struct fuse_operations  fuseOps;
    // handle any arguments..
    fuseOps.init =    // pointer to initializer
    fuseOps.destroy = // pointer to destructor
    fuseOps.statfs =  // pointer to statfs(2) handler
    fuseOps.open =    // pointer to file open(2) handler
    fuseOps.release = // pointer to file close(2) handler
    fuseOps.opendir =    // pointer to opendir(3) handler
    fuseOps.releasedir = // pointer to closedir(3) handler
    fuseOps.getattr =    // pointer to getattrlist(2) handler
    fuseOps.read =       // pointer to file read(2) handler
    fuseOps.readdir =    // pointer to readdir(3) handler
    fuseOps.readlink =   // pointer to readlink(2) handler
.. // other handlers // ...
    return fuse_main(argc, new_argv, &fuseOps, NULL);
}

The fuse_operations (defi ned in LibFUSE’s fuse.h) contains handlers for all the well-known 
POSIX fi le system calls. These are registered and passed to libFUSE’s own dispatcher, which receives 
the callbacks bridged from the kernel and passes them to the fi le system–specifi c implementation. A 
fi le system may implement only some of the handlers, choosing to leave handlers NULL, in which 
case libFUSE will simply return an error. Listing 15-12 demonstrates this, with the do_write han-
dler. Other handlers are defi ned in a similar manner.

LISTING 15-12: libFuse’s do_write (from fuse’s lib/fuse_lowlevel.c)

static void do_write(fuse_req_t req, fuse_ino_t nodeid, const void *inarg)
{
 struct fuse_write_in *arg = (struct fuse_write_in *) inarg;
 struct fuse_file_info fi;

 memset(&fi, 0, sizeof(fi));
 fi.fh = arg->fh;
 fi.fh_old = fi.fh;
 fi.writepage = arg->write_flags & 1;
  
 // If there is a registered write handler, execute it
 if (req->f->op.write)
    req->f->op.write(req, nodeid, PARAM(arg), 
                     arg->size, arg->offset, &fi);
 else // no handler – deny system call
 fuse_reply_err(req, ENOSYS);
}

...

... // This is LibFUSE's handler for "low level" operations:
static struct {
void (*func)(fuse_req_t, fuse_ino_t, const void *);

continues
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const char *name;
} fuse_ll_ops[] = {
[FUSE_LOOKUP] = { do_lookup, "LOOKUP" },
[FUSE_FORGET] = { do_forget, "FORGET" },
[FUSE_GETATTR] = { do_getattr, "GETATTR" },
[FUSE_SETATTR] = { do_setattr, "SETATTR" },
[FUSE_READLINK] = { do_readlink, "READLINK" },
[FUSE_SYMLINK] = { do_symlink, "SYMLINK" },
[FUSE_MKNOD] = { do_mknod, "MKNOD" },
[FUSE_MKDIR] = { do_mkdir, "MKDIR" },
[FUSE_UNLINK] = { do_unlink, "UNLINK" },
[FUSE_RMDIR] = { do_rmdir, "RMDIR" },
[FUSE_RENAME] = { do_rename, "RENAME" },
[FUSE_LINK] = { do_link, "LINK" },
[FUSE_OPEN] = { do_open, "OPEN" },
[FUSE_READ] = { do_read, "READ" },
[FUSE_WRITE] = { do_write, "WRITE" },
[FUSE_STATFS] = { do_statfs, "STATFS" },
[FUSE_RELEASE] = { do_release, "RELEASE" },
... // many other operations
}

Once the user mode fi le system has handled the request, the reply is serialized again into a message, 
which returns to the kernel — and is returned to the requester, which remains blissfully unaware of 
the whole bridging process. 

FILE I/O FROM PROCESSES

So far, this book has covered the BSD layer’s implementation of processes (in the previous chapter), 
and vnodes (in this one). But one important aspect has yet to be discussed — how user mode pro-
cesses access fi les and perform operations on them.

Recall from Chapter 13 that the BSD proc_t structure contains, among its many fi elds, a struct 
filedesc *p_fd; this is the structure holding all the process’s open fi les in the fi elds shown in 
Listing 15-13.

LISTING 15-13: The fi ledesc structure, from bsd/sys/fi ledesc.h

struct filedesc {
        struct  fileproc **fd_ofiles;   /* file structures for open files */
        char    *fd_ofileflags;         /* per-process open file flags */
        struct  vnode *fd_cdir;         /* current directory */
        struct  vnode *fd_rdir;         /* root directory */
        int     fd_nfiles;              /* number of open files allocated */
        int     fd_lastfile;            /* high-water mark of fd_ofiles */
        int     fd_freefile;            /* approx. next free file */
        u_short   fd_cmask;             /* mask for file creation */
        uint32_t  fd_refcnt;            /* reference count */

LISTING 15-12 (continued)
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        int     fd_knlistsize;          /* size of knlist */
        struct  klist *fd_knlist;       /* list of attached knotes */
        u_long  fd_knhashmask;          /* size of knhash */
        struct  klist *fd_knhash;       /* hash table for attached knotes */
        int     fd_flags;
};

The key fi elds in this structure are fd_ofiles and fd_ofileflags. Both are arrays, and the familiar 
integer fi le descriptors from user mode (0 — stdin; 1 — stdout, 2 — stderr) are indices into those 
arrays. The fi rst array holds the fi le “object” corresponding to the descriptor, whereas the second 
one is used for the open fl ags (i.e. the fl ags specifi ed by the process in the open(2) system call). fp_
lookup can be used to fi nd the fileproc corresponding to a given fi le descriptor. (See Listing 15-14).

LISTING 15-14: fp_lookup (from bsd/kern/kern_descrip.c)

/*
 * fp_lookup
 *
 * Description: Get fileproc pointer for a given fd from the per process
 *              open file table of the specified process and if successful,
 *              increment the f_iocount
 *
 * Parameters:  p                               Process in which fd lives
 *              fd                              fd to get information for
 *              resultfp                        Pointer to result fileproc
 *                                              pointer area, or 0 if none
 *              locked                          !0 if the caller holds the
 *                                              proc_fdlock, 0 otherwise
 *
 * Returns:     0                       Success
 *              EBADF                   Bad file descriptor
 *
 * Implicit returns:
 *              *resultfp (modified)            Fileproc pointer
 *
 * Locks:       If the argument 'locked' is non-zero, then the caller is
 *              expected to have taken and held the proc_fdlock; if it is
 *              zero, than this routine internally takes and drops this lock.
 */ 
int fp_lookup(proc_t p, int fd, struct fileproc **resultfp, int locked)
{
        struct filedesc *fdp = p->p_fd;
        struct fileproc *fp;

        if (!locked)  // take lock to prevent race conditions
                proc_fdlock_spin(p);

       // A negative file descriptor, one that is larger than the count of open files,
       // one that has no fileproc * entry, or one that is reserved — all return EBADF

        if (fd < 0 || fdp == NULL || fd >= fdp->fd_nfiles ||
                        (fp = fdp->fd_ofiles[fd]) == NULL ||
                        (fdp->fd_ofileflags[fd] & UF_RESERVED)) {

continues
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                if (!locked) // failure. Drop lock first
                        proc_fdunlock(p);
              // and return error..

                return (EBADF);
        }
        fp->f_iocount++;

        // If we found an entry, fp points to it. This is also what we return to caller.
        if (resultfp)
                *resultfp = fp;

        // can safely let go of the lock
       if (!locked)
                proc_fdunlock(p);

        return (0); // success
}

The fileproc structures in fd_ofiles are surprisingly small structures:

struct fileproc {
        unsigned int f_flags;
        int32_t f_iocount;
        struct fileglob * f_fglob;
        void *  f_waddr;
};

The reason for this is that all the fi le data is held globally in the kernel and is merely pointed to by 
the f_fglob fi eld. This means that if the same fi le is opened by two processes, each may refer to it 
by means of a different fi le descriptor (and, hence, a different fileproc, private to each process), but 
the underlying fi le data, which is pointed to by the f_fglob pointers, resides at the same address in 
kernel memory. This is shown in Listing 15-15:

LISTING 15-15: the fi leglob pointer, from bsd/sys/fi le_internal

/* file types */  // these are the types allowable for fg_type
typedef enum {
        DTYPE_VNODE     = 1,    /* file */
        DTYPE_SOCKET,           /* communications endpoint */
        DTYPE_PSXSHM,           /* POSIX Shared memory */
        DTYPE_PSXSEM,           /* POSIX Semaphores */
        DTYPE_KQUEUE,           /* kqueue */
        DTYPE_PIPE,             /* pipe */
        DTYPE_FSEVENTS          /* fsevents */
} file_type_t;

struct fileglob {
        LIST_ENTRY(fileglob) f_list;/* list of active files */
        LIST_ENTRY(fileglob) f_msglist;/* list of active files */
        int32_t fg_flag;                /* see fcntl.h */ 
        file_type_t fg_type;    /* descriptor type */

LISTING 15-14 (continued)
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        int32_t fg_count;       /* reference count */
        int32_t fg_msgcount;    /* references from message queue */
        kauth_cred_t fg_cred;   /* credentials associated with descriptor */
        struct  fileops {  // generic file operations
                int     (*fo_read)      (struct fileproc *fp, struct uio *uio,
                                         int flags, vfs_context_t ctx);
                int     (*fo_write)     (struct fileproc *fp, struct uio *uio,
                                         int flags, vfs_context_t ctx);
#define FOF_OFFSET      0x00000001      /* offset supplied to vn_write */
#define FOF_PCRED       0x00000002      /* cred from proc, not current thread */
                int     (*fo_ioctl)     (struct fileproc *fp, u_long com,
                                         caddr_t data, vfs_context_t ctx);
                int     (*fo_select)    (struct fileproc *fp, int which,
                                         void *wql, vfs_context_t ctx);
                int     (*fo_close)     (struct fileglob *fg, vfs_context_t ctx);
                int     (*fo_kqfilter)  (struct fileproc *fp, struct knote *kn,
                                         vfs_context_t ctx);
                int     (*fo_drain)     (struct fileproc *fp, vfs_context_t ctx);
        } *fg_ops;
        off_t   fg_offset;
        void    *fg_data;               /* vnode or socket or SHM or semaphore */
        lck_mtx_t fg_lock;
        int32_t fg_lflags;              /* file global flags */
#if CONFIG_MACF
        struct label *fg_label;  /* JMM - use the one in the cred? */
#endif
};

The fg_data fi eld in the fileglob structure is a pointer to an object, whose contents depend on 
fg_type. File handling system calls usually switch on the fg_data fi eld. A good example can be 
seen in the implementation of fstat1()in Listing 15-16, which is the common implementation of 
the fstat() family of system calls.

LISTING 15-16: fstat1(), the implementation of fstat, from bsd/kern/kern_descrip.c

#define f_type f_fglob->fg_type 
#define f_data f_fglob->fg_data
..

static int
fstat1(proc_t p, int fd, user_addr_t ub, user_addr_t xsecurity, 
       user_addr_t xsecurity_size, int isstat64)
{
        struct fileproc *fp;
...
       // use fp_lookup to first get the fileproc
if ((error = fp_lookup(p, fd, &fp, 0)) != 0) {
                return(error);
        }
        type = fp->f_type; // remember this is really fp->f_glob->f_type;
        data = fp->f_data; // .. and ditto for fp->f_glob->f_data;
..
switch (type) {
  case DTYPE_VNODE: // data cast to a vnode_t continues
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                if ((error = vnode_getwithref((vnode_t)data)) == 0) {
                   /*
                    * If the caller has the file open, and is not
                    * requesting extended security information, we are
                    * going to let them get the basic stat information.
                    */
                   if (xsecurity == USER_ADDR_NULL) {
                      error = vn_stat_noauth((vnode_t)data, sbptr, NULL, isstat64, ctx);
                   } else {
                     error = vn_stat((vnode_t)data, sbptr, &fsec, isstat64, ctx);
                  }

                        AUDIT_ARG(vnpath, (struct vnode *)data, ARG_VNODE1);
                        (void)vnode_put((vnode_t)data);
                }
                break;

#if SOCKETS
  case DTYPE_SOCKET:  // data cast to a struct socket *
                error = soo_stat((struct socket *)data, sbptr, isstat64);
                break;
#endif /* SOCKETS */
  case DTYPE_PIPE: // data will be cast into a struct pipe (inside pipe_stat)
                error = pipe_stat((void *)data, sbptr, isstat64);
                break;

  case DTYPE_PSXSHM: // data will be case into a struct pshmnode (inside pshm_stat)
                error = pshm_stat((void *)data, sbptr, isstat64);
                break;

  case DTYPE_KQUEUE: // data actually ignored for a kqueue
                funnel_state = thread_funnel_set(kernel_flock, TRUE);
                error = kqueue_stat(fp, sbptr, isstat64, p);
                thread_funnel_set(kernel_flock, funnel_state);
                break;
..

Reading and writing becomes a simple matter of passing the arguments around to the underlying fi le 
reading/writing implementation. For example, consider fo_read in Listing 15-17 (other functions 
implemented similarly):

LISTING 15-17: fo_read from bsd/kern/kern_descript.c 

int fo_read(struct fileproc *fp, struct uio *uio, int flags, vfs_context_t ctx)
{
      // simple pass through. Remember that by f_ops we mean f_fglob->f_ops 
       return ((*fp->f_ops->fo_read)(fp, uio, flags, ctx));
}

LISTING 15-16 (continued)
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The f_ops fi eld on the fileglob structure is set to the default set of fi le operations. Again, this 
changes with the fi le type: vnops for vnodes, pipeops for pipes, and so on. In this way, the generic 
operations can be adapted to any fi le type.

SUMMARY

This chapter explored XNU’s handling and implementation of fi le systems. Not unlike its BSD ori-
gins, XNU uses the virtual fi lesystem switch to allow any fi le system to plug in to the kernel, given 
the right interface. FUSE, which has been ported to OS X, further allows the extension of VFS for 
fi le systems that are implemented in user mode. 

The chapter concluded by linking the VFS implementation to the process notion of a fi le descriptor. 
This will come in handy in Chapter 17, which is dedicated to the implementation of the socket 
APIs. The next chapter, however, turns fi rst to a specifi c fi le system implementation — Apple’s 
native HFS+. 
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To B (-Tree) or Not to Be — 
The HFS+ File Systems

Although today’s operating systems can support — with the help of drivers — any type of fi le 
system, each operating system has a “native” fi le system. In DOS, it was FAT. Windows has 
NTFS. Linux has Ext2/3/4. And OS X, being no exception, has HFS+. This chapter dives deep 
into the internals of HFS+, and its variant — HFSX — used in iOS. The fi le system internal 
structure is described, with actual examples and hands-on exercises you can follow. 

A companion tool for this book, hfsleuth, is available for free download from the 
book’s website. Since this chapter deals with low-level and on-disk structures, 
hfsleuth provides a great way to follow along and look at low-level disk struc-
tures. It does, however, often require read access to the raw disk device, which 
you can either supply directly (via chmod(1) on /dev/rdisk##), or simply run 
the tool as root. The tool also has a writeable mode, but it is disabled by default 
for safety.

HFS+ FILE SYSTEM CONCEPTS

Following the discussion of generic fi le system concepts in the previous chapter, this section 
presents these concepts as they pertain to HFS+, as well as a few novel concepts which exist 
only in Apple’s favorite fi le system.

Timestamps
HFS+ maintains its dates as a count of seconds from January 1, 1904, GMT, as an unsigned 
integer. This choice of start time is rather peculiar, as computers as we know them didn’t exist 
back then. Even UNIX dates are relative to the “epoch” (January 1, 1970). As a result, despite 
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using a UInt32, the last possible date is February 6, 2040, 06:28:15 GMT. Conversion between the 
two is easy enough, however, as one need only subtract (365.25 × 66 × 86,400) from the HFS+ date 
to get to a UNIX date.

Access Control Lists
As noted in the previous chapter, traditional UNIX offers permissions at the inode level. These 
permissions, however, are very limited, conforming to the simple model of User/Group/Other. ACLs 
enable the meticulous setting of permissions for any number of users and groups on the system, in a 
manner similar to Windows permissions. 

It’s important to note that ACLs are actually a VFS feature (or, to be more pedantic, KAUTH), and 
not an HFS+ one. However, for ACLs to work, the underlying fi le system must support Extended 
Attributes (which HFS+ does), as discussed next. 

Extended Attributes
Files have, besides the actual blocks containing their data and their permissions, additional attri-
butes. These are commonly referred to as extended attributes, and OS X makes extensive use of 
them, both in user mode applications (Spotlight and Finder, to name two), and in the kernel.

OS X added extended attributes in 10.4, and the previously mentioned ACLs are actually imple-
mented as extended attributes, as in per-fi le compression, which was introduced in 10.6, and 
described below. OS X provides the xattr(1) command, which enables the listing of extended attri-
butes, as well as a -@ switch to its ls(1).

 ‰ Extended attributes are generally opaque; they can be set by anyone, and OS X follows a 
reverse DNS convention, to ensure attribute uniqueness. The exact meaning of the attribute 
is left up to the setter to decide. Toggling folder color labels and running xattr(1), for 
example, quickly reveals that indicated byte value corresponds to the folder color. Another 
interesting attribute is com.apple.quarantine, which is responsible for the familiar “%s 
is an application downloaded from the internet.” This attribute is also used by the SandBox 
kext to detect which Applications are potentially dangerous. 

Table 16-1 lists some of the common extended attributes and their format:

TABLE 16-1: System defi ned extended attributes

EXTENDED ATTRIBUTE 

(COM.APPLE)

FORMAT USAGE

decmpfs Decmpfs header Compressed fi le indicator or, for small 

fi les, data

FinderInfo Undocumented Finder information, e.g. folder colors
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EXTENDED ATTRIBUTE 

(COM.APPLE)

FORMAT USAGE

metadata As per the Spotlight Metadata 

attribute format[1]

Spotlight Metadata. Used by Safari, for 

example, to catalog where a download 

originated (using kMDItemWhereFroms)

quarantine 0000;

32-bit Timestamp;

AppName;

GUID|appID

Quarantine for fi les of dubious origin (i.e., 

only the Internet)

cprotect struct cp_xattr (bsd/

sys/cprotect.h)
Used by iOS 4 and later for fi le content 

protection: Provides encrypted key of fi le

system.Security struct kauth_acl

(bsd/sys/kauth.h)

Used by VFS for extended ACLs

Extended attributes form the basis for many features, such as Access Control 
Lists (described previously), forks, and transparent compression (both described 
later). Theoretically, any fi le system that supports extended attributes could 
support the features built on top of them, as in XNU support for extended attri-
butes is implemented at the VFS level, as callouts to the specifi c fi le system logic.

The xattr(1) command is, surprisingly enough, a Python script(!) and not a binary. Why Apple 
left it as Python is puzzling, considering that its functionality is provided directly by system calls, 
and even more so when due to Python version hell there are no less than four xattrs: The main fi le, 
which selects one of the actual scripts by Python version. This is true even in Mountain Lion:

morpheus@Simulacrum (~)$ ls -l /usr/bin/xatt*
-rwxr-xr-x  2 root  wheel   925 Mar 23 00:58 /usr/bin/xattr
-rwxr-xr-x  1 root  wheel  7786 Mar 23 00:58 /usr/bin/xattr-2.5
-rwxr-xr-x  1 root  wheel  9442 Mar 23 00:58 /usr/bin/xattr-2.6
-rwxr-xr-x  1 root  wheel  9442 Mar 23 00:58 /usr/bin/xattr-2.7
morpheus@Simulacrum (~)$ file /usr/bin/xattr
/usr/bin/xattr: a /usr/bin/python script text executable

To add insult to injury, xattr(1) fi lters out some important extended attributes, those dealing with 
fi le compression. This is shown in the following experiment.

Experiment: Viewing Extended Attributes
Implementing an actually usable version of xattr(1) is as easy as using the listxattr(2) system 
call directly, as is shown in the Listing 16-1:
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LISTING 16-1: Simple, but working code to list extended attributes

#include <sys/xattr.h>
#include <stdlib.h>
#include <stdio.h>
#define BUFSIZE         4096

// Minimal version of xattr, but one that actually presents compressed attributes
// Can be extended to support reading and writing the attribute themselves
// (left as an exercise for the reader)

int  main (int argc, char **argv)
{
   char *fileName = argv[1];
   int xattrsLen;
   char *xattrNames;
   char *attr;

   // We could call listxattr with NULL to get the name len, but – quick & dirty
   // I have yet to see a file with more than 4K of extended attribute names..

   xattrNames = malloc (BUFSIZE);
   memset (xattrNames, '\0', BUFSIZE); // or calloc..

   switch (listxattr (fileName, 
                      xattrNames, 
                      BUFSIZE, 
                      XATTR_SHOWCOMPRESSION | XATTR_NOFOLLOW))
    {
       case 0:
          fprintf(stderr, "File %s has no extended attributes\n", fileName); return (0);
       case -1:
          perror("listxattr"); return (1);
       default: // it worked. fall through
        ;
   }
   // rely on attributes being NULL terminated..
   for (attr = xattrNames; attr[0]; attr += strlen(attr) + 1)
       {
              printf ("Attribute: %s\n", attr);
       }

   free(xattrNames); // Be nice. Clean up
   return (0);
}

The listing should compile nearly. After compiling it (or downloading the tool from the book’s com-
panion website), you can use it on any fi le in the system, and view, for example, compression-related 
extended attributes (as shown in another experiment, in a few pages). 

If you complete the exercise, so as to list the extended attribute values, you can try an extra step of this 
experiment: Start Finder in the some directory, and assign a color label to a fi le. Use xattr from the 
listing to look at the com.apple.FinderInfo attribute. You should see something like Output 16-1:
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OUTPUT 16-1: The com.apple.FinderInfo attribute changing along with color labels

morpheus@Ergo (/)$ jxattr  -p ~/Desktop/test
Attribute: com.apple.FinderInfo (32 bytes)
\x0\x0\x0\x0\x0\x0\x0\x0\x0\xc\x0\x0\x0... # Red

Attribute: com.apple.FinderInfo (32 bytes)
\x0\x0\x0\x0\x0\x0\x0\x0\x0\xe\x0\x0\x0... # Orange

Attribute: com.apple.FinderInfo (32 bytes)
\x0\x0\x0\x0\x0\x0\x0\x0\x0\x2\x0\x0\x0… # Gray

You can view almost all the extended attributes a fi le has using the system calls. If you use the code 
from the listing to look for some of the system properties, like content protect or ACLs, you will come 
up empty handed. This, however, is not a shortcoming of the code, so much as the fi ltering imposed 
at the system call level. These attributes are, in fact, there, but you need to read them directly from 
the fi le system and this is exactly what low-level tool like hfsleuth can do, as shown later.

Forks
Forks are a concept fi rst devised by Apple (in the original HFS), and later adopted by Microsoft in 
NTFS (wherein it is referred to as alternate data streams). A fork is much like an extended attribute, 
in that it can be used for additional metadata, but is more suited for data that can be put in a sepa-
rate, albeit related fi le. Whereas extended attributes have size limitations, forks do not.

While OS X can support virtually any number of forks, most fi les have exactly one fork — the data
fork — which is the where the fi le’s actual data is stored. Some fi les may also maintain a resource
fork, though that, too is rare. To see a resource fork, simply append /..namedfork/rsrc to any fi le 
name. One such fi le is /Developer/Icon^M (the ^M being Ctrl+M, which you can type by pressing 
Ctrl+V Ctrl+M — otherwise Ctrl+M doubles as the Enter key), or by hitting Tab to auto-complete. 
This is demonstrated in Output 16-2:

OUTPUT 16-2: Demonstrating resource forks

morpheus@Ergo (~)$ ls -l@ /Developer/Icon^M 
-rw-r--r--@ 1 root  admin  0 Nov 14  2011 /Developer/Icon?
        com.apple.FinderInfo 32 
        com.apple.ResourceFork 338

morpheus@Ergo (~)$ xattr -l /Developer/Icon^M
com.apple.FinderInfo:
00000000  00 00 00 00 00 00 00 00 40 00 00 00 00 00 00 00  |........@.......|
00000010  00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  |................|
00000020
com.apple.ResourceFork:
00000000  00 00 01 00 00 00 01 20 00 00 00 20 00 00 00 32  |....... ... ...2|
...
00000110  00 00 00 00 00 00 00 00 64 65 76 66 6D 61 63 73  |........devfmacs|
00000120  00 00 01 00 00 00 01 20 00 00 00 20 00 00 00 32  |....... ... ...2|
00000130  00 00 00 00 09 00 00 00 00 1C 00 32 00 00 62 61  |...........2..ba|

ls –l shows the finder extended 
attribute, and a 338 byte resource fork

xattr(1) (or jxattr) can be used to dump the 
extended attributes, including the resource fork

continues
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00000140  64 67 00 00 00 0A BF B9 FF FF 00 00 00 00 01 00  |dg..............|
00000150  00 00                                            |..|
00000152

morpheus@Ergo (~)$ ls  -l /Developer/Icon^M/..namedfork/rsrc
-rw-r--r--  1 root  admin  338 Nov 14  2011 /Developer/Icon?/..namedfork/rsrc

morpheus@Ergo (~)$ od -A x -t x1 /Developer/Icon^M/..namedfork/rsrc
0000000    00  00  01  00  00  00  01  20  00  00  00  20  00  00  00  32
0000010    00  00  00  00  00  00  00  00  00  00  00  00  00  00  00  00
*
0000100    00  00  00  1c  00  00  00  00  00  00  00  00  00  00  00  00
0000110    00  00  00  00  00  00  00  00  64  65  76  66  6d  61  63  73
0000120    00  00  01  00  00  00  01  20  00  00  00  20  00  00  00  32
0000130    00  00  00  00  09  00  00  00  00  1c  00  32  00  00  62  61
0000140    64  67  00  00  00  0a  bf  b9  ff  ff  00  00  00  00  01  00
0000150    00  00
0000152

One place where resource forks are used extensively is in OS X aliases. Aliases make good use of 
their resource forks. When created, and even if it renamed, an Alias has an extended Finder attri-
bute (com.apple.FinderInfo) specifying alisMACS, and a resource fork specifying the coordinates 
of the original fi le, as well as the icons. Surprisingly enough, in many cases the aliases take up more 
disk space than the fi les they are aliases of.

Compression
 ‰ File compression is one of HFS+’s strongest features, and also the one most easily over-

looked. This is because, as of 10.6, it is provided transparently. Compression is implemented 
by leaving the data fork empty, and placing the compressed data in the resource fork. An 
additional extended attribute, com.apple.decmpfs, marks the fi le as compressed. OS X 
utilities, however, silently perform decompression on the fl y of system fi les, and even the 
extended attribute utility, xattr(1), ignores the extended attribute of com.apple.decmpfs,
which is used for compression. The kernel supports on-the-fl y compression using the special-
ized AppleFSCompressionTypeZlib.kext.

If you are using Lion or later, ls(1) has been adapted to detect and display compressed fi les if the 
-O switch is used on a compressed fi le. Doing so will not display compression details. However, one 
of the few ways to see compression in action is using du. This is shown in Output 16-3:

OUTPUT 16-3: Demonstrating the actual size of a fi le using du

morpheus@Minion (~)$ ls -lO@ /bin/ls
-r-xr-xr-x  1 root  wheel  compressed 80752 Feb  6 10:49 /bin/ls
morpheus@Minion (~)$ du -h !$
du -h /bin/ls
32K   /bin/ls

..and the fork may be accessed as a normal file, 
by appending ..namedfork/rsrc

Note: No extended attributes for ls

Yet size used is significantly 
smaller than

OUTPUT 16-2 (continued)
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The ditto(1) utility supports compression with a --hfsCompression switch. The compression is 
implemented by a private framework, Bom, which — in turn — compresses using the private frame-
work AppleFSCompression, libz (gzip style Lempel-Ziv 77 compression), and libbz2 (Bunzip2, 
or Burroughs-Wheeler). (You can see this for yourself by using otool –l on these fi les). 

The hfsleuth companion tool can be used to display compression details when used on a normal fi le, 
as shown in Output 16-4.

OUTPUT 16-4: Using hfsleuth on a compressed fi le

morpheus@Minion (~)$ ls -lO@ /bin/ls
-r-xr-xr-x  1 root  wheel  compressed 80752 Feb  6 10:49 /bin/ls
morpheus@Minion (~)$ hfsleuth -v  /bin/ls
/bin/ls: File size is 80752 bytes, compressed (actual size is 31047 bytes)
No extended attributes (aside from compression)

A little known fact is that when Apple integrated compression into HFS+, they did so in a highly 
modular way, with most of the logic actually decoupled from HFS+. This means that compression 
support could very well be implemented by other fi le systems, so long as they support extended 
attributes.

Detecting File Compression
The kernel can detect if a given fi le (more accurately, a vnode) is compressed by calling decmpfs_
file_is_compressed (bsd/kern/decmpfs.c). This function checks the value of the com.apple
.decmpfs extended attribute. Client fi le systems (in our case, HFS+), can wrap this with their own 
logic, as HFS+ does with hfs_file_is_compressed (bsd/hfs/hfs_vnops.c). This function fi rst 
checks a cached value stored in a decmpfs_cnode or compression node, which decmpfs maintains 
for compressed data. If this is a fi rst time the fi le is opened, no cached value exists, and so a call is 
made to the generic function, which also sets up the cnode.

File Decompression
As noted earlier, HFS+ compression in the kernel is implemented in a highly modular fashion. 
Rather than commit to a particular type of algorithm, the HFS+ code in the kernel’s bsd/hfs direc-
tory calls out to decompression logic in bsd/kern/decmpfs.c. To further enable modularity, the 
decompression is performed by one of potentially several (up to CMP_MAX) decompressors, which 
can be registered externally (i.e., from kexts), using the register_decmps_decompressor function. 
This is shown in Listing 16-2:

LISTING 16-2: Decompression logic exported in bsd/sys/decmpfs.h

#define DECMPFS_REGISTRATION_VERSION 1
typedef struct {
    int  decmpfs_registration; // "1"
    decmpfs_validate_compressed_file_func validate;
    decmpfs_adjust_fetch_region_func      adjust_fetch;
    decmpfs_fetch_uncompressed_data_func  fetch;

continues
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    decmpfs_free_compressed_data_func     free_data;
} decmpfs_registration;

/* hooks for kexts to call */
errno_t register_decmpfs_decompressor
 (uint32_t compression_type, 
  decmpfs_registration *registration);
errno_t unregister_decmpfs_decompressor
  (uint32_t compression_type, 
   decmpfs_registration *registration);

The decmpfs mechanism registers the Type1 compressor, which is used in cases where the data is 
already too small to be effectively compressed and can fi t in the extended attribute itself, in plain-
text. Other registrations can be performed by external kexts. The AppleFSCompressionTypeZlib
.kext registers Type3 and Type4 compressors, and the AppleFSCompressionTypeDataless.kext
(in OS X, as of Lion) registers Type5.

If a kernel extension has not yet registered the appropriate decompressor, the process works in 
reverse: decmpfs uses I/O Kit to query the driver catalogue for the driver which purports to sup-
port the required type. Calls to the actual decompressor functions use _decmp_get_func, shown in 
Listing 16-3.

LISTING 16-3: _decmp_get_func, used to obtain decompressor functions

_decmp_get_func(uint32_t type, int offset)
{
  /*
   this function should be called while holding a shared lock to decompressorsLock,
   and will return with the lock held
   */

  if (type >= CMP_MAX) // only up to CMP_MAX decompressors
             return NULL;

  if (decompressors[type] != NULL) {
     // already have a registered decompressor at this offset, return its function
     return _func_from_offset(type, offset);
   }

  // does IOKit know about a kext that is supposed to provide this type?
  char providesName[80];
  snprintf(providesName, sizeof(providesName),
        "com.apple.AppleFSCompression.providesType%u", type);

// I/O Kit and its "Catalogue" are both discussed in detail in Chapter 19 
  if (IOCatalogueMatchingDriversPresent(providesName)) {
        // there is a kext that says it will register for this type, so let's wait for 
it
        char resourceName[80];
        uint64_t delay = 10000000ULL; // 10 milliseconds.

LISTING 16-2 (continued)
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        snprintf(resourceName, sizeof(resourceName),
                 "com.apple.AppleFSCompression.Type%u", type);
        printf("waiting for %s\n", resourceName);
        while(decompressors[type] == NULL) {
            lck_rw_done(decompressorsLock);

            if (IOServiceWaitForMatchingResource(resourceName, delay)) {
                break;
            }
            if (!IOCatalogueMatchingDriversPresent(providesName)) {

                printf("the kext with %s is no longer present\n", providesName);
                break;
            }
            printf("still waiting for %s\n", resourceName);
            delay *= 2;
            lck_rw_lock_shared(decompressorsLock);
        }
        // IOKit says the kext is loaded, so it should be registered too!
        if (decompressors[type] == NULL) {
            ErrorLog("we found %s, but the type still isn't registered\n", 
providesName);
            return NULL;
        }
        // it's now registered, so let's return the function
        return _func_from_offset(type, offset);
    }

        // the compressor hasn't registered, so it never will unless someone 
        // manually kextloads it
        ErrorLog("tried to access a compressed file of unregistered type %d\n", type);
        return NULL;
}

I/O Kit is described in more detail in Chapter 19, but the code should still be clear: decmp_get_func
fi rst checks if it has a registered decompressor (in which case it can just return its function). If it 
does not, it calls on I/O Kit to look up a driver and load it and waits (with exponentially increasing 
delays) until that driver is registered. The driver is expected to have registered itself by then at the 
appropriate offset, and its function can be returned. 

Note, that with all this talk about decompression, we have not mentioned compression. This is 
because the kernel cannot perform the compression, and has no support for external compressors, 
either: Only the decompression is supported at the kernel level. Apple provides pre-compressed fi les 
during the installation process. For compression any time thereafter, you need to use the ditto(1)
command, with its  --hfsCompression switch. As stated, the command (part of the BomCmds pack-
age) is closed source, but the HFS+ compression process can generally be described as follows:

 ‰ The fi le is treated as an array of 64 K blocks.

 ‰ Small fi les are compressed with Type1, with their data stored in the extended attribute, 
uncompressed.

 ‰ Larger fi les that can still fi t inside the com.apple.decmpfs extended attribute in one block 
are stored in the extended attributes.
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 ‰ All other larger fi les are compressed using the fi le’s resource fork. Note that, in this case, the 
fi le may not have its own resource fork.

 ‰ The extended attribute and the resource fork are added to the fi le.

 ‰ The actual fi le size is recoded as 0, and chflags(2) marks the fi le as compressed.

The following experiment demonstrates how fi le system compression is implemented.

Experiment: Viewing File Compression
Using the program created in Listing 16-1, you can easily see compression-related extended attri-
butes, even though the normal xattr will not. To try this out, create a small fi le, and then copy it to 
your directory using ditto(1), applying compression in the process. This will look something like 
Output 16-5:

OUTPUT 16-5: Compressing a fi le with ditto(1)

morpheus@minion (~)$ echo "This is a test of compression" > file
morpheus@minion (~)$ ditto –hfsCompression file fileComp
morpheus@minion (~)$ ls -lO file*
-rw-r--r--  1 morpheus  staff  -          30 Apr 29 16:39 file
-rw-r--r--  1 morpheus  staff  compressed 30 Apr 29 16:39 fileComp

Now use the xattr from Listing 16-1 on the fi le. You should be able to see your fi le has the com
.apple.decmpfs attribute, but not the resource fork, since its compressed data is small enough. 
Trying this again on a larger fi le (usually over 20 K) will create the resource fork. This is shown in 
Output 16-6:

OUTPUT 16-6: Who’s the real xattr?

morpheus@Minion (~)$ /usr/bin/xattr -p com.apple.decmpfs fileComp 
xattr: fileComp: No such xattr: com.apple.decmpfs # Liar!

morpheus@Minion (~)$ xattr /bin/ls                 # no attrs on /bin/ls, either

morpheus@Minion (~)$ ls -l /bin/ls                 # It's a conspiracy!
-r-xr-xr-x  1 root  wheel  80752 Feb  6 10:49 /bin/ls

# by comparison, running our version, from Listing 16-xat
#
morpheus@Minion (~)$ ./xattr fileComp
Attribute: com.apple.decmpfs # our version tells the truth
morpheus@Minion (~)$ ./xattr  /bin/ls              # And /bin/ls has a resource fork
Attribute: com.apple.ResourceFork
Attribute: com.apple.decmpfs

Completing the exercise and also printing the extended attribute values, will reveal that, interestingly 
enough, even though the fi le is technically compressed (with its data in the extended attribute), it is 
not actually. This is because, for very small fi les, the overhead of compression headers might actually 
be larger than the fi le data that is being compressed. The same does not hold for /bin/ls, which has 
been compressed from 80,752 bytes to a mere 31,047 — a signifi cant savings of about 62%!
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# Printing out the extended attribute (left as an exercise)
# Note our file is not really compressed, but its content is in the attribute
#
morpheus@Minion (~)$ ./xattr -v fileComp
Attribute: com.apple.decmpfs (47 bytes)
fpmc\x3\x0\x0\x0\x1e\x0\x0\x0\x0\x0\x0\x0\xffThis is a test of compression\xa

# In /bin/ls, the resource fork holds the data, and the extended attribute 
# only holds the fpmc ('cmpf', in reverse) header.
morpheus@Minion (~)$ ./xattr -v /bin/ls
Attribute: com.apple.decmpfs (16 bytes)
fpmc\x4\x0\x0\x0p;\x1\x0\x0\x0\x0\x0
Attribute: com.apple.ResourceFork (31047 bytes)
\x0\x0\x1\x0\x0\x0y\x15\x0\x0x\x15\x0...
   //output truncated for brevity, but note file is significantly smaller

Now perform any subtle modifi cation you wish on the fi le. For example, add a character. You will 
see the fi le has lost its compression. (See Output 16-7.)

OUTPUT 16-7: Compression is lost on fi le modifi cation

morpheus@Minion (~)$ echo "." >> fileComp
morpheus@Minion (~)$ ls -lO file* 
-rw-r--r--  1 morpheus  staff  - 30 Apr 29 16:39 file
-rw-r--r--  1 morpheus  staff  - 32 Apr 29 16:44 fileComp 
morpheus@Minion (~)$ ./xattr fileComp
File fileComp has no extended attributes

Unicode Support
Gone are the days of 8-bit ASCII. Nowadays, as users download more content from the Internet, 
there is a need for Internationalization — I18n — at the fi le system level. This means that fi le names 
in different languages and character sets must be supported by the fi le system.

HFS+ solves internationalization problems by simply using Unicode. Of the many Unicode variants, 
the one used in UTF-16 — double byte Unicode, and fi lenames can be up to 255 characters (i.e., 510 
bytes) in length. The data structure used internally by HFS+ is an HFSUniStr255, defi ned here:

struct HFSUniStr255 {
    UInt16  length;
    UniChar unicode[255];
};
typedef struct HFSUniStr255 HFSUniStr255;

The Unicode is in big-endian order, meaning that on Intel architecture every byte has to be swapped 
(using be16_to_cpu or some other macro).

Finder integration
HFS+ is tightly integrated with the OS X Finder (discussed in Chapter 7). Both the volume header, 
as well as the individual catalog entries have a special Finder Information fi eld, which contains fl ags 
for use by Finder. The exact information depends on whether it is for a fi le or a folder. This is shown 
in Listing 16-4.
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LISTING 16-4: Finder Information, from bsd/hfs/hfs_format.h

/* Finder information */
struct FndrFileInfo {
        u_int32_t       fdType;         /* file type */
        u_int32_t       fdCreator;      /* file creator */
        u_int16_t       fdFlags;        /* Finder flags */
        struct {
            int16_t     v;              /* file's location */
            int16_t     h;
        } fdLocation;
        int16_t         opaque;
} __attribute__((aligned(2), packed));
typedef struct FndrFileInfo FndrFileInfo;

struct FndrDirInfo {
        struct {                        /* folder's window rectangle */
            int16_t     top;
            int16_t     left;
            int16_t     bottom;
            int16_t     right;
        } frRect;
        unsigned short  frFlags;        /* Finder flags */
        struct {
            u_int16_t   v;              /* folder's location */
            u_int16_t   h;
        } frLocation;
        int16_t         opaque;
} __attribute__((aligned(2), packed));
typedef struct FndrDirInfo FndrDirInfo;

The “fl ags” are listed in bsd/hfs/hfs_macos_defs.h, and shown in Listing 16-5. 

LISTING 16-5: Finder Flags, from bsd/hfs/hfs_macos_defs.h 

enum {
        /* Finder Flags */
        kHasBeenInited          = 0x0100,
        kHasCustomIcon          = 0x0400,
        kIsStationery           = 0x0800,
        kNameLocked             = 0x1000,
        kHasBundle              = 0x2000,
        kIsInvisible            = 0x4000,
        kIsAlias                = 0x8000
};

The fl ags and fi nder information are defi ned as Apple internal. If you compare the previous listings 
to TN1150, you will see that fl ags have been removed and the structure fi elds and names changed. 
Also, as noted previously, Finder makes use of the com.apple.FinderInfo extended attribute to 
store such information as fi le color labels (which were once also supported by fi nder fl ag, kColor).
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Case Sensitivity (HFSX)
File systems are defi ned as case-insensitive or case-sensitive, depending on whether they consider 
letter uppercase/lowercase when comparing fi lenames. Additionally, while a fi le system may be case-
insensitive, it may still opt to be case-preserving — i.e., create fi les in the exact case passed to it, and 
maintain that case in all further operations on that fi le. 

HFS+ is case-insensitive, but case-preserving. OS X supports a newer variant, HFSX, which can be 
made case-sensitive, as well. Originally, HFSX was devised as a forward-looking fi le system that, 
one day, would replace HFS+. The idea was to enable many more features, updating the version 
number as more features are added, but so far (since version 10.3 to the present day), the only fea-
ture is case-sensitivity, and it, too, is optional.

OS X uses HFS+ by default. iOS uses HFSX, with case-sensitivity enabled. The decision between 
case-preserving (HFS+) and case-sensitive (HFSX) can only be made once, during partitioning (with 
Disk Utility or diskutil(8) from the command line), since it affects the ordering of keys in the 
catalog tree. 

Journaling
File transactions can be quite complicated, and write operations in particular may span multiple 
blocks. In the case of a power outage or other crash, this could lead to data corruption, if a transac-
tion is only partially written to the underlying media. Long time UNIX users are all too familiar 
with the lost+found directory, set up automatically on each fi le system after running fsck(1).
This directory contains lost, or orphaned inodes, which have been unlinked from their directory by 
rm(1) or unlink(2), yet whose storage blocks have not been freed. In extreme cases, the entire fi le 
system may be corrupted and rendered unmountable by a crash. This results in the system booting 
in single user mode for recovery, and a tedious manual fsck by the administrator.

Journaling is a technique that aims to resolve this. The journal is a special area of the disk, allocated 
but invisible to the user, in which the fi le system can record its transactions, prior to actually com-
mitting them to the disk. If the changes can be committed successfully, they are removed from the 
journal. But if a crash should occur, the fi le system can quickly be restored to a consistent state — by 
either replaying the journal (i.e., committing all its recorded transactions), or rolling it back (in the 
case it contains incomplete transactions). 

A journal is no panacea against data loss. Some data may still be lost, either as a result of a rollback, 
or due to never making it to the journal in the fi rst place (for example, if it stays in the system buffer 
cache, and isn’t fl ushed before a crash). It does, however, signifi cantly reduce the chance of a crash 
making the fi le system unusable.

Modern fi le systems, like Linux’s Ext3, and Microsoft’s NTFS are journal-based. HFS+ can be 
mounted either with or without a journal. Journaling is default, though SSD-based Macs may ben-
efi t from disabling it (due to the number of erase operations in a journal, which could shorten the 
underlying fl ash).

Journaling can be toggled on and off as desired, using hfs.util –J or hfs.util –U, respectively, 
as shown in Output 16-6. Note the use of the full path name, since hfs.util(8) is not in the path.
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OUTPUT 16-6: Toggling journaling using hfs.util

root@Minion (/)# /System/Library/Filesystems/hfs.fs/hfs.util -J /
Allocated 24576K for journal file.

root@Minion (/)# /System/Library/Filesystems/hfs.fs/hfs.util -I /
/ : journal size 24576 k at offset 0x15502000

root@Minion (/)# mount
/dev/disk0s2 on / (hfs, local, journaled)
devfs on /dev (devfs, local, nobrowse)
map -hosts on /net (autofs, nosuid, automounted, nobrowse)
map auto_home on /home (autofs, automounted, nobrowse)

root@Minion (/)# /System/Library/Filesystems/hfs.fs/hfs.util -U /
Journaling disabled on /dev/disk0s2 mounted at /.

root@Minion (/)# /System/Library/Filesystems/hfs.fs/hfs.util -I /
Volume / is not journaled.

root@Minion (/)# mount
/dev/disk0s2 on / (hfs, local)
devfs on /dev (devfs, local, nobrowse)
map -hosts on /net (autofs, nosuid, automounted, nobrowse)
map auto_home on /home (autofs, automounted, nobrowse)

Dynamic Resizing
HFS+ volumes can be dynamically resized — shrunk or grown, even when the volumes are 
mounted. This is considered advanced functionality, which is not matched by some of its peers 
(XFS, for example, can grow but not shrink). HFS+ resizing is handled by hfs_extendfs (bsd/hfs/
hfs_vfsutils.c), and can be performed from user mode by a HFS_RESIZE_VOLUME ioctl(2), an 
HFS_EXTEND_FS sysctl(2), using the Disk Utility GUI by simply adjusting the lower-right corner 
of an HFS+ partition.

Metadata Zone
The metadata zone, which was introduced in OS X 10.3, follows the system’s volume header, and 
contains the fi le system’s internal structures (alongside hot fi les, described next). The zone is inten-
tionally defi ned in the beginning of the volume, to optimize seek times, and is enabled by hfs_
metadatazone_init (bsd/hfs/hfs_vfsutils.c) under the following conditions:

 ‰ Volume size is at least 10 GB

 ‰ Journaling is enabled on the volume

 ‰ The caller did not explicitly ask to disable the zone (via fsctl, as discussed later)

The zone is off limits to regular fi le allocations (unless the system is extremely short on blocks). 
The zone contains fi les and structures for the fi le system’s internal use, as discussed later (under 
“Components”). The hfs_virutalmetafile (bsd/hfs/hfs_vfsutils.c), shown in Listing 16-6, 
is used to fi nd if a fi le belongs in the metazone:
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LISTING 16-6: The hfs_virtualmetafi le() function

int hfs_virtualmetafile(struct cnode *cp)
{
   const char * filename;

   if (cp->c_parentcnid != kHFSRootFolderID)
      return (0);

   filename = (const char *)cp->c_desc.cd_nameptr;
   if (filename == NULL)
        return (0);

   if ((strncmp(filename, ".journal", sizeof(".journal")) == 0) ||
    (strncmp(filename, ".journal_info_block", sizeof(".journal_info_block")) == 0) ||
    (strncmp(filename, ".quota.user", sizeof(".quota.user")) == 0) ||
    (strncmp(filename, ".quota.group", sizeof(".quota.group")) == 0) ||
    (strncmp(filename, ".hotfiles.btree", sizeof(".hotfiles.btree")) == 0))
        return (1);

        return (0);
}

Hot Files
An interesting and quite unique feature of HFS+ is its dynamic adaptation to handle frequently 
accessed fi les.  HFS+ keeps a temperature measurement on each fi le. The temperature is computed as 
the number of bytes divided by the fi le size (as a uint32_t, so it is always rounded down). This cal-
culation is inversely proportional to the fi le size, so it favors small fi les, whose contents are read very 
frequently. Those “hot” fi les exceeding a certain HFC_MINIMUM_TEMPERATURE are added to a special 
B-Tree in the metadata zone, which maintains up to HFC_MAXIMUM_FILE_COUNT entries, and their 
blocks are moved into the metadata zone as well.

The Hot-File B-Tree is a regular fi le, created by hfc_btree_create (in bsd/hfs/hfs_hotfiles.c), 
and its FndrFileInfo fl ags are set (kIsInvisible + kNameLocked), so its name cannot be 
changed, and it remains invisible to Finder, but you can use ls –laO to see that it is very much 
there, as shown in Output 16-7:

OUTPUT 16-7: Locating the hot fi le B-Tree

morpheus@Minion (~)$ ls -laO /.hotfiles.btree
-rw-------  1 root  wheel  hidden 131072 May 11 16:42 /.hotfiles.btree

The hot fi le B-Tree is kept small and contains entries corresponding to the hottest (i.e., most fre-
quently read from) fi les on the system. The system records fi le activity and periodically evaluates 
candidates. Simmering hot fi les are moved into the metadata zone in a process known as adoption,
(assuming there is room for them) in place of fi les which have cooled off, (in what is known as an 
eviction). The eviction precedes the adoption, since it reclaims precious blocks in the limited meta-
data zone. 
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Apple intentionally does not document the algorithms, and TN1150 warns they are subject to 
change. The B-Tree structure of the hot fi le B-Tree in Lion is presented later in this Chapter, under 
“Components.” The bsd/hfs/hfs_hotfiles.h lists the various settings defi ned for this mechanism 
(as HFC_* constants).

Dynamic Defragmentation
File fragmentation is a bane for all fi le systems: As the system creates, modifi es, and deletes fi les, 
“holes” start to appear where fi les were deleted, and fragments are created when a fi le needs to 
expand but has no immediate contiguous space. There may be plenty of fi le system real estate avail-
able, but it’s not particularly effective if it’s all in studio and one bedroom apartments. 

HFS+ is capable of defragmenting fi les on the fl y. The hfs_relocate (bsd/sys/hfs_
readwrite.c) function handles these cases. It is called from hfs_vnop_open (in the same fi le), and 
attempts to relocate fi les that are deemed suffi ciently fragmented. This is shown in Listing 16-7:

LISTING 16-7: Handling fragmented fi les, from hfs_vnop_open

int hfs_vnop_open(struct vnop_open_args *ap)
   /*
    * On the first (non-busy) open of a fragmented
    * file attempt to de-frag it (if its less than 20MB).
    */
    fp = VTOF(vp);
    if (fp->ff_blocks &&
        fp->ff_extents[7].blockCount != 0 &&
        fp->ff_size <= (20 * 1024 * 1024)) {
                int no_mods = 0;
                struct timeval now;
                /*
                 * Wait until system bootup is done (3 min).
                 * And don't relocate a file that's been modified
                 * within the past minute -- this can lead to
                 * system thrashing.
                 */
                 if (!past_bootup) {
                        microuptime(&tv);
                        if (tv.tv_sec > (60*3)) {
                                past_bootup = 1;
                        }
                }

                microtime(&now);
                if ((now.tv_sec - cp->c_mtime) > 60) {
                        no_mods = 1;
                }

                if (past_bootup && no_mods) {
                        // relocate past volume next allocation hint, which is
                        // very likely to be contiguous space
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(void) hfs_relocate(vp, hfsmp->nextAllocation + 4096,
                                        vfs_context_ucred(ap->a_context),
                                        vfs_context_proc(ap->a_context));
                }
        }

        hfs_unlock(cp);

        return (0);
}

Moving hot fi les in and out of the metadata zone also helps in defragmentation, as the fi les are 
moved by calls to hfs_relocate(). The function itself is clearly documented with nice ASCII art, 
as shown in Listing 16-8:

LISTING 16-8: hfs_relocate(), from hfs_readwrite.c

/*
 * Relocate a file to a new location on disk
 *  cnode must be locked on entry
 *
 * Relocation occurs by cloning the file's data from its
 * current set of blocks to a new set of blocks. During
 * the relocation all of the blocks (old and new) are
 * owned by the file.
 *
 * -----------------
 * |///////////////|
 * -----------------
 * 0               N (file offset)
 *
 * -----------------     -----------------
 * |///////////////|     |               |     STEP 1 (acquire new blocks)
 * -----------------     -----------------
 * 0               N     N+1             2N
 *
 * -----------------     -----------------
 * |///////////////|     |///////////////|     STEP 2 (clone data)
 * -----------------     -----------------
 * 0               N     N+1             2N
 *
 *                       -----------------
 *                       |///////////////|     STEP 3 (head truncate blocks)
 *                       -----------------
 *                       0               N
 *
 * During steps 2 and 3 page-outs to file offsets less
 * than or equal to N are suspended.
 * During step 3 page-ins to the file get suspended.
 */
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HFS+ DESIGN CONCEPTS

The “+” in HFS+ implies it is an enhancement of its predecessor — The Hierarchical File System,
or HFS. Apple introduced the latter back in the late ‘80s, to replace the incumbent Macintosh File 
System (MFS), which was severely limited and incapable of nested folders. HFS proved to have a 
very solid design, but met its match with fi les over 2 GB, fi lenames over 31 characters, and a rela-
tively low number of allocation blocks — only 16-bits worth. 

The design of HFS, therefore, wasn’t drastically altered in HFS+. The two fi le systems share the 
same underlying concepts, which are described next. HFS+ primarily increases fi eld and record 
sizes, to allow for far more fi les, and of larger sizes. Where new features in HFS+ were added, they 
will be pointed out. Apple has gradually begun to phase out support for HFS, retaining only HFS+. 
Snow Leopard no longer offers HFS fi le system format, and provides read-only support of HFS-
formatted DMG (Disk Image) fi les. Apple provides a wonderfully detailed explanation of HFS+, 
including the differences from its precursor, in Technical Note TN1150[2]. TN1150 has grown to be 
the defi nitive reference on HFS+, and — while the discussion here is in depth — you are encouraged 
to take a look at it, as well.

B-Trees: The Basics
B-Trees are fundamental building blocks of fi le systems, such as NTFS (Windows), Ext4 
(Linux) — and Apple’s HFS and HFS+. While they are covered in detail in many a textbook, they 
provide three out of the fi ve supporting data structures in HFS+. This section aims to quickly refresh 
some concepts, as they are implemented in the fi le system.

Motivation for B-Trees
The most fundamental concept in any fi le system is the mechanism used to store and retrieve the 
fi les. A fi le system needs a mechanism that answers several run-time needs:

 ‰ Searches: Since the primary goal of a fi le system is to locate fi les, it must be able to retrieve 
fi les in the most effi cient manner possible. Since the number of fi les tends to be very large, 
this calls for sub-linear time — O(n) simply isn’t scalable for millions of fi les. Searches are 
often hierarchical, as fi les are put into folders, and folders are put into subfolders still. 

 ‰ Insertions: Though relatively less frequent than locating fi les, from time to time fi les are 
added to the fi le system. This translates into an insertion of a fi le entry. 

 ‰ Updates: As fi les are renamed, moved, and deleted, the mechanism must be fl exible enough 
not to become fragmented. This type of fragmentation, referred to as index fragmentation,
occurs in cases where fi le indices, commonly sequential, become sparse as a result of fi les 
being moved to some other location, or deleted.

 ‰ Random access: Though most fi les are read sequentially, from start to fi nish, a user or process 
can always ask to jump around in a fi le, out of order, commonly by using the lseek(2) sys-
tem call. A fi le system is fully fl exible if, once a fi le is located, its blocks on disk can be freely 
accessed, and can be sought through effi ciently. Every fi le system favors writing fi les contigu-
ously, but this is not always a simple matter. When contents are frequently added or removed 
from a fi le, it is only a matter of time before block fragmentation ensues, as the fi le allocation 
on disk simply cannot be kept contiguous, and the fi le has to extend to other blocks.
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While some fi le systems remain allocation table based (most notably, FAT, FAT32, and, recently, 
ExFat — all based on a “File Allocation Table”), most adopt a tree-based solution. Trees, by design, 
offer all of the above, and provide a hierarchical structure a fl at table cannot, “for free.” Trees are 
not without limitations, however. Binary trees only allow for dichotomies at each node. And, as is 
well known to any computer science major, worst-case operations on trees that involve rebalancing 
them can be very costly. 

Enter B-Trees. These can be thought of as an extension to binary trees, in that they maintain a tree 
structure, but a node can have any number of children — call it m — and not just two. This helps 
to limit their depth, from log2(n) (as would be a classic binary tree), to logm(n) in the best case, and 
logm/2(n) in the worst. Searching, therefore, and most other operations, can be provided at logarith-
mic time, though in fairness it should be pointed out this is amortized. Worst case insertions and 
deletions are far more costly, although very rare.

The HFS+ logic uses B-Tree operations in bsd/hfs/hfscommon/BTree.

B-Tree Nodes
Like all trees, B-Trees are comprised of nodes, but unlike other trees, B-tree nodes can be of specifi c 
subtypes, or kinds. Different node kinds may hold different data, but all kinds of nodes are derived 
from a basic type (think, a parent class). They therefore all share the same typical structure: A Node 
descriptor, followed by 0 or more records. The node descriptor format is exactly the same for all 
node kinds, and is defi ned as a BTNodeDescriptor in <hfs/hfs_format.h>. The structure, along 
with its in memory representation, is shown in Figure 16-1.

flink (node ID of next sibling)

blink (node ID of prev sibling)

Kind height numRecords

reserved

0×00

0×04

0×08

0×0C

/*  BTNodeDescriptor  --  Every B-tree node starts with these fields. */
Struct BTNodeDescriptor {
 u_int32_t  flink;  /* next node at this level*/
 u_int32_t  blink;  /* previous node at this level*/
 int8_t  kind;  /* (leaf, index, header, map)*/
 u_int8_t  height;  /* zero for header, map; child ++ */
 u_int16_t  numRecords;  /* number of records in this node*/
 u_int16_t  reserved;  /* reserved - initialized as zero */
} _attribure_((aligned(2), packed));
typedef struct BTNodeDescriptor BTNodeDescriptor;

FIGURE 16-1: The B-Tree Node Descriptor

With each row in the illustration representing 32-bits, you can see the common descriptor takes a 
constant size of 14 bytes. Every node in a B-tree, whether node or internal, also contains 0 or more 
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records. These immediately follow the node descriptor, but may be of variable length. To walk 
through them, B-Tree nodes place a pointer to the individual records starting at the end of the node, 
and going back, including a dummy record for any free space which might be contained in the node. 
This is shown in Figure 16-2.

Node Descriptor

numRecords (n)

Record 0

Record 1, etc…

Record n-1

Record 1 offset

Record 0 offset

record n (free space)

Free space offset

..

0×0A

0×0E

nodeSize – (numRecords *2)

nodeSize -0×04

nodeSize -0×02

FIGURE 16-2: B-Tree node records

While this approach requires all nodes in the B-tree to have the same size, it allows for the quick 
traversal of a node’s records, as is shown in the following code:

void walkNodeRecords (UInt8 *rawNodeData, UInt16 nodeSize) 
{
 
  BTNodeDescriptor *currentNodeDesc = (BTNodeDescriptor *) rawNodeData; 

  // Find number of records – note this is stored in Big Endian format.
  UInt16 numRecords = be16_to_cpu(currentNodeDesc->numRecords);
  UInt16 currRec, recordOffset, nextRecordOffset;

  // set a record offset pointer, by going to the end of the node, and 
  // count back record offset pointers from it. Each offset pointer is a
  // UInt16. We count back (numRecords + 1): This accommodates for the free
  // space record, as well. 
 
  UInt16 *recordOffsetPtr = (UInt16 *) 
     (rawNodeData + nodeSize - sizeof(UInt16) * (numRecords + 1));
  for (currRec = 0;
       currRec < numRecords;
       currRec++)
  {
    // we can now treat recordOffsetPtr as an array of UInt16!
    // we can walk it back, by looking at numRecords – recordNumber

   recordOffset     =  be16_to_cpu(recordOffsetPtr[numRecords - currRec]);
   nextRecordOffset =  be16_to_cpu(recordOffsetPtr[numRecords - currRec -1]);
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   // Our record data is therefore at &rawNodeData[recordOffset]
  
    /* ... Do something with record data ... */
  }

}

The records themselves are dependent on the kind of node containing them. Internal nodes contain 
index records, which point to child nodes, whereas leaf nodes contain actual data. Both, however, 
are keyed records, and share the same general record format: A key, followed by data.

The keys must be stored in increasing order, and must be unique. I.e., a node cannot contain two 
identical keys. The key format is shown in Figure 16-3

KeyLength

Key Data (to
keyLenght bytes)

Data
(variable length)

0×00

0×02

(KeyLength + 0×02) rounded
to 16-bit offset 

FIGURE 16-3: A B-tree record key

The B-Tree Header Node
The HFS+ B-Tree begins not with a root node, but a special node called the header node. This node, 
of node kind kBTHeaderNode(1), is present even if the tree itself is empty. It contains exactly three 
records, which are not keyed records: 

The header record contains all the tree metadata. Since it begins immediately after the descriptor, its 
fi rst fi eld (treeDepth, indicating the number of levels in the tree) is a 16-bit quantity, which neatly 
aligns all other fi elds (but one, the clump size) on a 32 bit boundary. It is exactly 106 bytes long, 
which means the next record will start at offset 128 — 32- and 64-bit aligned. The B-Tree header 
record is shown in Figure 16-4:

The HFS+ B-Tree always has a fi xed depth. That is, all of its leaf nodes are on the same level. This 
depth is defi ned by the treeDepth fi eld. Nodes can be quickly looked up by their ID: As the illus-
tration above shows, the header node contains the ID of the tree root, from which all tree searches 
begin. Alternatively, the header node allows for quick access to the leaves themselves. This can be 
used for either sequential or reverse order searches, as the header node provides the index of the fi rst 
and last leaf, respectively. 

Note, that IDs aren’t stored anywhere. Each node is always of a fi xed size (the nodeSize fi eld, in 
offset 0x1c), and the nodes are stored in a contiguous node array, enabling the O(1) lookup of a 
node by its ID. This is done by a simple calculation of multiplying the node ID by the header node 
specifi ed node size.
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treeDepth

rootNode (ID)

leafRecords - # of leaves

firstLeafNode (ID)

lastLeafNode (ID)

nodeSize maxKeyLength

totalNodes (#)

freeNodes (#)

Reserved 1

bTreeType
keyCompare

Type

kHFSCaseFolding (0×CF)

kHFSBinaryCompare (0×BC)

Case Insensitive

Case sensitive (HFSX)

0×0C

Offset
(from beginning of node)

0×10

0×14

0×18

0×1C

0×20

0×24

0×28

0×2C

0×30

0×34

..

..

0×7C

keyCompareType ComparesclumpSize

clumpSize

reserved3
(padding to record boundary)

FIGURE 16-4: The B-Tree Header record

Following the header record is the User Data Record — also exactly 128 bytes long, which is cur-
rently reserved. The only B-Tree to actively employ it is the Hot File tree, which is described later.

The last record in the header node is the Map Record. It encompasses all the remaining space in 
the node. This is a bitmap, specifying which nodes in the B-Tree are used, and which are available. 
If the available space in the node does not suffi ce, then additional node usage is recorded in one or 
more special Map Nodes, which are single-record nodes that continue the bitmap to cover all nodes 
in the tree, up to totalNodes.

The companion tool for this book, hfsleuth, can be used to dump the header node of any of the 
four B-Trees that are described in this chapter. The example here shows a dump of the main catalog:

root@minion (/)#  hfsleuth /dev/rdisk0s2 –b catalog 
Processing Catalog tree
Catalog B-Tree dump:
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      Tree type:          0
      Tree depth:         4
      Root node:          32088
      First leaf:         14751
      Last leaf:          20273
      Leaf records        1990354
      Total nodes:        77312
      Free nodes:         18305
      Node size:          8192
      Map node:           63104
      Compare:            CF

Searching the B-Tree
Irrespective of which of the four B-trees is searched, the search logic is always the same. The follow-
ing pseudo code describes the procedure:

void *searchKeyInBTree (void *Key, char *BTreeRawData)
{

  BTHeaderRec *bTreeHeaderRec = (BTHeaderRec *) (BTreeRawData +
                                 sizeof(BTNodeDescriptor)); // i.e. + 14

// ASSERT (bTreeHeaderRec->btreeType == kHFSBTreeType); // == 0

  UInt16 nodeSize = be16_to_cpu(treeHeaderRecord->nodeSize);
  UInt16 maxDepth = be16_to_cpu(treeHeaderRecord->treeDepth);

  UInt32 rootNodeID = be32_to_cpu(bTreeHeaderRec->rootNode);

  return (searchKeyInBtreeNode(Key, rootNodeID, BTreeRawData, nodeSize, maxDepth)); 

} // end searchKeyInBTree

recordData *searchKeyInBTreeNode (key *Key, 
                            UInt32 currentNodeID,
                                  char *BTreeRawData,
                                  UInt16 nodeSize,
                                  UInt16 maxDepth)
{

  ASSERT (maxDepth > 0); // sanity check

  char * rawNodeData = (BTreeRawData + nodeSize * currentNodeID);
  BTNodeDescriptor *currentNodeDesc = (BTNodeDescriptor *)(rawNodeData);

  // Loop over records in current node
  // q.v. record walking example: we find number of records in this node
  UInt16 numRecords = be16_to_cpu(currentNodeDesc->numRecords);

  // set a record offset pointer, from end of node 
  UInt16 *recordOffsetPtr = (UInt16 *) (rawNodeData + nodeSize 
                              - sizeof(UInt16) * (numRecords + 1)];
  for (UInt16 currRec = 0;
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       currRec < numRecords;
       currRec++)
   {
     UInt16 recordOffset     = be16_to_cpu(recordOffsetPtr[numRecords - currRec]);
     UInt16 nextRecordOffset = be16_to_cpu(recordOffsetPtr[numRecords – currRec -1]);
     // Our record data is therefore at &rawNodeData[recordOffset]
     key *recordKey = (key *) (&rawNodeData[recordOffset]);
     recordData *data = (&rawNodeData[recordOffset + (keyLenRoundedToEven(recordKey)]

// Assume availability of some comparison function, which returns 
// -1 if a < b, +1 if a > b, and 0 on equality
switch(compareKeys (Key, recordKey)) 
     {
       case -1: break; // less than – continue

       case 0: // equal – found, or fall through to recurse
        if (currentNodeDesc->kind == kBTLeafNode)

            return (recordData); // found – return record..

       case 1: // greater than, or equal and not leaf
        if (currentNodeDesc->kind == kBTLeafNode) return NULL;

             // if NOT a leaf, this HAS to be an index node.
             ASSERT (currentNodeDesc->kind == kBTIndexNode);
             // and if our key is greater, we have to recurse – the data
             // in an index node is the next node ID.
             return (searchKeyInBtreeNode(Key, 
                                (UInt32) recordData, 
                                 BTreeRawData,
                                 nodeSize, 
                               --maxDepth)); 
     } // end switch
   } // end for ..
} // end searchKeyInBTreeNode

COMPONENTS

As mentioned before, HFS+ uses six special fi les for its own maintenance. Four of them are actually 
B-Trees:

 ‰ The Catalog B-Tree: Which contains all the fi les in the fi le system.

 ‰ The Attributes B-Tree: Which was added in HFS+, supports extended fi le attributes

 ‰ The Extent Overfl ow B-Tree: For fi les with more than eight fragments, or extents.

 ‰ The Hot-File B-Tree: For small fi les that are frequently accessed, as discussed previously 
under “Hot Files.”

And two are fi les:

 ‰ The Allocation File: Containing a bitmap records of all the blocks in the fi le system, to track 
which are in use and which are free. 
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 ‰ The Startup File: This is a simple executable fi le, which can be used for booting the operating 
system. This is largely ignored by OS X, but can be used by foreign operating systems.

When HFS+ is mounted with journaling, a third fi le, the Journal, is also used. All these components 
(including the journal, but excluding the Startup fi le) are stored in the metadata zone, as well as the 
quota support fi les, if quotas are enabled on the volume. 

This section describes these components, in detail. 

The HFS+ Volume Header
Before the system can start rummaging through miscellaneous B-Trees, it has to be able to fi nd 
where they are, and identify the HFS+ fi le system as such. For this purpose, there exists at a fi xed 
location — 1024 bytes from the beginning of the partition (or “Volume”). This is a massive struc-
ture — 512 bytes — but it contains all the necessary details required to initiate the fi le system load-
ing operation. The volume header is shown in Figure 16-5.

The volume header is also, at present, the only cardinal difference between HFS+ and HFSX: The 
two are identical in nearly every way, with three exceptions:

 ‰ HFSX uses the signature HX as opposed to HFS+, which uses H+.

 ‰ HFSX sets the version to 5, rather than HFS+ setting 4.

 ‰ In HFSX B-Trees have an option to perform key comparison by binary compare, or by fold-
ing the case. 

Most of the fi elds shown in the fi gure are self-explanatory, but one that needs some elaboration is 
FinderInfo: As noted previously, HFS+ is a rather unusual fi le system in that it is tightly integrated 
with the Finder GUI. The FinderInfo fi elds are used by OS X during a boot operation from the vol-
ume, and by Finder, upon volume mount. There are eight fi elds, defi ned in Table 16-2.

TABLE 16-2: FinderInfo fi elds in the HFS+ volume header

FIELD USED FOR

0 Holding the folder Catalog Node Identifi er of /System/

Library/CoreServices, on a bootable volume

1 Holding the folder ID of Finder (or another startup application) on 

a bootable volume

2 The folder ID of a folder to auto-open on mount

3 Deprecated; previously used to OS 8 or 9 boot folder

4 Reserved

5 Same as [1], for OS X systems

6-7 Unique volume identifi er, as 64-bits
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The HFS+ volume catalog, as the crucial data which it is, is backed up by an Alternate Volume 
Header, located at the end of the volume — just 1024 bytes before its end. As it occupies exactly 512 
bytes, the last 512 bytes of a volume are unused, and reserved.

signature version

Volume control bits – see below

Journal info block number, if any

Creation, modification, backup and last

fsck timestamps, as HFS+ dates

Number of files and folders in this volume

Volume block size

Total number of blocks in this volume

Number of free blocks remaining

Next available block for allocations

Resource fork default clump size — actually ignored

Data fork default clump size

Next available catalog B-Tree CNID.

Incremental write count

Bitmap for non-Unicode enabled applications,
which require code pages to display characters

Used by OS X Finder

HFSPlusDataFork structures describing
the location and sizes of the special
HFS+ files

‘10.0’ for non-journal, ‘HFSJ’ for journal

attributes

lastMountedVersion

journalInfoBlock

CreateDate

modifyDate

backupDate

checkedDate

fileCount

folderCount

blockSize

totalBlocks

freeBlocks

nextAllocation

rsrcClumpSize

dataClumpSize

nextCatalogID

writeCount

encodingsBitmap

finderInfo[0]

finderInfo[8]

allocationFile

extentsFile

catalogFile

attributesFile

startupFile

..

0×00

‘H+’ or ‘HX’ (HFSX) 4 or 5 (HFSX)

0×04

0×08

0×0C

0×10

0×14

0×18

0×1C

0×20

0×24

0×28

0×2C

0×30

0×34

0×38

0×4C

0×40

0×44

0×48

0×50

0×6C

0×70

0×C0

0×110

0×160

0×170

0×200

FIGURE 16-5: The HFS+ Volume header
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The Catalog File
The main B-Tree of the HFS+ fi le system is the catalog. The catalog contains entries for all the fi les 
and the folders in the system, i.e., the fileCount fi les and folderCount folders mentioned in the 
volume header. The system uses this in all fi le operations: listing, searching, reading, writing and 
deleting. So it is only fi tting that it be the primary focus for this section.

As a B-Tree, the catalog inherits the structure and all the properties previously discussed for generic 
HFS+ B-Trees. The catalog introduces several new properties:

 ‰ The Catalog Node ID or CNID is a unique 32-bit identifi er of a fi le or folder. Apple reserves 
the fi rst 16 CNIDs, but the rest of the namespace is readily allocated by the fi le system. 
CNIDs are generally allocated in a monotonically increasing order — by taking the 
nextCatalogID value from the volume header, and incrementing it as each new fi le or 
folder is created. At some point, however, they may run out (i.e., after some 4-billion 
or so fi les are created). In that case, they wrap around, and the volume header 
kHFSCatalogNodeIDsReusedBit attribute bit is set. At that point, the fi le system must check 
the Map record(s) to fi nd the next available CNID.

 ‰ Catalog fi le Keys are defi ned to be a structure, as shown in Listing 16-9:

LISTING 16-9: The HFSPlusCatalogKey

struct HFSPlusCatalogKey {
    UInt16              keyLength;
    HFSCatalogNodeID    parentID;
    HFSUniStr255        nodeName;
};
typedef struct HFSPlusCatalogKey HFSPlusCatalogKey;

Where parentID is the CNID of the parent folder, and the nodeName is a Unicode string of the 
type described in “Unicode Support.” To bootstrap the process, the CNIDs reserved by Apple may 
be used. Specifi cally, kHFSRootParentID (1) — the (fake) parent of the root folder, i.e., the partition 
itself, is used to obtain the partition name, and kHFSRootFolderID (2) is used for the root folder.

 ‰ Catalogs may contain one of four distinct record types:

 ‰ kHFSPlusFolderRecord types (1) store folder data as an HFSPlusCatalogFolder.
Likewise, kHFSPlusFileRecord types (2) store fi le data as an HFSPlusCatalogFile.

 ‰ kHFSPlusFolderThreadRecord (3) and kHFSPlusFileThreadRecord store 
“threads.” A thread, in both cases, is an HFSPlusCatalogThread, defi ned as shown 
in Listing 16-10:

LISTING 16-10: The HFSPlusCatalogThread

struct HFSPlusCatalogThread {
    SInt16              recordType;
    SInt16              reserved;
    HFSCatalogNodeID    parentID;
    HFSUniStr255        nodeName;
};
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Thread records are used when looking up a fi le or folder by its CNID, as is described next. 

Catalog Lookups
There are two types of catalog lookups:

 ‰ Lookup by fi le or folder name

 ‰ Lookup by CNID

Looking up a path name is performed by breaking the pathname into its constituents, and iteratively 
looking up each, in turn, beginning with the root folder. As an example, consider the pathname /
private/etc/passwd:

The fi rst lookup will be for /private. To fi nd it, we treat private as a name under the root folder. 
The root folder CNID is well known — kHFSRootFolderID(2) — so we prepare its catalog key. 
(See Figure 16-6.)

nodeName.length

0

0

0 0

0 7

2 p r i v a t e

11

nodeName.unicodeparentID

keylength

FIGURE 16-6: The catalog key for /private

This will yield a folder, i.e., an HFSPlusCatalogFolderRecord. Of its many fi elds, we care only 
about one — FolderID. This is the CNID of the /private folder. In our example, it is 24. The next 
lookup is shown in Figure 16-7.

nodeName.length

0

0

0 0

0 3

18 e t c

7

nodeName.unicodeparentID

keylength

FIGURE 16-7: The catalog key for /etc, as a subfolder of /private (CNID 24=0x18) 

As before, this is expected to yield an HFSCatalogFolderRecord — yielding the folder ID 1075. 
This would give us the key shown in Figure 16-8 for our fi le.

nodeName.length

0

0

0 4

0 6

33 p a s s w d

A

nodeName.unicodeparentID

keylength

FIGURE 16-8: The Catalog key for passwd, in the folder /private/etc (CNID 1075=0x433)
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Giving us the much sought after HFSCatalogFileRecord we want. The following pseudo-code in 
Listing 16-11 demonstrates the breakdown process:

LISTING 16-11: Walking the B-Tree in search of a fi le

#define PATH_SEPARATOR L'/'
//
// pseudo code only – this destroys the inputted PathName..
//
key * fileNameToCatalogKey (char *PathName) 
{
   key *returned = malloc (..);
   UInt32 parentCNID = kHFSPlusRootFolderID; // start at the root folder
   char *sep = strchr (PathName, PATH_SEPARATOR)

   while (sep)
   {
      *sep = 0;  // Replace '/' with NULL, so pathname is now parent dir
       parentCNID = getFileCNID (parentCNID, PathName);
       PathName= ++sep; // PathName is now whatever follows the parent
       sep = strchr(PathName, PATH_SEPARATOR);
   }
   
   // if we are here, what's left of the pathname is a file/folder name
   // and parentCNID holds our containing folder
   returned.parentID = parentCNID;
   returned.nodeName.length = cpu_to_be16(strlen(PathName));
   copyAndFlipUnicode(&returned.nodeName.unicode, PathName);
}

If the CNID of the object is known, it can be searched using a thread record. For this, we set up a 
key where in the node name is empty, and set the parentID to the CNID we are seeking. i.e, to look 
up CNID 1075, we would set up a key as shown in Figure 16-9:

nodeName.length

0

0

0 4

0 0

33

4

nodeName.unicodeparentID

keylength

FIGURE 16-9: A thread catalog key for an object with CNID 1075 (=0x433)

This would yield a thread record, containing the data in (ii), i.e., the fi le name. From there, we can 
look up its corresponding fi le or folder record, as before.

The hfsleuth tool can perform either lookups, and — using the –v(erbose) feature — can also 
detail the stages along the way:

root@minion (/)# ~/hfsleuth /dev/rdisk0s2 –v –s /System/Library/Extensions
Processing Catalog tree
<Record node="191" num="3" offset="430">
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             <Key len="6"><CNID>38</CNID>
             <Data type="folderThread">
               <parentCNID>37</parentCNID>
               <Name>Library</Name>
              </Data>
             <Path>/System </Path>
       </Record>
<Record node="5" num="26" offset="3024">
       <Key len="6"><CNID>41</CNID><Name/>
       <Data type="folderThread">
         <parentCNID>38</parentCNID><Name>Extensions</Name>
       </Data>
       <Path>/System/Library</Path>
</Record>
..
<Record node="14751" num="1" offset="134">
             <Key len="6"><CNID>2</CNID><Name/>
             <Data type="folderThread">
               <parentCNID>1</parentCNID>
               <Name>Macintosh HD</Name>
              </Data>
             <Path>/</Path>
      </Record>

..

Catalog Insertions
When fi les are created, records need to be inserted into the Catalog tree. This is a straightforward 
method over the normal B-Tree insert, shown here:

insertNameIntoCatalog (char *PathName, char *BtreeRawData)
{
  BTHeaderRec *bTreeHeaderRec = (BTHeader *) (BTreeRawData +
                                 sizeof(BTNodeDescriptor)); // i.e. + 14

  ASSERT (bTreeHeaderRec->btreeType == kHFSBTreeType); // == 0

  UInt16 nodeSize = be16_to_cpu(treeHeaderRecord->nodeSize);
  UInt16 maxDepth = be16_to_cpu(treeHeaderRecord->treeDepth);

  UInt32 rootNodeID = be32_to_cpu(bTreeHeaderRecord->rootNode);

  key *fileKey = *fileNameToKey (PathName);
  return (insertKeyIntoBtree(fileKey, rootNodeID, BTreeRawData, nodeSize,
 maxDepth)); 

}

Catalog Deletions
Likewise, fi le deletion is a direct override of the B-Tree deletion method: 

DeleteNameIntoCatalog (char *PathName, char *BtreeRawData)
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{
  BTHeaderRec *bTreeHeaderRec = (BTHeader *) (BTreeRawData +
                                 sizeof(BTNodeDescriptor)); // i.e. + 14

  ASSERT (bTreeHeaderRec->btreeType == kHFSBTreeType); // == 0

  UInt16 nodeSize = be16_to_cpu(treeHeaderRecord->nodeSize);
  UInt16 maxDepth = be16_to_cpu(treeHeaderRecord->treeDepth);

  UInt32 rootNodeID = be32_to_cpu(bTreeHeaderRecord->rootNode);

  key *fileKey = *fileNameToKey (PathName);
  return (deleteKeyFromBtree(fileKey, rootNodeID, BTreeRawData, nodeSize,
 maxDepth)); 

}

File and Folder Record Data
HFS+ stores similar data for fi les and folders. The following illustration compares the 
HFSCatalogFolderRecord and HFSCatalogFileRecord. (See Figure 16-10.)

As can be seen, the two structures are designed to be compatible. Most of the fi elds overlap, and 
those that have specifi c meaning for directories (i.e., valence and folderCount) are reserved in the 
fi le record. Likewise, fi le specifi c information — i.e., the forks — are implemented after the end of 
the common information block.

Permissions
Both catalog record formats contain the bsdInfo member, which is struct HFSPlusBSDInfo:

struct HFSPlusBSDInfo {
        u_int32_t       ownerID;        /* user-id of owner or hard link chain previous 
link */
        u_int32_t       groupID;        /* group-id of owner or hard link chain next 
link */
        u_int8_t        adminFlags;     /* super-user changeable flags */
        u_int8_t        ownerFlags;     /* owner changeable flags */
        u_int16_t       fileMode;       /* file type and permission bits */
        union {
            u_int32_t   iNodeNum;       /* indirect node number (hard links only) */
            u_int32_t   linkCount;      /* links that refer to this indirect node */
            u_int32_t   rawDevice;      /* special file device (FBLK and FCHR only) */
        } special;
} __attribute__((aligned(2), packed));
typedef struct HFSPlusBSDInfo HFSPlusBSDInfo;

This structure is the one to implement the back end of the chown(1), chmod(2), chgrp(2),
and chflags(1) commands. Figure 16-11 shows the mapping of those commands to the 
structure’s fi elds.
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recordType (2)

valence # of children in folder

recordType (3)

reserved1

Reserved2

fileIDObject CNID

finderDirInfo

finderFileInfo

Count of subfolders

folderID

createDate createDate

contentModDate contentModDate

attributeModDate attributeModDate

accessDate accessDate

flags flags

backupDate backupDate

ownerID ownerID

bsdInfo bsdInfo

userInfo userInfo

aF oF fileMode aF oF fileMode

special special

top

bottom

fdFlags fdFlags

fdType

fdCreator

opaque opaque

fndrOpaqueInfo fndrOpaqueInfo

textEncoding

textEncoding

clumpSize

totalBlocks

extents

resourceFork

dataFork

textEncoding

folderCount

v v

h h

right

left

groupID groupID

0×00

0×04

0×08

0×0C

0×10

0×14

0×18

0×1c

0×20

0×30

0×40

0×50

0×54

0×58 0×58

0×A8

FIGURE 16-10: Comparing HFSCatalogFolderRecord and HFSCatalogFileRecord
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ownerID chown(1)

chgrp(1)

chmod(1)chattr(1)

groupID

special

fileMode
owner
Flags

admin
Flags

FIGURE 16-11: The UNIX permissions, encoded in HFS+ fi le and folder records

Hard and Soft Links
HFS+, as any other UNIX fi le system, supports both hard and soft links. The underlying mecha-
nism, however, is very particular.

Both hard and soft links are distinguished by the fileType fi eld of the userInfo catalog record. 
For hard links, this fi eld is a magic value of 0x686c6E6b (hlnk) and — similarly 0x736c6e6b (slnk) 
for soft links. In both cases, the creator code is hfs+.

For soft links, the special handling ends there: Soft links are otherwise regular fi les, whose contents 
contain the name of another fi le on the fi le system.

Hard links, however, receive special handling by the system. As soon as a hard link is created, the 
underlying fi le’s forks are relocated — not to say, stashed — in a private and secluded part of the 
fi le system — The \0\0\0\0HFS+ Private Data directory. HFS+ goes to great lengths to keep this 
directory hidden and inaccessible. It is invisible to both the UNIX utilities (as it begins with NULL 
bytes, which terminate C-Strings), and to the Finder (which, additionally, obeys the kIsInvisible 
and kNameLocked fl ags). 

The dentries for the hard links exist in their respective locations just as normal fi les, but their 
resource forks (and thus, sizes) are set to 0. Instead, the “special” fi eld of BSD Info is set to the 
inode Number of the fi le, which can be retrieved from \0\0\0\0HFS+ Private Data.

Fork Allocation
File records offer two HFSPlusForkData structures — one for the resource fork and one for the 
data fork. As stated before, HFS+ can support any number of named forks (via the Attribute tree, 
described next), though if forks are at all used, only the data fork is commonly used.

The fi le’s block list is kept in the dataFork member. This member is also a struct, whose 
 members specify the fork’s logical size, as well as clump size. A third member specifi es the extents, 
and is an array of up to eight HFSPlusExtentDescriptor structures, each containing an extent 
startblock and blockCount. This is shown in Figure 16-12.

Most fi les don’t need more than 8 extent descriptors. In fact, most do quite well with one, if they 
are allocated once, and take up exactly one extent. But as a fi le shrinks and grows, it might become 
fragmented, and require more extents. If the sum of the (extents[i].blockCount) is exactly the 
same as specifi ed in totalBlocks, the fi le can be accessed in its entirety from its record. Otherwise, 
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if it is less (think — it cannot be more!), this indicates some extents spilled over — in which case we 
need to look them up in the extent B-tree, described later.

clumpSize

totalBlocks

startBlock

startBlock

startBlock

blockCount

blockCount

blockCount

extents

FIGURE 16-12: The fork data structure

The Extent Overfl ow
As we saw while reviewing the Catalog records, most fi les fi t snugly in eight extents or less. Files 
with more than eight are considered heavily fragmented, but should obviously still be serviced by the 
fi le system. For this, the fi le system maintains another B-Tree, called the extent overfl ow B-Tree.

The extent overfl ow B-Tree is a far simpler B-Tree than the catalog fi le. Unlike the catalog fi le, it 
does not contain multiple index records — only leaves. 

The Attribute B-Tree
Another B-Tree used by HFS+ is the Attribute B-Tree. This is used by HFS+ to store various 
extended attributes. The B-Tree format is defi ned in bsd/hfs/hfs_format.h under the __APPLE_
API_UNSTABLE warning, but has actually been solid enough to merit inclusion in this book. The rel-
evant defi nitions are shown in Listing 16-12:

LISTING 16-12: Attribute B-Tree data structures

/*
 * Atrributes B-tree Data Record
 *
 * For small attributes, whose entire value is stored
 * within a single B-tree record.
 */
struct HFSPlusAttrData {
        u_int32_t    recordType;   /* == kHFSPlusAttrInlineData */
        u_int32_t    reserved[2];
        u_int32_t    attrSize;     /* size of attribute data in bytes */
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        u_int8_t     attrData[2];  /* variable length */
} __attribute__((aligned(2), packed));
typedef struct HFSPlusAttrData HFSPlusAttrData;

/*      A generic Attribute Record*/
union HFSPlusAttrRecord {
        u_int32_t               recordType;
        HFSPlusAttrInlineData   inlineData;   /* NOT USED */
        HFSPlusAttrData         attrData;
        HFSPlusAttrForkData     forkData;
        HFSPlusAttrExtents      overflowExtents;
};

typedef union HFSPlusAttrRecord HFSPlusAttrRecord;

/* Attribute key */
enum { kHFSMaxAttrNameLen = 127 };
struct HFSPlusAttrKey {
        u_int16_t     keyLength;       /* key length (in bytes) */
        u_int16_t     pad;             /* set to zero */
        u_int32_t     fileID;          /* file associated with attribute */
        u_int32_t     startBlock;      /* first allocation block number for extents */
        u_int16_t     attrNameLen;     /* number of unicode characters */
        u_int16_t     attrName[kHFSMaxAttrNameLen];   /* attribute name (Unicode) */
} __attribute__((aligned(2), packed));
typedef struct HFSPlusAttrKey HFSPlusAttrKey;

For most intents and purposes, user mode applications need not care about this B-Tree, because the 
attributes can be listed, obtained and set with the listxattr(2), getxattr(2), and setxattr(2)
system calls, respectively. There are, however, extended attributes which will not be visible by means 
of these system calls. Those include the com.apple.cprotect and com.apple.system.security
shown in Table 16-1. Fortunately, the hfsleuth tool can display the attributes by reading them directly 
from the Attributes B-Tree.

The Hot File B-Tree
The last B-Tree used by HFS+ is the hot fi le B-Tree. The tree header is defi ned (along with all other 
related defi nitions) in bsd/hfs/hfs_hotfiles.h, as shown in Listing 16-13:

LISTING 16-13: The Hot-File B-Tree header

/*
 * B-tree header node user info (on-disk). // (hasn't changed from TN1150)
 */
struct HotFilesInfo {
        u_int32_t       magic; // HFC_MAGIC, 0xFF28FF26
        u_int32_t       version; // HFC_VERSION, 1
        u_int32_t       duration;    /* duration of sample period (secs) */
        u_int32_t       timebase;    /* start of recording period (GMT time in secs) */
        u_int32_t       timeleft;    /* time remaining in recording period (secs) */
        u_int32_t       threshold;
        u_int32_t       maxfileblks;
        u_int32_t       maxfilecnt;
        u_int8_t        tag[32]; // hfc_tag = "CLUSTERED HOT FILES B-TREE     "
};

c16.indd 641c16.indd   641 9/29/2012 5:50:06 PM9/29/2012   5:50:06 PM



642 x CHAPTER 16  TO B (-TREE) OR NOT TO BE — THE HFS+ FILE SYSTEMS 

The B-Tree key is keyed by temperature and fileID (which is the CNID of the hot fi le in question), 
as shown in Listing 16-14. Because the temperature is what the system needs to look up most fre-
quently, it can set the key to HFC_LOOKUPTAG for lookup purposes:

LISTING 16-14: The Hot-File B-Tree key format

struct HotFileKey {
    u_int16_t       keyLength;      /* length of key, excluding this field */
    u_int8_t        forkType;       /* 0 = data fork, FF = resource fork */
    u_int8_t        pad;            /* make the other fields align on 32-bit boundary */
    u_int32_t       temperature;    /* temperature recorded  - set to HFC_LOOKUPTAG */
    u_int32_t       fileID;         /* file ID */
};

The actual hot fi le data structures are implemented in hfs_hotfiles.c, no doubt to keep them as 
private as possible. 

The Allocation File
The allocation fi le is a rather large, yet inaccessible fi le that keeps track of all the blocks in the vol-
ume. It is designed as a simple bitmap, wherein each bit corresponds to a block, and is lit if the block 
is in use (or, potentially, a bad block). Its size is a direct function of the volume size and block size, 
and can be calculated directly as (Volume size / block Size) / 8, as the volume contains 
(volume size / block size) blocks, and each block occupies a single bit.

Because the allocation fi le is a fi le in itself, it may be fragmented. This makes it a very extensible 
scheme, if the volume is enlarged — the allocation fi le can simply grow. It is, however, usually 
contiguous — and contained in a single extent — because it is created as part of the mkfs
program. This also makes it relatively easy to dynamically change the allocation block size in 
the fi le system.

The recent version of HFS (in Lion) has introduced the notion of a red-black tree-based allocator 
(#ifdef CONFIG_HFS_ALLOC_RBTREE). This is somewhat similar to XFS’s method of allocating 
blocks, providing the more effi cient R-B tree as an allocation mechanism that can quickly fi nd con-
tiguous blocks as the disk becomes more and more fragmented. A separate kernel thread is created 
and starts hfs_initialize_allocator() to create two R-B trees from the volume bitmap (for 
the metadata zone and for the rest of the volume). Note, that these trees are created in-memory, 
and have no on-disk representation, and, therefore, there is no need to change the fi le system disk 
structure.

HFS Journaling
Recall the previous discussion of journaling. In HFS+, journaling is a feature that can be freely 
toggled, though the stated default is enabled. When mounting a fi le system, HFS+ checks the value 
of the lastMountedVersion fi eld in the volume header. This fi eld can take on one of several values, 
as shown in Table 16-4.
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TABLE 16-4: lastMountedVersion

VALUE HEX MEANING

10.0 31 30 2e 30 File system was last mounted by an OS X implementation, 

yet journaling was not enabled.

HFSJ 48 46 53 4a File system was last mounted by an operating system (OS 

X or other) which did enable the journal

fsck 66 73 63 6b File system was last mounted by fsck(1) — meaning it is 

likely some type of fi le system recovery was performed

This fi eld is especially important during the mount operation, because it tells the system if there is a 
need to consult the journal, or it can be ignored. If the fi le system was indeed mounted with journal-
ing, and no fsck pass was conducted, it is quite plausible that there would be some transactions in 
the journal, and it is, therefore, deserving of an inspection. Otherwise, if the last mount was with 
no journal, consulting the journal would actually be risky, potentially leading to the replay of stale 
transaction data. Likewise, the HFS+ driver is expected to update lastMountedVersion according 
to the journal option selected for mounting (or toggled during the fi le system lifetime).

Locating the Journal
To access the journal, the system needs to fi rst read the journalInfoBlock, from the volume header 
(offset 0x0C). This is an actual LBA offset in the volume, so the next step is to load the block into 
memory. Its format is as shown in Figure 16-13.

flags

magic (0×4A4E4C78 = JNLx)

Flag

kJIJournalInFSMask

kJIJournalOnOtherDeviceMask

kJIJournalNeedInitMask

Meaning
Journal is internal
to volume

Journal is external:
device_signature

Journal
uninitialized, or invalid

endian (0×12345678)

offset (of first transaction)

size

blhdr_size

checksum (of header)

jhdr_size (size of one media sector)

device_signature[0]

device_signature[7]

size

.... Reserved ...

offset
(in volume, or on external device)

(used for external journals)

FIGURE 16-13: The Journal info block
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The journal info block is used to fi nd the journal, which is usually somewhere inside the fi le system 
(i.e., internal to the volume), but could actually also be on a separate device. The fi rst fi eld, fl ags, 
defi nes either kJIJournalInFsMask (0x01) or kJIJournalOnOtherDeviceMask (0x02). If the jour-
nal is internal, we proceed normally, by checking the offset fi eld. If the journal is on another device, 
however, the device_signature fi eld reserved 32 (=8*sizeof(UInt32)) bytes for providing a hint 
as to where the device is, and offset pertains to somewhere on that device.

The next step is to load the journal header from the specifi ed offset. The journal header is checked 
and double checked: 

First, the system verifi es the block read begins with the “magic” fi eld (JOURNAL_HEADER_MAGIC,
or JNLx).

Next, the system verifi es ENDIAN_MAGIC (0x12345678), to make sure the journal is in the right 
endian-ness (little or big).

Then, the system verifi es the journal size in the header matches the size reported in the journal 
info block.

Finally, the journal header checksum is computed.

The checksum is a simple checksum, not unlike an IP header checksum, or other. TN1150 shows the 
following code from Listing 16-15, which is straightforward:

LISTING 16-15: Journal checksum calculation

static int calc_checksum(unsigned char *ptr, int len)
{
    int i, cksum=0;

    for(i=0; i < len; i++, ptr++) {
        cksum = (cksum << 8) ^ (cksum + *ptr);
    }

    return (~cksum);
}

This same checksum logic is applied all over the journal, as journal data blocks must also be check-
summed. The rationale behind it is that this way, it is easy to detect an incomplete transaction in the 
journal itself (i.e., one wherein the checksum on the block is invalid).

Reading through Journal Transactions
If the header is intact, its start and end pointers point to the transactions in the journal. Two 
pointers are necessary because the transactions are stored in a circular (ring) buffer on the disk. The 
buffer is of size (size – jhdr_size), and starts immediately at the end of the header (but on a sec-
tor boundary, hence jhdr_size is always rounded to the size of a sector). 

There are several possible scenarios for start and end:

 ‰ start == end — This means the journal is intact, and empty. The journal can never be full.
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 ‰ start < end — The journal has transactions, which are stored in a contiguous range 
between the two pointers. All other blocks are stale, and must be ignored.

 ‰ start > end — The journal has transactions, but wraps. Therefore, start reading normally 
(at start), but when the journal read operation gets to the end of the buffer (which can 
easily be found by &header + size), it must wrap as well, and continue from (&header + 
jhdr_size) until end.

Journal Transaction Format
The journal transactions are recorded as an array of block_list_header structures. These are 
structures of size blhdr_size (as specifi ed in the journal header). This structure is as shown in 
Figure 16-14.

max_blocks

bytes_used

checksum Checksum of block_list_header struct

0.. num_blocks transaction blocks:

First is a dummy used for chaining

(in which case “next” is valid)

pad (reserved)

bnum

bsize

next

block_info

num_blocks

FIGURE 16-14: The Journal block_list_header

A transaction normally spans (num_blocks -1) blocks. The fi rst block_info fi eld (which is the only 
one defi ned in the block_list_header struct) is actually a dummy block, which is used if trans-
actions range over more than one block list. In such cases, where the number of blocks in a transac-
tion is more than the number of blocks, transactions can chain block lists together. The fi le system 
driver can quickly deduce if that is the case by looking at the “next” fi eld — if it is non-zero, the 
next block list is at the offset it points to. 

The block_info is basically a directive indicating that the bsize bytes which follow need to be 
written at block number bnum on this volume.

VFS AND KERNEL INTEGRATION 

HFS+ has several advanced features, stemming from both its design and its integration with OS X’s 
VFS mechanisms. I describe them here.

fsctl(2) integration
The HFS+ code exposes registers hfs_ioctl (bsd/hfs/hfs_readwrite.c) as its fsctl handler. If 
VFS’s fsctl_internal(bsd/vfs/vfs_syscalls.c) receives a control code it does not recognize, it 
passes it to hfs_ioctl, which can recognize and act on the codes listed in Table 16-5:
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TABLE 16-5: HFS+ fsctl codes, defi ned in bsd/sys/hfs/hfs_ioctl.h

CODE USAGE

HFS_GETPATH Retrieve path name corresponding to CNID

HFS_PREV_LINK

HFS_NEXT_LINK

Retrieve the next or previous link

HFS_RESIZE_VOLUME Dynamically resize an HFS+ volume. Calls hfs_

extendfs() or hfs_truncatefs() internally

HFS_RESIZE_PROGRESS Report HFS+ resize progress

HFS_CHANGE_NEXT_ALLOCATION Manually set next allocation 

HFS_SETBACKINGSTOREINFO

HFS_CLRBACKINGSTOREINFO

Supports sparse devices, for example in disk 

images, whose space on disk may be signifi cantly 

lower than the space reported to the fi le system

#if HFS_SPARSEDEV, but enabled by default

HFS_BULKACCESS_FSCTL Access multiple fi les in bulk

HFS_SET_XATTREXTENTS_STATE Extent-based extended attribute support (Default 

as of Lion). Settable by root only

HFS_FSCTL_SET_LOW_DISK

HFS_FSCTL_SET_VERY_LOW_DISK

HFS_FSCTL_SET_DESIRED_DISK

Set low disk space notifi cation conditions (see 

“File System Status Notifi cations,” later)

HFS_VOLUME_STATUS Get volume status information

HFS_GET_BOOT_INFO HFS_SET_BOOT_INFO Get or set boot information (the FinderInfo). 

The SET code is root only

HFS_MARK_BOOT_CORRUPT Force fsck on next mount (sets 

 kHFSVolumeInconsistentBit in volume 

header)

HFS_FSCTL_GET_JOURNAL_INFO Get Journal information

HFS_SET_ALWAYS_ZEROFILL Fill new fi les with zeros

HFS_DISABLE_METAZONE Disable the metadata zone (root only)

In addition to the HFS+ specifi c codes, hfs_ioctl can also handle some generic codes (F_*
constants), such as F_FREEZE_FS and F_THAW_FS, F_[READ|WRITE]_BOOTSTRAP, and others.

sysctl(2) integration
The HFS+ code exposes the vfs.hfs MIB, with an instance for each mountd HFS+ fi le system. 
Using the sysctl(8) command line utility yields little, as it will simply report the number of 
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mounted instances. Programmatically, however, this mechanism can be used to set HFS+ param-
eters on the mounted fi le systems. Some of this functionality is also accessibly via fsctl(2), as well. 
These parameters are shown in Table 16-6.

TABLE 16-6: sysctl(2) MIBs exported by HFS+ (all are leaves)

SYSCTL MIB PURPOSE

HFS_ENCODINGBIAS

HFS_ENCODINGHINT

Set cjk encoding — one of the kTextEncodingMac 

HFS_EXTEND_FS Same as HFS_RESIZE_VOLUME fsctl, but only allows 

hfs_extendfs()

HFS_ENABLE_JOURNALING

HFS_DISABLE_JOURNALING

Toggle journaling on/off 

HFS_GET_JOURNAL_INFO Only supported for 32-bit processes, but otherwise 

same as  HFS_FSCTL_GET_JOURNAL_INFO

HFS_SET_PKG_EXTENSIONS Used by LaunchServices

VFS_CTL_QUERY Query fi le system

HFS_ENABLE_RESIZE_DEBUG Debugging for volume resizing

File System Status Notifi cations
The HFS+ code in the kernel can generate kernel events when several threshold conditions are 
met. The thresholds are low disk or dangerously low disk space, defi ned in bsd/sys/hfs/hfs.h
to be 98% or 99% utilization (respectively) for a regular volume, and 90% or 95% for a root 
volume. The thresholds may also be set by means of the HFS_FSCTL_SET_[VERY_]LOW_DISK
control codes. 

The notifi cation are generated by the hfs_generate_volume_notifications function, which is the 
sole denizen of bsd/vfs/hfs_notification.c. The function checks for low disk space conditions 
(such as calls on vfs_event_signal (bsd/vfs/vfs_subr.c), which generates a knote, which can be 
read the EVFILT_FS fi lter. 

Disabling or enabling the journal will also generate a notifi cation, by directly calling vfs_event_
signal directly from the hfs_sysctl handler.

SUMMARY

This chapter described HFS+ and its variant, HFSX, the native fi le system format for OS X and 
iOS. First, following an explanation of HFS+ features (mostly inherited from XNU's VFS layer), we 
described HFS+ in detail.
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The underlying data structure of HFS+ is a B-Tree, and the fi le system uses several of them — for its 
main catalog, to store fi le extents, fi le attributes and metadata. HFS+ has been built in and around 
OS X, with features added on the go as OS X evolved. This is also part of its shortcomings: Hard 
link support is crude, the native data format is still big-endian (forcing byte swaps frequently) and 
16/32-bit optimized (limited to 232 blocks). HFS+ also lacks advanced features such as sparse fi le 
support and snapshots). Apple has hinted, but so far resisted calls for supporting a newer standard, 
such as ZFS.

REFERENCES

1. Spotlight MetaData Attribute Reference, https://developer.apple.com/library/
mac/#documentation/Carbon/Reference/MetadataAttributesRef/Reference/

CommonAttrs.html

2. Technical Note TN1150 — HFS Plus Volume Format, http://developer.apple.com/
legacy/mac/library/#technotes/tn/tn1150.html
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17
Adhere to Protocol: The 
Networking Stack

A fundamental portion of the kernel in contemporary operating systems is devoted to 
 networking, and the same holds true for OS X and iOS. In both, the networking system is a 
near-exact copy of the BSD networking logic, implementing the classic POSIX model of BSD 
sockets, which is common to all UN*X. Like BSD, both systems support specifi c extensions, 
such as the Berkeley Packet Filter (BPF) and fi rewalling. Socket support in XNU is actually 
optional, depending on the CONFIG_SOCKETS option, though needless to say it is enabled by 
default in both OS X and iOS.

This chapter sets as its focus the implementation of the network stack. Following a brief 
 overview of the user mode perspective, which lists the available protocols and various  statistics 
in XNU, we dive into the network stack architecture, layer by layer. (See Figure 17-1.) As 
in most systems, XNU is responsible for layers II through V. We therefore proceed from the 
application layer downwards: Starting with sockets, which make up layer V, through the 
transport protocols of layer IV (TCP/UDP), and the network protocols of layer III (IPv4/IPv6), 
and fi nally discussing the network interfaces, which make up layer II. Additional topics, such 
as packet fi ltering and QoS are also discussed.

VII: Application

VI: Presentation

V: Session

IV: Transport

III: Network

II: Data Link

I: Physical

Application

Presentation

sockets

protosw

proto

ifnet/dlil (+kexts)

Physical

User mode

Kernel mode

Hardware

FIGURE 17-1: The OSI (7 layer) model and its relation to the network stack
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Throughout the chapter it is assumed that the reader is already familiar with the basic concepts of 
sockets and the API, whether from the common Windows port (Winsock) or from POSIX. You can 
fi nd a comprehensive reference for socket programming in Stevens’ books, by which UN*X devel-
opers swear[1, 2]. Likewise, because the socket code is so close to that of BSD’s, this chapter focuses 
more on the Apple extensions (which are, at times, contained in an #if __APPLE__ block), and less 
on the code common to BSD. Several great books whose sole focus is the BSD kernel are available[3],
and the avid reader is encouraged to check them out, as well.

Note that the average Cocoa developer doesn’t need to know anything about sockets. This is 
because of the Core Foundation classes, which abstract sockets by CFSocket and CFStream, and 
the further protocol-aware abstractions of CFFTP, CFHTTP, and the like, offered by CFNetwork. 
Nonetheless, BSD sockets lie at the root of all networking on XNU (and  practically all modern 
operating systems, including (to an extent) Windows). That, by itself, merits a dedicated chapter.

USER MODE REVISITED

The BSD socket model was designed with multiple protocol support in mind. The most basic 
operation, creating a socket, calls for three parameters: the address (or protocol) family, the socket 
type, and the protocol. 

The “family,” often referred to as an Address Family (AF) or Protocol Family (PF), denotes the 
socket addressing mode corresponding to the layer 2 or layer 3 addresses. Many such modes exist, 
and the most widely used one, IP, is but one; for example, PF_INET (or AF_INET). 

There are numerous PF_/ AF_ constants and they are all defi ned in <sys/socket.h>. Though 
technically the PF_ constants should be used, traditionally the AF_ ones have been. The 
PF_ constants are just #defined over the AF_ ones, so they may be used interchangeably. Both OS X 
and iOS support only a very limited subset of families, namely the ones shown in Table 17-1:

TABLE 17-1: Supported Address Families on OS X and iOS 

# FAMILY USED FOR

1 PF_LOCAL UNIX domain sockets. Also available as AF_/PF_UNIX.

2 PF_INET IPv4 sockets.

14 PF_LAT Local area transport sockets. Only on Snow Leopard.

17 PF_ROUTE Routing sockets.

27 PF_NDRV Network driver. Raw access to network device. Apple extension.

29 PF_KEY IPSec Key Management (RFC2367). #if IPSEC.

30 PF_INET6 IPv6 sockets. #If INET6

Can also be used for IPv4 when IPv4 mapped addresses 

(::FFFF:a.b.c.d) are used. 

32 PF_SYSTEM System/kernel local communication.
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Unless otherwise stated, both OS X (Snow Leopard and Lion) and iOS support these families.

Note, that while these are very close to the address families in BSD, there are some deviations (most 
notably PF_NDRV and PF_SYSTEM, which are idiosyncratic to Apple). Address families may also be 
registered on demand, by kernel extensions. A good example is PF_PPP, for Point-to-Point Protocol 
support. Unlike Linux, protocols such as BlueTooth are not supported over sockets (i.e. there is no 
PF_BLUETOOTH), but over IOKit. 

The socket API is designed to be as agnostic as possible to family idiosyncrasies, and therefore deals 
with the generic struct sockaddr struct, which the programmer is expected to cast back and forth 
from the actual struct sockaddr_* specifi c to the family used (e.g. sockaddr_un for AF_UNIX, and 
sockaddr_in6 for AF_INET6). These structures all overlap with the fi rst fi eld of struct sockaddr, the 
sa_family, by means of which the kernel may direct the address-related operation to the right provider. 

UNIX Domain Sockets
UNIX domain sockets were among the fi rst forms of interprocess communication on UNIX, predat-
ing the now ubiquitous IP sockets. They are unique to UNIX-based systems, and they are of local 
scope only (i.e. inner-host, rather than inter-host) and are therefore less known or popular than their 
IP brethren. Nonetheless, they are still noteworthy, as they remain an important staple of UN*X 
systems, OS X and iOS included.

Though restricted to local scope, UNIX domain sockets offer one signifi cant advantage over their 
IP brethren — namely, the ability to pass fi le descriptors and credentials over the socket. This makes 
them very useful for multi-process programming. Note that, in the case of XNU, Mach ports can 
be passed in messages, and the new fi leport system calls can further be used to pass descriptors, but 
neither of these capabilities conform to POSIX. 

UNIX domain sockets bind to local fi lenames. These, however, are not truly fi les. The fi lesystem 
presence is required to help system-wide uniqueness and visibility. Most sockets can be found in 
/var/run, and will be displayed by default as part of netstat(8) output (or specifi cally, with 
netstat –f unix). A detailed discussion of UNIX domain sockets can be found in Stevens’, and 
many other books.

IPv4 Networking
Sockets are nowadays synonymous with IP, and to a large extent the socket APIs owe their wide-
spread adoption to IP’s popularity, and vice versa. As the protocol became more popular, sockets 
became the preferred API to it. As socket APIs grew more popular, IP became people’s fi rst choice.

Mac OS, somewhat like Windows, didn’t immediately adopt TCP/IP. Microsoft originally had 
hopes for IPX/SPX (which reigned shortly, back when Novell still dominated servers), and Apple 
clung for a while to its proprietary AppleTalk protocol suite, which implemented an entire network 
stack*. Apple, however, eventually got bored of talking to itself, and so TCP/IP eventually prevailed. 
AppleTalk support was gradually phased out in OS X, and fi nally dropped in Snow Leopard, with 
its main application layer protocol, The Apple Filing Protocol (AFP), converted to function over IP. 

*In fairness, Mac OS was an early adopter of TCP/IP with MacTCP, and TCP/IP coexisted with AppleTalk 
for a while. It was only in after the merger with NeXT, though that TCP/IP offi cially prevailed. 
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Apple maintains a fairly up-to-date list of TCP and UDP protocols used by Mac operating systems 
in TS1629[4]. Most of these protocols are standard (e.g. HTTP, SSH, etc). There are, however, a few 
Apple proprietary protocols, most of which are poorly documented (if at all) to this very day. These 
include:

 ‰ mDNS (Bonjour, etc): Multicast DNS (or mDNS, for short) is a form of serverless DNS 
service meant to assist devices in local name resolution. The packet structure is the same as 
that of DNS[5] but instead of a name server, a multicast request is sent out to 224.0.0.251 (or 
FF02::FB) on UDP port 5353.

Microsoft uses a very similar, though not fully compatible protocol called LLMNR (Link 
Layer Multicast Name Resolution). LLMNR operates on UDP port 5355, and uses the 
multicast address of 224.0.0.252 (or FF02::1:3).

Bonjour is the protocol responsible for Macs popping up whenever you fi nd yourself in a 
public network, such as an airport lounge (and is a great way to discover other people’s 
musical tastes while delayed). It is, in a sense, a legacy of AppleTalk, which provided the 
same ad-hoc functionality.

 ‰ EPPC (Apple events): Event Process-to-Process Communication is the protocol that allows 
for remote Apple events. It is an intentionally undocumented proprietary protocol that is 
disabled by default. OS X supports eppc URLs, which — similarly to FTP URLs — allow the 
specifi cation of a user:password@host. The URI component ("/folder") in these URLs is 
the name of some application. EPPC  is carried over TCP port 3031.

 ‰ DAAP (Airplay, iTunes): The Digital Audio Access Protocol (DAAP) is an Apple proprietary 
streaming protocol. It is not part of OS X as much as it is of iTunes, wherein, as the name 
implies, it is used to access remote iTunes libraries. DAAP is carried over TCP port 3869.

 ‰ AFP (Time Machine, File Sharing): The Apple Filing Protocol is another legacy of AppleTalk, 
which is still actively developed by Apple. It is carried over TCP port 547, and is used when 
connecting to fi le servers like the Time Capsule, or when enabling File Sharing from System 
Preferences Í Sharing. The protocol bears similarities to Microsoft’s Server Message Block 
(SMB) and NFS, in that it allows remote mounting of shares, and is optimized for interoper-
ability with HFS+ fi lesystems. The protocol is somewhat documented by Apple[6], and has 
been implemented by third parties.

Routing Sockets
The PF_ROUTE family is a BSD standard to control routing tables from user mode. It is described 
in Stevens’ book in great detail, and is largely unused outside routing utilities. A comprehensive 
example of its usage can be found in the open source of the route(8) command[7], which is part of 
the network-cmds package. It is not supported outside BSD systems, though Linux achieves (and, to 
an extent, exceeds) its functionality with NetLink.

Network Driver Sockets
OS X and iOS support PF_NDRV, which is a protocol family intended for use by network drivers. 
This is a little known, but quite useful, socket type, which enables the crafting of raw packets — all 
the way down to the data link layer — from user mode. This is similar in concept to the standard 
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SOCK_RAW of IP, but goes one layer lower, and enables full control over the link layer header (usually, 
Ethernet), as well. In that respect, it is the OS X equivalent of Linux’s PF_PACKET. Though powerful, 
it is generally unused by the masses: libpcap, for example, prefers BPF (discussed later). Apple does 
use this internally, and implements EAPOL[8] (802.11x) over it.

NDRV sockets bind to local interface names (e.g. en0, en1). This binding, however, does require 
root privileges. Once the socket is bound, unadulterated access to the interface is at your fi nger-
tips. Because NDRV is so scarcely documented (and so darn useful!), the following experiment 
demonstrates its usage by example.

As (unjustly) unpopular as the NDRV mechanism is, it still provided for a cre-
ative use unfathomed by its original developers. An integer overfl ow vulnerabil-
ity in an NDRV ioctl(2) helped liberate iOS 4.3.1. Though this required root 
permissions, the resulting overfl ow allowed the “evil” jailbreakers to overwrite 
arbitrary kernel memory, and then further exploiting the Mach zone allocator to 
untether a jailbreak. A detailed discussion of this can be found in Esser’s Black-
Hat 2011 talk[9]. When it comes to security, more (code) implies less (security). 

Experiment: Spoofi ng Packets with PF_NDRV
Crafting packets with NDRV is child’s play. Just as IP’s raw sockets allow the manual crafting of 
the network and transport header, so do NDRV’s socket allow this, and further enable any arbitrary 
link layer framing. This allows the sending and receiving of packets which aren’t even IP, such as 
ARP/RARP, or 802.1x, all of which exist at layer II.

If you’ve used raw IP sockets before, you will fi nd Listing 17-1 familiar, mayhap nostalgic. A raw 
NDRV socket is created, and bound to the interface of choice. The bind() call’s sockaddr_ndrv is 
a sockaddr-compatible structure, using the interface name as the binding “address.”

LISTING 17-1: A simple program to spoof packets

#include <sys/socket.h>
#include <net/if.h>
#include <net/ndrv.h>

void main(int argc, char **argv) { 

   int s; 
   int rc; 
   struct sockaddr_ndrv sndrv; 
   u_int8_t packet[1500];

   if (geteuid() != 0) 
    { fprintf (stderr, "You are wasting my time, little man. Come back as root\n");
      exit(1);
    }

continues
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  s = socket(PF_NDRV, SOCK_RAW, 0); // Open socket
  if (s < 0) { perror ("socket"); exit (1);} // Just in case..
  //Bind to interface, say "en0", or "en1"
  strlcpy((char*)ndrv.snd_name, "en0", sizeof(sndrv.snd_name)); 
  ndrv.snd_family = AF_NDRV; 
  ndrv.snd_len = sizeof(sndrv); 
  rc = bind(s, (struct sockaddr*)&sndrv, sizeof(sndrv)); 

  if (rc < 0) { perror("bind"); exit(2);} // Could fail if interface doesn't exist

  // Craft packet!
   memset(&packet, 0, sizeof(packet)); 

  // Destination MAC goes in packet[0] through packet[5]
  packet[0] = 0xFF; /* ... */;  packet[5] = 0xFF; 

  // Source MAC address goes in packet[6] through packet[11]
  packet[7] = 0xFF; /* ... */;  packet[11] = 0xFF; 

  // Ethertype is next two
  packet[12] = ...; packet[13] = ...; 

   // And data (Layer III and up) follows 

   strcpy((char*) &packet[14], "You can put whatever you want here.. \0");

   rc = sendto(fd, &packet, 1500, 0, (struct sockaddr*)&sndrv, sizeof(sndrv));

}

From that point on, you can verify packets actually get sent by using a packet capture tool 
(tcpdump(1) or Ethereal). The program in the listing naturally doesn’t send anything meaningful, 
but can be adapted (using structs for the various protocols) to craft specialized packets. This is 
highly useful for various network fuzzing tools and (naturally) malicious packet spoofi ng. 

IPSec Key Management Sockets
RFC2367[10] details the use of IPSec Key Management sockets. This socket type is used rarely 
outside the realm of security software, and the RFC fully explains the usage of these sockets. The 
intrigued reader is therefore encouraged to consult this RFC, while this book opts to save a few trees 
(or  kilobytes), and focus on less documented aspects. 

IPv6 Networking
Like all modern operating systems, OS X and iOS have built-in support for IPv6, the successor 
to IPv4 that still hangs around the corner. Numerous times it was rumored to fi nally succeed 
the aging Internet protocol, yet reports of the demise of the latter seem to have been greatly 
exaggerated.

LISTING 17-1 (continued)
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The implementation of IPv6 in XNU, like in Linux or BSD, is in an entirely separate protocol han-
dler. Similar to BSD, it is based on a port of the KAME project[11] (which you can see using sysctl
net.inet6.ip6.kame_version).

The administrator can use the ip6(8) command to enable or disable IPv6 on some or all interfaces. 
The ip6config(8) command can likewise be used. 

OS X supports the stf(4) interface, to enable 6to4 connectivity. The 6to4 standard, specifi ed in 
RFC3056[12], is one of the more common to connect to the fl edgling IPv6 Internet over the aging 
IPv4 infrastructure, by using IP-in-IP tunneling. It is a fairly simple matter to establish connectiv-
ity, assuming your origin IP is a real (read: non-NATed or RFC1918) IPv4 address, and your egress 
router allows IP-tunneling (protocol number 41). The system’s 6to4 settings are kept in /etc/6to4.
conf (which uses the 6to4 anycast of 192.88.99.1). To start 6to4, a simple ip6config start-stf
will usually do. Microsoft IPv6 tunneling (or, more accurately, burrowing) standard, Teredo[13] is 
not supported natively, but the miredo[14] open source package has been ported to OS X.

OS X also supports BSD’s generic tunnel interface, gif(4). This is a more generic tunneling than 
stf(4)’s, specifi ed in RFC2893[15]. Unlike the former, it allows any combination of IPv4 and IPv6 
tunneling (6 over 4, 6 over 6, 4 over 4, 4 over 6). Output 17-1 shows how to set up and tear down an 
IP tunnel:

OUTPUT 17-1: Setting up and tearing down an RFC2893 tunnel using ifconfi g gif:

root@Minion (/)# ifconfig gif0 tunnel <localv4> <remotev4>
root@Minion (/)# ifconfig gif0 inet6 <localv6> <remotev6> prefixlen 128 up

System Sockets
The PF_SYSTEM address family is a method for kernel/user-space communication used. The address 
family supports two protocols: The Control Protocol and the Event protocol.

Kernel Control Protocol
PF_SYSTEM sockets aren’t widely used in OS X, and are only a bit more common in iOS, as shown in 
Table 17-2. These sockets can be created though ctl_register, which is exported for use by kernel 
extensions. 

TABLE 17-2: Known PF_SYSTEM Control IDs

FUNCTION REGISTERS CTL

utun_control_register

(bsd/net/if_utun.c)

com.apple.net.utun_control. Used for user 

mode tunnels (utun##). This type enables a user 

mode process to register an interface, and accepts 

all data from sockets binding to that interface. Dis-

cussed later under “Layer II Implementation”

netsrc_init

(bsd/net/netsrc.c)

com.apple.netsrc. Private Apple API in Lion 

and iOS.

continues
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FUNCTION REGISTERS CTL

nstat_control_register

(bsd/net/ntstat.c)

com.apple.network.statistics. Private 

Apple API used in Lion and iOS for active connec-

tion statistics (discussed later under “Socket and 

Protocol Statistics”)

iptap_init

(closed source, iOS, to be made open in 

Mountain Lion)

com.apple.net.iptap_control. Private and 

undocumented Apple API (in iOS, and starting with 

Mountain Lion).

AppleOnBoardSerialBSDClient

(closed source, iOS)

com.apple.uart.*. Private and undocumented 

Apple API for serial port access in iOS.

IOUserEthernetController

(en_register, closed source, iOS)

com.apple.userspace_ethernet. Private and 

undocumented Apple API for user space Ethernet

To register a kernel control socket, the provider needs to set up a kern_ctl_reg structure, 
specifying the control name, some settings and the callback functions which will provide for the 
user mode API calls. The provider passes this structure to ctl_register() along with a pointer to 
kern_ctl_ref, which will be returned with an opaque handle to use with this socket in the various 
callback functions. This structure is shown in Listing 17-2:

LISTING 17-2: The kern_ctl_reg structure, from sys/kern_control.h

struct kern_ctl_reg
{
 /* control information */
  char            ctl_name[MAX_KCTL_NAME];
  u_int32_t       ctl_id; // ignored, unless CTL_FLAG_REG_ID_UNIT is specified 
  u_int32_t       ctl_unit;

 /* control settings */
  u_int32_t   ctl_flags; // CTL_FLAG_PRIVILEGED - uid 0 processes only
                         // CTL_FLAG_REG_SOCK_STREAM – SOCK_STREAM only, not DGRAM
                         // CTL_DATA_NOWAKEUP – Don't wake up process on data received
  u_int32_t   ctl_sendsize; // override default send size, or leave 0
  u_int32_t   ctl_recvsize; // override default recv size, or leave 0

 /* Dispatch functions  */
 // all return errno. The kern_ctl_reg argument is returned by ctl_register()
 ctl_connect_func    ctl_connect;   //(kern_ctl_ref kcr,sockaddr_ctl *sac,void **unit);
 ctl_disconnect_func ctl_disconnect; //(kern_ctl_ref kcr,u_int32_t unit,void *unitinfo);
 ctl_send_func       ctl_send;       // kern_ctl_ref kcr,u_int32_t unit,void *unitinfo,
                                           mbuf_t m, int flags);
 // ctl_setopt and ctl_getopt are used for get/setsockopts and share the same prototype:
 // kern_ctl_ref kcr, u_int32_t unit, void *unitinfo, int opt, void *data, size_t len)
 ctl_setopt_func     ctl_setopt; 
 ctl_getopt_func   ctl_getopt;
};

TABLE 17-2 (continued)
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Any of the control registration function in Table 17-2 can provide an example of registration. A 
more detailed example of kernel controls is shown later in this chapter, in the case study of utun.

Kernel Event Protocol
The second protocol supported by PF_SYSTEM sockets is the SYSPROTO_EVENT protocol, used for ker-
nel events. Using this protocol, a kernel component can broadcast events to listeners in both kernel 
mode and user mode. 

Each event contains a vendor code, a class and a subclass, which enables listeners to fi lter only those 
events of interest. Apple is the only registered vendor, with a hard-coded vendor code of 1, though 
third party kexts can also obtain a runtime vendor code, which can be looked up by the client using 
a SIOCGKEVVENDOR ioctl(2). Apple currently defi nes six classes of events, shown in Table 17-3:

TABLE 17-3: Apple Event Classes

EVENT CLASS USED BY

KEV_NETWORK_CLASS (1) Network stack. Subclasses include DL (DataLink), 

INET/INET6 (IPv4/IPv6) and LOG (FW Log)

KEV_IOKIT_CLASS (2) IOKit drivers

KEV_SYSTEM_CLASS (3) System events. Currently only used for memory 

status notifi cations

KEV_APPLESHARE_CLASS (4) AppleShare (Unused by kernel proper)

KEV_FIREWALL_CLASS (5) IPv4 and IPv6 Firewalls (IPFW/IP6FW subclasses, 

respectively)

KEV_IEEE80211_CLASS (6) Wireless Ethernet (IO80211Family drivers)

A simple event listener doesn’t take more than a few lines of code: It merely requires setting up the 
socket, optionally setting up a fi lter request, and reading. This is shown in Listing 17-3:

LISTING 17-3: A simple PF_SYSTEM/SYSPROTO_EVENT listener

#include <sys/socket.h> // for socket(2) and friends
#include <sys/kern_event.h> // for kev_* and kern_event_* types

/**
  * A rudimentary PF_SYSTEM event listener, in 50 lines or less. Works on iOS too
  */
void main (int argc, char **argv)
{

  struct kev_request req;
  char buf[1024];

continues
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  int rc;
  struct kern_event_msg *kev;

  // Setup the system socket
  int ss = socket(PF_SYSTEM, SOCK_RAW, SYSPROTO_EVENT);

  // Set filtering parameters. Only interested in Apple, but not filtering on
  // classes for now
  req.vendor_code  = KEV_VENDOR_APPLE; // Apple is pretty much the only vendor
  req.kev_class    = KEV_ANY_CLASS; // No class filtering (show all)
  req.kev_subclass = KEV_ANY_SUBCLASS; // No subclass filtering (show all)

  // Use ioctl(2) to set the filter on the socket
  if (ioctl(fd, SIOCSKEVFILT, &req)) {
      perror("Unable to set filter\n"); exit(1); 
    }

   while (1) {

     // can use if (ioctl(fd, SIOCGKEVID, &id)) to get next ID
     // or simply read and block until an event occurs..

     rc = read (ss, buf, 1024);

     kev = (struct kern_event_msg *)buf;

     // Print event class and class (data is event dependent)
     // A better implementation would convert class, subclass and code to text
     // and is left as an exercise to the reader.
     //
     printf ("Event %d: (%d bytes). Vendor: %d Class: %d/%d\n",
        kev->id, kev->total_size, kev->vendor_code, kev->kev_class, kev->kev_subclass);

     printf ("Code: %d\n",kev->event_code);

   } // end while

}

Perspicacious Linux-philes may notice that this mechanism is also quite similar in functionality to 
Linux’s NetLink sockets, in that both of these can be used to send messages (particularly network 
confi guration messages) from kernel space. NetLink, however, relies on a form of multicast which is 
somewhat crude by comparison, and does not enable fi ltering of messages.

SOCKET AND PROTOCOL STATISTICS

XNU keeps statistics for various sockets and the underlying protocols in read-only sysctl(8) vari-
ables, in the net.* namespace. Address families each hold their own sub-namespace (local, inet,
inet6, key), with sub-protocols in a third level namespace (stream/dgram for local,

LISTING 17-3 (continued)
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ip/tcp/udp/raw/ipsec for inet, and 6 suffi xes for the respective inet6 protocols. key does not 
have sub-protocols). 

Output 17-2 shows the variables in the net.inet.udp space, as an example:

OUTPUT 17-2: Variables in the net.inet.udp space, as viewed by sysctl(8)

morpheus@ergo (/)$ sysctl net | grep udp
net.inet.ip.fw.dyn_udp_lifetime: 10
net.inet.udp.checksum: 1
net.inet.udp.maxdgram: 9216
net.inet.udp.recvspace: 42080
net.inet.udp.in_sw_cksum: 3830661
net.inet.udp.in_sw_cksum_bytes: 854082494
net.inet.udp.out_sw_cksum: 4248220
net.inet.udp.out_sw_cksum_bytes: 1189771941
net.inet.udp.log_in_vain: 0
net.inet.udp.blackhole: 0
net.inet.udp.pcbcount: 19
net.inet.udp.randomize_ports: 1

By trying sysctl –a net you can see some of the counters and settings, though the interesting 
ones; those seen in netstat –s are hidden. This is because they are opaque structures, and the 
sysctl(8) command does not know how to deal with them. Using the -A switch, you can see their 
names, though their values remain an obscure hex dump. 

Commands like netstat(8), however, can parse these values. In particular, netstat –s parses 
the stats keys of the respective protocols, and — in its common usage — netstat(8) obtains 
the list of active sockets for each protocols by parsing the pcblist or pcblist64 MIBs. This is 
an internal list of struct inpcbs, which correspond to active connections (discussed later). The 
netstat(8) command is open source[16], and you are encouraged to check it for a good example 
of how these MIBs are parsed. The PF_SYSTEM sockets, discussed previously, can also be used for 
network statistics: The com.apple.network.statistics identifi er (available in iOS and Lion), 
exposed by nstat_control_register(), offers statistics on network connections, similar to 
netstat(1), but with the ability to be actively notifi ed on connection establishment and tear-
down. This constitutes a private API, though bsd/net/ntstat.h offers a fairly good idea of its 
inner workings. 

In brief, this allows a curious user mode process to obtain a list of all active sockets from 
NSTAT_PROVIDER_UDP, NSTAT_PROVIDER_TCP, and routing information NSTAT_PROVIDER_ROUTE.
The statistics include more advanced details than offered by netstat(1), including TCP window 
information, and owning process name, which in Linux is available by -p. Unlike netstat(1), an 
application can block on the socket to get notifi cations of connection establishment and teardown. 
The nstat mechanism exposes the net.statistics MIB, enabling and disabling the statistics 
collection through sysctl(8).

The book’s companion website offers the lsock tool, which shows an example of using com.apple
.network.statistics from user mode, and will compile on Lion or iOS 4 and later. A sample 
output from iOS 5 is shown in Output 17-3:
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OUTPUT 17-3: lsock on iOS 5, catching apsd red-handed

root@Podicum (/)# lsock –p tcp -a
TCP #1, IPv4, If 2, State 4, Pid: 10109 (sshd)   192.168.1.105:22->192.168.1.103:53784
TCP #2, IPv4, If 2, State 4, Pid: 81    (apsd)   192.168.1.105:50785->17.172.232.119:443
TCP #3, IPv4, If 1, State 1, Pid: 2 ()           127.0.0.1:8021 (Listening)
TCP #4, IPv6, If 1, State 1, Pid: 2 ()           ::1:8021       (Listening)
TCP #5, IPv6, If 0, State 1, Pid: 2 ()           :::62078       (Listening)
TCP #6, IPv4, If 0, State 1, Pid: 2 ()           0.0.0.0:62078  (Listening)
TCP #7, IPv4, If 0, State 1, Pid: 2 ()           0.0.0.0:22     (Listening)
TCP #8, IPv4, If 0, State 1, Pid: 2 ()           0.0.0.0:22     (Listening)

LAYER V: SOCKETS

Most of the generic socket code in XNU is implemented in several key fi les, all in bsd/kern, shown 
in Table 17-4:

TABLE 17-4: XNU Socket Implementation Code

FILE IMPLEMENTS

uipc_domain.c Socket domain (address/protocol family) support

uipc_mbuf.c Support functions for MBUFs

uipc_mbuf2.c More support functions for MBUFs

uipc_proto.c UNIX domain protocol support (SOCK_STREAM 

and _DGRAM)

uipc_socket.c Socket support routines

uipc_socket2.c More socket support routines

uipc_syscalls.c Main socket API (socket, send, recv, etc.)

uipc_usrreq.c User request support routines

This section details the implementation of sockets, picking up where user mode leaves off (that is, 
from the moment a socket-related system call is invoked).

Socket Descriptors
A socket, which to the user appears to be just another fi le descriptor, is a mammoth structure in 
kernel mode, containing the socket type, state data, and much more. This structure, the struct
socket, is defi ned in bsd/sys/socketvar.h. It is obtained by a call to file_socket(), which (like 
other fi le descriptors) uses fp_lookup() (shown in Listing 15-17) to obtain the fileproc structure 
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corresponding to the fi le descriptor. The fileproc structures belonging to sockets have their 
f_type set to DTYPE_SOCKET, and the f_data member is the struct socket pointer which the 
system call operated on. 

The struct socket contains many fi elds, and has a messy declaration intermixed with inline struc-
tures and constants. The most important fi elds for our discussion are:

 ‰ so_proto: A pointer to the socket’s protocol. Through this, the socket protocol, type, and 
domain can be determined. 

 ‰ so_pcb: A pointer to the protocol control block. This is defi ned as a void pointer, because 
the underlying protocol can vary (struct in6pcb or struct inpcb).

An abbreviated form of the structure is shown in Listing 17-4:

 LISTING 17-4: An abbreviated socket structure, from bsd/sys/socketvar.h

struct socket {
        int     so_zone;                /* zone we were allocated from */
        short   so_type;                /* generic type, see socket.h */
        short   so_options;             /* from socket call, see socket.h */
        short   so_linger;              /* time to linger while closing */
        short   so_state;               /* internal state flags SS_*, below */
        void    *so_pcb;                /* protocol control block */
        struct  protosw *so_proto;      /* protocol handle */
..
        struct  sockbuf {... } so_rcv, /* Receive queue (incoming) */
                               so_snd; /* Send queue    (outgoing) */
        // 
        // ...  Many many more fields ..
        struct  label *so_label;        /* MAC label for socket */
        struct  label *so_peerlabel;    /* cached MAC label for socket peer */
        // ….
        // last process to interact with this socket
        u_int64_t       last_upid;
        pid_t           last_pid;

}

mbufs
Each socket maintains a struct sockbuf, which is used in maintaining its receive and send queues. 
The actual data sent and received in sockets, however, is maintained in “memory buffers”, which 
are struct mbuf structures. These structures (similar to Linux’s sk_buffs) are defi ned in bsd/sys/
mbuf.h, but are normally left as opaque mbuf_ts, with the preferred method of dealing with them 
being the various accessors declared in bsd/sys/kpi_mbuf.h.

An mbuf is composed of a header and a body. The header is a struct m_hdr containing the buf-
fer metadata, as well as a link to the next buffer, and a link to the next packet, if any. In this way, 
mbufs are chained, as shown in Figure 17-2. 
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FIGURE 17-2: An mbuf chain

The mbuf header is defi ned in bsd/sys/mbuf.h as shown in Listing 17-5:

LISTING 17-5: The mbuf header

struct m_hdr {
        struct  mbuf *mh_next;          /* next buffer in chain        */
        struct  mbuf *mh_nextpkt;       /* next chain in queue/record  */
        int32_t mh_len;                 /* amount of data in this mbuf */
        caddr_t mh_data;                /* location of data            */
        short   mh_type;                /* type of data in this mbuf   */
        short   mh_flags;               /* flags; see below            */
}

struct mbuf {
        struct  m_hdr m_hdr;
        union {
                struct {
                        struct  pkthdr MH_pkthdr;       /* M_PKTHDR set */
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                        union {
                                struct  m_ext MH_ext;   /* M_EXT set */
                                char    MH_databuf[_MHLEN];
                        } MH_dat;
                } MH;
                char    M_databuf[_MLEN];               /* !M_PKTHDR, !M_EXT */
        } M_dat;
};

Following the m_hdr is an m_dat union that — depending on the settings in m_hdr.m_flags — may 
hold one of three things, as shown in Table 17-5.

TABLE 17-5: Flags in an mbuf Header, and the Corresponding Contents of the mbuf

FLAG DENOTES THAT WHAT FOLLOWS IS. . .

M_PKTHDR The packet, split into the header in m_dat.MH.MH_pkthdr, and the payload 

— contiguously, in m_dat.MH.MH_dat.MH_databuf.

M_EXT A pointer to the packet, stored externally in m_dat.MH.MH_dat.MH_ext. This 

is known as a cluster.

(No fl ag) Packet data in m_dat.M_databuf. This is used for packet data spanning mul-

tiple mbufs. The fi rst mbuf will have M_PKTHDR set.

Using the functions in bsd/sys/kpi_mbuf.h header for allocating and handling mbufs, relieves 
the programmer from dealing with the header specifi cs. Functions such as mbuf_allocpacket/
mbuf_alloccluster (used by drivers), and many accessors (e.g. mbuf_data(), mbuf_setdata(),
etc.) all operate on an mbuf_t, which is effectively a void pointer. All of these functions are very well 
documented elsewhere. One function worthy of mentioning here, however, is mbuf_tag_allocate.
With it, an mbuf can be assigned a 32-bit integer value, which is considered opaque by the kernel. 
A driver, however, may use the tag to hold external data, from bit fl ags, to a buffer ID. This is use-
ful for tracking mbuf ownership. The netstat(8) command can be used to display mbuf utilization 
(using the –m switch), which it obtains using sysctl(8).

Once the multiple domains have been registered, and each domain has its associated protocols and 
socket types, it becomes a simple matter to provide sockets of the supported types. Each socket has 
a pointer to its corresponding protocol, which is assigned during creation. The  socket(2) system 
call is used to create sockets from user mode, as shown in Listing 17-6:

LISTING 17-6: The implementation of socket(2)

int socket(struct proc *p, struct socket_args *uap, int32_t *retval)
{
        struct socket *so;
        struct fileproc *fp;
        int fd, error;

        // call AUDIT_ARG to record call in audit subsytem

continues
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        AUDIT_ARG(socket, uap->domain, uap->type, uap->protocol);

#if CONFIG_MACF_SOCKET_SUBSET
        // call on MAC subsystem to check if sockets are allowed (q.v. Chapter 13)
        if ((error = mac_socket_check_create(kauth_cred_get(), uap->domain,
            uap->type, uap->protocol)) != 0)
                return (error);
#endif /* MAC_SOCKET_SUBSET */
        // allocate file descriptor
        error = falloc(p, &fp, &fd, vfs_context_current());
        ...
        // Mark as a socket, read writable, with standard socket operations 
        fp->f_flag = FREAD|FWRITE;
        fp->f_type = DTYPE_SOCKET;
        fp->f_ops = &socketops;

        // Create domain (family) and type/protocol specific socket
        error = socreate(uap->domain, &so, uap->type, uap->protocol);
        if (error) {
                fp_free(p, fd, fp);
        } else {
         ...
           /* if this is a backgrounded thread then throttle all new sockets */
              ...
                 // connect socket data
                fp->f_data = (caddr_t)so;

                proc_fdlock(p);
                procfdtbl_releasefd(p, fd, NULL);

                fp_drop(p, fd, fp, 1);
                proc_fdunlock(p);

                *retval = fd;
        }
        return (error);
}

The main work in the preceding code is performed by socreate, in bsd/kern/uipc_socket.c,
shown as follows:

socreate(int dom, struct socket **aso, int type, int proto)
{
        struct proc *p = current_proc();
        register struct protosw *prp;
        register struct socket *so;
        register int error = 0;

        // ...

       // First find the protocol for this socket domain (family) and type.
       // If one is specified, look it up. Otherwise, get default

LISTING 17-6 (continued)
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        if (proto)
                prp = pffindproto(dom, proto, type);
        else
                prp = pffindtype(dom, type);

 // Handle protocol lookup error, or protocol with no attach function
        if (prp == 0 || prp->pr_usrreqs->pru_attach == 0) {
                if (pffinddomain(dom) == NULL) {
                        return (EAFNOSUPPORT);
                }
                if (proto != 0) {
                        if (pffindprotonotype(dom, proto) != NULL) {
                                return (EPROTOTYPE);
                        }
                }
                return (EPROTONOSUPPORT);
        }

        if (prp->pr_type != type)
                return (EPROTOTYPE);

// If we're still here, all is well. Go ahead and allocate socket
  // TCPv4 sockets are allocated from the Mach socache zone. 
  // All other sockets are allocated from BSD's M_SOCKET zone.

  so = soalloc(1, dom, type);

        if (so == 0)
                return (ENOBUFS);

        TAILQ_INIT(&so->so_incomp);
        TAILQ_INIT(&so->so_comp);

         // Allocate various socket fields
        so->so_type = type;

        // Set ownership to uid/gid of current, and mark root owned as SS_PRIV
        so->so_uid = kauth_cred_getuid(kauth_cred_get());
        so->so_gid = kauth_cred_getgid(kauth_cred_get());
        if (!suser(kauth_cred_get(), NULL))
                so->so_state = SS_PRIV;

        // This line is responsible for making everything work: 
        so->so_proto = prp; // Link the protocol

#ifdef __APPLE__
        so->so_rcv.sb_flags |= SB_RECV; /* XXX */
        so->so_rcv.sb_so = so->so_snd.sb_so = so;
#endif
        so->next_lock_lr = 0;
        so->next_unlock_lr = 0;

#if CONFIG_MACF_SOCKET
        // If BSD's MAC layer is configured for sockets, associate this
       // socket with a label

continues
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        mac_socket_label_associate(kauth_cred_get(), so);
#endif /* MAC_SOCKET */

//### Attachement will create the per pcb lock if necessary and increase refcount
        /*
         * for creation, make sure it's done before
         * socket is inserted in lists
         */
        so->so_usecount++;

        error = (*prp->pr_usrreqs->pru_attach)(so, proto, p);
        if (error) {
              // abort: decrease so_usecount and free socket,
        }
#ifdef __APPLE__

       // Increase reference to this domain (address family)

        prp->pr_domain->dom_refs++;
        TAILQ_INIT(&so->so_evlist);

        /* Attach socket filters for this protocol */
        sflt_initsock(so);
#if TCPDEBUG
        if (tcpconsdebug == 2)
                so->so_options |= SO_DEBUG;
#endif
#endif
        so_set_default_traffic_class(so);
        /*
         * If this is a background thread/task, mark the socket as such.
         */
#if !CONFIG_EMBEDDED
        if (proc_get_self_isbackground() != 0) 
#else /* !CONFIG_EMBEDDED */
        thread = current_thread();
        ut = get_bsdthread_info(thread);
        if (uthread_get_background_state(ut)) 
#endif /* !CONFIG_EMBEDDED */
{
                socket_set_traffic_mgt_flags(so, TRAFFIC_MGT_SO_BACKGROUND);
                so->so_background_thread = current_thread();
        }

       // special handling of AF_LOCAL sockets and workaround for IPv6 
       // socket cases follows here..
       // ...

       // return newly created socket as our out parameter, and report success 

LISTING 17-6 (continued)
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       // The so returned will be latched on to the file descriptor
        *aso = so;
        return (0);
}

The socket structure is attached to the corresponding fi le descriptor’s fp_data fi eld. The 
protocol operations are themselves a pointer from the socket structure’s so_proto. Thus, 
socket-related system calls basically retrieve the socket from the fi le pointer and perform some 
housekeeping, with the bulk of the work done by the corresponding pr_usrreqs entry for the 
top-level call. 

Sockets in Kernel Mode
As surprising as it sounds, creating a socket in kernel mode is not as straightforward as it should 
be. A socket normally needs to be mapped to a fi le descriptor, and failure to properly maintain the 
relationship can cause the process to crash, or even the entire kernel to panic.

To work with sockets in kernel mode, XNU offers the kpi_socket interface. This is a set of sock_*
functions whose functionality emulates, or in some cases extends, that of user mode (see Table 
17-6). This interface enables the creation and manipulation of sockets in kernel mode, similar to the 
“Winsock Kernel” concept in Windows (Vista or later). This can prove useful for a kernel extension 
that needs to communicate with a remote server.

TABLE 17-6: KPI Socket Interface Calls, from bsd/kern/kpi_socket.c

KPI SOCKET FUNCTION IN USER MODE USED FOR

errno_t sock_socket

(int domain,

int type,

int protocol,

sock_upcall callback,

void *cookie,

socket_t *new_so);

int socket

(int domain, 

int type, 

int protocol)

Same as socket, but allows 

setting a callback func-

tion that will be invoked 

on socket events with the 

cookie parameter. Socket is 

returned in new_so.   

sock_accept(socket_t sock,

struct sockaddr *from,

int fromlen,

int flags,

sock_upcall callback,

void* cookie,

socket_t *new_sock)

int accept

(int socket, 

struct sockaddr * addr, 

socklen_t *addrlen);

Accepts a connection on 

sock, returning a new_sock. 

Optionally, set callback and 

the argument cookie to be 

used on new socket events.

continues
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KPI SOCKET FUNCTION IN USER MODE USED FOR

errno_t sock_bind

(socket_t sock,

const struct sockaddr *to);

int bind(int socket,

struct sockaddr *addr, 

socklen_t addrlen);

Binds the sock to the 

address specifi ed in to. The 

usual type-casting of specifi c 

sockaddr subtypes applies.

errno_ t sock_gettype

(socket_t so,

int *domain,

int *type,

int *protocol);

--- Gets the domain, type, 

and protocol used in a 

socket(2) or sock_socket 

call. Any of the parameters 

may be left NULL. 

int sock_isconnected

(socket_t so);

--- Returns non-zero if socket is 

connected

(SS_ISCONNECTED).

int sock_isnonblocking

(socket_t so);

--- Returns non-zero if socket is 

nonblocking

(SS_NBIO).

errno_t sock_setpriv

(socket_t so, int on);

-- Toggles the SS_PRIV fl ag on 

the socket in question.

errno_t sock_setupcall

(socket_t sock,

sock_upcall callback,

void* context);

-- Sets or unsets an event 

callback (“upcall”) 

function.

Nonblocking sockets in the kernel make use of callbacks, or what KPI calls “upcall” functions. 
These functions accept three arguments — the socket, a “cookie” (a void pointer opaque argument), 
and a boolean specifying whether blocking in the function is allowed. When creating a socket (with 
sock_socket) or accepting (sock_accept), the caller may set the callback with different cookie 
arguments for each socket, allowing the same upcall to be used in handling multiple sockets. An 
upcall may be set or unset at any other time using sock_setupcall (specifying NULL removes the 
upcall function).

Layer IV: Transport Protocols
The TCP/IP-related protocols are implemented in a separate directory — bsd/netinet for IPv4, 
and bsd/netinet6 for IPv6. Each layer III protocol can defi ne its own layer IV ones, as IPv4 does 
in its struct inetsw array, (bsd/netinet/in_proto.c) and IPv6 in its struct inet6sw (bsd/
netinet6/in6_proto.c).

The protocols in Table 17-7 are supported (note that ICMP and RAW are not transport protocols in 
the classic sense of the word, but are still defi ned with the same structure type).

TABLE 17-6 (continued)
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TABLE 17-7: Supported Transport Protocols 

PROTOCOL STRUCT PR_USRREQS DECLARED IN

ICMPv4 icmp_dgram_usrreqs bsd/netinet/ip_icmp.c

ICMPv6 icmp6_dgram_usrreqs bsd/netinet6/raw_ip6.c

TCPv4 tcp_usrreqs bsd/netinet/tcp_usrreq.c

TCPv6 tcp6_usrreqs bsd/netinet/tcp_usrreq.c

RAW (v4) rip_usrreqs bsd/netinet/raw_ip.c

RAW (v6) rip6_usrreqs bsd/netinet6/raw_ip6.c

UDPv4 udp_usrreqs bsd/netinet/udp_usrreq.c

UDPv6 udp6_usrreqs bsd/netinet6/udp6_usrreq.c

The pr_usrreqs contain the implementation of each protocol’s “user requests,” which correspond 
to user mode socket API calls (such as send, recv), discussed later in this chapter. Additional proto-
cols, such as IPSec ones (AH/ESP), are supported but have no usrreqs of their own.

Domains and Protosws
The multiple address families supported by the kernel are referred to as domains (totally unrelated 
to the domains of DNS) and are maintained in a global domains list. This list, appropriately called 
domains, is a linked list of struct domain, defi ned in bsd/sys/domain.h as shown in Listing 17-7:

LISTING 17-7: The domain structure, from bsd/sys/domain.h 

struct  domain {
  int     dom_family;             /* AF_xxx */
  const char *dom_name;
  void   (*dom_init)(void);                 // initialize domain structures
  int    (*dom_externalize)(struct mbuf *); /* externalize access rights */
  void   (*dom_dispose)(struct mbuf *);     /* dispose of internalized rights */
  struct  protosw *dom_protosw;              /* Chain of protosw's for AF   */
  struct  domain *dom_next;
  int    (*dom_rtattach)(void **, int);     /* initialize routing table    */
  int     dom_rtoffset;                    /* an arg to rtattach, in bits */
  int     dom_maxrtkey;                    /* for routing layer */
  int     dom_protohdrlen;                 /* Let the protocol tell us */
  int     dom_refs;                        /* # socreates outstanding */
#ifdef _KERN_LOCKS_H_
lck_mtx_t *dom_mtx;                        /* domain global mutex */
#else
  void    *dom_mtx;                        /* domain global mutex */
#endif
  uint32_t   dom_flags;
  uint32_t   reserved[2];
};
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Because it’s a global structure, access to the domains list is protected by a domain_proto_mtx 
mutex. Each domain also points to an array of one or more protocol structures that are 
associated with the domain. The same mutex also protects access to these protocols. 
(See Listing 17-8.)

LISTING 17-8: The protosw structure, from bsd/sys/protosw.h

struct protosw {
        short   pr_type;                /* socket type used for */
        struct  domain *pr_domain;      /* domain protocol a member of */
        short   pr_protocol;            /* protocol number */
        unsigned int pr_flags;          /* see below */
/* protocol-protocol hooks */
        void    (*pr_input)(struct mbuf *, int len);
                                        /* input to protocol (from below) */
        int     (*pr_output)(struct mbuf *m, struct socket *so);
                                        /* output to protocol (from above) */
        void    (*pr_ctlinput)(int, struct sockaddr *, void *);
                                        /* control input (from below) */
        int     (*pr_ctloutput)(struct socket *, struct sockopt *);
                                        /* control output (from above) */
/* user-protocol hook */
        void    *pr_ousrreq; // deprecated
/* utility hooks */
        void    (*pr_init)(void);       /* initialization hook */
#if __APPLE__
        void    (*pr_unused)(void);     /* placeholder - fasttimo is removed */
#else
        void    (*pr_fasttimo)(void);
                                        /* fast timeout (200ms) */
#endif
        void    (*pr_slowtimo)(void);
                                        /* slow timeout (500ms) */
        void    (*pr_drain)(void);
                                        /* flush any excess space possible */
#if __APPLE__
        int     (*pr_sysctl)(int *, u_int, void *, size_t *, void *, size_t);
                                        /* sysctl for protocol */
#endif

struct  pr_usrreqs *pr_usrreqs; /* supersedes pr_usrreq() */
#if __APPLE__
     int   (*pr_lock)(struct socket *so, int locktype, void *debug); /* lock function */
     int   (*pr_unlock)(struct socket *so, int locktype, void *debug); /* unlock  */
#ifdef _KERN_LOCKS_H_
        lck_mtx_t *     (*pr_getlock)   (struct socket *so, int locktype);
#else
        void *  (*pr_getlock)   (struct socket *so, int locktype);
#endif
#endif
#if __APPLE__
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/* Implant hooks */
        TAILQ_HEAD(, socket_filter) pr_filter_head;
        struct protosw *pr_next;        /* Chain for domain */
        u_int32_t       reserved[1];            /* Padding for future use */
#endif
};

The fi elds in this structure are basically of two types:

 ‰ Protocol requests: These requests are internal to the protocol and inaccessible from user 
space. They are used by the networking stack itself to handle various protocol events (see 
Table 17-8).

TABLE 17-8: Protocol Requests 

FUNCTION USED FOR

pr_input (struct mbuf *m, 

          int len);

Ingress traffi  c from network device. Passes a 

chain of buff ers, m, of len len. Performs protocol 

decapsulation and fi nds socket

pr_output(struct mbuf *m, 

          struct socket *so);

Egress traffi  c. Mostly NULL.

pr_ctlinput (int, 

            struct sockaddr *, 

            void *)

Protocol commands, PRC_* constants from bsd/

sys/protosw.h, corresponding to ICMP and 

 network events

pr_ctloutput

     (struct socket *,

      struct sockopt *);

Implementing setsockopt(2)

void pr_init(void) Protocol initialization function. This is called when 

the protocol is fi rst added — for static protocols, 

by domain_init(), and for dynamically added 

ones, by init_proto() — from net_add_

proto(). After initialization, this point is set to 

NULL to avoid re-calling. 

void pr_fasttimo ();

void pr_slowtimo();

Deprecated. Unused (NULL in all protocols). Fast 

timeout originally used for 200ms timeout, Slow 

timeout used for 500ms. 

void pr_drain(); Drain (discard) excess protocol data when system 

is low on space

continues
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FUNCTION USED FOR

void pr_sysctl((int *, 

    u_int, 

    void *, 

    size_t *, 

    void *, 

    size_t);

An extension over the BSD model to support 

sysctl(8) over the various protocols.

void pr_lock(struct socket *so,

     int locktype, 

     void *debug);

int pr_unlock(struct socket *so,

     int locktype, 

     void *debug);

An extension over the BSD model used to enable 

a lock of locktype over the protocol. 

 ‰ User requests: These are the various system call implementations of the socket API for 
the socket of the specified protocol. Originally, a single function, pr_usrreq(), was 
used in an ioctl()-like manner for all user requests, with the request specified in a 
PRU_ constant. This function has been deprecated (renamed to pr_ousrreq() and left 
unused) and replaced by the pr_usrreqs pointer. This is a pointer to a massive struc-
ture on its own, a struct pr_usrreqs, containing the protocol-specific implementa-
tion of functions, or NULL for functions that are not applicable for this protocol. The 
structure is defined and somewhat amusingly commented in bsd/sys/protosw.h, as 
shown in Listing 17-9:

LISTING 17-9: The struct pr_usrreqs defi nition in bsd/sys/protosw.h

/*
 * If the ordering here looks odd, that's because it's alphabetical.
 * Having this structure separated out from the main protoswitch is allegedly
 * a big (12 cycles per call) lose on high-end CPUs.  We will eventually
 * migrate this stuff back into the main structure.
 */
struct pr_usrreqs {
        int     (*pru_abort)(struct socket *so);
        int     (*pru_accept)(struct socket *so, struct sockaddr **nam);
        int     (*pru_attach)(struct socket *so, int proto, struct proc *p);

TABLE 17-8 (continued)
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        int     (*pru_bind)(struct socket *so, struct sockaddr *nam,
                                 struct proc *p);
        int     (*pru_connect)(struct socket *so, struct sockaddr *nam,
                                    struct proc *p);
        int     (*pru_connect2)(struct socket *so1, struct socket *so2);
        int     (*pru_control)(struct socket *so, u_long cmd, caddr_t data,
                                    struct ifnet *ifp, struct proc *p);
        int     (*pru_detach)(struct socket *so);
        int     (*pru_disconnect)(struct socket *so);
        int     (*pru_listen)(struct socket *so, struct proc *p);
        int     (*pru_peeraddr)(struct socket *so, struct sockaddr **nam);
        int     (*pru_rcvd)(struct socket *so, int flags);
        int     (*pru_rcvoob)(struct socket *so, struct mbuf *m, int flags);
        int     (*pru_send)(struct socket *so, int flags, struct mbuf *m,
                                 struct sockaddr *addr, struct mbuf *control,
                                 struct proc *p);
#define PRUS_OOB        0x1
#define PRUS_EOF        0x2
#define PRUS_MORETOCOME 0x4
        int     (*pru_sense)(struct socket void  *sb, int isstat64);
        int     (*pru_shutdown)(struct socket *so);
        int     (*pru_sockaddr)(struct socket *so, struct sockaddr **nam);

        /*
         * These three added later, so they are out of order.  They are used
         * for shortcutting (fast path input/output) in some protocols.
         * XXX - that's a lie, they are not implemented yet
         * Rather than calling sosend() etc. directly, calls are made
         * through these entry points.  For protocols which still use
         * the generic code, these just point to those routines.
         */
        int     (*pru_sosend)(struct socket *so, struct sockaddr *addr,
                                   struct uio *uio, struct mbuf *top,
                                   struct mbuf *control, int flags);
        int     (*pru_soreceive)(struct socket *so,
                                      struct sockaddr **paddr,
                                      struct uio *uio, struct mbuf **mp0,
                                      struct mbuf **controlp, int *flagsp);
        int     (*pru_sopoll)(struct socket *so, int events,
                                   struct ucred *cred, void *);
};

Initializing Domains
During kernel initialization, domaininit(), in bsd/kern/uipc_domain.c, is called from bsd_
init and is responsible for initializing all the domains from Table 17-1. All these domains (with 
the exception of PPP) are hard-coded into the kernel. domaininit() adds them by concatenating 
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(before Lion) or prepending (Lion) them, in turn, to the domains list. For each domain, if a dom_
init function exists, it is called. Likewise, for each domain protocol, init_proto(), is called. 
This function calls the protocol’s pr_init function, if set, then unsets it (to prevent additional 
calls by accident). Domains and protocols can also be modifi ed dynamically (for example, as PPP 
is, from the PPP kernel extension), as shown in Table 17-9. Protocol-related functions are defi ned 
in bsd/sys/protosw.h and domain-related ones in domain.h. All are implemented in bsd/kern/
uipc_domain.c.

TABLE 17-9: Domain and Protocol Dynamic Manipulation Functions 

FUNCTION USAGE

net_add_domain

(struct domain *dp);

Prepends domain dp to the global 

domains list and calls init_domain() to 

invoke the domain’s dom_init(), if any.

struct domain *pffinddomain

  (int pf);

Looks up a domain whose dom_family 

matches pf. 

net_del_domain(struct domain *dp); Unlinks domain dp from the domains list.

int net_add_proto(struct protosw *pp,

struct domain *dp);
Adds the protocol specifi ed by pp to the 

domain dp, and calls init_proto() to 

invoke the protocol’s pr_init (unsetting 

it after use).

struct protosw *pffindtype

(int family, int type);

Looks up a protocol in the domain match-

ing family whose pr_type matches 

type.

Int net_del_proto(int type, int protocol, 

struct domain *dp);
Removes protocol whose pr_type and 

pr_protocol fi elds match, in domain dp. 

Conceptually, the resulting representation of domains is simple, though large (see Figure 
17-3). The domain points to an array of protosw structures, which in turn point to various 
functions. 
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NULL…
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FIGURE 17-3: XNU’s domain structures
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LAYER III: NETWORK PROTOCOLS

Layer III (network level) protocols are somewhat simpler than their transport level counterparts. 
These protocols can be registered dynamically, although XNU currently only supports IPv4, IPv6, and 
AppleTalk. Network protocols may be registered with proto_register_input(), which initializes a 
struct proto_input_entry and inserts it into a private proto_hash hash table. The hash function 
used in this case is crude: proto_hash_value() simply returns hard coded numbers (0 through 3) for 
each of the four protocols it recognizes, and a different number (4) for all other protocols.

A layer III protocol is implemented as a proto_input_entry defi ned in bsd/net/kpi_protocol.c
as shown in Listing 17-10:

LISTING 17-10: struct proto_input_entry in bsd/net/kpi_protocol.c

struct proto_input_entry {
        struct proto_input_entry           *next;
        int                                 detach;
        struct domain                      *domain;
        int                                 hash;
        int                                 chain;

        protocol_family_t                   protocol;
        proto_input_handler                 input;
        proto_input_detached_handler        detached;

        mbuf_t                              inject_first;
        mbuf_t                              inject_last;

        struct proto_input_entry           *input_next;
        mbuf_t                              input_first;
        mbuf_t                              input_last;
};

You may have noticed that there is no output function in Listing 17-9. This is because the output 
functions of the layer III protocols are actually called directly by those of layer IV. Although the 
ip_output_list() function (for IPv4) and ip6_output (for IPv6) have similar prototypes, they are 
overall different, and are called by name from TCP, UDP, and RAW’s output functions, rather than 
by pointer. Listing 17-11 shows the prototypes of the IP and IPv6 output functions:

LISTING 17-11: The ip6_output and ip_output_list prototypes in XNU

morpheus@ergo (../xnu/1699.26.8/)$ ./findfunc.sh ip6_output ip_output_list
./bsd/netinet6/ip6_output.c:232:ip6_output( struct mbuf *m0, struct ip6_pktopts *opt, 
struct  route_in6 *ro, int flags, struct ip6_moptions *im6o, struct ifnet **ifpp,
struct ip6_out_args
 *ip6oa);
./bsd/netinet/ip_output.c:265:ip_output_list( struct mbuf *m0, int packetchain, struct
 mbuf *opt, struct route *ro, int flags, struct ip_moptions *imo, struct
 ip_out_args *ipoa );
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Note, that while this is a deviation from the neatness of the OSI model (in that the transport 
has to know its network), this is not a fault of XNU’s or BSD’s, but of the IP model itself: UDP, 
for example, includes headers fi elds from IP (the so called “pseudo-header”) in its checksum 
calculation.

The bsd/net/kpi_protocol.h header fi le defi nes and documents the KPI interfaces available for 
manipulating and implementing protocols. Overall, the following functions in Listing 17-12 are 
defi ned:

LISTING 17-12: Protocol KPI functions

typedef void (*proto_input_handler)(protocol_family_t protocol, mbuf_t packet);
typedef void (*proto_input_detached_handler)(protocol_family_t protocol);

// Input handler registration functions
errno_t proto_register_input(protocol_family_t protocol,
         proto_input_handler input, proto_input_detached_handler detached,
         int chains);
void    proto_unregister_input(protocol_family_t protocol);
errno_t proto_input(protocol_family_t protocol, mbuf_t packet);
errno_t proto_inject(protocol_family_t protocol, mbuf_t packet);

// Plumbing and unplumbing handlers for attaching protocols to interfaces
typedef errno_t (*proto_plumb_handler)(ifnet_t ifp, protocol_family_t protocol);
typedef void (*proto_unplumb_handler)(ifnet_t ifp, protocol_family_t protocol);

// registration functions for above
errno_t proto_register_plumber(protocol_family_t proto_fam, ifnet_family_t if_fam, 
        proto_plumb_handler plumb, proto_unplumb_handler unplumb);
extern void proto_unregister_plumber(protocol_family_t proto_fam,ifnet_family_t if_fam);

// functions for plumbing
errno_t proto_plumb(protocol_family_t protocol_family, ifnet_t ifp);
errno_t proto_unplumb(protocol_family_t protocol_family, ifnet_t ifp);

Attaching Protocols to Interfaces
To enable a network protocol, it must be attached to one or more network interfaces. These are 
maintained in the kernel as struct ifnet types (discussed in the next section). The  operation 
of attaching a protocol to an interface is called plumbing, and the two functions available, 
proto_plumb() and proto_unplumb() (declared in bsd/net/kpi_protocol.h) are used for this 
purpose on PF_INET and PF_INET6. The interface provides a plumber from its end, which is called 
when the protocol is plumbed, and ties the interfaces’s input and output functions to those of the 
protocol. 

As an example, consider the loopback interface (bsd/net/if_loop.c). The lo_reg_if_mods
function (called at the very beginning of loopattach()) registers the lo_attach_proto() function 
for both AF_INET and AF_INET6. As is the case with all plumbers, the function receives the 
protocol_family plumbed as one of its parameters. This is shown in Listing 17-13:
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LISTING 17-13: lo_attach_proto() from bsd/net/if_loop.c

static errno_t  lo_attach_proto(ifnet_t ifp, protocol_family_t protocol_family)
{
        struct ifnet_attach_proto_param_v2      proto;
        errno_t                                                 result = 0;

        bzero(&proto, sizeof(proto));
        proto.input = lo_input; // Calls ifnet's proto_input()
        proto.pre_output = lo_pre_output; // Sets protocol type before output

        result = ifnet_attach_protocol_v2(ifp, protocol_family, &proto);

        if (result && result != EEXIST) {
                printf("lo_attach_proto: ifnet_attach_protocol for %u returned=%d\n",
                           protocol_family, result);
        }

        return result;
}

LAYER II: INTERFACES

At the lowest layer, UN*X defi nes the interface. Interfaces are devices, but unlike character or block 
devices, they have no /dev representation, and can only be accessed through sockets. User mode 
applications can send and receive data through interfaces via sockets, or confi gure interfaces using 
ioctl(2) calls. An administrator can make use of the ifconfig(8) command (which itself 
uses ioctl(2) calls) for various confi guration tasks. 

Interfaces in OS X and iOS
XNU supports the interfaces shown in Table 17-10 natively:

TABLE 17-10: Interfaces Natively Supported by XNU

NAME DEFINED IN TYPE

bond bsd/net/if_bond.c Bonding two or more interfaces

bridge bsd/net/if_bridge.c Layer II bridging (new in Lion)

gif bsd/net/if_gif.c Generic IP-in-IP tunneling (RFC2893)

lo bsd/net/if_loop.c Loopback interface

pfl og bsd/net/if_pflog.c Packet fi ltering (new in Lion): receives copies of all 

packets logged by PF.

stf bsd/net/if_stf.c 6to4 (RFC3056) connectivity. Discussed previously in 

this chapter, under “IPv6 Networking.”
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NAME DEFINED IN TYPE

utun bsd/net/if_utun.c User tunnels: used by VPN and other processes 

to provide a pseudo interface, whose traffi  c will be 

rerouted through a user-mode process.

vlan bsd/net/if_vlan.c Virtual Local Area Networks

Note that not all interfaces are necessarily active and present on any given system. The lo is the only 
interface which is strictly necessary, and is always present (created by a call to loopattach() from 
bsd_init, as discussed in Chapter 8). If you have astutely noticed no mention of any “en” interfaces 
(used for Ethernet and 802.11), it’s not that they were forgotten; they are just not natively registered. 
Even though support for the basic Ethernet logic is built-in to XNU, the kernel still relies on external 
kexts to create physical interfaces. Table 17-11 shows those kexts known to create such interfaces.

TABLE 17-11: Interfaces Owned by Kernel Extensions

NAME OWNING KEXT/FAMILY TYPE

en IONetworkingFamily Ethernet or 802.11 interfaces

fw IOFireWireIP IP over FireWire (IEEE-1394). OS X only

pdp_ip AppleBaseBandFamily Cellular data connection (iPhone, iPad 1/2)

ppp PPP Point-to-Point protocol (pppd)

Aside from the loopback interface, XNU supports quite a few interfaces natively, but note they are 
all virtual, or pseudo-interfaces. The gif(4) and stf(4) interfaces are enabled along with IPv6. 
The poorly documented utun interface can be enabled through a PF_SYSTEM socket by tunneling 
utilities. The bond, bridge, and vlan interfaces are usually created manually by a system administra-
tor using ifconfig(8)’s create sub command, as is pflog(4).

Experiment: Manually Creating Interfaces Using ifconfi g(8)
For example, consider Output 17-4, which demonstrates the ease with which a bridge interface can 
be created as of Lion:

OUTPUT 17-4: A short lived bridge, erecting using ifconfi g create

root@Minion (/)# ifconfig bridge0          # check existence
ifconfig: interface bridge0 does not exist
root@Minion (/)# ifconfig bridge0 create   # Lion and later – create bridge dynamically
root@Minion (/)# ifconfig bridge0
bridge0: flags=8822<BROADCAST,SMART,SIMPLEX,MULTICAST> mtu 1500
 ether ac:de:48:32:5f:a3 
 Configuration:
  priority 32768 hellotime 2 fwddelay 15 maxage 20
  ipfilter disabled flags 0x2
 Address cache (max cache: 100, timeout: 1200):
root@Minion (/)# ifconfig bridge0 destroy        # easy come, easy go
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The same method can be used to create the vlan0 and bond0 interfaces, which will display different 
attributes, and the pflog0 interface (on Lion and later), which can be used to replicate any logged 
packets.

The Data Link Interface Layer 
XNU contains generic code to handle the various interfaces, irrespective of their actual implementa-
tion. This generic code is collectively known as the Data Link Interface Layer (DLIL), and is largely 
self-contained in bsd/net/dlil.c (and exported via dlil.h). 

The DLIL code maintains interface independence by treating all interface types as one abstract 
type: the struct ifnet. dlil provides various maintenance functions for interfaces (read: ifnet
instances), but does not do any of the actual frame sending and receiving. Specifi c device drivers are 
expected to use the ifnet and dlil functions to maintain and export their interfaces, and set call-
backs, which dlil can invoke at various stages of the frame’s lifetime.

The ifnet Structure
Somewhat similar to Linux’s netdev, BSD offers the ifnet structure to represent and manage 
network interfaces. OS X uses the same general structure, but with some modifi cations. The 
structure is (yet) another one of the massive structures, containing many statistics. Apple’s ifnet
is somewhat different from BSD’s. An abbreviated and annotated version of this structure is pre-
sented in Listing 17-14:

LISTING 17-14: struct ifnet (abridged) from bsd/net/if_var.h

/*
 * Structure defining a network interface.
 *
 * (Would like to call this struct ``if'', but C isn't PL/1.) // and luckily so! 
 *
 */
struct ifnet {
    ...
   void            *if_softc;      /* pointer to driver state */
   const char      *if_name; /* name, e.g. ``en'' or ``lo'' */
   TAILQ_ENTRY(ifnet) if_link; /* all struct ifnets are chained */
        ...
   struct ifaddrhead if_addrhead; /* linked list of addresses per if */
   struct ifaddr    *if_lladdr; /* link address (first/permanent) */
   int               if_pcount; /* number of promiscuous listeners */
   struct bpf_if    *if_bpf; /* packet filter structure */ 
                                   // ties BPF to ifnet
   u_short           if_index; // sprintf()ed with if_name(%s%d),form instance name
   short             if_unit; /* sub-unit for lower level driver */
   short             if_timer; /* time 'til if_watchdog called */
   short             if_flags; /* up/down, broadcast, etc. */
   u_int32_t         if_eflags; /* see <net/if.h> */
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   int               if_capabilities;/* interface features & capabilities */
   int               if_capenable; /* enabled features & capabilities */

// ...MIB and internal if data

   ifnet_family_t          if_family;       /* value assigned by Apple */
   uintptr_t               if_family_cookie;
   // Interface handling functions. Note, unlike BSD, no if_input() handler
   ifnet_output_func       if_output; // called to send frame through interface
   ifnet_ioctl_func        if_ioctl; // set ioctl on interface
   ifnet_set_bpf_tap       if_set_bpf_tap;// Required for BPF support (see later)
   ifnet_detached_func     if_free; //
   ifnet_demux_func        if_demux; // Demux layer III protocol from incoming frame
   ifnet_event_func        if_event; // Miscellaneous event handler
   ifnet_framer_func       if_framer; // Build layer II frame for outgoing frame
   ifnet_add_proto_func    if_add_proto; // Add a layer III protocol binding
   ifnet_del_proto_func    if_del_proto; // Remove a layer III protocol binding
   ifnet_check_multi       if_check_multi;// Approve multicast address for interface
   struct proto_hash_entry *if_proto_hash;// link to bound layer III protocol hash
   void                   *if_kpi_storage;// reserved for NKEs

// busy state and number of waiters ...
   struct ifnet_filter_head if_flt_head; // list of interface filters (described later)

// ... Multicast address tables and parameters

// Unlike BSD, every interface has its own dedicated input thread (hence no if_input)
    struct dlil_threading_info *if_input_thread;

// broadcast support

   #if CONFIG_MACF_NET
   struct label            *if_label;      /* interface MAC label */
   #endif
   u_int32_t               if_wake_properties;
   #if PF
   struct thread           *if_pf_curthread;
   struct pfi_kif          *if_pf_kif;
   #endif /* PF */

// cached source and forward route entries

// link layer reachability tree and bridge glues

// flags, route reference count, if_traffic_class (QoS)

// Extensions for IGMPv3 (IPv4) and MLDv2 (IPv6)
};

The ifnet structures can be manipulated with several KPI functions, as shown in Table 17-12. Like 
many other KPIs, they all return errno_t.
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TABLE 17-12: The KPI Functions Used to Handle Interfaces

FUNCTION USAGE

ifnet_allocate

(const struct ifnet_init_params

*init,  ifnet_t *interface); 

Calls dlil_if_acquire() to create an ifnet, and 

initializes the ifnet fi elds which are not deemed 

kernel internal only (and specifi ed in init). These are 

most of those shown in Listing 17-11. The function 

also ensures uniqueness of the interface instance, 

and initializes its reference count 

ifnet_attach(ifnet_t interface,

 const struct sockaddr_dl *ll_addr);

 ifnet_detach(ifnet_t interface);

Makes interface visible by attaching it to global 

interface list (and tying its if_link fi eld). Should 

only be called on a previously allocated interface. 

Similarly, detach it.

ifnet_reference(ifnet_t interface);

ifnet_release(ifnet_t interface);

Increase or decrease the interface’s reference 

count, free if count reaches 0. Because the ifnet_

allocate() function already sets the reference 

count to 1, ifnet_release is eff ectively its inverse.

ifnet_attach_protocol[_v2]

  (ifnet_t interface,

   protocol_family_t protocol_family,

  const struct 

ifnet_attach_proto_param[_v2]

*proto_details);

Used by the interface when plumbing (attaching) 

a transport layer protocol. The ifnet_attach_

proto_param structure contains callbacks for 

input and pre_output (required), as well as ioctl 

and ARP support. The [v2] variant allows for input 

 functions which process packet lists, rather than 

individual packets.

In addition to the functions in the table, helper functions (like ifnet_find_by_name()), and quite 
a few accessor functions (all taking the struct ifnet * and returning its respective fi elds) can 
and should be used, to manipulate the individual ifnet fi elds rather than accessing them directly. A 
good example of the APIs in action can be found in the sources of IONetworkingFamily, the parent 
class of all networking kexts, wherein these APIs are used (in super methods which are later inher-
ited by specifi c drivers). 

Case Study: utun
OS X supports a special class of interfaces, called utuns. These are not real interfaces, or even 
kernel-based virtual ones. Rather, they are merely stubs, appearing to the user mode as interfaces, 
but in actuality redirecting their traffi c through a specialized user mode process. Any packets sent 
through the interface are rerouted to the user mode process, and the same user mode process can 
instruct the interface to emit a packet.

The user mode processes usually use this mechanism for VPNs and other forms of tunneling, 
hence the name — User TUNnels. Packets arriving at the process are usually encapsulated and sent 
through a real network interface. Likewise, replies to those packets can be decapsulated and made 
to appear as originating from the utun interface. The send path is shown in Figure 17-4.
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Transport

Process utun owner

utun##

Sockets

Network

en##

1. Tunneled process binds
to utun interface

2. Utun interface gets packet,
with layer III + IV headers filled

3. utun_output bounces packet
back to the utun system socket

4. utun owner reads packet
from system socket normally 5. utun owner sends packet, with any

optional headers it chooses to add,
via some other interface (say, en)

FIGURE 17-4: Sending packets through a user tunnel (utun) interface

Any of the pseudo-interfaces in the kernel make for good examples of how to set up and initialize 
ifnet instances, but utun in particular also makes for a good example of system sockets. The utuns 
are created by the kernel when the user mode tunnel process creates a PF_SYSTEM socket, issues a 
CTLIOCGINFO ioctl(2) to bind it to the utun namespace, and then calls connect(2). Sample code 
to do so is shown in Listing 17-15:

LISTING 17-15: Sample code to bind a new utun interface

int tun(unsigned int num)
{
        struct sockaddr_ctl sc;
        struct ctl_info ctlInfo;
        int s;                     // returned socket descriptor

        memset(&ctlInfo, 0, sizeof(ctlInfo));
        strncpy(ctlInfo.ctl_name, UTUN_CONTROL_NAME, sizeof(ctlInfo.ctl_name);

        s = socket(PF_SYSTEM, SOCK_DGRAM, SYSPROTO_CONTROL);
        if (s < 0) { perror ("socket"; return -1; }

        if (ioctl(s, CTLIOCGINFO, &ctlInfo) == -1) {
                perror("CTLIOCGINFO");
                close(s);
                return -1;
        }

        sc.sc_family  = PF_SYSTEM;
        sc.ss_sysaddr = AF_SYS_CONTROL;
        sc.sc_id = ctlInfo.ctl_id;

continues
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        sc.sc_len = sizeof(sc);

        sc.sc_unit = num;
        if (connect(s, (struct sockaddr *)&sc, sizeof(sc)) == -1) {
             perror("connect");
             close(s);
             return -1;
        }
        return s;
}

Switching to the kernel perspective, when the user mode process connects, the utun_ctl_connect
(bsd/net/if_utun.c) is called. This function creates and initializes a new utun interface, as shown 
in Listing 17-16:

LISTING 17-16: utun_ctl_connect(), demonstrating interface creation

static errno_t
utun_ctl_connect(
        kern_ctl_ref            kctlref,
        struct sockaddr_ctl     *sac,
        void                            **unitinfo)
{
        struct ifnet_init_params        utun_init;
        struct utun_pcb                         *pcb;
        errno_t                                         result;
        struct ifnet_stats_param        stats;

        /* kernel control allocates, interface frees */
        pcb = utun_alloc(sizeof(*pcb));
        if (pcb == NULL)
                return ENOMEM;

/* Setup the protocol control block */
        bzero(pcb, sizeof(*pcb));
        *unitinfo = pcb;
        pcb->utun_ctlref = kctlref;
        pcb->utun_unit = sac->sc_unit;

        printf("utun_ctl_connect: creating interface utun%d\n", pcb->utun_unit - 1);

/* Create the interface */
        bzero(&utun_init, sizeof(utun_init));
        utun_init.name = "utun";
        utun_init.unit = pcb->utun_unit - 1;
        utun_init.family = utun_family;
        utun_init.type = IFT_OTHER;
        utun_init.output = utun_output;
        utun_init.demux = utun_demux;
        utun_init.framer = utun_framer;

Name + unit will make up visible name (e.g. utun0)

Note setting of utun_init structure, 
which is an ifnet_init_params, 
setting all the non-private fields 
of the soon to be allocated ifnet 
structure.

LISTING 17-15 (continued)
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        utun_init.add_proto = utun_add_proto;
        utun_init.del_proto = utun_del_proto;
        utun_init.softc = pcb;
        utun_init.ioctl = utun_ioctl;
        utun_init.detach = utun_detached;

        result = ifnet_allocate(&utun_init, &pcb->utun_ifp);
        if (result != 0) {
                printf("utun_ctl_connect - ifnet_allocate failed: %d\n", result);
                utun_free(pcb);
                return result;
        }

        OSIncrementAtomic(&utun_ifcount); // OSIncrementAtomic avoids having to lock

        /* Set flags and additional information.*/ // parameters which init cannot set
        ifnet_set_mtu(pcb->utun_ifp, 1500);

// These flags are visible in ifconfig(8)
        ifnet_set_flags(pcb->utun_ifp,IFF_UP | IFF_MULTICAST | IFF_POINTOPOINT, 0xffff);

        /* The interface must generate its own IPv6 LinkLocal address,
         * if possible following the recommendation of RFC2472 to the 64bit interface ID
         */
        ifnet_set_eflags(pcb->utun_ifp, IFEF_NOAUTOIPV6LL, IFEF_NOAUTOIPV6LL);

/* Reset the stats in case as the interface may have been recycled */
        bzero(&stats, sizeof(struct ifnet_stats_param));
        ifnet_set_stat(pcb->utun_ifp, &stats);

        /* Attach the interface */   // i.e. make it visible
        result = ifnet_attach(pcb->utun_ifp, NULL);
        if (result != 0) {
                printf("utun_ctl_connect - ifnet_allocate failed: %d\n", result);
                ifnet_release(pcb->utun_ifp);
                utun_free(pcb);
        }

        /* Attach to bpf */ // Must call bpfattach() if we want BPF (described later)
        if (result == 0)
                bpfattach(pcb->utun_ifp, DLT_NULL, 4);

/* The interfaces resources allocated, mark it as running */
        if (result == 0)
                ifnet_set_flags(pcb->utun_ifp, IFF_RUNNING, IFF_RUNNING);

        return result;
}

Very similar logic can be seen in other interface creation routines. XNU’s pseudo interface func-
tions (stfattach(), gif_clone_create(), pflog_clone_create() and others), as well as (to an 
extent) the IONetworkingFamily's IONetworkInterface::attachToDataLinkLayer() follow 
this  general fl ow. 
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When a packet is sent out through the utun interface, control eventually reaches DLIL, which calls 
the interface’s output function, utun_output. This function calls ctl_enqueuembuf(bsd/kern/
kern_control.c), which fi nds the system socket the utun interface is linked with, and appends 
the output mbuf to its socket buffer, waking up the user mode process which owns this socket as it 
does so. The user mode process can then read from the socket, and obtain as its data the IP or IPv6 
packet sent through the interface. This packet can then be encapsulated in whatever way the tunnel 
process sees fi t.

When the user mode tunnel wants to inject a packet, it writes to the system socket. This results in a 
call to the system socket’s ctl_send handler, set by utun_control_register() (called when utun 
is set up, during bsd_init()) to be utun_ctl_send(). This function calls dlil's ifnet_input() 
with the same mbuf it was passed, simulating frame arrival, and from there the mbuf fl ows up 
the normal interface-to-socket receive path. This path, along with its inverse, the send path, are 
described in the next section. 

PUTTING IT ALL TOGETHER: THE STACK

Now that we have covered all the separate layers of the stack: the interface (struct ifnet), net-
work protocol (struct proto_input entry), the transport protocol (struct protosw) and the 
socket (struct socket), we can put the separate pieces of the puzzle to see how the stack operates 
as a whole for its two most important roles: sending and receiving data.

Receiving Data
Packet reception and processing requires the packet to traverse the stack upwards: from the interface 
level all the way up to the target socket.

Setup
Before data can be received, each interface must register itself with an input thread, as shown in 
Figure 17-5.

kernel_thread_create()

dlil_create_input_thread()

dlil_input_thread_func() (blocks)

ifnet_allocate()/* en%d */

ifnet_attach()

ifnet_allocate() /* ppp0 */

ifnet_attach()

dlil_create_input_thread()

ppp_if_attach

dlil_create_input_thread

dlil_init

bsd/net/dlil.c

IONetworkInterface::attachToDataLinkLayer:

ifnet_attach
IONetworkingFamily.kext

Other kernel extensions

PPP.kext

bsd/net/dlil.c

FIGURE 17-5: Setting up interface input threads 
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The Data Link Layer creates dedicated input threads, using dlil_create_input_thread(). The 
fi rst input thread handles the loopback interface (lo_ifp), and is created by dlil_init() during 
system startup (as part of bsd_init()). Additional threads are created by calls to ifnet_attach(),
when new interfaces are created (either XNU’s built-in ones, or interfaces created by kexts, such as 
IONetworkingFamily). 

The input threads all run the dlil_input_thread_func() continuously. This function accepts a 
dlil_threading_info structure, shown in Listing 17-17.

LISTING 17-17: The dlil_threading_info, from bsd/net/dlil.h:

struct dlil_threading_info {
        decl_lck_mtx_data(, input_lck);
        lck_grp_t       *lck_grp;         /* lock group (for lock stats) */
        mbuf_t          mbuf_head;        /* start of mbuf list from if  */
        mbuf_t          mbuf_tail;        // last mbuf from interface
        u_int32_t       mbuf_count;       // total number of mbufs (for walking list)
        boolean_t       net_affinity;     /* affinity set is available   */
        u_int32_t       input_waiting;    /* DLIL condition of thread    */
        struct thread   *input_thread;    /* thread data for this input  */
        struct thread   *workloop_thread; /* current workloop thread     */
        u_int32_t       tag;              /* current affinity tag        */
        char            input_name[DLIL_THREADNAME_LEN];
#if IFNET_INPUT_SANITY_CHK
// ...
#endif
};

The dlil_input_thread_func() sleeps on its input_waiting fl ag, waiting for input to become 
available. 

Receiv ing Input
Figure 17-6 illustrates the process of receiving input. When a packet is received on an interface, 
ifnet_input() is called, with a pointer to the interface and a pointer to the head of the packet’s 
mbuf chain. The function walks the mbuf chain, and fi nds the dedicated input thread of this inter-
face (or, if none exists, redirects to the loopback thread). It adds the mbuf to the thread — either as 
the fi rst packet (the threading info’s mbuf_head member) or the last one (mbuf_tail->m_nextpkt), 
raises the DLIL_INPUT_WAITING fl ag on the input_waiting member, and increments the interface 
statistics. This causes dlil_input_thread_func() to wake up (as input has become available), and 
run its course, as shown in Figure 17-7.

The rest of the processing occurs in the interface’s input thread: dlil_input_thread_func() pro-
ceeds to dequeue the fi rst mbuf (in mbuf_head), and call dlil_input_packet_list() on that mbuf.

The dlil_input_packet_list(), true to its name, walks the mbuf chain, beginning with its argu-
ment. It fi nds which interface it is working for (either by its fi rst argument, if it is the loopback inter-
face, or by the mbuf's m_pkthdr.rcvif fi eld. It then calls the interface’s ifp_demux function to 
fi nd which protocol family this mbuf should be handled by. Prior to looking up the actual protocol, 
it calls dlil_interface_filters_input(), which is responsible for running any interface fi lters on 

c17.indd 687c17.indd   687 9/29/2012 5:51:18 PM9/29/2012   5:51:18 PM



688 x CHAPTER 17  ADHERE TO PROTOCOL: THE NETWORKING STACK

the mbuf. The interface fi lters may claim the mbuf (causing dlil_interface_filters_input() to 
return EJUSTRETURN, and dlil_input_packet_list() to skip to the next mbuf).

ppp_if_input

IONetworkInterface::inputPacket

Set the source if and length of frame

Pass to BPF

Pass to BPF

ifnet_input

ifnet_input

Walk mbuf, optional sanity check

IONetworkingFamily.kext

PPP.kext

Other kexts (inputPacket or flushInputQueue)

bsd/net/dlil.c

DLIL_INPUT

decompress packet, set source, len

Assign to interface input thread (or lo)

If net_affinity, set workloop thread

Link mbuf to mbuf_head or mbuf_tail

Raise input_waiting, wakeup thread

Increment interface statistics

dlil_input_thread_func() (wakes up)

Wakeup thread

FIGURE 17-6: Frame reception, from driver to DLIL

dlil_input_thread_func()

Dequeue mbuf_head, clear queue

bsd/net/dlil.c

Check DLIL_INPUT_TERMINATE

Call dlil_input_packet_list

dlil_input_packet_list()

while (m!=NULL)

MBUF_INPUT_CHECK

*ifp->if_demux

dlil_interface_filters_input()

find_attached_proto()

dlil_ifproto_input()Optionally call proto_input_run()

Wakeup thread
(from ifnet_input)

msleep on~INPUT_RUNNING

FIGURE 17 -7: dlil_input_thread_func(), detailed
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If the interface fi lters did not claim the packet, a call to find_attached_proto() (to look up the pro-
tocols in the aforementioned proto_hash “hash table”), or a cached value of last_ifproto obtains a 
call to the correct protocol handler, and a call to dlil_ifproto_input(), with the protocol handler 
and the fi rst packet of the list, passes control to the protocol handler. Depending on the protocol han-
dler version, it is expected to process one packet at a time (version 1), or the full packet list (version 2), 
by a call to its registered input function, a proto_input function. The IPv4 and IPv6 functions are 
somewhat similar, but naturally involve different logic. The IPv4 handler is shown in Figure 17-8.

dlil_ifproto_input

ip_proto_dispatch_in

Run ipv4_filters

Call layer III pr_input

ip_proto_input

Sanity check

If packet is still not ours, either forward

or drop

If packet’s destination matches our IP,

goto ours

Otherwise, might still need to handle

broadcast/multicast

ip_input

MBUF_INPUT_CHECK

#if IPFIREWALL, DUMMYNET

Parse IP header, checksum

Check unicast address

Check broadcast/multicast

ip_forward

Fragmentation, IPSec

#if IPFIREWALL...

ip_proto_dispatch_in()

ours:

Enforce QoS and Firewall rules

Call PF inbound filters pf_af_hook may block the packet

Loop over packet_list

Call ip_input()

Call protocol’s v1 or v2 input

FIGURE 17-8: The ip_proto_input function

The transport protocol handler’s proto_input function calls its input function. This extra level is 
necessary to support the legacy design of IPv4’s input function (ip_input), which can handle only 
one packet at a time. The ip_proto_input function, therefore, walks the packet list. (IPv6 simply 
falls through to ip6_input.) The input functions perform all the necessary header checks, invoke 
any fi rewall or PF fi lter checks, check the destination (“forward” or “ours”), and (if “ours”) poten-
tially reassemble the packet, decrypt IPSec, and call the transport protocol’s input handler either 
directly (IPv6) or indirectly (through IPv4’s ip_proto_dispatch_in()). In either case, before the 
transport protocol can take over, the network protocol’s fi lters (ipv4_filters or ipv6_filters, 
respectively) are called. IP fi ltering is discussed later in this chapter).

The transport protocol’s input function performs the necessary adjustments of that layer, before 
fi nding the corresponding socket and delivering the packet. This is done by looking up the packet’s 
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corresponding PCB, by looping over the inp_list of PCBs. If no PCB can be found, a TCP packet 
generates a RST, and a UDP one similarly results in an ICMP unreachable. The mbuf is appended to 
the socket’s receive buffers (so_rcv) by calling one of four functions as shown in Table 17-13. All 
four return non-zero on success, and are defi ned in bsd/kern/uipc_socket2.c:

TABLE 17-13: Functions Used to Append an mbuf to a Socket’s Buff er

FUNCTION USED FOR

sbappend(struct sockbuf *sb,

         struct mbuf *m);

Appending an mbuf m to the sockbuf sb. 

Used by PF_SYSTEM sockets

sbappendrecord(struct sockbuf *sb,

               struct mbuf *m0);

As sbappend(), but opens a new record. 

Called by sbappend if no record exists for 

the socket

sbappendstream (struct sockbuf*sb, 

                struct mbuf *m)

As sbappend(), but optimized for stream 

sockets. Used by TCP

sbappendaddr (struct sockbuf *sb,

             struct sockaddr *asa, 

             struct mbuf *m0,

             struct mbuf *control, 

             int *error_out);

As sbappend(), but also provide the 

socket address details in asa. Used by 

UDP (for recvfrom() in user mode), and 

by raw IP

When data has been delivered, the socket is awakened by sowakeup(). This function wakes up 
the threads blocking on the socket (i.e. waiting in its wait queue), causing select(2)/poll(2) or 
recv(2) to return. If the socket is asynchronous (so->so_state & SS_ASYNC), the function sends 
the process a SIGIO. 

Sending Data
When sending data, the data originates from user mode and is passed to a socket using the send(2),
sendto(2), sendmsg(2), or sendfile(2) (#if SENDFILE) system call. 

With the exception of the last, all these system calls end up using sendit (bsd/kern/
uipc_syscalls.c). This function looks up the struct socket from the fi le descriptor (using 
file_socket()and fp_lookup(), as described earlier). Process the message headers, if any, 
and proceeds to send, after consulting the MAC framework (mac_socket_check_send) for 
compliance with the current security policy. The send operation itself is performed by accessing 
the socket’s registered transport protocol (the protosw), getting its user request structure (pr_
usrreqs), and invoking its pru_sosend member, as discussed previously in this chapter under 
“Transport Protocols.” The error code the send operation returns is propagated back to the 
caller, unless it is EINTR, EWOULDBLOCK, or ERESTART. EPIPE error codes trigger a SIGPIPE to the 
owning process, unless the socket option of NOSIGPIPE was set. This is Shown in Figure 17-9.
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Call mac_socket_check_send on unconnected sockets to approve send

Converts file descript or s to struct socket so 

so->so_proto->pr_usrreqs->pru_sosend will attempt to send

sendit

file_socket(s, so)

Handle msg_name, msg_control

MAC framework callout

error = call protocol’s pru_send

Return error to sender Depending on error, propagate to caller, quench it, or send SIGPIPE

FIGURE 17-9: The fl ow from socket to transport protocol

The various transport protocols naturally have different pru_sosend implementations, depending 
on the header they need to construct for the data, and the protocol type (stream or datagram). All 
pru_sosend functions, however, share the same prototype: The socket, fl ags, the mbuf  containing 
the data, a sockaddr to send to, an mbuf containing socket control information, and the current 
process pointer. The functions generally follow the same fl ow: convert the socket to a PCB structure 
using sotoinpcb(), construct the header, and pass the mbuf to the network protocol (ip_
output_list() or ip6_output()). A simple example is UDP’s send, which does this through a call 
to udp_output() shown in Listing 17-18:

LISTING 17-18: udp_send (from bsd/netinet/udp_usrreq.c)

static int
udp_send(struct socket *so, __unused int flags, struct mbuf *m, struct sockaddr *addr,
            struct mbuf *control, struct proc *p)
{
        struct inpcb *inp;

        inp = sotoinpcb(so);
        if (inp == 0) {
                m_freem(m);
                return EINVAL;
        }

        return udp_output(inp, m, addr, control, p);
}

// note retro style function definition of udp_output (if it ain't broken, don't fix it)
static int
udp_output(inp, m, addr, control, p)
        register struct inpcb *inp;
        struct mbuf *m;
        struct sockaddr *addr;

continues
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        struct mbuf *control;
        struct proc *p;
{
   // ...
   int soopts = 0;
   struct mbuf *inpopts;
   struct ip_moptions *mopts;
   struct route ro;
   struct ip_out_args ipoa = { IFSCOPE_NONE, 0 };
   // ...
   inpopts = inp->inp_options;
   soopts |= (inp->inp_socket->so_options & (SO_DONTROUTE | SO_BROADCAST));
   mopts = inp->inp_moptions;
   error = ip_output_list(m, 0, inpopts, &ro, soopts, mopts, &ipoa);
   // ...
}

The network protocol’s output function fi nds a route for the packet, from which the outgoing 
interface can be inferred. Before that can happen, IPv4’s ARP or IPv6’s ND need to be used to fi nd 
the next hop’s link layer address (unless previously cached). When the address is at hand, a call to 
ifnet_output() (which wraps dlil_output()) fi nally passes the packet to the data link interface 
layer (See Figure 17-10).

If the packet is not classified as raw, the protocol is looked up
and its pre_output function is called.

If PF is enabled, pf_af_hook may block the packet

Call IPv4 filters, in order, if any.

Process IPSec output (AH/ESP) if needed, and walk IPv4 filter list again

Check with ipfw, if enabled, filtering, forwarding, or enforcing QoS

XNU will refuse to send 127.x.x.x packets on any interface but loopback

If packet length exceeds MTU, call ip_fragment(). Else, just call ifnet_output()

ip_output_list 

find_attached_proto

Call protocol’s pre_output

Call PF outbound filter

Walk ipv4_filters

#if IPSEC: IPSec output

#if FIREWALL, DUMMYNET

Ensure 127.x.x.x is looped

Maybe fragment, ifnet_output

FIGURE 17-10: The fl ow of IP’s ip_output_list()

LISTING 17-18 (continued)
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The fl ow is not yet done. As shown in Figure 17-11, dlil_output() fi nds the interface’s 
attached protocol (so it can call its pre_output function, if any). It then verifi es with the MAC 
framework that the packet may be transmitted (by a callout to mac_ifnet_check_transmit), 
calls the interface’s “framer” function (to create the link layer header), and calls any interface 
fi lters (discussed later) to potentially intercept prior to sending. If all goes well, a call to the inter-
face’s if_output handler (which for a “real” interface is handled by its driver kext) performs the 
actual send operation (for IOKit drivers, this calls IONetworkController::outputPacket). For 
packets classifi ed as “raw,” the protocol pre_output and framer steps are skipped.

If the packet is not classified as raw, the protocol is looked up
and its pre_output function is called.

A call to mac_ifnet_check_transmit ensures compliance with policy

The interface’s framer, if any, is responsible for setting up
the layer II header on the mbuf

Interface output filters, if any, are run in order

The interface’s if_output function is called to actually send the frame

dlil_output

find_attached_proto

Call protocol’s pre_output

MAC Framework callout

Call interface’s if_framer

m = next packet

do while (m)

dlil_interface_filters_output

Call interface’s if_output

FIGURE 17-11: The fl ow of dlil_output()

PACKET FILTERING

Relatively few developers need to write full network drivers. Filtering packets, however, is com-
monplace. Whether for security or insecurity purposes, being able to inspect a host’s traffi c in real 
time offers unprecedented power. The network space is an arena wherein two major forces vie for 
supremacy: In the blue corner, the anti-virus and fi rewall providers, who seek to secure the host by 
inspecting both ingress and egress traffi c. In the red corner, the malware and spyware “providers” 
who establish covert channels in the network, by means of which they can both eavesdrop as well as 
usurp control of the host. It is only fi tting, therefore, that a section be devoted to the exciting realm 
of packet fi ltering.

BSD has a host of fi ltering mechanisms. Each offers its own abilities, both advantageous and dis-
advantageous. XNU, as an implementation of BSD, supports all these technologies, and they are 
detailed next. For certain tasks, picking a particular mechanism over another may be preferable. 
Table 17-14 illustrates the different abilities of these mechanisms.
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TABLE 17-14: Comparison of Filter Techniques

ABILITY SOCKET FILTERS IPFW/PF IP FILTERS INTERFACE 

FILTERS

BPF

Mode Kernel User Kernel Kernel User

Technique API hook Firewall Firewall Firewall Packet fi lter

OSI layer V (Session) III (Network) III (Network) II (Data Link) II (Data Link)

Packet 

Injection

Yes No No Yes Yes

Counterpart Windows: Win-

sock SPI

Linux: Socket 

hooking

Linux: 

IPTables

Linux: Netfi lter 

hooks

Linux: 

BRTables

(Ported to 

Linux)

The kernel APIs are meant to be accessed from Network Kernel Extensions (NKEs), and Apple 
Developer’s NKE Programming Guide[17] documents the fi lters (socket, IP and interface) very well. 
Another discussion can be found in Halvorsen & Clarke’s book[18]. Nonetheless, we review them 
here briefl y here, alongside the other mechanisms, which are not described in either.

Socket Filters
The highest level in which fi lters can be placed is that of the socket itself. The kernel implementation 
of sockets, described previously, allows a kernel extension to associate a socket fi lter using a special 
KPI. The KPI has been signifi cantly slimmed down from its earlier incarnations, and covers a subset 
of the user mode socket API calls.

A socket fi lter is implemented as a struct sflt_filter. This structure, alongside the KPI functions 
exposed for setting, attaching and detaching it from a socket, is defi ned in the well documented 
bsd/sys/kpi_socketfilter.h. These functions (all return errno_t) are shown in Table 17-15:

TABLE 17-15: Socket Filter KPIs Exposed in bsd/sys/kpi_socketfi lter.h

SOCKET KPI CALL PURPOSE

sflt_register

(const struct sflt_filter *f, 

               int domain, 

               int type, 

               int protocol);

sflt_unregister

(sflt_handle handle)

Register a socket fi lter for specifi ed domain, type 

and protocol. To unregister, use the fi lter’s 

handle fi eld.
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SOCKET KPI CALL CORRESPONDING API CALL

sflt_attach(socket_t so,

            sflt_handle h);

sflt_detach(socket_t so, 

            sflt_handle h);

Attach/Detach socket fi lter specifi ed in handle h 

to/from socket so.

sock_inject_data_in

 (socket_t so, 

 const struct sockaddr *from,

 mbuf_t data, 

 mbuf_t control, 

 sflt_data_flag_t flags);

sock_inject_data_out

 (socket_t so, 

const struct sockaddr *to,

    mbuf_t data, 

    mbuf_t control,

    sflt_data_flag_t flags);

Inject data mbuf into socket so’s input or output 

stream. On unconnected (e.g. UPD) sockets, the 

caller may specify the fake sockaddr address 

(from/to).

The struct sflt_filter itself consists of a handle, fl ags, and a collection of function pointers, 
which are callbacks that will be invoked by the socket calls for registered socket fi lters. The anno-
tated structure is shown in Listing 17-19:

LISTING 17-19: The XNU socket fi lter implementation

struct sflt_filter {
   sflt_handle              sf_handle; // accessible to apps using SO_NKE setsockopt(2)
   int                      sf_flags; // SFLT_GLOBAL, SFLT_PROG or SFLT_EXTENDED
   char                    *sf_name;
   sf_unregistered_func     sf_unregistered;
   sf_attach_func           sf_attach; // called on successful sflt_attach()
   sf_detach_func           sf_detach; // called on successful sflt_detach()

   sf_notify_func           sf_notify; // called with an sflt_event_t specifying
// connect/disconnect/bound/buffers full/etc

   sf_getpeername_func      sf_getpeername; // called on getpeername(2)
   sf_getsockname_func      sf_getsockname; // called on getsockname(2)
   sf_data_in_func          sf_data_in; // called before data is delivered to thread
   sf_data_out_func         sf_data_out; // called before data is queued for sending
   sf_connect_in_func       sf_connect_in; // called for incoming connections - accept
   sf_connect_out_func      sf_connect_out; // called for outgoing connections – connect
   sf_bind_func             sf_bind; // called on bind(2)
   sf_setoption_func        sf_setoption; // called on setsockopt(2)
   sf_getoption_func        sf_getoption; // called on getsockopt(2)
   sf_listen_func           sf_listen; // called on listen(2)
   sf_ioctl_func            sf_ioctl; // called on ioctl(2)

continues
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        /*
         * The following are valid only if SFLT_EXTENDED flag is set.
         * Initialize sf_ext_len to sizeof sflt_filter_ext structure.
         * Filters must also initialize reserved fields with zeroes.
         */
   struct sflt_filter_ext {
          unsigned int        sf_ext_len;
          sf_accept_func      sf_ext_accept; // called before accept(2) returns
          void               *sf_ext_rsvd[5];    /* Reserved */
    } sf_ext;
#define sf_len          sf_ext.sf_ext_len
#define sf_accept       sf_ext.sf_ext_accept
};

The callbacks specified effectively cover all the socket APIs. Their prototypes match those 
of the corresponding user mode calls, with some subtle differences (e.g. the int socket is 
replaced by the kernel’s socket_t, and the user mode char * buffers are replaced by the 
lower level mbufs).

The socket fi lter can be registered as a global fi lter (using the SFLT_GLOBAL fl ag), which will attach 
it to all sockets created from that point onward, or as a programmatic fi lter (SFLT_PROG), which will 
be attached only upon a specifi c application request. To request attachment, user mode applications 
can use the Apple specifi c SO_NKE setsockopt(2).

Apple Developer has a well documented example in TCPLogNKE[19], which the reader is encouraged 
to peruse. 

ipfw(8)
BSD-based kernels, like Linux, are not without a built-in fi rewalling functionality.  What Linux 
refers to it as “iptables” BSD calls “ipfw.” In BSD the mechanism can also be extended to layer II 
(for example, “brtables”), but this is not the case in XNU.

ipfw has been deprecated in favor of the more powerful PF mechanism (described 
next). It is included here for completeness, and still exists in Lion, but will likely be 
removed in an upcoming release.

Controlling Parameters from User Mode
The ipfw mechanism can be controlled in a very fi ne-grained manner using a single command — 
ipfw(8) (or ip6fw(8) for IPv6), which enables root to defi ne the rules and their default action. In 
addition, the mechanism exports several sysctl(8)-visible parameters, listed in Table 17-16:

LISTING 17-19 (continued)
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TABLE 17-16: sysctl Variables for ipfw and heir Defaults in XNU. 

NET.INET.IP.FW.*

(NET.INET6.IP.FW.*)

DEFAULT VALUE USED FOR

autoinc_step 100 Auto-increments value when creating dynamic (auto-

matic) rules.

curr_dyn_buckets N/A Shows current number of hash buckets for dynamic 

rules.

dyn_buckets 256 Maximum number of buckets for dynamic rules (must be 

a power of 2).

dyn_count N/A Current number of dynamic rules. Always less than or 

equal to dyn_max, below.

dyn_keepalive 1 Automatically sends keep-alive packets for rules set to 

keep-state. These are sent from the kernel, and user 

mode remains oblivious to their existence.

dyn_max 4096 Maximum number of dynamic rules.

dyn_ack_lifetime

dyn_syn_lifetime

dyn_fin_lifetime

dyn_rst_lifetime

300

20

1

1

Number of seconds controlling the lifetime of various 

stage TCP dynamic rules.

dyn_udp_lifetime 5 Number of seconds controlling the UDP rules.

static_count N/A Number of static rules.

enable* 1 Enables/disables ipfw globally.

debug*

verbose*

verbose_limit*

0

1

0

Generates debug messages, optionally verbose, and 

up to verbose_limit messages (note that verbose_

limit 0 eff ectively disables verbose).

Variables with a (*) also exist separately in the net.inet6.ip6.fw namespace.

Note that the ipfw(8) man page, a verbatim copy of BSD’s, is wrong on several of these values. The 
man page further mentions the net.link.ether.ipfw and bridge_ipfw variables for layer II fi re-
walling, but they are not supported in XNU.

The PF Packet Filter (Lion and iOS)
With Lion, Apple has integrated another BSD packet fi ltering mechanism, PF, into XNU. PF source 
code has actually been part of XNU from earlier Snow Leopard versions, but has been #ifdef’d out, 
and enabled only in iOS. PF is a one-stop interface for fi rewalling, and like ipfw(8), offers the 
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system administrator a simple utility — pfctl(8) to manage its rulebase. A quick way to see 
whether PF is enabled is to check for the existence of a /dev/pf fi le, as follows:

root@Padishah:~  # ls -l /dev/pf
crw------- 1 root wheel 7, 0 Nov 23 06:54 /dev/pf   # 8,0 on Lion

pfctl(8) opens the PF device, and manages rules by issuing corresponding ioctl(2) calls — DIO-
CADDRULE, DIOCGETRULE(S), and DIOCCHANGERULE. PF also enables user mode to view logged packets 
in an elegant way. Instead of looking at log fi les, an administrator can use ifconfig(8) to cre-
ate the pflog(4) pseudo-interface. A user mode process can then bind to the interface, which will 
replicate all logged packets. A common use of this is to use tcpdump(1) or other packet capturing 
tools this way (see the manual page for an example). 

The PF fi lter callouts (via pf_af_hook()) can be seen in Figures 17-8 (input) and 17-10 (output), 
respectively. PF is well documented in the corresponding man page (man pfctl on Lion and later),
and in its own book[20]. Also, because PF is a fairly rigorous and non-extensible mechanism, it is not 
elaborated on here. 

A classic buffer overfl ow in older versions of PF was used by the jailbreaker 
comex in his “spirit” jailbreak. The bug is now classifi ed as CVE-2010-3830[21],
or by its more verbose name, “iOS < 4.2.1 packet fi lter local kernel vulnerabil-
ity,” and a detailed discussion of it can be found at Sogeti’s site[22]. In a nutshell, 
this bug allows an arbitrary overwrite (specifi cally, decrement) of kernel space 
memory by opening /dev/pf and issuing a DIOCADDRULE ioctl. Even though 
/dev/pf requires root privileges to open, comex was able to construct a two-
staged exploit, with the fi rst stage obtaining root via geohot’s boot ROM exploit, 
and dropping the second stage to be executed by launchd(8) each time the 
iDevice is booted. As with the NDRV exploit discussed earlier in this chapter, 
the kernel memory overwrite provides the “untethered” part of the exploit by 
disabling code signing checks and memory write protections. 

Following the exploit, Apple fi xed the DIOCADDRULE and DIOCGETRULE handlers. 
The changes were incorporated into OpenBSD, as well. Nonetheless, this is yet 
another example of how Apple’s reliance on third-party code inherits with it 
third-party security vulnerabilities. 

IP Filters
Whereas fi rewalling allows for a rather limited accept/deny/drop functionality, fi ltering enables 
more detailed packet inspection, and even modifi cation. BSD includes an IP fi ltering mechanism not 
unlike Linux’s NetFilter (IPTables). The IP fi lters are invoked by the stack as callouts from specifi c 
points.

This mechanism is very powerful, and power corrupts. Indeed, IP fi ltering is commonly used in 
malware rootkits — Dino Dai Zovi’s “Machiavelli”[23] uses the IPFilter framework in its rootkit 
component.
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The ipf_fi lter Structure
An IP fi lter, called ipf_filter throughout the kernel, is basically two callback functions: one for 
fi ltering inbound traffi c (ipf_input), and one for the outbound traffi c (ipf_output). Additionally, 
an ipf_detach function can be used to handle fi lter detachment. A fi lter can also have a free text 
name and a “cookie.” This “cookie” is an opaque, void pointer and may be used to pass a structure 
or some other argument to the fi lter functions (See Listing 17-20).

LISTING 17-20: The IPFilter and opaque IPFilter from bsd/netinet/kpi_ipfi lter.c

/*!
        @typedef ipf_filter
        @discussion This structure is used to define an IP filter for
                use with the ipf_addv4 or ipf_addv6 function.
        @field cookie A kext defined cookie that will be passed to all
                filter functions.
        @field name A filter name used for debugging purposes.
        @field ipf_input The filter function to handle inbound packets.
        @field ipf_output The filter function to handle outbound packets.
        @field ipf_detach The filter function to notify of a detach.
*/
struct ipf_filter {
        void            *cookie; // opaque value, caller defined, passed to functions
        const char      *name;
        ipf_input_func  ipf_input; // Handles input packets     (see below)
        ipf_output_func ipf_output; // Handles output packets    (see below)
        ipf_detach_func ipf_detach; // Handles filter detachment (see below)
};

struct opaque_ipfilter;
typedef struct opaque_ipfilter *ipfilter_t;

The kernel maintains two fi lter lists: ipv4_filters and ipv6_filters. An additional fi lter list — 
tbr_filters — is used for defunct fi lters are to be removed. All three lists are opaque, however, 
and fi lters should only be manually added to the fi rst two lists by a call to ipf_addv4 or ipf_addv6,
respectively.

Implementing Filter Functions
A fi lter can choose to implement either ingress or egress function (or both), and can optionally 
specify a detach function. The functions adhere to a set interface, as shown in Listing 17-21.

LISTING 17-21: Interface fi lter function prototypes (from bsd/netinet/kpi_ipfi lter.h)

typedef errno_t(*ipf_input_func)(void *cookie,mbuf_t *data,int offset,u_int8_t 
protocol); (*ipf_output_func)(void *cookie, 
mbuf_t *data,  ipf_pktopts_t options);
typedef void (*ipf_detach_func)(void *cookie);
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The input and output functions get the data to be fi ltered, along with a cookie value, which is the 
pointer value specifi ed during fi lter creation. The fi lters can then do whatever processing is required, 
returning 0 to signal the packet is ok (normal processing), EJUSTRETURN to instruct the stack to 
drop the packet, but not free the mbuf. Any other non-zero value, will instruct the stack to drop the 
packet, and free the mbuf as well.

Filter Callout Locations
Once installed, user-specifi ed fi lters are called out from the IP stack at two specifi c locations:

  Packet input: The IP protocol input functions (ip_proto_dispatch_in in bsd/netinet/
ip_input.c for IPv4 and ip6_input in bsd/netinet6/ip6_input.c for IPv6) iterate over 
the corresponding fi lter list (ipv[46]_filters) and call the ipf_input member function, if 
set.

 ‰ Packet output: The IP protocol output functions (ip_output_list in bsd/netinet/ip_
output.c for IPv4, and ip6_output in bsd/netinet6/ip6_output.c for IPv6) similarly 
iterate over the fi lter list and call the ipf_output member function, if set. The IPv4 handler 
actually calls the fi lters on two separate occasions, one for multicast and one for normal 
packets, but the two cases are mutually exclusive.

Listing 17-22 shows how the fi lter list is walked from ip6_input():

LISTING 17-22: Walking ipv6_fi lters, from ip6_input() (bsd/netinet6/ip6_input.c)

      /*
       * Call IP filter
       */
       if (!TAILQ_EMPTY(&ipv6_filters)) {
           ipf_ref();
           // Walk the v6 filter list   (v4 is very similar)
           TAILQ_FOREACH(filter, &ipv6_filters, ipf_link) {
                  if (seen == 0) {
                      if ((struct ipfilter *)inject_ipfref == filter)
                         seen = 1;
                    } else if (filter->ipf_filter.ipf_input) {
                       // If an input filter exists, execute it on this mbuf
                       errno_t result;
                       result = filter->ipf_filter.ipf_input(
                       filter->ipf_filter.cookie, (mbuf_t*)&m, off, nxt);
                       // If filter returns "EJUSTRETURN", packet is intercepted 
                       if (result == EJUSTRETURN) {
                           ipf_unref();
                           goto done;  // packet dropped, mbuf is not freed
                          }
                 if (result != 0) {
                          ipf_unref();
                          goto bad; // packet dropped, mbuf is freed
                     }
                 }
               }
           ipf_unref();
       }
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Interface Filters
The lowest level in which fi lters can be placed is that of the network interface. These fi lters are con-
ceptually similar to socket and IP fi lters, but the lower level allows the fi lter to intercept and manip-
ulate the packets before any further processing by upper layers.

An interface fi lter is a struct iff_filter, defi ned in bsd/net/kpi_interfacefilter.h as shown 
in Listing 17-23:

LISTING 17-23: An interface fi lter, annotated 

struct iff_filter {
   void                    *iff_cookie; // argument to filter functions
   const char              *iff_name; // filter name (not really useful)
   protocol_family_t       iff_protocol; // 0 (all packets) or specific protocol
   iff_input_func          iff_input; // optional filter for input packets, or NULL
   iff_output_func         iff_output; // optional filter for output packets, or NULL
   iff_event_func          iff_event; // optional filter for interface events,or NULL
   iff_ioctl_func          iff_ioctl; // optional filter for ioctls on interface
   iff_detached_func       iff_detached; // required callback when filter is detached
};

The various fi lters all receive the interface (ifnet_t). The input and output fi lters receive the packet 
an mbuf chain. As with IP fi lters, the fi lter functions are expected to return 0 (accept), EJUSTRETURN
(drop), or any non-zero value (drop, free). The fi lters are invoked by DLIL using dlil_interface_
filters_[input|output]() prior to actually receiving or sending the frame (as shown in 
Figure 17-7 for the receive path, right before the call to find_attached_proto()). 

The Berkeley Packet Filter
Low-level packet fi lters may not require protocol-level packet processing and prefer to work on 
the packets themselves, gaining even more effi ciency in the process. McCanne and Van Jacobson 
(known for PPP compression and the traceroute algorithm) addressed this need by developing the 
BSD Packet Filter (BPF) back in 1993 and presenting it in a UseNIX paper[24]. BPF has since become 
a standard, powering many a network monitor (notably, TCPDump and libPCab-related tools). 
Because XNU’s networking is based on BSD’s, it has integrated BPF, as well. The code is contained 
in bsd/net, as shown in Table 17-17:

TABLE 17-17: BPF Implementation Files in XNU

BSD/NET FILE USED FOR

bpf.c The BPF supporting logic, ioctls, and /dev interface

bpf_filter.c The BPF state machine

bpf.h General defi nitions for structs and ioctl codes

bpf_compat.h Compatibility hacks (#defines) for malloc and free

bpf_desc.h Defi ning descriptors associated with BPF devices: bpf_d and bpf_if
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BPF is structured around the notion of a “fi lter machine.” The machine is a state machine with no 
loops or backward branches and limited opcodes. Ensuring no loops is critical, because the code 
runs in the kernel whenever a packet is processed and under tight constraints. The fi lter may inspect, 
but not modify any packets, though packets may be injected onto an interface. 

To get started, a user mode program opens one of the /dev/bpf# devices. Each device can be 
attached to an underlying interface† with a given BPF program. There are usually four such fi les — 
/dev/bpf0 through /dev/bpf3 — but more fi les can be dynamically created as the need arises, up 
to bpf_maxdevices (set to 256, and also exported through sysctl kern.debug). Clients normally 
iterate over all devices and grab the fi rst one available.

Controlling BPF is done exclusively through ioctl(2) calls. First, the BPF device has to be attached 
to an underlying interface (with a BIOCSETIF ioctl).  Next, options may be set on the device, as 
shown in Table 17-18.

TABLE 17-18: BPF ioctls Related to Setting Options

BPF IOCTL USED FOR

BIOCSBLEN Sets buff er len. Called prior to attachment with BIOCSETIF. This buff er 

size must be adhered to in future read(2) calls.

BIOCSRSIG Rather than block read(2), this sends a signal (default: SIGIO) to pro-

cess on packet availability.

BIOCSSEESENT If set to non-zero, read(2) also returns (SEE) outgoing (SENT) packets 

from the underlying device, rather than just returning incoming ones.

BIOCIMMEDIATE Returns immediately on packet availability, rather than blocking until a 

timeout or the buff er is full. Setting this overrides BIOCSRTIMEOUT (see 

next entry)

BIOC[GS]RTIMEOUT Gets/sets timeout value, after which the read(2) operation will return. 

Setting this overrides BIOCIMMEDIATE (see preceding entry).

BIOCPROMISC Sets underlying interface to promiscuous mode. Interface will deliver 

all frames, not just those matching its own hardware Address (or broad-

cast/multicast) to the kernel. This is useful for monitoring over hubs, for 

example.

To start reading from a device, a BPF program is defi ned by the client and set to execute on the 
interface by a BIOCSETF ioctl(2). From that point onward, the client can simply employ standard 
read(2) system calls to retrieve packets (according to the options set in Table 17-18. The BPF pro-
gram is thus key in determining which packets will be received on the device. Only packets match-
ing the fi lter will be made available on the fi le descriptor.

†Only interfaces whose initialization code called bpfattach() and provided an ifnet_set_bpf_tap
callback may be attached in this manner, though all common interfaces call bpfattach(), as do the 
ones initialized from Apple’s kexts. Because this code is present in IONetworkingFamily, all the subclasses 
automatically become BPF-enabled
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Building a BPF Program
A BPF program constitutes a program-within-a-program written in a format that can be understood by 
the BPF machine. The program is a struct bpf_program, which is constructed as an array of bf_len 
bpf_insn structs. Each bpf_insn represents a BPF instruction, defi ned as shown in Listing 17-24.

LISTING 17-24: The BPF instruction structure

/*
 * The instruction data structure.
 */
struct bpf_insn {
        u_short         code; // The instruction op code
        u_char          jt; // Conditions: Branch on argument eval true
        u_char          jf; // Conditions: Branch on argument eval false
        bpf_u_int32     k; // Argument for instructions. Depends on code
};

/*
 * Macros for insn array initializers.
 */
#define BPF_STMT(code, k) { (u_short)(code), 0, 0, k }
#define BPF_JUMP(code, k, jt, jf) { (u_short)(code), jt, jf, k }

Six “opcodes” can be used to inspect the incoming packets. The opcodes are understood by the BPF 
machine, which is a simple abstraction containing an instruction pointer, an accumulator register 
(for simple arithmetic), an index register, and limited memory. The machine is extremely limited, 
but considering its intended usage, is well suited to the task at hand of inspecting packets.

The bpf(3) manual page elaborates on the actual opcodes and patterns; the interested reader is 
advised to turn there for a more complete reference. Rather than repeat more of the same, this book 
turns to a practical example.

Experiment: Constructing a Sample BPF Program
Listing 17-25 demonstrates a sample generic fi lter for IPv4 packets, matching a specifi c protocol 
and port.

LISTING 17-25: A fi lter program to capture frames matching a specifi ed protocol and port

int installFilter(int   fd, 
         unsigned char  Protocol, 
             unsigned short Port)
{
    struct bpf_program bpfProgram = {0};

    /* dump IPv4 packets matching Protocol and Port only */
    /* @param: fd - Open /dev/bpfX handle.               */

    /* As an exercise, you might want to extend this to IPv6, as well */

continues
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    const int IPHeaderOffset = 14;

    /* Assuming Ethernet II frames, We have: 
     *
     *    Ethernet header = 14 = 6 (dest) + 6 (src) + 2 (ethertype)
     *    Ethertype is 8-bits (BFP_P) at offset 12
     *    IP header len is at offset 14 of frame (lower 4 bytes).
     *       We use BPF_MSH to isolate field and multiply by 4
     *    IP fragment data is 16-bits (BFP_H) at offset  6 of IP header, 20 from frame
     *    IP protocol field is 8-bts (BFP_B) at offset 9 of IP header, 23 from frame 
     *    TCP source port is right after IP header (HLEN*4 bytes from IP header)
     *    TCP destination port is two bytes later)
     */

    struct bpf_insn insns[] = {
     BPF_STMT(BPF_LD  + BPF_H   + BPF_ABS, 6+6), // Load ethertype 16-bits (12 (6+6) 
                                                 // bytes from beginning)

     BPF_JUMP(BPF_JMP + BPF_JEQ + BPF_K, ETHERTYPE_IP, 0, 10), 
  // Compare to requested Ethertype or jump(10) to reject

     BPF_STMT(BPF_LD  + BPF_B   + BPF_ABS, 23), // Load protocol(=14+9 (bytes from IP))
                                                // bytes from beginning 

     BPF_JUMP(BPF_JMP + BPF_JEQ + BPF_K  , Protocol, 0, 8), // Compare to requested
                                                            // or jump(8) to reject 

     BPF_STMT(BPF_LD  + BPF_H   + BPF_ABS, 20), // Move 20 (=14 + 6)  We are 
                                                // now on fragment offset field 

     BPF_JUMP(BPF_JMP + BPF_JSET+ BPF_K, 0x1fff, 6, 0), // Bitwise-AND with 0x1FF and 
                                                        // jump(6) to reject if true

     BPF_STMT(BPF_LDX + BPF_B   + BPF_MSH, IPHeaderOffset), // Load IP Header Len (from 
                                                // offset 14) x 4 , into Index register

     BPF_STMT(BPF_LD  + BPF_H   + BPF_IND, IPHeaderOffset), // Skip past IP header 
                                          // (off: 14 + hlen, in BPF_IND), load TCP src

     BPF_JUMP(BPF_JMP + BPF_JEQ + BPF_K  , Port, 2, 0), // Compare src port to requested
                                                       // Port and jump to "port" if true

     BPF_STMT(BPF_LD  + BPF_H   + BPF_IND, IPHeaderOffset+2),
  // Skip two more bytes (off: 14 + hlen + 2), to load TCP dest
/* port */

     BPF_JUMP(BPF_JMP + BPF_JEQ + BPF_K  , Port, 0, 1), // If port matches, ok.
                                                        //  Else reject
/* ok: */

     BPF_STMT(BPF_RET + BPF_K, (u_int)-1), // Return -1 (packet accepted)

LISTING 17-25 (continued)
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/* reject: */

     BPF_STMT(BPF_RET + BPF_K, 0) // Return 0  (packet rejected)
    };

    // Load filter into program 
    bpfProgram.bf_len = sizeof(insns) / sizeof(struct bpf_insn);
    bpfProgram.bf_insns = &insns[0];

    return(ioctl(fd, BIOCSETF, &bpfProgram));
}

To install this fi lter, write a small “driver” program that opens /dev/bpfX (by either iterating 
through the defi ned BPF devices, or arbitrarily choosing X to be one of 0, 1, 2, or 3.). The program 
should set the following ioctl()s:

 ‰ BIOCSETIF: The ioctl accepts a struct ifreq, though you only need to set (strncpy) the 
ifr_name to be the name of the underlying device (en0, and so on), and pass the struct by 
reference.

 ‰ BIOCSEESENT: Set this if you want to see outbound, as well as inbound frames.

 ‰ BIOCIMMEDIATE or BIOCSRTIMEOUT: Set this to get your read(2) loop to return on frame 
reception, or immediately.

 ‰ BIOCPROMISC (optional): Sets promiscuous mode. Use this if you are in a shared environment 
(hub) or are also using VM guests in your Mac. This enables you to see traffi c not intended 
for your host.

After setting the ioctl()s, you can simply start a read loop (remember the buffer size passed must 
match the BPF buffer len, so use BIOCGBLEN or BIOCSBLEN). Frames will be delivered as one or more 
bpf_hdr structures, up to the amount of bytes read. The structure contains a bh_hdrlen fi eld, which 
denotes the BPF header size. Immediately following it will be the frame, of bh_caplen bytes.

Not relying on sizeof(struct bpf_hdr) is important, because of compiler 
alignment directives. Advancing to the next frame using BPF_WORDALIGN is also 
important, for the same reasons.

If you are feeling adventurous, compile this program for iOS — you might need to copy over some OS 
X includes (notably, <net/bpf.h>). The program does, however, compile cleanly, and makes for a nice 
TCPdump clone (though you can always get the latter from Cydia). You can download a fully working 
tool, which is based on one possible solution to this exercise, from the book’s companion website.

TRAFFIC SHAPING AND QOS

BSD offers, in additional to its built-in fi rewall, a Quality of Service (QoS) traffi c shaper mechanism 
known as dummynet(4). This mechanism relies on the ipfw structures described earlier in this chap-
ter, and is in fact controlled from the system command ipfw(8).
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The Integrated Services Model
Defi ned in RFC 1633, Integrated Services (IntSrv) takes a different approach to QoS. Packets are 
still differentiated, but are not classifi ed into logical “fl ows.” A “fl ow” consists of a traffi c specifi ca-
tion (TSpec), which like the DiffSrv code point, is defi ned based on packet-specifi c attributes. In 
addition, however, a reservation specifi cation (RSpec) defi nes parameters for the fl ow itself, namely 
bandwidth reservation, maximum acceptable delay, and acceptable packet loss.

BSD defi nes a “pipe” for integrated services. The pipe parameters can be adjusted with the ipfw(8)
subcommand pipe config  by specifying the number and the specifi c parameter — usually bw
(bandwidth) or delay. Note, that this subcommand is not available in ip6fw(8).

The Diff erentiated Services Model
Defi ned in RFC2474, Differentiated Services (DiffSrv) is a packet classifi cation mechanism which 
assigns one of 64 “code points” to an IP packet based on properties such as its source, destination, 
protocol, or transport layer attributes (commonly, its ports). The 64 code points can then be used 
to place egress packets into one of several queues, and then route packets by queue. Each second is 
divided into equal shares, but an unequal number of shares is given to each queue. So, although each 
queue still maintains its own fi rst-in-fi rst-out (FIFO) ordering, the queue itself may be processed 
more or less frequently than others. 

This approach is hence called Weighted Fair Queuing (WFQ). The fairness stems from the fact that, 
rather than prioritizing packets, this approach guarantees that even lowly-classifi ed packets get 
treatment (although somewhat more infrequently).  BSD kernels actually extend WFQ by using an 
improved algorithm called Worse-Case WFQ.

Differentiated services are provided by the “queue,” which you can confi gure to hold a maxi-
mum number of packets, or overall bytes. The queues can also be set to implement the RED 
(Random Early Detection) or gRED (a “gentle” variant), to preemptively drop packets on specifi c 
thresholds.

Implementing dummynet
The dummynet mechanism is implemented in a single fi le, bsd/netinet/ip_dummynet.c, and uses 
three heaps:

 ‰ ready_heap: Used for fi xed-rate pipes

 ‰ wfq_ready_heap: Used in implementing the worst-case WFQ

 ‰ extract_heap: Used to maintain packets that are intentionally delayed

These heaps are all defi ned in bsd/netinet/ip_dummynet.h (See Listing 17-26).

LISTING 17-26: THE DUMMYNET HEAP IMPLEMENTATION FROM BSD/NETINET/IP_DUMMYNET.H

struct dn_heap_entry {
    dn_key key ;        /* sorting key. Topmost element is smallest one */
    void *object ;      /* object pointer */
} ;
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struct dn_heap {
    int size ;
    int elements ;
    int offset ; /* XXX if > 0 this is the offset of direct ptr to obj */
    struct dn_heap_entry *p ;   /* really an array of "size" entries */
} ;

Every interval (usually 1 ms), the dummynet() function is called, incrementing ticks.

Controlling Parameters from User Mode
Similar to controlling the ipfw mechanism, in addition to the ipfw(8) command, which is used to 
create the pipes or the queues from its rules and confi gure them, several sysctl(8)-visible param-
eters are available, as listed in Table 17-19.

TABLE 17-19: sysctl Parameters Pertaining to dummynet(4) Traffi  c Shaping

 NET.INET.IP.DUMMYNET.* DEFAULT VALUE USED FOR

hash_size 64 Default value of buckets in queues and fl ows.

red_avg_pkt_size 512 Average size of a packet.

red_max_pkt_size 1500 Maximum size of a packet (as per MTU).

red_lookup_depth 256 Accuracy of computing the RED algorithm.

debug 0 Enables debug output.

expire 1 Automatically removes dynamic pipes if they 

become idle (that is, no traffi  c).

max_chain_len 16 Maximum number of pipes or queues per 

bucket. They are automatically removed 

upon max_chain_len x hash_size.

searches

search_steps

0

0

Number of queue searches and search steps.

ready_heap

extract_heap

N/A Current sizes of ready and extract heaps.

*Parameters in italic are not specifi ed in the manual pages.

SUMMARY

This chapter detailed, in great depth, the inner workings of the XNU network stack. Though closely 
resembling that of BSD, the XNU stack has some notable extensions in its implementation. The 
stack has a multitude of fi ltering mechanisms at every one of its layers (sockets, IP and interfaces), as 
well as support for QoS. Most importantly, it is “pluggable” in the sense that kernel extensions can 
register their own callbacks with specifi c protocol implementations, as is in fact done by 
IONetworkingFamily and friends.
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The next chapters will discuss how these kernel extensions are created and handled. Chapter 18 
explains the basic concepts of structure of all extensions, and Chapter 19 devotes itself to those of a 
specifi c type, IOKit.
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18
Modu(lu)s Operandi — Kernel 
Extensions

XNU provides a rich ecosystem of a kernel, having all the necessary services — scheduling, 
memory management, I/O, and more. Yet, no kernel can completely accommodate the vast 
range of hardware and peripheral devices available. Nor can any kernel, even monolithic ones, 
claim to be fully complete.

Enter: kernel extensions. Like shared libraries or DLLs in user mode, these are kernel modules, 
which may be dynamically inserted or removed on demand, often from user mode. XNU, in 
both OS X and iOS, makes use of modules to load its various device drivers, and to augment 
kernel functionality with entirely self-contained subsystems.

This chapter explores the mechanics of kernel extensions. We fi rst discuss the design 
perspective, and then delve into intrinsic details of the various APIs. The chapter provides also 
provides insight into the undocumented happenings behind the APIs.

EXTENDING THE KERNEL

Virtually every contemporary operating system architecture acknowledges that, although 
a kernel is usually self-contained and must be able to provide the full set of APIs expected 
by user mode, crafting a kernel that is statically linked is virtually impossible. Such a 
kernel would imply a very rigid structure, which would not be extensible in any way: 
That, which was compiled in time, would be available, yet no additional functionality 
could be added. 

With the multitude of devices available and the many offerings of new buses and device 
classes, compiling a single kernel that would contain all the necessary device drivers is 
unfeasible. Additionally, some operating system designs allow third-party developers 
access to extend and enhance their kernels or otherwise allow the insertion of code into 
kernel mode. 
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As necessity is the mother of invention, extensibility is that of modular design. Just as user 
mode has DLLs (in Windows) or shared objects (in UNIX), so does kernel mode in the form 
of kernel modules, or — in XNU parlance — kernel extensions. Called kexts for short, kernel 
extensions are a fundamental building block of XNU as much as the core itself. In fact, it is not 
uncommon to fi nd more kernel-mode code resulting from module insertion than the original 
kernel core.

Although the nomenclature might be different, the idea behind kexts is exactly the same as that of 
Windows’ .sys fi les (in %systemroot%\system32\drivers) and Linux’s .ko fi les (usually in /lib
/modules or elsewhere). All three fi le types are relocatable code that is dynamically linked with 
specifi c symbols the kernel sees fi t to export. Kexts require only one well-known entry point, which 
usually handles all the initialization tasks the extension requires, and from that point can execute 
any code the developer wants. 

A kext runs in kernel mode, and therefore has full access to kernel space. The developer can 
use any function that the kernel defi nes as exportable and even functions that are defi ned pri-
vate — although the latter usually involve some form of hacking or reverse engineering. Global 
kernel variables and structures may also be queried and even set, making kexts highly popular for 
all sorts of kernel-level development. Profi ling, system call hooking, and other functionality can be 
achieved in kernel mode.

Because kernel modules offer so much power, they pose an even greater risk. If the kernel is set 
to accept code of foreign origin, determining the intent — or malicious intent — of such code 
prior to actual insertion is impossible. Furthermore, once the code is loaded into the kernel, it 
is effectively the same, for all intents and purposes, as code from the kernel proper. This means 
the stability, and, even more so, the security of the entire operating system can be compromised. 
Indeed, most modern-day malware comes in the form of malicious modules, also known as 
“rootkits.”

In iOS, in particular, there is another dimension of risk.  Apple seems to have no desire whatso-
ever to open up the kernel development space to anyone but its own cadre. As a system, iOS is 
hardened in both user and kernel mode to discourage any type of modifi cation. So, although kexts 
are used extensively to provide support for the various i-Devices, they are “fused” into the kernel-
cache by Apple when the iOS is built for each device (although kexts do load on the fl y, from the 
kernelcache).

Securing Modular Architecture
Because a modular architecture harbors both signifi cant benefi ts as well as huge risks, con-
temporary operating systems continue to allow and promote it, but impose certain limitations 
on its use, lest it be subverted for malicious means. There are two approaches for securing the 
architecture.

Code Signing 
Code signing is the preferred approach and is the standard adopted by most systems. A good exam-
ple is Windows, which (as of Windows Vista in its 64-bit edition) prevents any type of driver from 
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loading unless it possesses a valid digital signature. Prior to transferring control to the module entry 
point, the kernel validates the signature on the code in the form of an attached certifi cate. The cer-
tifi cate must be signed with a private key, whose public key is known to the kernel, or by a chain of 
trust leading to such a key.

Code signing cannot vouch for code purity of purpose, but it can validate the origin of the code. 
Because signing the code involves the developer identifying to the signer, any attempted mal-
ware — once caught — would disqualify said developer, and would provide liability for any 
damages. 

Apple uses code signing ubiquitously in iOS, yet signs no code but its own. The validation key is 
embedded deep in ROM, and from the early stages of iBoot, code that is not signed by Apple cannot 
be loaded. This makes it impossible to tamper with an iOS software update, which, (as was demon-
strated in Chapter 5), is but a simple zip fi le. Any attempted patching of the update will result in the 
update being rejected. Indeed, only by patching the signature check in pre-A5 i-Devices can custom 
fi rmware images be loaded onto the device.

Pre-Linking 
Pre-linking is the approach used by Apple in OS X and iOS. Rather than loading the kernel, and 
then loading the kexts in some order, the boot loader instead loads a kernelcache fi le. This fi le con-
tains the kernel, pre-linked with select extensions. The result is essentially the same as having had 
the kernel dynamically load the extensions, but it offers two advantages:

 ‰ Loading time is much faster, because the process of dynamic linking involves resolving sym-
bols in both the kernel and the module during runtime. Pre-linking allows the resolving to 
be done once, and the kernel image to be loaded with the modules already in, when the link 
addresses have been fully resolved.

 ‰ The kernelcache may be signed, and even encrypted (as is the case on iOS). Once the kernel-
cache is loaded, all further kext loading could potentially be disabled (though in practice, 
it isn’t). This would ensure that no code can fi nd a legitimate way into the iOS kernel.

As hardened as it is, even the iOS kernel has been subverted — a necessary step 
in the jail-breaking process, which is discussed in Chapter 5. This, however, was 
done by injecting code into the kernel due to a security vulnerability, and not by 
any “offi cial” mechanism the kernel extensions provide.

KERNEL EXTENSIONS (KEXTS)

When not linked into a kernelcache, kexts can be found in their standalone form populating 
/System/Library/Extensions. The vast majority of the kexts here are device drivers, which are 
detailed in depth in Chapter 19. The kexts found in this directory vary depending on the Mac 
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model. Bear in mind, also, that not all of these kexts may be in use. To see which ones are actively 
loaded, use the kextstat(8) command, shown in Output 18-1.

OUTPUT 18-1: Output of kextstat(8) from a Lion OS

Index Refs Address         Size     Wired    Name (Version) <Linked Against>
1  82 0xffffff7f80742000 0x683c   0x683c   com.apple.kpi.bsd (11.0.1)
2   6 0xffffff7f8072e000 0x3d0    0x3d0    com.apple.kpi.dsep (11.0.1)
3 106 0xffffff7f8074c000 0x1b9d8  0x1b9d8  com.apple.kpi.iokit (11.0.1)
4 111 0xffffff7f80738000 0x9b54   0x9b54   com.apple.kpi.libkern (11.0.1)
5  99 0xffffff7f8072f000 0x88c    0x88c    com.apple.kpi.mach (11.0.1)
6  33 0xffffff7f80730000 0x4938   0x4938   com.apple.kpi.private (11.0.1)
7  55 0xffffff7f80735000 0x22a0   0x22a0   com.apple.kpi.unsupported (11.0.1)
8  21 0xffffff7f809bc000 0x7000   0x7000   com.apple.iokit.IOACPIFamily (1.4)<7 6 4 3>
9 30 0xffffff7f80821000 0x1d000  0x1d000  com.apple.iokit.IOPCIFamily (2.6.5)<7 6 5 4 3>
...
82  2 0xffffff7f809c3000 0xc000   0xc000  com.apple.driver.AppleSMC (3.1.1d2)<8 7 5 4 3>
...
96  0 0xffffff7f812b9000 0x5000   0x5000  com.apple.Dont_Steal_Mac_OS_X (7.0.0)<82 7 ...
...

kextstat(8) looks a little bit different on Lion than on previous versions of OS 
X. This is due to two reasons:

 ‰ The built-in kernel APIs in Lion have their VMSize and Wired fi elds cor-
rectly fi lled. On previous versions, their values were left at zero.

 ‰ Lion has fewer kernel APIs. Prior to Lion, the kernel exposed the (now 
obsolete) com.apple.kernel.* APIs for kexts to rely on, but these were 
declared deprecated as of Tiger (10.4), and have fi nally been removed as the 
feline evolved (though they are still present in 32-bit kernels and in iOS).

 ‰ The cydia version of kextstat (if you try it on iOS) is woefully broken, 
as it relies on deprecated APIs (kmod_get_info) which are unavailable 
in iOS. The book’s companion websites offers a version that works well. 
But — more on that later.

Kexts may be layered on top of one another. As Output 18-1 shows, each kext has a load index 
and a “references” fi eld. The latter is used to determine how many dependents this kext has, and 
the former serves as an index to identify the kext in the list to its dependents. The values inside the 
angle brackets in each kext show the kexts it relies on, by index. A somewhat simplifi ed and par-
tial graphical representation of kext ordering is shown in Figure 18-1. 
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The fi rst seven (or before Lion, twelve) load indices, which make up the foundation in Table 18-1, 
aren’t real kexts; rather, they are “pseudo-kexts,” or kernel built-in components. Their component 
version is the same as the Darwin version. 

TABLE 18-1: Kernel Interfaces

KERNEL PROGRAMMING INTERFACE REPRESENTS

com.apple.kpi.bsd The kernel’s BSD personality. 

This supersedes com.apple.kernel.bsd.

com.apple.kpi.dsep Mandatory Access Control (MAC) Framework. This is a new inter-

face, whose primary clients are the Sandbox.kext, FSCompres-

sion, quarantine (in OS X) and  AppleMobileFileIntegrity (in iOS).

com.apple.kpi.iokit The I/O Kit framework. 

This supersedes com.apple.kernel.iokit.

com.apple.kpi.libkern The kernel runtime library. 

This supersedes com.apple.kernel.libkern.

com.apple.kpi.mach The kernel’s Mach personality. 

This supersedes com.apple.kernel.mach.

com.apple.kpi.private Kernel internal APIs, which are not meant to be exported to 

non-Apple kexts.

com.apple.kpi.unsupported Unsupported/deprecated APIs.

You can fi nd all the pseudo-kexts in the /System/Library/Extensions/System.kext/
PlugIns directory, yet they contain no code. In fact, they contain only one section — a symbol 
table — because their code is already implemented in the kernel. These are often referred to as the 
Kernel Programming Interfaces (KPIs). The XNU sources (libsa/bootstrap.cpp) also list four 
other kexts: 

 ‰ com.apple.iokit.IONVRAMFamily

 ‰ com.apple.driver.AppleNMI

 ‰ com.apple.iokit.IOSystemManagementFamily

 ‰ com.apple.iokit.ApplePlatformFamily

Yet these, too, aren’t actual kexts, and their respective directories contain only an Info.plist.

Kexts declare their dependency on other kexts — pseudo or real — in the OSBundleLibraries prop-
erty of their main property list, as you will see in the next section.

A particularly intriguing kext is “Dont Steal Mac OS X.kext”, also commonly referred to as 
DSMOS, shown earlier in Output 18-1. This kext is untouchable — its accompanying (intimidating) 
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LICENSE fi le strictly forbids any tampering with, disabling, or destroying it. Many a hackintosh has 
had its boot process delayed inevitably “waiting for DSMOS.” For obvious reasons, this book can-
not detail much about the DSMOS kext; suffi ce to say that it is used in decrypting code from various 
binaries, like the Finder, as discussed in Chapter 3. As noted in Chapter 11, which discussed Mach 
virtual memory internals, Apple has modifi ed Mach and added its own memory pager (apple_
protected_pager) to deal with DSMOS-protected memory, and that part remains open source. iOS 
doesn’t have this module, but uses the IOTextEncryptionFamily (and, indirectly FairPlayIOKit)
instead.

Kext Structure
Kexts are bundles, and as such follow the generic bundle layout: A kext directory has a single subdi-
rectory, Contents/, in which you can fi nd the fi les shown in Table 18-2.

TABLE 18-2: Files in the Contents/ Subdirectory

FILE/DIRECTORY CONTAINS

CodeDirectory Code directory fi le for the kext

CodeRequirements Code requirement set for the kext

CodeResources Code resources XML fi le specifying hashes and rules for fi les in kext

CodeSignature Code signature for kext — usually contains Apple’s digital certifi cate

Info.plist Bundle manifest property list

MacOS Directory containing actual kext binary — a fi le of type BUNDLE (Mach-O type 

8) or KEXTBUNDLE (Mach-O type 11) for 64-bit

_CodeSignature Directory containing the Code* fi les, which are actually symbolic links to this 

directory

version.plist Kext version information, in a property list

Somewhat infrequently, a kext may contain other, related kexts — as in the case of kexts imple-
menting IORegistry families (most IO*Family.kext). In those cases, the related kexts are nested 
in a PlugIns subdirectory. Also in some cases (e.g. IOSCSIArchitectureModelFamily.kext,
webdavfs.kext, or ufs.kext), kexts may contain various resources — internationalization fi les, 
related user-mode binaries, and even icons. As you can expect, those are all found in a Resources
subdirectory.

Like any bundle, the kext’s Info.plist property list is of special importance. It is mandatory, and 
contains specifi c fi elds without which the kext cannot be loaded. Table 18-3 shows the fi elds manda-
tory in any kext:
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TABLE 18-3: Mandatory Fields in Kext Plists

PLIST PROPERTY USED FOR

CFBundleExecutable Identifying the actual kext executable inside the bundle. This is, by con-

vention, a fi le in the MacOS/ subdirectory, with the same name as the kext 

itself.

CFBundleIdentifier Uniquely identifying the kext name during runtime. This is the standard 

reverse DNS notation. Apple recommends com.company.driver.* for 

an I/O Kit driver, and com.company.kext for a generic kext.

CFBundleVersion Kext version number, in the form of Major.Minor.Fix.

OSBundleLibraries Required kernel libraries and other kexts on which this one depends.

The Info.plist can also specify several additional, optional properties, as shown in Table 18-4:

TABLE 18-4: Optional Fields in Kext Plists

PLIST PROPERTY USED FOR

OSBundleAllowUserLoad Boolean specifying that non-privileged users can load this kext. 

The default is FALSE.

OSBundleCompatibleVersion Specifying which API versions this kext exports. This is the “other 

side” of OSBundleLibraries, as other kexts will specify this ver-

sion to link to. 

OSBundleRequired Specifying this kext is required to mount the root fi lesystem on 

whatever device (Root), on a local device (Local-Root) or a net-

work device (network-root). May also specify that this kext is 

required for console support (console), or even when booting –x 

(Safe-Boot).

It’s not uncommon to fi nd OSBundle* properties further defi ned for specifi c architecture by appendix 
suffi xes (in the case of OS X _i386 and _x86_64). For I/O Kit drivers, the Info.plist contains a host 
of other properties (including the mandatory IOKitPersonalities), which are described in Chapter 19.

Kext Security Requirements
Because kexts contain code that is loaded into kernel memory, extra security considerations must be 
enforced to make sure that any arbitrary and potentially malicious code will not be accidentally loaded.

The requirements on kexts are thus:

 ‰ Kexts must be owned by the uid of root, and the gid of wheel.

 ‰ Permissions on the directories must be at most 755 — that is, rwxrwxr-x.

 ‰ Any fi les in the kext must be at most 644 (rw-r--r--).
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Working with Kernel Extensions
Mac OS X provides several handy utilities to manipulate and provide information about kernel 
extensions, as shown in Table 18-5:

TABLE 18-5: Kext-related Commands

COMMAND USEAGE

kextd Dynamically loads kexts from user-space

kextfind Query kext by myriad properties and criteria. Simulates operation of kextd, as it 

looks up kexts for dynamic loading

kextlibs Resolves kext dependencies

kextload A simple kext loader

kextunload A simple kext unloader

kextutil (Snow Leopard and later): The more advanced version of kextload, with far more 

options

These tools will be demonstrated in a simple exercise to create kexts.

Kernelcaches
Kernelcaches play an important part in both OS X and iOS. In OS X, they are used to speed up the 
boot process by providing a complete kernel, optimized for the specifi c platform the OS is executing 
in, with all the drivers pre-loaded. In iOS, they contain the only kexts that the kernel will load, and 
no others. This makes the iOS kernel far more secure and tamper resistant.

Kernelcaches follow the same general structure on both platforms, but are implemented a little bit 
differently in OS X and iOS, as shown in Table 18-6.

TABLE 18-6 Kernelcache Implementation

OS /SYSTEM/LIBRARY/CACHES/.. CONTAINS

OS X com.apple.kext.caches/Startup Mach-O binary, potentially fat, with complzss 

beginning at relative off set 384

iOS com.apple.kernelcaches/kernelcache Kernelcache in IMG3 encrypted form, open-

ing to a complzss, as in the preceding

The iOS kernelcache format (IMG3) and the simple complzss compression scheme were both previ-
ously discussed under “iOS Boot Images.” in Chapter 6.
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To unpack a kernelcache, you must fi rst get rid of excess headers: On OS X, these are usually the 
fat header (if the kernelcache is a multi-architecture i386/x86_64 binary) and the lzss compres-
sion. On iOS the kernelcache is a thin binary — only the ARM architecture is present. However, the 
kernelcache is encrypted, and you therefore must apply a precursor step of decrypting the cache, if 
you can obtain the IV and Key. This is shown in Output 18-2:

OUTPUT 18-2: Expanding a kernelcache

morpheus@Minion(/) $ cd /System/Library/Caches/com.apple.kext.caches/Startup
morpheus@Minion(.../com.apple.kext.caches/Startup)$ file kernelcache
kernelcache: Mach-O universal binary with 2 architectures
kernelcache (for architecture x86_64):  data
kernelcache (for architecture i386):    data

morpheus@Minion(.../com.apple.kext.caches/Startup)$ more kernelcache
"kernelcache" may be a binary file.  See it anyway? y
<CA><FE><BA><BE>^@^@^@^B^A^@... ^@^@^@^C^@<9C><90><84>^@<90>\<BC>^@^@^@^@complzss<AD>..

morpheus@Minion (.../Startup)$ lipo –thin x86_64 kernelcache /tmp/thincache

morpheus@Minion (.../Startup)$ more /tmp/thincache
complzss<AD><D2>…

morpheus@Minion (.../Startup)$ complzss –o 384 /tmp/thincache> /tmp/uncompressed_cache
morpheus@Minion (.../Startup)$ file /tmp/uncompressed_cache
/tmp/uncompressed_cache: Mach-O 64-bit executable x86_64
morpheus@Minion (.../Startup)$ ls -l /tmp/uncompressed_cache /mach_kernel
-rw-r--r--  1 root  wheel  23851008 Sep  4 19:46 /tmp/uncompressed_cache
-rw-r--r--@ 1 root  wheel  15564456 May  7 07:23 /mach_kernel

Recall, the 0xCAFEBABE is the fat header of the fi le. Soon after it is the complzss header, which in 
this case spans 384 bytes. At that offset, the compressed image begins, which can be expanded into 
a thin binary.

If you look at the binary and compare it to your mach_kernel, as in the example in Output 18-2, 
you will see a signifi cant difference in size. This is the size of all the kernel extensions loaded into 
the __PRELINK_TEXT segment. Whereas the mach_kernel in the root has an empty segment, the ker-
nelcache makes use of this segment by putting all the necessary kernel extensions in it. Using otool 
once more, this time to dump the PRELINK_TEXT segment (otool -s __PRELINK_TEXT __text), 
reveals the segment has additional Mach-O binaries, the kexts, loaded in. You can recognize the 
kexts by their Mach-O signature — 0xFEEDFACE (32-bit) or 0xFEEDFACF (64-bit)1 as shown in 
Output 18-3:

OUTPUT 18-3: Isolating kexts in the kernelcache’s PRELINK_TEXT section.

1On Intel architecture, remember that endian-ness makes the signature appear to be ce fa fe ed or cf 
fa fe ed, and therefore you should grep accordingly.
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morpheus@Ergo(/)$ otool -s __PRELINK_TEXT __text IOS-5.0.0b5.kernel | grep feedface
80347000        feedface 0000000c 00000009 0000000b 
80348000        feedface 0000000c 00000009 0000000b 
8034c000        feedface 0000000c 00000009 0000000b 
80363000        feedface 0000000c 00000009 0000000b 
8036b000        feedface 0000000c 00000009 0000000b 
80371000        feedface 0000000c 00000009 0000000b 
80377000        feedface 0000000c 00000009 0000000b 
80378000        feedface 0000000c 00000009 0000000b 
8037a000        feedface 0000000c 00000009 0000000b 
803a2000        feedface 0000000c 00000009 0000000b
… total of 137 packed kernel extensions..

But how does the kernel know just what these kexts are? You saw that in a standalone form, each 
kext as a bundle contains a property list fi le, Info.plist. The same applies for a kernelcache, but 
in this case, the Info.plist fi les are packed separately in a __PRELINK_INFO __info segment. If 
you use otool on this segment, you will see it is ASCII text. It also is not just any text, but a mas-
sive Plist, containing an array of dicts, each representing one of the kexts loaded. If you use the 
book’s companion jtool (or segedit(1)) to extract the PRELINK_INFO segment from the iOS 5 
decrypted kernel, you would see something similar to Output 18-4:

OUTPUT 18-4: kextcache __PRELINK_INFO segment, restored to XML format

morpheus@Ergo (../iOS)$ jtool -e PRELINK_INFO kernel.5.0.1.iPod4
Processing kernel.5.0.1.iPod4
Mach-O 32-bit executable for ARMv7; 11 load commands spanning 2076 bytes
Extracting segment@0x10420224, 523911 bytes into kernel.5.0.1.iPod4.__PRELINK_INFO
morpheus@Ergo (../iOS)$ more PRELINK_INFO kernel.5.0.1.iPod4
<dict><key>_PrelinkInfoDictionary</key>
   <array>
     <dict>
       <key>CFBundleName</key><string>MAC Framework Pseudoextension</string>
       <key>_PrelinkExecutableLoadAddr</key><integer size="64">0x80346000</integer>
       <key>_PrelinkKmodInfo</key><integer ID="5" size="32">0x0</integer>
       <key>_PrelinkExecutableSize</key><integer size="64">0x28c</integer>
       <key>CFBundleDevelopmentRegion</key><string ID="7">English</string>
       <key>CFBundleVersion</key><string>11.0.0</string>
       <key>_PrelinkExecutableSourceAddr</key><integer size="64">0x80346000</integer>
       <key>CFBundlePackageType</key><string>KEXT</string>
       <key>CFBundleShortVersionString</key><string>11.0.0</string>
       <key>OSBundleCompatibleVersion</key><string>8.0.0b1</string>
       <key>OSKernelResource</key><true/>
       <key>_PrelinkExecutableRelativePath</key><string>MACFramework</string>
       <key>CFBundleInfoDictionaryVersion</key><string ID="15">6.0</string>
       <key>CFBundleExecutable</key><string>MACFramework</string>
       <key>OSBundleAllowUserLoad</key><true/>
       <key>CFBundleIdentifier</key><string>com.apple.kpi.dsep</string>
       <key>CFBundleSignature</key><string ID="18">????</string>
       <key>OSBundleRequired</key><string>Root</string>

continues
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       <key>CFBundleGetInfoString</key>
           <string>MAC Framework Pseudoextension, SPARTA Inc,11.0.0</string>
       <key>_PrelinkBundlePath</key>
     <string>/System/Library/Extensions/System.kext/PlugIns/MACFramework.kext</string>
      <key>_PrelinkInterfaceUUID</key><data>d1F0yq5vQTeuZGj2Y5s5dg==</data>
</dict>
<dict>
   <key>CFBundleName</key><string>Private Pseudoextension</string>
   <key>_PrelinkExecutableLoadAddr</key><integer size="64">0x80347000</integer>
   <key>_PrelinkKmodInfo</key><integer IDREF="5"/>

      … (output truncated – there's over 520KB of XML) …

Note that the prelinked Info.plist sections contain additional keys that are not present (and not 
needed) in standalone kexts. These are easily identifi able because of the _Prelink prefi x. They are 
not formally documented by Apple, but their use is as shown in Table 18-7:

TABLE 18-7: Plist File Properties

PLIST PROPERTY USED FOR

_PrelinkExecutableSourceAddr The address in memory in which this kext can be found 

when loading the kernel. This is the address in which the 

kext’s Mach-O header can be expected from the __PRE-

LINK_TEXT section (compare with the output of otool).

_PrelinkExecutableLoadAddr The address in memory where this kext will be loaded. In 

the case of a prelinked kernel, equating this value with the 

source address just makes sense.

_PrelinkExecutableSize Size of the kext in bytes.

_PrelinkExecutableRelativePath Where this kext would be, relative to the 

_PrelinkBundlePath.

_PrelinkBundlePath Where this kext would be, had it been on disk.

_PrelinkInterfaceUUID Used for the core pseudo-extensions. A Base 64 –

encoded unique identifi er.

Kernelcaches are created on OS X dynamically — and the root directory still contains a copy of 
mach_kernel. On iOS, however, the kernelcache is one of the fi les provided by Apple. Therein also 
lies the difference between the iOS distributions of the various devices: The kexts required for a 
CDMA iPad, for example, differ from those of a GSM iPhone.

To view a list of kexts in the iOS kernelcache for yourself, you can run the decache shell script 
provided on the book’s website — provided you have the decrypted, decompressed kernelcache. It 
will provide you information on the kexts, as well as selectively display their properties. 

OUTPUT 18-4 (continued)
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The iPod4, 1 kernel will list something similar to what’s shown in Output 18-5, with some 143 
pre-linked extensions in all:

OUTPUT 18-5: Output of decache on the decompressed iPod 4,1 kernelcache of iOS 5.0 

morpheus@Ergo (/iOS)$ Tools/decache kernels/iPod4,1_5.0_9A334/kernelcache 
MAC Framework Pseudoextension (System.kext/PlugIns/MACFramework.kext)
Private Pseudoextension(System.kext/PlugIns/MACFramework.kext)
I/O Kit Pseudoextension (System.kext/PlugIns/IOKit.kext)
Libkern Pseudoextension (System.kext/PlugIns/Libkern.kext)
BSD Kernel Pseudoextension (System.kext/PlugIns/BSDKernel.kext)
AppleFSCompressionTypeZlib (AppleFSCompressionTypeZlib.kext)
Mach Kernel Pseudoextension (System.kext/PlugIns/Mach.kext)
Unsupported Pseudoextension (System.kext/PlugIns/Unsupported.kext)
I/O Kit USB Family (IOUSBFamily.kext)
I/O Kit Driver for USB User Clients(IOUSBFamily.kext/PlugIns/IOUSBUserClient)
I/O Kit Storage Family (IOStorageFamily.kext)
AppleDiskImageDriver (IOHDIXController.kext)
AppleDiskImagesKernelBacked (IOHDIXController.kext/PlugIns/AppleDiskImagesKernelBacked)
FairPlayIOKit (FairPlayIOKit.kext)
AppleARMPlatform (AppleARMPlatform.kext)
AppleVXD375 (AppleVXD375.kext)
IOSlaveProcessor (IOSlaveProcessor.kext)
IOP_s5l8930x_firmware (IOSlaveProcessor.kext)
AppleDiskImagesUDIFDiskImage(IOHDIXController.kext/PlugIns/AppleDiskImagesUDIFDiskImage)
..

Note, not all kexts may necessarily be loaded (though most are). You can use the jkextstat tool, 
described later in this chapter, to see which kexts are actively loaded.

Multi-Kexts
Kernelcaches are just one of two forms of pre-linking available in OS X and iOS. The other is 
known as a multi-kext archive, or mkext. This fi le is really just an archive of two or more kexts, like 
a kernelcache, but without the kernel. Mkexts are unidentifi able by “fi le” and other utilities, but a 
visible ASCII “MKXTMOSX” signature in the fi rst line of the binary format makes them stand out 
from other binaries. This header is documented in libkern/mkext.h, as shown in Listing 18-1:

LISTING 18-1: The mkext header, from libkern/mkext.h

* Core Header
*
* All versions of mkext files have this basic header:
*
* - magic & signature - always 'MKXT' and 'MOSX' as defined above.
* - length - the length of the whole file
* - adler32 - checksum from &version to end of file
* - version - a 'vers' style value
* - numkexts - how many kexts are in the archive (only needed in v.1)
* - cputype & cpusubtype - in version 1 could be CPU_TYPE_ANY

continues
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*     and CPU_SUBTYPE_MULTIPLE if the archive contained fat kexts;
*     version 2 does not allow this and all kexts must be of a single
*     arch. For either version, mkexts of specific arches can be
*     embedded in a fat Mach-O file to combine them.

Mac OS X provides a “kextcache” tool to maintain kernelcaches and mkext fi les alike. Using 
kextcache mkextunpack, you can list or unarchive an mkext.

A Programmer’s View of Kexts
From the programmer’s perspective, a kext is just a kernel-mode object fi le, linking with the kernel-
mode, rather than user-mode libraries. This means that many familiar functions from <unistd.h>
and <stdlib.h> are no longer available. Also, kernel-mode brings other constraints — primarily in 
the form of severe memory restrictions, because kernel memory is, by default, wired memory and 
consumes physical RAM.

The most severe restriction kernel mode imposes is in system stability. Creating a kext is the easy 
part — the diffi culty is in how to correctly code a kext, because even the most minor transgression 
in a kext can lead to a kernel panic. In kernel mode, no safety net exists like there is in user mode, 
and no well-defi ned process bounds to contain errors. Rather than kill an offending kernel thread, 
the kernel opts for harakiri, and kills itself.

Take out the warnings, however, and what remains is a relatively simple and straightforward pro-
cess, involving the following steps:

1. Start XCode and choose Generic Kernel Extension from the System Plug-ins pane.

2. XCode defi nes the kext entry and exit points for you automatically. Both have the same 
prototype. The generated code will look something like Listing 18-2: 

LISTING 18-2: The skeleton code generated for a new kernel extension

#include <mach/mach_types.h>

kern_return_t SampleKext_start(kmod_info_t * ki, void *d);
kern_return_t SampleKext_stop(kmod_info_t *ki, void *d);

kern_return_t SampleKext_start(kmod_info_t * ki, void *d)
{
    return KERN_SUCCESS;
}

kern_return_t SampleKext_stop(kmod_info_t *ki, void *d)
{
    return KERN_SUCCESS;
}

LISTING 18-1 (continued)
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The two arguments are generally treated as opaque, though the kmod_info_t can prove 
quite useful if you want to enumerate all the kexts in the system (or do more insidious things 
like hide your kext).

3. Edit the Info.plist fi le either directly or through the XCode plist editor (the plist is 
under Supporting Files).

4. Compile, either through the GUI or, if you prefer CLI, using xcodebuild(1). Although this 
command has many arguments, you can opt for the defaults, or selectively build for specifi c 
targets (-target) or confi gurations (-configuration).

Kexts can link with the Kernel.Framework, which is an empty framework (no binary) contain-
ing the kernel headers (exported from XNU during the build stage). In addition, the Resources/
directory of this framework contains text fi les listing the supported KPIs for each architecture 
(including ARM).

Kernel Kext Support
Kexts are a unique part of XNU, because they represent a signifi cant component that is neither part of 
Mach nor of BSD. Additionally, whereas most of the kernel is C, kext handling is performed in a por-
tion of XNU which is C++. The same holds true for I/O Kit, which rests on kext support, as well.

Mach kmod Support
XNU’s Mach layer was extended to support kernel modules. While the Mach layer is unaware of 
kexts, it does support a kmod object, representing a kernel module. Listing 18-3 shows kmod_info,
defi ned in osfmk/kern/kmod.h.

LISTING 18-3: The defi nition of the kmod_info_t , which abstracts kexts

#define KMOD_MAX_NAME    64

typedef struct kmod_info {
    struct kmod_info  * next;
    int32_t             info_version; // version of this structure
    uint32_t            id;
    char                name[KMOD_MAX_NAME];
    char                version[KMOD_MAX_NAME];
    int32_t             reference_count; // # linkage refs to this
    kmod_reference_t  * reference_list; // who this refs (links on)
    vm_address_t        address; // starting address
    vm_size_t           size; // total size
    vm_size_t           hdr_size; // unwired hdr size
    kmod_start_func_t * start;
    kmod_stop_func_t  * stop;
} kmod_info_t;

It is this kmod_info_t, which every kext gets as a parameter for its entry point. When a kext is cre-
ated, XCode initializes a kmod_info_t for the kext, using a macro, KMOD_DECL_EXPLICIT, which it 
generates in the XCode DerivedData/ directory under <moduleName>_info.c fi le. This is shown 
in Listing 18-4:
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LISTING 18-4: Automatically generated info for kexts

#include <mach/mach_types.h>

extern kern_return_t _start(kmod_info_t *ki, void *data);
extern kern_return_t _stop(kmod_info_t *ki, void *data);
__private_extern__ kern_return_t sampleKext_start(kmod_info_t *ki, void *data);
__private_extern__ kern_return_t sampleKext_stop(kmod_info_t *ki, void *data);

__attribute__((visibility("default")))
   KMOD_EXPLICIT_DECL(com.technologeeks.osx.sampleKext, "1.0.0d1", _start, _stop)
__private_extern__ kmod_start_func_t *_realmain = sampleKext_start;
__private_extern__ kmod_stop_func_t *_antimain = sampleKext_stop;
__private_extern__ int _kext_apple_cc = __APPLE_CC__ ; 

Up until Snow Leopard, osfmk/kern/kmod.c used to contain a fair amount of kmod handling code, 
including calls such as kmod_create, kmod_destroy, and others. At present, however, all these calls 
return a KERN_NOT_SUPPORTED value, with the exception of kmod_get_info(),  which is a Mach 
host trap, defi ned in user mode’s <mach/mach_host.h>. This still works for 32-bit clients, as shown 
in Listing 18-5:

LISTING 18-5: kmod_get_info() falling through to kext_get_kmod_info for 32-bit clients 

kern_return_t
kmod_get_info(
    host_t host __unused,
    kmod_info_array_t * kmod_list KMOD_MIG_UNUSED,
    mach_msg_type_number_t * kmodCount KMOD_MIG_UNUSED)
{
#if __ppc__ || __i386__
 if (current_task() != kernel_task && task_has_64BitAddr(current_task())) {
     NOT_SUPPORTED_USER64();
     return KERN_NOT_SUPPORTED;
 }  return kext_get_kmod_info(kmod_list, kmodCount);
#else
    NOT_SUPPORTED_KERNEL();
    return KERN_NOT_SUPPORTED;
#endif /* __ppc__ || __i386__ */
}

// kext_get_kmod_info is defined in libkern/OSKextLib.cpp:
/*********************************************************************
* Compatibility implementation for kmod_get_info() host_priv routine.
* Only supported on old 32-bit architectures.
*********************************************************************/
#if __i386__
kern_return_t
kext_get_kmod_info(
    kmod_info_array_t      * kmod_list,
    mach_msg_type_number_t * kmodCount)
{
    return OSKext::getKmodInfo(kmod_list, kmodCount);
}
#endif /* __i386__ */
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Indeed, on a 32-bit system, a quick and dirty implementation of kextstat(8) can be coded as 
shown in Listing 18-6:

LISTING 18-6: kextstat(8)-style output of struct kmod_info_t’s. Compile with –arch i386.

#include <mach/mach.h>
#include <mach/mach_host.h>

// Quick kextstat(8) like utility - using the 32-bit APIs of kmod_get_info();
// Compile with -arch i386

void main()
{

   mach_port_t            mach_host;
   kern_return_t          rc;
   mach_msg_type_number_t modulesCount = 0;
   kmod_args_t            modules;
   int                    i;
   kmod_info_t           *mod;

   mach_host = mach_host_self();
   rc = kmod_get_info (mach_host,
                      &modules,
                      &modulesCount);

   if (rc != KERN_SUCCESS)
    { 
      mach_error ("kmod_get_info",rc);
      exit(2);
    }

  printf("Got %d bytes - %d modules\n", modulesCount, modulesCount/sizeof(kmod_info_t));

  mod = (kmod_info_t *) modules;
  for (i = 0; i < modulesCount / sizeof(kmod_info_t); i++)
    {
       printf("%d\t", mod->id);
       printf("%s\t", mod->name);
       printf("%x\t", mod->address);
       printf("%x\n", mod->size);

// break after kpi.bsd, which is also #1
       if (mod->id ==1) break;
       mod++; // increments by sizeof(kmod_info_t)
    }

}

The kmod architecture, however, is considered deprecated, and the code in the previous listing will 
fail (claiming “service not supported”) on 64-bit OS X, or iOS (which is why the Cydia-supplied 
kextstat fails). The APIs exposed by libKern must be used in these cases, and they are discussed 
next.
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libKern
While kmod_info_t still serves as the basic structure for kexts, most of the kext handling logic 
has been moved to the libkern directory and has been rewritten in C++. The logic for main-
taining kexts is now in libkern/c++/OSKext.cpp and is exposed to user mode via the I/O Kit 
framework.

In OS X, Most of the interfacing with kexts is done by a dedicated daemon, kextd(8). This 
daemon, (which resides in /usr/libexec, with its ilk), serves as a bridge between user mode 
and the kernel, assisting both in loading kexts and resolving dependencies. It registers host 
special port #15 (HOST_KEXTD_PORT) when started from Launchd(1), and communicates with 
user mode clients over Mach messages (MIG subsystem 70000). The IOKit framework exposes 
KextManager APIs that work with kextd (and hide the the Mach messages to it), as well as 
non-manager ones that interface with the kernel directly (intended for use by kextd itself). The 
latter APIs are defi ned in the the kext.subproj of the open source IOKitUser package, and are 
listed in Table 18-8.

TABLE 18-8: libKern’s OS Kext APIs

API FUNCTION USER FOR

OSKextLoad(OSKextRef aKext);
OSKextLoadWithOptions

 (OSKextRef aKext,

  OSKextExcludeLevel startExc,

  OSKextExcludeLevel addPExc,

  CFArrayRef personalityNames,

  Boolean delayAutounloadFlag);

Loading a kext into the kernel. This function is not 

meant to be used outside kextd(8).

OSKextUnload(OSKextRef aKext,

Boolean termSvcAndRmvPrsnlt);

The core functionality of kextunload(8).

OSKextStart(OSKextRef aKext);

OSKextStop(OSKextRef aKext);

Start or stop a kext by calling its start or stop routines, 

respectively. 

Boolean OSKextIsStarted

  (OSKextRef aKext);

Return true if a kext has been started.

CFDictionaryRef

OSKextCopyLoadedKextInfo(

CFArrayRef kextIdentifiers,

    CFArrayRef infoKeys)

Returns a dictionary of all loaded kexts. The core 

functionality of kextstat(8).

New in Lion and iOS 4.3. Deprecates Snow Leopard/

iOS 3.x’s OSKextCreateLoadedKextInfo. 

The kextd is (for obvious reasons) not present in iOS. The APIs for direct kext loading and 
listing, however, still are (but don’t be surprised if they disappear soon after this book sees 
print). A kextstat(8)-like utility, similar to the one in Listing 18-7, would look like the 
following:
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LISTING 18-7: Using the IOKit-exposed OSKext APIs to provide kextstat(8)-like functionality

 /* A simple implementation of kextstat(8) which actually works on iOS, as well:
  * All the work is done by OSKextCopyLoadedKextInfo.
  * 
  * Compile with –framework IOKit –framework CoreFoundation
  */

#include <CoreFoundation/CoreFoundation.h>

void printKexts(CFDictionaryRef dict)

   // Simple dump of an XML dictionary
   CFDataRef xml = CFPropertyListCreateXMLData(kCFAllocatorDefault,
                                                (CFPropertyListRef)dict);
   write(1, CFDataGetBytePtr(xml), CFDataGetLength(xml));
   CFRelease(xml);
}

int main (int argc, char **argv)
{

  // OSKextCopyLoadedKextInfo does exactly that, i.e. obtains loaded kext 
  // information from kernel, and return it as a CoreFoundation "dictionary" object.
  CFDictionaryRef kextDict =
       OSKextCopyLoadedKextInfo(NULL, // CFArrayRef kextIdentifiers,
       NULL); //CFArrayRef infoKeys)

   printKexts(kextDict);

}

The code in Listing 18-6 merely dumps the dictionary returned by OSKextCopyLoadedKextInfo()
as an XML plist. The book’s companion website contains a more complete version, called 
jkextstat, offering kextstat(8) compatible output, as shown in Output 18-6: 

OUTPUT 18-6: jkextstat on iOS 5, from the author’s iPod Touch 4G

root@Podicum (~)# jkextstat
0 __kernel__ 
1 kpi.bsd 
2 kpi.dsep 
3 kpi.iokit 
4 kpi.libkern 
5 kpi.mach 
6 kpi.private 
7 kpi.unsupported 
8 driver.AppleARMPlatform <1 3 4 5 6 7>
9 iokit.IOStorageFamily <1 3 4 5 6 7>

continues
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10 driver.DiskImages <1 3 4 5 6 7 9>
11 driver.FairPlayIOKit <1 3 4 5 6 7>
12 driver.IOSlaveProcessor <3 4>
13 driver.IOP_s5l8930x_firmware <3 4 12>
14 iokit.AppleProfileFamily <1 3 4 5 6 7>
15 iokit.IOCryptoAcceleratorFamily <1 3 4 5 7>
16 driver.AppleMobileFileIntegrity <1 2 3 4 5 6 7 15>
17 iokit.IONetworkingFamily <1 3 4 5 6 7>
18 iokit.IOUserEthernet <1 3 4 5 6 16 17>
19 platform.AppleKernelStorage <3 4 7>
20 iokit.IOSurface <1 3 4 5 6 7 8>
21 iokit.IOStreamFamily <3 4 5>
22 iokit.IOAudio2Family <1 3 4 5 21>
23 driver.AppleAC3Passthrough <1 3 4 5 7 8 11 21 22>
24 iokit.EncryptedBlockStorage <1 3 4 5 9 15>
25 iokit.IOFlashStorage <1 3 4 5 7 9 24>
26 driver.AppleEffaceableStorage <1 3 4 5 7 8 25>
27 driver.AppleKeyStore <1 3 4 5 6 7 15 16 26>
28 kext.AppleMatch <1 4>
29 security.sandbox <1 2 3 4 5 6 7 16 28>
30 driver.AppleS5L8930X <1 3 4 5 7 8>
31 iokit.IOHIDFamily <1 3 4 5 6 7 16>
32 driver.AppleM68Buttons <1 3 4 5 7 8 31>
33 iokit.IOUSBDeviceFamily <1 3 4 5>
34 iokit.IOSerialFamily <1 3 4 5 6 7>
35 driver.AppleOnboardSerial <1 3 4 5 7 34>
36 iokit.IOAccessoryManager <3 4 5 7 8 33 34 35>
37 driver.AppleProfileTimestampAction <1 3 4 5 14>
38 driver.AppleProfileThreadInfoAction <1 3 4 6 14>
39 driver.AppleProfileKEventAction <1 3 4 14>
40 driver.AppleProfileRegisterStateAction <1 3 4 14>
41 driver.AppleProfileCallstackAction <1 3 4 5 6 14>
42 driver.AppleProfileReadCounterAction <3 4 6 14>
43 driver.AppleARMPL192VIC <3 4 5 7 8>
44 driver.AppleCDMA <1 3 4 5 7 8 15>
45 driver.IODARTFamily <3 4 5>
46 driver.AppleS5L8930XDART <1 3 4 5 7 8 45>
47 iokit.IOSDIOFamily <1 3 4 5 7>
48 driver.AppleIOPSDIO <1 3 4 5 7 8 12 47>
49 driver.AppleIOPFMI <1 3 4 5 7 8 12 25>
50 driver.AppleSamsungSPI <1 3 4 5 7 8>
51 driver.AppleSamsungSerial <1 3 4 5 7 8 34 35>
52 driver.AppleSamsungPKE <3 4 5 7 8 15>
53 driver.AppleS5L8920X <1 3 4 5 7 8>
54 driver.AppleSamsungI2S <1 3 4 5 7 8>
55 driver.AppleD1815PMU <1 3 4 5 7 8 31>
56 iokit.AppleARMIISAudio <1 3 4 5 7 22>
57 driver.AppleEmbeddedAudio <1 3 4 5 7 8 22 31 56>
58 driver.AppleCS42L59Audio <3 4 5 8 22 31 56 57>
59 driver.AppleEmbeddedAccelerometer <3 4 5 7 8 31>

OUTPUT 18-6 (continued)

c18.indd 730c18.indd   730 9/29/2012 5:52:17 PM9/29/2012   5:52:17 PM



Kernel Extensions (Kexts) x 731

60 driver.AppleEmbeddedGyro <1 3 4 5 7 8 31>
61 driver.AppleEmbeddedLightSensor <3 4 5 7 8 31>
62 driver.AppleEmbeddedUSB <1 3 4 5 7 8>
63 driver.AppleS5L8930XUSBPhy <1 3 4 5 7 8 62>
64 iokit.IOUSBFamily <1 3 4 5 7>
65 driver.AppleUSBEHCI <1 3 4 5 7 64>
66 driver.AppleUSBComposite <1 3 4 64>
67 driver.AppleEmbeddedUSBHost <1 3 4 5 7 62 64 66>
68 driver.AppleUSBOHCI <1 3 4 5 64>
69 driver.AppleUSBOHCIARM <3 4 5 8 62 64 67 68>
70 driver.AppleUSBHub <1 3 4 5 64>
71 driver.AppleUSBEHCIARM <3 4 5 8 62 64 65 67 70>
72 driver.AppleS5L8930XUSB <1 3 4 5 7 8 62 64 65 67 68 69 71>
73 driver.AppleARM7M <3 4 8 12>
74 driver.EmbeddedIOP <3 4 5 12>
75 driver.AppleVXD375 <1 3 4 5 7 8 11>
76 iokit.IOMobileGraphicsFamily <1 3 4 5 7 8>
77 iokit.IODisplayPortFamily <1 3 4 5 6 7 22>
78 driver.AppleDisplayPipe <1 3 4 5 7 8 76>
79 driver.AppleRGBOUT <1 3 4 5 7 8 76 77 78>
80 driver.AppleTVOut <1 3 4 5 7 8>
81 driver.AppleAMC_r2 <1 3 4 5 7 8 11 21 22>
82 driver.AppleSamsungDPTX <3 4 5 7 8 77>
83 iokit.IOAcceleratorFamily <1 3 4 5 7 8>
84 IMGSGX535 <1 3 4 5 7 8 83>
85 driver.H2H264VideoEncoderDriver <1 3 4 5 7 8>
86 driver.AppleJPEGDriver <1 3 4 5 7 8>
87 driver.AppleH3CameraInterface <1 3 4 5 7 8>
88 driver.AppleM2ScalerCSCDriver <1 3 4 5 7 8 45>
89 driver.AppleCLCD <1 3 4 5 7 8 76 78>
90 driver.AppleSamsungMIPIDSI <1 3 4 5 7 8>
91 driver.ApplePinotLCD <1 3 4 5 7 8>
92 driver.AppleSamsungSWI <1 3 4 5 7 8>
93 driver.AppleSynopsysOTGDevice <1 3 4 5 7 8 33 62>
94 driver.AppleNANDFTL <1 3 4 5 7 9 25>
95 driver.AppleNANDLegacyFTL <1 3 4 5 9 25 94>
96 AppleFSCompression.AppleFSCompressionTypeZlib <1 2 3 4 6>
97 IOTextEncryptionFamily <1 3 4 5 7 11>
98 driver.AppleBSDKextStarter <3 4>
99 nke.ppp <1 3 4 5 6 7>
100 nke.l2tp <1 3 4 5 6 7 99>
102 iokit.IO80211Family <1 3 4 5 6 7 17>
103 driver.AppleBCMWLANCore <1 3 4 5 6 7 8 17 102>
104 driver.AppleBCMWLANBusInterfaceSDIO <1 3 4 5 6 7 8 47 103>
105 driver.AppleDiagnosticDataAccessReadOnly <1 3 4 5 7 8 94>
106 driver.LightweightVolumeManager <1 3 4 5 9 15 24 26>
107 driver.IOFlashNVRAM <1 3 4 5 6 7 25>
108 driver.AppleNANDFirmware <1 3 4 5 25>
109 driver.AppleImage3NORAccess <1 3 4 5 7 8 15 108>
110 driver.AppleBluetooth <1 3 4 5 7 8>
111 driver.AppleMultitouchSPI <1 3 4 5 7 8>
112 driver.AppleUSBMike <1 3 4 5 8 22 33>
113 driver.AppleUSBDeviceMux <1 3 4 5 6 7 33>
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The free tool provides many additional features improving on the original, such as XML and 
experimental graph output (similar to Figure 18-1), as well as recursively following kext 
dependencies — for both OS X and iOS. 

Behind the Scenes of Kext Loading
The APIs we have seen so far are all user mode APIs. This is no surprise, as the initiative for loading 
a kext comes from user mode — whether from a system process, such as launchd(8), in reaction 
to a detected hardware change, or from the administrator, by manually using one the kext utili-
ties. The actual loading of the kext, however, involves kernel memory operations, and can only be 
performed in kernel mode.  

To bridge the divide, kext loading relies on Mach messages. All kext operations are encapsulated as 
serialized XML in the ool_descriptors of Mach kext_request messages (message #425). These 
messages, which are part of the host_priv subsystem (discussed in Chapter 9), naturally require 
access to the host’s privileged port. Recall, that Mach messages eventually involve the mach_msg_trap,
which moves from user mode to kernel mode.

Using the companion website’s Mach message snoop tool will reveal the serialized XML, for exam-
ple as in Output 18-7, associated with a kext unload:

OUTPUT 18-7: Serialized unload kext_request message:

OSKextUnloadKextWithIdentifier("kextName", //CFStringRef kextIdentifier,
                               true);    // Boolean 
                                terminateServiceAndRemovePersonalities);

<dict>
  <key>Kext Request Predicate</key><string>Unload</string>
  <key>Kext Request Arguments</key>
  <dict>
    <key>TerminateIOServices</key><true/>
    <key>CFBundleIdentifier</key><string>kextName</string>
  </dict>
</dict>

Likewise, snooping OS X’s kextstat(8) yields the following:

<dict>
   <key>Kext Request Predicate</key>
       <string>Get Loaded Kext Info</string>
   <key>Kext Request Arguments</key>
       <dict><key>CFBundleIdentifier</key><array></array></dict>
</dict>

The header fi le libkern/libkern/kext_request_keys.h provides a listing of all the various 
request “keys” or predicates, which are all textual. They are listed in Table 18-9:
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TABLE 18-9: Predicates for kext_request

PREDICATE PRIVILEGED USE

Get Loaded Kext Info No Get currently loaded kext information

Get Kernel Image No Get sanitized kernel image

Get Kernel Load Address No Get load address of kernel (for debugging)

Get All Load Requests No Get status of all kext load requests since boot

Get Kernel Requests Yes Retrieve list of all kext load requests, including those from 

kernel space

Load Yes Load one or more kexts

Start Yes Start a kext

Stop Yes Stop a kext

Unload Yes Unload (remove) a kext

The privileged predicate are reserved for kextd use, though up to an including Lion they can be used 
by any root process. The kernel may occasionally initiate requests back to user mode (i.e. kextd), as 
well. These requests include Send Resource, to ask kextd to retrieve a fi le resource belonging to a 
kext, and Kext Load Request, which asks kextd to load a kext from disk, and send it to the kernel. 
Additionally, kextd can get notifi cations from the kernel for kext loading and unloading. 

Experiment: Viewing kext_request Messages Issues by kextd
Using gdb, you can view both mach_msg()s sent to and from kextd on an OS X system. To start, 
fi nd the PID of kextd, and attach to it using gdb –p, as shown in Output 18-8:

OUTPUT 18-8: Attaching to kextd with gdb

root@Simulacrum (/)# ps -ef | grep kextd
    0  11       1   0  5:46PM ??         0:00.12 /usr/libexec/kextd
    0  4217  4214   0  5:48PM ttys007    0:00.01 grep kextd
root@Simulacrum (/)# gdb –p 11
GNU gdb 6.3.50-20050815 (Apple version gdb-1817) (Thu Apr  5 20:54:43 UTC 2012)
Copyright 2004 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB.  Type "show warranty" for details.
This GDB was configured as "x86_64-apple-darwin".
/Users/mahmood1/4197: No such file or directory

continues
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Attaching to process 11.
Reading symbols for shared libraries . done
Reading symbols for shared libraries 
.................................................................... done
Reading symbols for shared libraries + done
0x00007fff8642e6ae in mach_msg_trap ()

The kextd(8) will be in broken into in mach_msg_trap() — not surprising, as this is the blocking 
system call in the heart of its message loop. Add a breakpoint on kext_request, and continue: 

(gdb) break kext_request
Breakpoint 1 at 0x7fff86421770
(gdb) c
Continuing.

In another terminal (and, if you can, another window), run kextload(8), and load some harmless 
module, such as the NTFS driver (kextload /System/Library/Extensions/ntfs.kext). You 
should see kextd(8) break on kext_request, as it receives a message on its host special port, and 
relays it as a kext_request to the kernel. Likewise, kextload(8) will hang, since it is waiting on 
kextd’s reply. Printing the value of the RDX register as a string will reveal the message, as shown in 
Output 18-9:

OUTPUT 18-9: Displaying kext MIG messages

 (gdb) x/6s $rdx        # First request is a Get Loaded Kext Info, on the NTFS.kext
0x7f8c8a00d200:  "<dict><key>Kext Request Predicate</key>
                  <string>Get Loaded Kext Info</string>
                  <key>Kext Request Arguments</key><dict>
                  <key>Kext Request Info Keys</key>
                  <array><string>CFBundleIdentifier</string><string>CF"...
0x7f8c8a00d2c8:  "BundleVersion</string><string>OSBundleCompatibleVersion
</string><string>OSBundleIsInterface</string><string>OSKernelResource</string>
<string>OSBundleCPUType</string><string>OSBundleCPUSubtype</string>"...
0x7f8c8a00d390:  "<string>OSBundlePath</string><string>OSBundleUUID</string>
<string>OSBundleStarted</string><string>OSBundleLoadTag</string>
<string>OSBundleLoadAddress</string><string>OSBundleLoadSize</string> "...
0x7f8c8a00d458:  "SBundleWiredSize</string><string>OSBundlePrelinked</string>
<string>OSBundleDependencies</string><string>OSBundleRetainCount</string>
</array><key>CFBundleIdentifier</key><array><string>com.apple.kpi.li"...
0x7f8c8a00d520:  "bkern</string><string>com.apple.kpi.private</string>
<string>com.apple.kpi.unsupported</string><string>com.apple.kpi.mach</string>
<string>com.apple.kpi.bsd</string><string>com.apple.filesystems.ntfs</s"...
0x7f8c8a00d5e8:  "tring></array></dict></dict>"
(gdb) c
Continuing.

Breakpoint 1, 0x00007fff86421770 in kext_request ()
(gdb) x/6s $rdx                   # Actual load request is in MultiKext form
0x10b1eb000:     "MKXTMOSX"

OUTPUT 18-8 (continued)
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As further exercise, try and break inside kext_request, to intercept the kernel’s reply. You could try to 
break on the incoming mach_msg from kextload (or, alternatively, run kextload under gdb as well).

SUMMARY

This chapter discussed Kernel Extensions — KEXTs, and kernelcaches. Both are important concepts 
in the OS X and iOS kernel space, as they provide the fl exibility required by the kernel to support 
third party devices and enhancements. In the right hands, KEXTs offer the developer the ability to 
add functionality to the kernel, and provide device drivers, primarily using I/O Kit, as is shown in 
the next chapter. In the wrong hands, the functionality of a KEXT — injecting code directly into 
kernel space — can be abused to no end, providing a fulcrum for rootkits and malware to quite liter-
ally move the kernel.

REFERENCES

1. Apple Developer, “Kernel Programming Guide,” http://develeoper.apple.com/

2. Apple Developer, “Kernel Extensions Programming Topics,” http://developer.apple.com
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Driving Force — I/O Kit

Unlike other operating systems, XNU is unique in its offering of a complete runtime environ-
ment for device drivers. Even more unique is that this environment enables developers to code 
in C++ rather than C, which has traditionally been, alongside assembly, the language of choice 
for kernel programming.

XNU’s device driver environment is called the I/O Kit, and it is a proprietary component 
developed by Apple. It is neither part of Mach, nor BSD (nor, for that matter, the legacy OS 9). 
Its roots are in NeXTSTEP’s DriverKit though it has advanced considerably since then. It is a 
largely self-contained environment, meaning that developers can code and rely solely on the 
I/O Kit APIs, remaining largely ignorant of the Mach or BSD layers. By enabling C++, I/O Kit 
brings to developers the power of object orientation, chiefl y subclassing and function overrid-
ing, which transforms the device driver development process into a much more effi cient one. 
Driver developers need not implement everything from scratch, but can actually subclass exist-
ing drivers, inheriting some already-implemented features to save time, while overriding and 
providing different implementations for others.

I/O Kit also offers its own user mode set of APIs, the I/O Kit Framework, which pro-
vides advanced features such as kernel notifi cations and kernel-to-user (and vice versa) 
communications.

This chapter covers I/O Kit, dealing with its low-level implementation, which is part of the 
XNU open source. I/O Kit is already well documented by Apple Developer references[1,2], and 
the reader is encouraged to read these for the driver API specifi cs. Rather than discuss drivers 
of various types as other books do[3], we focus on the framework itself, and the implementa-
tion of the features widely required by all drivers: memory allocation, interrupt handling, and 
others. 
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This chapter applies to iOS as it does to OS X, since I/O Kit is part of iOS, and 
is in fact widely used by Apple for all the device drivers. Due to the restrictionson 
iOS, however, developing third-party drivers for Apple’s i-Devices is extremely 
hard (not to say impossible). This makes the term “iOS Kernel Programming” vir-
tually non-existent outside Apple’s own circles. Even on a jailbroken device, kext 
and I/O Kit support is (intentionally) limited. Also remember there are very few 
public kernel symbols to link the drivers with. Apple doesn’t want anyone messing 
around with its prized embedded OS, even more so when it involves the kernel.

INTRODUCING I/O KIT

I/O Kit is quite unique in its design. While all other operating systems certainly have device drivers, 
most are doomed to be written in C, and don’t have their own runtime environment. Few exceptions 
exist, notably Windows’ NDIS and the new Windows Driver Foundation architecture, but none is as 
extensive and as object oriented as I/O Kit.

Device Driver Programming Constraints
Device drivers are the primary reason why developers opt to abandon the relative safety of user 
mode and delve into the hazardous realms of kernel programming. Under normal conditions, user 
mode code is simply unable to directly access hardware, due to ring (or on ARM, CPSR) restric-
tions. Although user mode driver frameworks exist, most notably for USB, they are fairly limited, 
and often don’t live up to the requirements of high-throughput devices, such as disks or display 
adapters.

Device drivers, however, operate under the tightest set of requirements possible. By virtue of living 
in the kernel, they inherit all the restrictions of kernel mode: limited wired memory, no user mode 
APIs, and a very narrow margin of error, with nearly every bug potentially resulting in a kernel 
panic. Due to the drivers’ interfacing with hardware, however, the margin of error becomes even nar-
rower still. Device drivers often have to deal with interrupts from their devices, which are the most 
critical parts of kernel code, and introduce even further complications dealing with concurrency 
and code reentrance. To further complicate things, every operating system has its own device driver 
model, resulting in a very steep learning curve, which often proves to be a slippery one, as well.

As such, it is somewhat a relief for developers, in that sense, to be presented with I/O Kit as the API 
environment of choice for OS X. Object orientation makes plenty of sense when one considers that 
devices can be thought of as instances of their respective classes. While I/O Kit requires a certain 
paradigm shift from the usual view of device driver programming, its features make the shift and 
adaptation well worth it. These features are discussed next, but before plunging into the details, we 
fi rst need to lay out a few clear foundations.

What I/O Kit Is
Before we introduce the internals of I/O Kit, it makes sense to clearly defi ne what I/O Kit is and 
is not.
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A (Nearly) Self-Contained Environment
I/O Kit is a nearly self-contained runtime environment for drivers. The closest non–OS X compa-
rable runtime is NDIS (Network Driver Interface Specifi cation), which is widely used on Windows 
to provide a model and an environment for network device drivers. The NDIS APIs wrap those of 
Windows, and a fully NDIS-compliant driver can also run on Linux’s NDISWrapper.

I/O Kit has not been implemented anywhere but OS X and iOS (though, in theory, it can be). It is, 
however, a full environment, and an I/O Kit driver can theoretically rely solely on the I/O Kit APIs, 
which wrap those of the underlying Mach1. Indeed, the I/O Kit APIs for creating threads, allocating 
memory, and many other common tasks are merely thin wrappers over the Mach APIs. Listing 19-1 
shows an example of this in IOCreateThread, which wraps Mach’s kernel_thread_start:

LISTING 19-1: I/O Kit thread creation and exit APIs, from I/O Kit/Kernel/IOLib.cpp

IOThread IOCreateThread(IOThreadFunc fcn, void *arg)
{
     kern_return_t   result;
     thread_t                thread;

     result = kernel_thread_start((thread_continue_t)fcn, arg, &thread);
     if (result != KERN_SUCCESS)
                return (NULL);

     thread_deallocate(thread);

     return (thread);
}

void IOExitThread(void)
{
    (void) thread_terminate(current_thread());
}

In terms of performance, the overhead from I/O Kit is fairly small (in many cases, direct fall-
through calls such as IOExitThread() can be optimized by the compiler). Using the I/O Kit APIs 
hides the underlying Mach APIs, making drivers potentially forward compatible even if Mach is 
someday changed or altogether removed. 

An Object-Oriented Environment 
I/O Kit drivers are objects instantiated and derived from certain base classes. These base classes are, 
for the most part, provided by Apple. The topmost class — the abstract OSObject — is akin to C++’s 
or Java’s basic idea of an “object.” Though OSObject cannot be instantiated (because it is abstract), 
everything is a type of OSObject. The true power, however, comes from its descendants, which form 
a complex class hierarchy spanning well over a hundred classes. A developer can fi nd the class that 
is closest to his or her own required driver and pick up from there, effectively reusing code that is 
generic enough to be in the class itself.

1 Theoretically, as more often than not drivers, even Apple’s own, stray outside the I/OKit APIs.
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For example, consider an Ethernet driver. Your own specifi c driver for a proprietary multi-gigabit 
Ethernet would still share common logic with the lowliest of the 10 Mbps cards. Namely, Ethernet 
frame encapsulation, MAC address handling, and many other features are invariant, being part of 
the low-level Ethernet protocol. Implementing these in a driver from scratch would consume valu-
able time, and worse, might introduce bugs. Reusing tested code shortens the development time con-
siderably and lends itself to more solid, robust code, which is especially important for drivers.

Specifi cally Designed for Drivers
I/O Kit provides support for many aspects of programming that are specifi c to working with 
devices — primarily plug ‘n’ play, and power management. Another important architectural idea is 
that of driver layering, which enables the stacking of device drivers on top of one another.

Work Loop Driven
I/O Kit offers a work loop model, which is somewhat similar to Objective-C's Run loop (or Mach's 
message loop). In a nutshell, a work loop is a message handling loop which continuously processes 
events. Using a work loop greatly simplifi es concurrency issues, and can often alleviate the need for 
locks, which may impact performance.

Registry Based
Unlike other driver environments, in I/O Kit everything is accounted for — objects referenced, 
classes registered, and more — and is managed in the I/O Registry, which is a multi-layered hier-
archical database tracking both the objects and their interrelations. This registry is maintained 
in kernel memory, and can be queried from within an I/O Kit driver or from user mode using the 
ioreg(8) command, which will be discussed later in this chapter.

User (Mode) Friendly
I/O Kit offers APIs for user mode access, and in fact you can implement some drivers, such as those 
of USB devices, entirely in user mode. The I/O Kit registry is also readily accessible from user mode 
(as will be shown later in this chapter), allowing the user mode program to query hardware confi gu-
ration and parameters.

Implemented in a subset of C++
Because I/O Kit is C++ based, it draws on some of the language’s useful compile time features, 
such as:

 ‰ Namespaces: I/O Kit drivers can use C++ namespaces to wrap their functions and symbols, 
which helps avoid global symbol confl icts in the kernel. 

 ‰ Name mangling: I/O Kit symbols are mangled, which embedding of the C++ level prototype 
information (namespace, return value and arguments) in the function name. This feature 
actually comes in very handy when inspecting the iOS kernel symbols: A name demangler 
(for example, HexRays’ IDA-Pro or the free http://demangler.com) can quickly recover 
the prototype from the otherwise weird-looking symbol.
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What I/O Kit Isn’t
For all its capabilities, I/O Kit is still not a perfect environment. It has some shortcomings. 
Specifi cally:

A Full C++ Environment
 I/O Kit is implemented in C++, but the C++ is a restricted subset of the C++ you probably know 
and love (or hate) from user-land. In particular, it does not offer the following features:

 ‰ Templates: These compile-time features of C++ are not present in I/O Kit, so using the famil-
iar template < > on data structures is impossible. There is no STL support.

 ‰ Exceptions: One of C++’s most powerful features is structured exception handling. I/O Kit 
will have none of that, so the try/catch blocks must be left behind. The kernel stack is lim-
ited, because the kernel generally does not place exception handlers on kernel mode code.

 ‰ Standard constructors: These can’t be used in I/O Kit because the only way to fail in a con-
structor is to throw an exception, and I/O Kit does not support exceptions. Instead, object 
construction is split into two — a new operator (essentially a simple wrapper over malloc)
and an init() function, which prepares the object.

A Full-Featured API
The I/O Kit APIs are good, but not that good. Because there is no full C++ runtime, the only run-
time functionality is provided by a custom library called libkern. In order to be fully compliant with 
I/O Kit, a developer is expected to use only the libkern APIs. A developer might fi nd using those 
limited, as it requires getting used to the I/O Kit primitives (e.g. OSArray, OSDictionary), rather 
than the familiar data types of C++.

Another problem that arises is the minor transgression into Mach or BSD space. As stated before, 
the aim of I/O Kit is to be fully self-contained, but it somewhat falls short of that. Even Apple’s own 
examples sometimes use data types or functions that are in Mach headers. This requires the devel-
oper to be cognizant of some Mach primitives after all, and may hinder portability if I/O Kit is ever 
ported out of Apple’s systems.

The Most Flexible of Programming Models
An I/O Kit driver must implement a very specifi c lifecycle, which marks a signifi cant departure from 
normal driver callbacks that are well known from other operating systems. The lifecycle is quite 
complex, and a developer needs to know what callback to implement under what specifi c conditions.

All about code
I/O Kit drivers aren’t just binaries. Being kexts, they must contain the mandatory Info.plist.
Being I/O Kit drivers, the Info.plist is expected to contain I/O Kit-specifi c directives, without 
which the driver cannot function. It is not uncommon for a developer to spend frustrating 
hours debugging a driver that failed to load before realizing the problem is a typo in the driver’s 
property list.
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LIBKERN: THE I/O KIT BASE CLASSES

I/O Kit’s foundation, the libkern C++ runtime, defi nes the primitive classes that are available for use 
in all I/O Kit drivers. These primitives, which correlate somewhat with those of CoreFoundation, 
are defi ned in XNU’s libkern/libkern/c++ directory (in .h fi les) and implemented in the 
libkern/c++ directory, in simple fi les, one per class. This is shown in Table 19-1: 

TABLE 19-1: I/O Kit Primitives Provided by libkern

LIBKERN/ I/O KIT CLASS CORRESPONDING 

COCOA/CARBON CLASS

USED FOR

OSObject NSObject The parent class of all there is. Everything in 

I/O Kit inherits from this (with the exception of 

OSMetaClass), and by doing so automatically 

obtains reference counting logic and other top-

level methods.  

OSMetaClass N/A An abstract class used extensively in I/O Kit 

to provide RTTI services, in place of C++ RTTI, 

which is unsupported.

OSArray CFArray An array of OSObjects.

OSBoolean CFBoolean A primitive boolean type. Simple wrapper over 

a private bool value.

OSCollection

OSCollectionIterator

N/A An abstract collection object and its iterator. 

The latter inherits from OSIterator.

OSData CFData An opaque array of bytes.

OSDictionary CFDictionary An associative array. This is functionally the 

same as a Perl or Java hash, or Objective-C’s 

CFDictionary object.

OSIterator N/A Abstract base class for iterators.

OSKext N/A A class defi ning a kernel extension.

OSNumber CFNumber A number — integer, fl oat, or double.

OSOrderedSet

OSSet

CFSet An ordered and an unordered set, respectively. 

Both inherit from OSCollection.

OSString CFString A C-String wrapper.

OSSymbol N/A Unique, reusable symbols (for example, hard-

coded strings).
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The libkern/c++ directory also contains support fi les (OSRuntime.c and OSRuntimeSupport.cpp)
that are used during libkern’s initialization as well as serialization functions (OSSerialize/OSUnse-
rialize) to allow the writing and reading of objects from XML property lists.

OSObject
All classes but one in I/O Kit’s extensive hierarchy trace back to one ancestor, called OSObject. This is 
the same “object” ancestor that can be found in Java and C++ and is akin to the NSObject of Cocoa. 
Inheriting from OSObject involves a slight change in the programming model. Due to the lack of excep-
tion support, constructors may no longer be used to initialize the newly created objects. Instead, object 
instantiation is now split into two phases: the allocation of memory for it (which is done, as always, 
using the new operator), and the initialization, which is carried out by a separate init() function. It is 
the responsibility of a client creating an object to follow the new operator by a call to init(), and to 
check the return value of the latter. If init() returns false, the object cannot be used, and must be freed.

Quite a few I/O Kit classes implemented static factory methods, which perform the work of new and 
init in the same function. These follow a loose convention of “with,” allowing for multiple factory 
methods which take different arguments.

Another slight change in the model is the alleviation of the need to explicitly call free or delete to 
dispose of an object. In fact, these are disallowed. Instead, OSObjects maintain reference counts, 
which can be incremented (with retain) or decremented (with release). Code is expected to use 
only those two methods, with release automatically freeing and deleting the object when the refer-
ence count drops to zero. The object’s free() is still supported as the anti-function of its init(),
and for user-defi ned objects should be overridden to counteract any initializations on allocations 
performed during init().

OSMetaClass
I/O Kit doesn’t support the standard C++ RunTime Type Identifi cation (RTTI). It offers a similarly 
powerful mechanism, however, in its OSMetaClass.

The OSMetaClass is an abstract class and is not meant to be used directly. It does, however, require 
that special macros be used to enable its RTTI features. These macros include the following:

 ‰ OSDeclareDefaultStructors: This is used to emit the prototypes of the default construc-
tors and destructors (hence, “Structors”) for I/O Kit objects. Virtually all I/O Kit objects have 
this in their header fi le. Abstract classes use OSDeclareAbstractStructors, instead. The 
macros take two arguments — the driver class name and its superclass.

 ‰ OSDefineMetaClassAndStructors: This is similarly used in the class implementation. 
Abstract classes use OsDefineMetaClassAndAbstractStructors — The suffi x WithInit
may be appended to both, for macros that also include the initialization function. 

THE I/O REGISTRY

I/O Kit maintains an up-to-date database on all of its objects and the interrelations between them. 
This database resides in memory and is known as the I/O Registry. This should not be confused 
with Windows’ registry, which is arguably somewhat similar, but with far reaching differences.
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The I/O Kit registry is multi-planar. Quite simply, this means that it exists in three dimensions 
(unlike most graphs, which are bi-dimensional) and can be examined in one of several planes. 
Registered objects are like lines, which cut through the planes, and may exist in some, and be 
missing from others. As a consequence, their relationships with other objects are dependent on 
which plane they are viewed in. An object may be connected to its parent on one plane, but not 
another.

Table 19-2 lists the planes that are currently defi ned.

TABLE 19-2: Currently Defi ned Planes

PLANE USED FOR

IOService The default plane, wherein all objects have some connection to a parent.

IOACPIPlane The ACPI-enabled devices, as exported by AppleACPIPlatform.kext. Not appli-

cable on iOS, which does not support ACPI.

IODeviceTree The Device Tree, as constructed by EFI (or iBoot) and exported by the 

IOPlatformExpert. 

IOPower Devices that respond to power management events. Devices are connected in this 

plane if a power failure in one aff ects another. Drivers can selectively opt-in to this 

plane if they require power management by calling PMInit() and then asking their 

provider to joinPMTree(). (You can fi nd more on that topic in the “I/O Kit Power 

Management” section.)

IOUSB USB devices. This hierarchy is based on the USB devices’ own hierarchy. Usually 

not found on iOS, but may be created dynamically; for example, when an i-Device is 

connected to Apple’s digital camera kit.

IOFireWire Firewire buses and devices, if any. Like USB, the hierarchy is based on the internal 

hierarchy of devices connected. Not applicable on iOS or any Macs that do not sup-

port FireWire (for example, MacBook Air).

As noted in Table 19-2, planes may also be created dynamically. This is rarely done outside I/O Kit’s 
initialization, but one example is iOS’s USB host support, which is enabled when Apple’s digital 
camera kit’s adapter is attached to, say, an iPad. Observant hackers have long noticed that the “kit” 
is nothing more than a adapter that transforms an iPad into a USB 2.0 host (albeit in a limited man-
ner — USB devices cannot draw power, which limits most hard disks, but lightweight devices like 
keyboards can, in fact, be connected). 

The defi ned planes are maintained under the root entry, in the "IORegistryPlanes" property 
(kIORegistryPlanesKey in I/O Kit/I/O Kit/I/O KitKeys.h). A quick way to fi nd out what 
planes are defi ned on a given system is by using ioreg(8) and singling out the "IORegistry-
Planes" key, as shown in Listing 19-2. As noted in Table 19-2, the iMacs, Minis, and Pros also 
have an "IOFireWire" plane.
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LISTING 19-2: Viewing registry planes on a MacBook Air and on an iPad 2. 

#
# Macbook Air
#
morpheus@Ergo (~)$ ioreg -l -w 0 | grep IORegistryPlanes
  |   "IORegistryPlanes" = {"IOACPIPlane"="IOACPIPlane","IOPower"="IOPower",
"IODeviceTree"="IODeviceTree", "IOService"="IOService","IOUSB"="IOUSB"}
#
#... and, on a jailbroken iPad (with ioreg installed from Cydia)
#
root@Padishah (/) # ioreg -l -w 0 | grep RegistryPlanes
  |   "IORegistryPlanes" = {"IODeviceTree"="IODeviceTree","IOService"="IOService",
"IOPower"="IOPower"}

The ioreg(8) command is really an all-in-one utility for all things I/O Registry–related. Because 
it is a command-line utility, it is very useful. As shown in Listing 19-2, it can be used  with myriad 
switches.  The -l switch is used to list properties (which "IORegistryPlanes" is), and -w 0 disables 
the truncation of output on terminal window boundary). This command can also be compounded 
with the powerful grep(1) to quickly single-out only the class, instance, or property of interest. GUI-
oriented developers might prefer IORegistryExplorer, which is part of XCode, and can also show 
live registry changes such as the addition and removal of devices, as shown in Figure 19-1.

FIGURE 19-1: IORegistryExplorer showing the connection of an iPad to a MacBook Air
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In each plane, the objects are organized in a hierarchical tree structure. Each object can be found by 
a path-like specifi cation, which is reminiscent of the Solaris or Linux Device tree (and, in the case of 
the IODeviceTree plane, follows it). In addition, each object has a unique path designating its class 
inheritance, tracing back to OSObject. Remember that I/O Kit does not allow multiple inheritance; 
therefore, both the existence and uniqueness of this inheritance path are assured.

IORegistryEntry
The IORegistryEntry class is used as a parent class for those objects that have representation 
in the I/O Registry. It is a simple container of the object’s properties, which are stored as an 
OSDictionary object. The class is not meant to be directly inherited from. The parent class for I/O 
Kit objects is IOService, a subclass of this one. By virtue of inheritance, however, all drivers are 
also automatically registered.

IORegistryEntry contains some 70 or so functions that deal with the implementation of the 
IORegistry and its various planes. The initialize method implements a singleton by either 
initializing or returning the global gRegistryRoot (which can also be obtained by a call to 
IORegistryEntry::getRegistryRoot()). The root also holds the various I/O planes (in the 
gIORegistryPlanes dictionary). The IORegistryPlane class itself is also defi ned (in the same 
.cpp and .h fi les), though its only useful method is serialize(). New planes can be created at any 
time by IORegistryEntry::makePlane(), though as noted earlier this is fairly rare outside initial-
ization. The IORegistryEntry class is responsible for implementing the registry objects’ interface: 
getting and setting properties, managing hierarchy, and associating with an I/O plane. By inheriting 
from it (via IOService), a driver gets all these services “for free.”

IOService
The direct (and only) descendant of IORegistryEntry is IOService. It is also the ancestor of all 
drivers, both Apple supplied and third party. Though most drivers aren’t direct subclasses of 
IOService, they are still its eventual descendants, and inherit from it the set of functions they are 
capable of using (such as power management, interrupt handling, and so on) and in some cases, 
expected to implement (such as the driver standard callbacks). This is described in more detail later 
in the “I/O Kit Kernel Drivers” section.

The common ancestry of all I/O Kit classes comes in handy during various registry walking and 
enumeration tasks. This is shown next.

I/O KIT FROM USER MODE

I/O Kit drivers can communicate with user mode through APIs offered by the I/O Kit.Framework,
and its IOKitLib APIs. This framework is solely intended for user mode, as kernel mode I/O Kit 
components are expected to use the IOKit/ subdirectory of Kernel.Framework. User mode applica-
tions can use the APIs to interface with I/O Kit drivers in the kernel, as well as the I/O Kit compo-
nents themselves, most notably the I/O Registry. 

All I/O Kit functions rely on a special host port, which I/O Kit refers to (and obtains by a call to) 
IOMasterPort(). This function is really just a simple wrapper over the host_get_io_master()
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function, which obtains the IO_MASTER_PORT special port from mach_host_self(). (Special ports 
are discussed in Chapter 10.) Alternatively, applications can use kIOMasterPortDefault as a con-
stant value in place of the master port, which causes I/O Kit to look up the port internally. Com-
munications between user mode and I/O Kit kernel components and drivers is carried over Mach 
messages, generated as subsystem 2800 by MIG (as can be seen in System/Library/Frameworks/
IOKit.framework/Headers/iokitmig.h. The implementations of these routines in the kernel are 
in iokit/Kernel/IOUserClient.cpp.

One additional kernel function is iokit_user_client_trap, otherwise known as Mach trap #100. 
This trap (also implemented in iokit/Kernel/IOUserClient.cpp and defi ned in IOKitUser’s
IOTrap.s for i386) can be used through the IOKit framework’s exported IOConnectTrap[0-6] calls. 
These calls are used to invoke driver registered functions which are external to I/O Kit, with up to 6 
arguments. This mechanism is largely unused, aside from rare cases (e.g. IOPMSetPMPreferences in 
iOS), as the better IOConnectCallMethod and friends have been introduced in Leopard.

The IOKitLib APIs are well documented[4], and Apple maintains a developer-friendly guide for user 
mode developers[5]. These APIs are extremely powerful — this section provides an overview of some 
of them, while leaving others (even powerful ones, such as IOConnectMapMemory) to whet the vora-
cious user’s appetite.

I/O Registry Access
With the Master Port in hand, an application may send any number of I/O Kit requests. Commonly, 
these requests involve querying the I/O Registry. Listing 19-3 shows traversing the I/O Kit planes 
programmatically:

LISTING 19-3: Traversing I/O Kit’s service plane in search of a specifi c device

//
// Simple I/O Kit Registry walker
// Compile with -framework IOKit

#include <stdio.h>
#include <mach/mach.h>
#include <CoreFoundation/CoreFoundation.h> // For CFDictionary

// In OS X, you can just #include <IOKit/IOKitLib.h>. Not so on iOS
// in which the following need to be included directly
#define IOKIT   // to unlock device/device_types..
#include <device/device_types.h> // for io_name, io_string

// from IOKit/IOKitLib.h
extern const mach_port_t kIOMasterPortDefault;

// from IOKit/IOTypes.h
typedef io_object_t     io_connect_t;
typedef io_object_t     io_enumerator_t;
typedef io_object_t     io_iterator_t;
typedef io_object_t     io_registry_entry_t;
typedef io_object_t     io_service_t;

continues
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// Prototypes also necessary on iOS
kern_return_t IOServiceGetMatchingServices(
        mach_port_t     masterPort,
        CFDictionaryRef matching,
        io_iterator_t * existing );

CFMutableDictionaryRef IOServiceMatching(const char *name);

// Main starts here
int main(int argc, char **argv)
{
    io_iterator_t deviceList;
    io_service_t  device;
    io_name_t     deviceName;
    io_string_t   devicePath;
    char         *ioPlaneName = "IOService";
    int           dev = 0;

    kern_return_t kr;

// Code does not check validity of plane (left as exercise)
    // Try IOUSB, IOPower, IOACPIPlane, IODeviceTree
    if (argv[1]) ioPlaneName = argv[1];

// Iterate over all services matching user provided class.
    // Note the call to IOServiceMatching, to create the dictionary

    kr = IOServiceGetMatchingServices(kIOMasterPortDefault,
                                     IOServiceMatching("IOService"),
                                     &deviceList);

 // Would be nicer to check for kr != KERN_SUCCESS, but omitted for brevity

    if (kr){ fprintf(stderr,"IOServiceGetMatchingServices: error\n"); exit(1);}
    if (!deviceList) {  fprintf(stderr,"No devices matched\n"); exit(2); }

    while ( IOIteratorIsValid(deviceList) &&
            (device = IOIteratorNext(deviceList))) {

         kr = IORegistryEntryGetName(device, deviceName);
         if (kr) 
            {
                fprintf (stderr,"Error getting name for device\n"); 
                IOObjectRelease(device);
                continue;
         }

         kr = IORegistryEntryGetPath(device, ioPlaneName, devicePath);

         if (kr) { 
                // Device does not exist on this plane
                IOObjectRelease(device); 

LISTING 19-3 (continued)
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                continue; 
                }

         // can listProperties here, increment device count, etc..
         dev++;
         printf("%s\t%s\n",deviceName, devicePath);
    }

    if (device) {
         fprintf (stderr,
          "Iterator invalidated while getting devices. Did configuration change?\n");
        }
    return kr;
}

The fi rst thing to notice in the listing is the abundance of declarations. OS X supplies <IOKit/
IOKitLib.h> which defi nes all these, but the iOS SDK does not have this header. Nonetheless, the 
typedefs and functions are supported, so it’s a simple matter of importing the declarations manually, 
and so this code can compile and link on iOS, as well. The program fl ow is simple to follow, and the 
I/O Kit function names are rather self-explanatory, but much occurs behind the scenes.

First, the call to IOServiceMatching() creates a matching dictionary for IOService. This match-
ing dictionary is a CFMutableDictionaryRef (that is, a pointer to a non-constant CFDictionary
object), constructed automatically to match on service name or subclass name. Specifying 
IOService as the class name means we are interested in a match of all classes (since it is the pro-
genitor of nearly all other classes).

Every subsequent call to I/O Kit from IOServiceGetMatchingServices() internally calls a low-
ercased version (for example, io_service_get_matching_services), for which there is a corre-
sponding kernel implementation, as created by the MIG (you can fi nd the MIG .defs fi le in osfmk/
device/device.defs, and their implementations in iokit/Kernel/IOUserClient.cpp). The com-
munication is naturally carried out over Mach messages. Whereas all I/O Kit objects are opaque to 
user mode, the kernel functions can dereference them, and return specifi c fi elds (for example, io_
registry_entry_get_name, _get_path, and so on). Likewise, the I/O Kit opaque iterator object, 
which is used to walk through the device collection, can be safely dereferenced in kernel mode to 
return the device handle. 

Getting/Setting Driver Properties
Because device drivers in the I/O Kit model are objects, they have properties. These properties are 
visible in user mode and may be obtained and even modifi ed by a user mode client. This approach 
makes for a simple, intuitive way to communicate with device drivers, rather than the traditional 
UNIX ioctl(2) interface.

To manipulate properties, I/O Kit offers several functions. IORegistryEntryCreateCF
Properties() and IORegistryEntryCreateProperty() may be used to retrieve a copy of the 
driver’s entire property table, or an individual property by name. To set the property list or indi-
vidual properties, corresponding Set functions may be used. (The corresponding Get functions are 
deprecated, superseded by their Create counterparts). Listing 19-4 shows how you can extend List-
ing 19-3 to provide more of ioreg(8)’s functionality:
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LISTING 19-4: A property getter function for an IOService 

void listProperties(io_service_t     Service)
{

  CFMutableDictionaryRef propertiesDict;

  kern_return_t kr = IORegistryEntryCreateCFProperties( Service,
                                                    &propertiesDict,
                                                    kCFAllocatorDefault,
                                                    kNilOptions );
  if (!kr) { fprintf (stderr,"Error getting properties..\n"); return; }

  // If kr indicates success, we have the properties as a dict. From here,
  // it's just a matter of printing the CFDictionary, in this example, as XML

  CFDataRef xml = CFPropertyListCreateXMLData(kCFAllocatorDefault,
                                                (CFPropertyListRef)propertiesDict);
  if (xml) {
        write(1, CFDataGetBytePtr(xml), CFDataGetLength(xml));
        CFRelease(xml);
        }

}

Many drivers export useful information through the I/O Registry. One such example is battery 
status. iOS developers may be familiar with the UIDevice class and the UIDeviceBatteryState,
which enable getting battery properties through Objective-C and the UIKit framework. Similar 
functionality can be obtained in a quick-and-dirty way directly from the I/O Registry, by inspect-
ing the AppleSmartBattery class (in OS X) or AppleD1xxxPMUPowerSource (in iOS, 1946 on an 
iPad 2, 1816 on an iPod 4G). Though these are different classes, they export the CurrentCapacity
and MaxCapacity properties. Dividing the former by the latter will obtain the battery percentage. 
Likewise, the isCharging/fullyCharged properties provide the corresponding Boolean status indi-
cations. The IOKit framework also provides the IOPowerSource APIs (in the ps.subproj of the 
IOKitUser package) to wrap the raw I/O Registry parameters in a nicer API.

Plug and Play (Notifi cation Ports)
A client in user mode may ask I/O Kit to notify it of any I/O Registry changes, such as the arrival 
(addition) and departure (removal) of devices, or a change in the state of certain devices. This is use-
ful for adding plug and play support for devices, such as starting iTunes (and possibly iPhoto) when 
an i-Device is inserted.

To request notifi cations, a client must fi rst create a notifi cation port. This is an IONotification-
Port pointer (or IONotificationPortRef) returned by a call to IONotificationPortCreate. It’s 
opaque in user mode, but is actually hiding a Mach port.

The notifi cation port can be registered in I/O Kit’s kernel component by IOServiceAddMatching-
Notification() (for device arrival) or IOServiceAddInterestNotification() (for device state 
change). These functions internally call io_service_add_notification and io_service_add_
interest_notification, respectively. Interest notifi cations have a message-type argument, which 
is a self-explaining constant from IOMessage.h, as shown in Listing 19-5: 
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LISTING 19-5: kIOMessage constants for interest notifi cation messages

#define kIOMessageServiceIsTerminated      IOKit_common_msg(0x010) // removal
#define kIOMessageServiceIsSuspended       IOKit_common_msg(0x020)
#define kIOMessageServiceIsResumed         IOKit_common_msg(0x030)
#define kIOMessageServiceIsRequestingClose IOKit_common_msg(0x100)
#define kIOMessageServiceIsAttemptingOpen  IOKit_common_msg(0x101)
#define kIOMessageServiceWasClosed         IOKit_common_msg(0x110)
#define kIOMessageServiceBusyStateChange   IOKit_common_msg(0x120)
#define kIOMessageServicePropertyChange    IOKit_common_msg(0x130)
//
// These are considered deprecated
//
#define kIOMessageCanDevicePowerOff        IOKit_common_msg(0x200)
#define kIOMessageDeviceWillPowerOff       IOKit_common_msg(0x210)
#define kIOMessageDeviceWillNotPowerOff    IOKit_common_msg(0x220)
#define kIOMessageDeviceHasPoweredOn       IOKit_common_msg(0x230)
#define kIOMessageCanSystemPowerOff        IOKit_common_msg(0x240)

//
// These are wrapped by IOPMLib's IORegisterForSystemPower
//
#define kIOMessageSystemWillPowerOff       IOKit_common_msg(0x250)
#define kIOMessageSystemWillNotPowerOff    IOKit_common_msg(0x260)
#define kIOMessageCanSystemSleep           IOKit_common_msg(0x270)
#define kIOMessageSystemWillSleep          IOKit_common_msg(0x280)
#define kIOMessageSystemWillNotSleep       IOKit_common_msg(0x290)
#define kIOMessageSystemHasPoweredOn       IOKit_common_msg(0x300)
#define kIOMessageSystemWillRestart        IOKit_common_msg(0x310)
#define kIOMessageSystemWillPowerOn        IOKit_common_msg(0x320)

The notifi cation port may be listened on directly, using the Mach message primitives, or — prefer-
ably — connected to a run loop construct. Run loops are a Core Foundation programming model, 
which implements message loops. When a message is received on the notifi cation port, a user-sup-
plied callback is invoked. A good example of this can be found in the IOKitUser package, which 
contains an example program called ionotify.c.

I/O Kit notifi cations are also used (in Lion and later) by launchd(1), which can be set to listen for 
I/O Kit matching events (by specifying a com.apple.iokit.matching dictionary under Launch-
Events) and start programs on demand (as discussed in Chapter 7).

I/O Kit Power Management
Not all devices need power management support, but for those that do, this support is very impor-
tant. Power management is paramount for Apple’s i-Devices, which run on a battery and must use it 
effi ciently, because an i-Device that runs out of battery is about as useful as a brick. (Come to think 
of it, less so, because you wouldn’t go around throwing a $600 brick.) 

Drivers can register for power notifi cations and both respond and affect system power state transi-
tions. Drivers requiring this functionality can be found in the IOPower plane, and their lineage also 
doubles as their power dependency. This is described in Apple’s I/O Kit Fundamentals, and is thus 
left out of scope for this work. 
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User mode applications can also request involvement in Power Management. This has, in fact, been 
possible since the advent of OS X, albeit not as documented as is the case with drivers.  Applica-
tions can register for power notifi cations, and even prevent system sleep or shutdown using Power 
Management Assertions. These are similar in principle to Android’s “wakelocks,” which enable 
a user mode program to request a hold on the device, preventing it from going to sleep. Lion pro-
vides a command-line tool called caffeinate(8), whose simple source[6] shows that it is merely a 
simple program to call IOPMAssertionCreateWithDescription. This is one of the many API calls 
exported through IOPMLib, shown in Table 19-3:

TABLE 19-3: IOP Code

FUNCTION USAGE

io_connect_t

IORegisterForSystemPower

       (void *refcon,

IONotificationPortRef

*thePortRef,

IOServiceInterestCallback callback, 

io_object_t * root_notifier );

IOReturn IODeregisterApp

(io_object_t * notifier )

Register for power management notifi cations. This 

function creates an I/O notifi cation port and registers 

an kIOAppPowerStateInterest. The port refer-

ence is returned in thePortRef, with an optional 

callback. The refcon is an opaque identifi er which 

should be kept for de-registration.

IOReturn IOAllowPowerChange

(io_connect_t   kernelPort,

long            notificationID );

IOReturn IOCancelPowerChange

(io_connect_t kernelPort,

  long         notificationID )

Respond by allowing or canceling a power change 

event.

IOReturn IOPMSleepSystem

(io_connect_t fb );

IOReturn IOPMSchedulePowerEvent

(CFDateRef time_to_wake, CFStringRef 

my_id, CFStringRef type);

Request system sleep, or schedule sleep, wake up, 

shutdown, or power on.

IOReturn

IOPMAssertionCreateWithName(

CFStringRef AssertionType,

IOPMAssertionLevel AssertionLevel,

CFStringRef AssertionName,

IOPMAssertionID *AssertionID);

IOReturn IOPMAssertionRelease

     (IOPMAssertionID AssertionID)

Create a power management assertion, and specify 

a textual AssertionName.

The AssertionType is one of kIOPMAssertion-

TypeNoIdleSleep, kIOPMAssertionTypeNoDis-
playSleep, etc. 

The AssertionID should be retained until its even-

tual release.
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FUNCTION USAGE

IOReturn IOPMCopyAssertionsByProcess

(CFDictionaryRef *AssertionsByPID)
Show processes holding assertions (used by 

pmset –g).

Driving IOPMLib behind the scenes are Mach messages (this book holds little surprises, even as it 
draws to its close). The powermanagement subsystem is subsystem 73000, and MIG is used to gener-
ate connections, notifi cations, and assertions. The full list of messages can be seen in the IOKitUser
package’s pwr_mgt.subproj/powermanagement.defs.

Other I/O Kit Subsystems
The IOKitUser package contains, along side power management, other interesting subprojects, 
including the kext subproj (discussed last chapter), USB, HID, and Graphics. The latter is especially 
important, as it allows access to the framebuffer (graphics device memory) by communicating with 
the kernel’s IOGraphicsFamily. This is useful for all sorts of nifty graphics effects, CLUT manipu-
lation and transparent overlays (such as those which appear when pressing the volume buttons on a 
Mac or an i-Device). Singh’s book — Mac OS X Internals: A Systems Approach (Addison-Wesley 
Professional, 2006) — has a nice example of framebuffer rotation.

I/O Kit Diagnostics
Apple provides only two diagnostic utilities outside ioreg(8) and the graphical IORegistry
Explorer bundled with Xcode. The only two utilities provided are ioallocount and ioclasscount.

ioalloccount(8)
ioalloccount(8) takes no arguments and presents the memory consumed by I/O Kit allocations, 
as shown in Listing 19-6.

LISTING 19-6-A: ioalloccount on OS X 

 morpheus@ergo (/)$ ioalloccount
   Instance allocation = 0x0031c9c8 = 3186 K
   Container allocation = 0x001f9ecd = 2023 K
   IOMalloc allocation = 0x01ed5238 = 31572 K
   Pageable allocation = 0x08e55000 = 145748 K

On an i-Device, the numbers are lower by an order of magnitude:

LISTING 19-6-B: ioalloccount on iOS 

root@Padishah (/) # ioalloccount
   Instance allocation = 0x00154260 = 1360 K
  Container allocation = 0x002cadd7 = 2859 K
   IOMalloc allocation = 0x00e529c2 = 14666 K
   Pageable allocation = 0x016e1000 = 23428 K
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ioclasscount(8)
ioclasscount(8) counts the instances of all registered I/O Kit classes and subclasses, providing an 
aggregate count. This means that top-level classes get counted when they, or any subclass of theirs, 
get instantiated. The classes counted include the libkern classes as well, which understandably have 
the most instances. For example, Listing 19-7 shows an ioclasscount on an iPad 2, sorted by the 
number of instances:

LISTING 19-7: ioclasscount, sorted by the number of instances

root@Padishah (/) # ioclasscount | sort -t'=' -n -k 2
AppleAKM8973S = 0
AppleANX9836 = 0
..
AppleARMCHRPNVRAM = 0
AppleARMCortexGeneralPurposeCounter = 0
..
_IOServiceJob = 0
AppleA5AE2 = 1
..
IOServicePM = 49
IOCommand = 53
IOWorkLoop = 61
AppleARMIISCommand = 64
IOPMemory = 75
IOSubMemoryDescriptor = 93
OSObject = 94
AppleSimpleUARTCommand = 96
IOServiceMessageUserNotification = 100
IODMACommand = 107
IOTimerEventSource = 119
_IOServiceInterestNotifier = 120
IOService = 126
OSKext = 157
IOCommandGate = 187
IOSurfaceDeviceCache = 274
IOSurfaceClient = 276
IOSurface = 281
IOMachPort = 348
IOGeneralMemoryDescriptor = 426
IOMemoryMap = 430
IOBufferMemoryDescriptor = 509
OSSet = 567
OSArray = 2393
OSData = 2431
OSSymbol = 3031
OSDictionary = 3575
OSString = 4634
OSNumber = 5357

Both ioclasscount and ioalloccount merely query the I/O KitDiagnostics property of the 
registry root, as you can see in Listing 19-8:
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LISTING 19-8: Isolating the IOKitDiagnostics property from the I/O Registry

root@Padishah (/) # ioreg -w 0 -l | grep IOKitDiagnostics
 |   "IOKitDiagnostics" = {"Instance allocation"=1363612,"IOMalloc allocation"
=14976148,"Container allocation"=2885921,"Pageable allocation"=26894336
,"Classes"={"IOSDIODevice"=1,"IOApplePartitionScheme"=0,"IOFlashTranslationLayer"=1,
"IODPAudioDriver"=0,"AppleARMIODevice"=47,"AppleEmbeddedAudioPTTFunctionButton"=0,
"AppleProfileManualTriggerClient"=0,"IOHDIXHDDriveInKernel"=1,"AppleBCMWLANTxBuffer"=10,
"M2ScalerDARTVMAllocator"=0,"IOPlatformExpertDevice"=1,"AppleS5L8930XUSBPhy"=1,
"KDIEncoding"=1,"IORangeAllocator"=17,"IOMobileFramebuffer"=1, ...

IOKitDiagnostics is, in I/O Kit terms, a dictionary of fi ve keys: the four allocation counts (dis-
played by ioalloccount(8)) and a “classes” key, which itself contains a dictionary with however 
many classes are registered as its keys (and the class instances themselves count as values of the 
respective keys).

I/O KIT KERNEL DRIVERS

As explained earlier in this chapter, I/O Kit drivers are objects derived from a common ancestor, 
IOService. The hierarchy under IOService is quite rich and extensive, and along the way drivers 
can become more specialized and suited for the devices or buses they are meant to handle. 

I/O Kit drivers are classifi ed as either “drivers” or “nubs.” A nub is, quite simply, an adapter between 
two drivers, representing the devices to be controlled. Drivers create nubs for every device instance 
they manage. This is different than the UN*X model, in which the driver “object” is identifi ed by a 
major number, and the specifi c devices are identifi ed by minor numbers. That model is still supported, 
however, for those drivers which choose to create BSD device instances (in the /dev fi le system).

Driver Matching
I/O Kit maintains a Catalogue object2 that represents the database of all known and registered 
driver personalities. In this context, the term personality refers to one or more facets of driver 
functionality declared in the driver’s property list, as the value of the <IOKitPersonalities> key, 
which is itself a dictionary. Each personality must declare an IOProviderClass key (specifying the 
nub it can attach to). The Catalogue is bootstrapped by calling its initialize method, with values 
from gIOKernelConfigTables, a global array of strings containing the IOPanicPlaform and the 
IOPlatformExpertDevice entries (both in iokit/Kernel/IOPlatformExpert.cpp). The former is 
used to panic the system if no IOPlatformDevice matches, and the latter is instantiated as the root 
nub in StartIOKit().

I/O Kit uses driver personalities to match drivers to new devices (more accurately, newly generated 
nubs of discovered devices). As the provider (for example, PCI or USB) discovers a new device it pub-
lishes the device using a call to IOService::registerService(), which starts the driver matching 
process (literally, by a call to IOService::startMatching). This is a three-staged process, detailed 
in Figure 19-2. The process can be either synchronous (same thread) or asynchronous (in an I/O Kit 
created IOConfigThread). 

2 Apple/NeXT’s driver people were chiefl y British, apparently, as is the spelling of “Catalogue.”
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The fi rst step of the process is referred to as class matching, and is a simple fi ltering step that enu-
merates all candidate drivers, by looking a match on their IOProviderClass. This, however, may 
return many candidates. The next step therefore, is passive matching, which needs to weed out those 
that are spurious and irrelevant by looking at their published personalities. Each driver personally 
specifi es matching properties, which are either generic I/O Kit properties (listed in iokit/IOKit/
IOKitKeys.h), or provider specifi c, for example PCI device identifi ers (IOPCIMatch), USB types 
(such as idVendor/idProduct) and FireWire identifi ers (Unit_SW_Version/Unit_Spec_ID). Vir-
tual device drivers, which specify IOResources as their provider class, specify an IOMatchProperty
to avoid matching all virtual devices. Drivers may specify an optional IOProbeScore property to 
ask to be tried fi rst, and an IOMatchCategory property to specify which category they belong to. 
(Otherwise they are all classifi ed into the same, unnamed category.)

The properties specifi ed in the personality help the IOProviderClass fi lter the most matching driver(s), 
as all criteria should be matched. If a driver is of a more generic type, it can either specify less (or 
broader) matching criteria, or publish additional personalities. A good example of this can be found in 
VMWare Fusion’s kext, whose IOKitPersonalities keys is shown in Listing 19-9. A wildcard match 
(and a high IOProbeScore) enables Fusion’s vmioplug to be the fi rst responder when USB devices are 
inserted, prompting the user to redirect the device to a running instance of a virtual machine.

LISTING 19-9: Example of an IOKitPersonalities key (from VMWare Fusion)

...
   <key>IOKitPersonalities</key>
      <dict>
          <key>UsbDevice</key>
           <dict>
              <key>CFBundleIdentifier</key>
              <string>com.vmware.kext.vmioplug</string>
              <key>IOClass</key>
              <string>com_vmware_kext_UsbDevice</string>
              <key>IOProviderClass</key>
              <string>IOUSBDevice</string>
              <key>idProduct</key>
              <string>*</string>
              <key>idVendor</key>
              <string>*</string>
              <key>bcdDevice</key>
              <string>*</string>
              <key>IOProbeScore</key>
              <integer>9005</integer>
              <key>IOUSBProbeScore</key>
              <integer>4000</integer>
           </dict>
...

After ordering all potential matches, the last step is active matching, wherein I/O Kit calls, in turn, 
the candidate drivers’ init() and probe() methods (discussed later in the section, “The I/O Kit 
Driver Model”) to obtain the active or live probe scores. The drivers are re-ordered by their probe 
scores and IOMatchCategory (if any), and I/O Kit proceeds to start the highest-ranking driver 
in each category. This gives a chance to the most suitable driver to claim the device. The process 
repeats until the fi rst matching driver claims success (i.e. its start() method returns a true value). 
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If async, start IOServiceJob

else doServiceMatch

Provider calls IOService::registerService to publish new nub

Do

--- Wait for gJobsSemaphore
--- Match job type

--- IOService::doServiceMatch

--- Lose will to live if too many threads

while (alive);

_IOConfigThread::main
Take gJobsLock
- Increment number of jobs

- Create new thread if needed

Release gJobsLock
Signal gJobsSemaphore

_IOServiceJob::pingConfig

While (keepGuessing)

-- matches = IOCatalogue->findDrivers

-- probeCandidates

…

IOService:doServiceMatch

IOService::startMatching

IOService::findDrivers

Class matching: iterate over kernel tables,

match on IOProviderClass

Return matches

passive matching: Check for plist matches

reorder on family match IOProbeScore
For each of the family Matches

-- active matching:
----- init candidate driver

----- attach to candidate driver

----- probe candidate, get “live” score

-- flush list if sandbox claims match

Reorder list by score and IOMatchCategory
For each IOMatchcategory
-- startCandidate() by score, until success

IOService::probeCandidates

IOService::startCandidate

Log start time (if kIOLogStart)

Call driver’s start

Detach if start unsuccessful

FIGURE 19-2: The I/O Kit matching process

Kernel components and other drivers can access the Catalogue programmatically and draw on its match-
ing services. The iokit/bsddev/IOKitBSDInit.cpp fi le contains functions such as IOCatalogue-
MatchingDriversPresent (to perform a catalog search and return a Boolean indication if there are 
matching drivers) and IOServiceWaitForMatchingResource (to block its caller until a matching driver 
has been loaded), as well as others, which are mostly wrappers over methods from IOService and other 
I/O Kit classes. 

The I/O Kit Families
Apple provides several “families,” which defi ned abstract and concrete classes (all derived from 
OSObject). These classes implement the “typical” drivers of buses and generic device types. These 
include the ones shown in Table 19-4.
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TABLE 19-4: The I/O Kit Generic Families

I/O KIT FAMILY USED FOR

IO80211Family Wireless Ethernet (802.11) devices

IOACPIFamily Advanced Confi guration and Power Interface

IOAHCIFamily Advanced Host Controller Interface

IOATAFamily IDE/ATA devices

IOAudioFamily Generic family for all audio devices

IOBDStorageFamily Bluray

IOBluetoothFamily Bluetooth devices

IOCDStorageFamily CD-ROM devices

IODVDStorageFamily DVD-ROM devices

IOFireWireFamily FireWire (IEEE 1394) devices

IOGraphicsFamily Generic graphics adapters

IOHIDFamily Human interface devices (keyboards, mice, the Apple 

Remote, and others)

IONetworkFamily Generic network adapters

IOPCIFamily Generic PCI devices

IOPlatformPluginFamily Platform specifi c

IOSCSIArchitectureModelFamily SCSI devices

IOSCSIParallelFamily SCSI over parallel port interfaces

IOSMBusFamily Intel’s System Management Bus

IOSerialFamily Serial port drivers

IOStorageFamily Generic mass storage devices

IOThunderboltFamily Thunderbolt devices (as of later Snow Leopard and Lion)

IOUSBFamily Generic USB devices

Most of the families are in open source domain, as part of Darwin. This way, driver developers can 
draw on a large code base of examples, thereby taking a signifi cant shortcut when developing I/O 
Kit drivers. The families greatly shorten the time required for development, and improve the overall 
stability and memory requirements of the I/O Kit drivers by calling on and reusing existing code. A 
driver is expected to fi nd its nearest family member, and directly inherit from it. By doing so, much 

c19.indd 758c19.indd   758 10/5/2012 4:20:40 PM10/5/2012   4:20:40 PM



I/O Kit Kernel Drivers x 759

of the generic functionality can be obtained “for free.” For example, a PCI device driver can take 
advantage of the pre-existing PCI bus logic, rather than having to re-create it from scratch. Apple 
Developer’s I/O Kit Fundamentals guide provides detailed class hierarchies for each of its families, 
but we consider a specifi c example — that of IONetworkingFamily — next. 

Case Study: IONetworkingFamily and adapting to DLIL
IONetworkingFamily is a wonderful example of the interoperability of I/O Kit with XNU’s support-
ing DLIL (discussed in Chapter 17). It can be considered an adapter (in design pattern parlance, that 
is adapting one API to another), translating I/OKit’s IONetworkInterface abstraction to that of the 
underlying DLIL’s ifnet.

As an example, consider the case of Ethernet interfaces. IONetworkingFamily provides both 
IONetworkInterface (a “generic” interface abstraction) and its daughter class IOEthernet
Interface (a more specifi c abstraction, but common to all Ethernet interfaces). Recall from Chap-
ter 17, that during the initialization of XNU’s interface “object,” the struct ifnet, a driver must 
fi ll an ifnet_init_params structure. IONetworkingFamily provides the initIfnetParameters
method, as shown in Figure 19-3: 

super::initIfnetParams( params );
// fill in ethernet specific values
params->uniqueid = uniqueID->getBytesNoCopy();
params->uniqueid_len = uniqueID->getLength();
params->family = APPLE_IF_FAM_ETHERNET;
params->demux = ether_demux;
params->add_proto = ether_add_proto;
params->del_proto = ether_del_proto;
params->framer = ether_frameout;
params->check_multi = ether_check_multi;
params->broadcast_addr = ether_broadcast_addr;
params->broadcast_len = sizeof(ether_broadcast_addr);

// Common shims to all interfaces
params->name = (char *)getNamePrefix();
params->type = _type;
params->unit = _unit;
params->output = output_shim;
params->ioctl = ioctl_shim;
params->set_bpf_tap = set_bpf_tap_shim;
params->detach = detach_shim;
params->softc           = this;

IONetworkInterface::initIfnetParams

IOEthernetInterface::initIfnetParams (struct ifnet_init_params)

struct ifnet_init_params {
const void *uniqueid;
u_int32_t   uniqueid_len;
const char  *name;
u_int32_t               unit;
ifnet_family_t          family;
u_int32_t               type;
ifnet_output_func       output;
ifnet_demux_func        demux;
ifnet_add_proto_func    add_proto;
ifnet_del_proto_func    del_proto;
ifnet_check_multi       check_multi;
ifnet_framer_func       framer;
void                    *softc;
ifnet_ioctl_func        ioctl;
ifnet_set_bpf_tap       set_bpf_tap;
ifnet_detached_func     detach;
ifnet_event_func        event;
const void      *broadcast_addr;
u_int32_t               broadcast_len;

bsd/net/kpi_interface.h

FIGURE 19-3: The initIfNetParameters method in IONetworkFamily classes
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Thanks to I/OKit’s inheritance, IOEthernetInterface fi rst calls on its parent class (IONetwork
Interface) to set the common fi elds to all interfaces, such as the ioctl and BPF handlers. The Eth-
ernet specifi c parameters (broadcast addresses, demux, framing, etc.) can then be set as well. Note, 
in particular, the setting of ifnet structure’s ifnet_*_func pointers calls to the shims provided 
by I/O Kit. Between them, the two functions populate all the necessary fi elds of the ifnet_init_
params structure.

This pattern is followed in the attachToDataLinkLayer method, which is responsible for allocating 
and attaching the underlying ifnet structure (and is responsible for calling initIfnetParameters), 
as shown in Figure 19-4: 

ret=super::attachToDataLinkLayer (options, parameter);
if (ret == kIOReturnSuccess ) {
ifnet_set_baudrate( getIfnet(), 10000000); //FIXME..
bpfattach( getIfnet(), DLT_EN10MB, sizeof(struct ether_header));
}

memset(&iparams, 0, sizeof(iparams));
initIfnetParams(&iparams);
if (ifnet_allocate( &iparams, &_backingIfnet))
    return kIOReturnNoMemory;
_syncToBackingIfnet();
if ((!ll_addr || (ll_addr->sdl_alen != 0)) &&
(ifnet_attach(_backingIfnet, ll_addr) == 0))
{
   ret = kIOReturnSuccess;
}
else{ // error condition, clean up
     ifnet_release(_backingIfnet);
     backingIfnet = NULL;
}

IONetworkInterface::attachToDataLinkLayer

IOEthernetInterface::attachToDataLinkLayer( IOOptionBits options,void *parameter )

FIGURE 19-4: The attachToDataLinkLayer method in IONetworkingFamily classes

If you fl ip back a few pages and compare this to the UTUN case study in Chapter 17 (in particular, 
Figure 17-16), you will see that the very same functionality required for setting up an interface in 
that example has been matched by I/O Kit, through abstraction and object orientation. 

IONetworkingFamily also ties to DLIL in two other important locations: packet reception and 
transmission. IONetworkInterface::init calls the registerOutputHandler method on the 
IONetworkController’s outputPacket function. The IONetworkInterface::initIfnet-
Params method, shown earlier, ties the underlying struct ifnet’s ifnet_output function to 
IONetworkInterface’s output_shim, which forwards the packet (read: mbuf) to the outputPacket
handler. A driver is expected to override this function (whose default implementation merely drops 
all packets), and supply its own transmission logic.

Packet reception is implemented similarly: IONetworkInterface supplies two methods: input-
Packet and flushInputQueue, which the implementing subclass is expected to call (from its 
work loop, when processing an interrupt). The inputPacket method passes the packet to BPF fi lters, 
if any, then enqueues it and calls DLIL_INPUT, passes the packet (i.e. mbuf chain) to ifnet_input.
From there, processing continues as described in Chapter 17. This is shown in Figure 19-5:
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To Figure 17-6

inputPacket

flushInputQueue

ifnet_input()DLIL_INPUTIOWorkloop

Driver IONetworkInterface

FIGURE 19-5: Packet reception in IONetworkFamily

The case study ends here, but the object orientation does not; Other families can inherit from 
IONetworkingFamily, and extend this functionality even further. Figure 19-6 depicts classes 
which rely on IONetworkingFamily. One important family branch is IO80211Family, which 
provides wireless Ethernet functionality. Apple’s AirPort drivers (all as “plugins” of that fam-
ily) inherit from IO80211Interface and IO80211Controller. To examine the implementation 
of a full Ethernet driver, check out Apple’s Network Device Driver Programming Guide[7] and its 
AppleUSBCDCDriver[8].

IONetworkingFamily

AppleBasebandPDP IO80211Family

AppleBCMWLANCore

AppleUSBEthernetDevice

FIGURE 19-6: Descendants of IONetworkingFamily

The I/O Kit Driver Model
Irrespective of which family a driver is derived from, it is the eventual descendant of IOService. By 
virtue of this inheritance, an I/O Kit driver is expected to conform to a set interface and required to 
implement a very specifi c set of callbacks that correspond to milestones in its lifetime, as shown in 
Table 19-5:
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TABLE 19-5: I/O Kit Driver Functions

FUNCTION (DRIVER ENTRY POINT) CALLED WHEN

bool init

(OSDictionary * properties)
The driver is fi rst initialized.

void free(void) The driver is unloaded. This is the anti-function of init() and 

is expected to undo everything init() has done.

bool attach

(IOService *provider);
The driver is being attached to a nub, for probing or activation.

void detach

(IOService *provider);
The driver is being detached from a nub, after probing or fol-

lowing close.

IOService *probe

(IOService *provider,; 

int        *score);

I/O Kit performs a probe for the device in question, to see 

whether it exists. Return pointer to IOService object repre-

senting driver, and populate score.

If this function is omitted, the driver’s default score, from its 

Plist, is returned. 

bool start

( IOService *provider )
The driver is started by I/O Kit. Marks driver as active. Driver 

can publish its nubs.

bool stop

(IOService *provider)
The driver is stopped by I/O Kit. Marks driver as inactive. 

Driver is expected to recall any nubs published.

bool open

(IOService       *forClient,

  IOOptionBits    options,

  void *          arg);

Driver is opened for use.

void close

 (IOService   *forClient,

  IOOptionBits options);

Driver is released.

IOReturn message
 (UInt32 type, 

  IOService * provider,

  void * argument = 0 )

Notifi cation messages from other drivers.

There is a very specifi c order to the function calls, however, which is what I/O Kit considers to be 
the driver’s lifecycle, as shown Figure 19-7.

A driver automatically inherits the lifecycle functions from its superclass (IOService), but may 
implement them as well, effectively overriding them. To ensure safety, however, any such implemen-
tation is expected to call the corresponding implementation of the superclass (i.e. extending, rather 
than overriding the methods).
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init attach probe

free

attach start

detach

open

message

Initial Probing

reattachment

Probing successful?

detach

close

stop

Probing successful?

Asynchronous event notifications

FIGURE 19-7: I/O Kit driver state machine

For example, consider init(): The driver is expected to implement its own initialization func-
tion, which is called when the driver is fi rst loaded. This can be used for any driver-specifi c setup. 
Because the driver is a subclass of some other driver, it is expected to call its superclass init func-
tion fi rst. This is usually something following the pattern in Listing 19-10:

LISTING 19-10: Sample I/O Kit driver init() function

bool sampleDriver::init(IOPhysicalAddress * paddr)
{
   bool rc = super::init(); // MUST call superclass before doing anything
   if (!rc) return (rc); // return FALSE to caller if super failed 
   // Do own initialization
   return(false);
}

If the driver has nothing to do, the function body can either be left empty, or the function can be 
left unimplemented. Looking at the state machine, you can see another unusual trait of the I/O Kit 
callbacks, and that is in their coupling: A call to init() ensures an eventual call to free(), a call to 
attach() ensures a call to detach(), and start()is met by an eventual stop().

By using the debug boot argument (or sysctl(8) on debug.iokit and debug
.iotrace) you can ask XNU to log all IOKit operations. Specifi c fl ags are 
described in IOKit/IOKitDebug.h. Be careful with this, however! Setting all 
fl ags (0xFFFFFFFF) will likely cause a kernel panic.
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The IOWorkLoop
I/O Kit adopts the NeXT runloop model, familiar to user mode developers as the CFRunLoop. I/O 
Kit’s version of the runloop is called IOWorkloop, and it follows the same basic idea: providing a 
single, thread-safe mechanism to handle all sorts of events that would otherwise be asynchronous. 
Access to the work loop is protected by a mutex, alleviating concerns of reentrancy and thread 
safety. Note, however, there is no guarantee that a work loop is, indeed, a thread. That is, the work 
loop iteration may be run in the context of another thread in the system. The work loop iteration is 
therefore always self-contained.

The driver can opt to join its provider’s work loop (by calling getWork Loop), or create its own (by 
calling IOWorkLoop::work Loop()), which may be further exported to any of its subclasses. In prac-
tice most drivers opt to join their provider’s. The driver can register any number of various event 
sources whose events it will handle by calling its IOWork Loop::addEventSources method. These 
are all subclasses of IOEventSource, and include the event sources shown in Table 19-6.

TABLE 19-6: Event Sources in IOWorkLoops

EVENT SOURCE USED FOR

IOCommandGate Commands from clients, or from power management

IOInterruptEventSource

IOFilterInterruptEventSource

Interrupts, both dedicated and shared

IOTimerEventSource Periodic timer events, watchdogs

The IOWorkLoop has a surprisingly simple and effi cient implementation (at least, compared to earlier 
versions of OS X), using Mach continuations, as shown in Listing 19-11:

LISTING 19-11: The IOWorkloop implementation:

/* virtual */ void IOWorkLoop::threadMain()
{
restartThread:
    do {
        // Iterate through all work loop event sources. If we have none, bail.
        // runEventSources will also set "workToDo" to false, but the 
        // IOWorkloop:signalWorkAvailable() may be called at any time and reset
        // it to true.

if ( !runEventSources() )
            goto exitThread;

        IOInterruptState is = IOSimpleLockLockDisableInterrupt(workToDoLock);

        // If we get here and no more work (workToDo = FALSE), we check the
        // kLoopTerminate flag. If it is not set, we restart. Otherwise, we skip
        // this part and continue to exit.
        if ( !ISSETP(&fFlags, kLoopTerminate) && !workToDo) {
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            assert_wait((void *) &workToDo, false);
            IOSimpleLockUnlockEnableInterrupt(workToDoLock, is);
            thread_continue_t cptr = NULL;

            // If possible, set threadMain as our own continuation and block
            // otherwise, leave continuation null and use "goto" for same effect
            if (!reserved || !(kPreciousStack & reserved->options))
                cptr = OSMemberFunctionCast(
                        thread_continue_t, this, &IOWorkLoop::threadMain);
            thread_block_parameter(cptr, this);
            goto restartThread;
            /* NOTREACHED */
        }

        // At this point we either have work to do or we need
        // to commit suicide.  But no matter
        // Clear the simple lock and retore the interrupt state
        IOSimpleLockUnlockEnableInterrupt(workToDoLock, is);

     } while(workToDo);

exitThread:
    // We get here if no sources, or no more work and loop flags had kLoopTerminate
    thread_t thread = workThread;
    workThread = 0;     // Say we don't have a loop and free ourselves
    free();

    thread_deallocate(thread);
    (void) thread_terminate(thread);
}

Interrupt Handling
Although some device drivers are for virtual devices, the majority of drivers have to deal with real 
hardware, and — in doing so — with interrupts. I/O Kit does a fabulous job of hiding the interrupt 
handling logic of Mach from the driver developer, proving once more that ignorance is bliss. Rather 
than be bogged down in the quagmire of interrupt specifi cs, I/O Kit provides an object-oriented 
view of interrupts that is both effi cient and intuitive.

The Driver View
The main object in the I/O Kit interrupt model is that of an InterruptEventSource, which, as is 
evident by Table 19-6 and the class name, is a subclass of IOEventSource. This is, as far as work 
loops are concerned, “just another” event source, enabling the driver to treat interrupts with the 
same work loop logic it applies to timers and event notifi cations. 

The interrupts of the InterruptEventSource, however, aren’t interrupts in the full sense of the 
word, but rather a safer kind of deferred interrupts. I/O Kit distinguishes between primary (direct) 
interrupts, wherein the handler runs with further interrupts blocked (effectively as part of Mach’s 
interrupt handling) and secondary (indirect) interrupts where interrupts are enabled. In other words, 
secondary interrupts are signaled after a low-level handler acknowledges the interrupt, re-enables its 
line, and wakes up the driver’s thread, to allow the driver’s work loop to process the interrupt. This 
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is somewhat akin to Linux’s “bottom half” concept (in particular, the SoftIRQ), that Linux device 
drivers can schedule in the “top half” (the driver’s interrupt service routine).

Direct interrupts are effectively the highest priority in the system, as they run in “raw” interrupt 
context, when the CPU processes the low-level trap which preempts the then-executing thread (i.e. 
as a call from iOS’s fleh_irq or OS X’s interrupt(), as discussed in Chapter 8). Apple strongly 
discourages the use of primary interrupts due to their time-critical nature, and documents them only 
briefl y in the context of developing PCI drivers[9]. For all other purposes, Apple endorses the second-
ary interrupts. Secondary interrupts are much safer and are still of relatively high priority, but trail 
behind real time threads, timers, and paging events.

A special case to consider is when interrupt lines are shared between multiple interrupt sources. 
Drivers that are aware of that sharing can opt to register an IOFilterInterruptEventSource,
instead of the usual IoInterruptEventSource. The fi lter interrupt event source constructor is pro-
vided with two callback functions: The fi rst, to check whether their driver is indeed responsible for 
the device (returning a Boolean), and the second, to handle the interrupt if it is indeed within their 
responsibility (i.e. the fi lter returned true). The fi lter routine actually runs in the primary interrupt 
context, but is meant to merely check the interrupt source, and not process it. If the fi lter function 
returns true, the secondary interrupt is signaled and the handler function is invoked in the driver’s 
work loop context:

A non-conforming I/O Kit driver may “cheat” and handle an interrupt in the primary con-
text, by doing more work in the IOFilterInterruptEventSource’s fi lter function. To dissuade 
developers from doing so, Apple allows them to explicitly request a direct interrupt using the 
IOService::registerInterrupt method. The function is defi ned in iokit/IOKit/IOService.h
as shown in Listing 19-12:

LISTING 19-12: IOService::registerInterrupt

/*!@function registerInterrupt
   @abstract Registers a C function interrupt handler for a device supplying interrupts.
   @discussion This method installs a C function interrupt handler to be called at 
    primary interrupt time for a device's interrupt. Only one handler may be installed 
    per interrupt source. IOInterruptEventSource provides a work loop based abstraction 
    for interrupt delivery that may be more appropriate for work loop based drivers.
   @param source The index of the interrupt source in the device.
   @param target An object instance to be passed to the interrupt handler.
   @param handler The C function to be called at primary interrupt time when the 
    interrupt occurs. The handler should process the interrupt by clearing the interrupt
     or by disabling the source.
   @param refCon A reference constant for the handler's use.
   @result An IOReturn code.
     kIOReturnNoInterrupt is returned if the source is not valid;
     kIOReturnNoResources is returned if the interrupt already has an installed handler.
  */

    virtual IOReturn registerInterrupt(int source, OSObject *target,
                                       IOInterruptAction handler,
                                       void *refCon = 0);

Let the driver beware, however: Executing in primary interrupt context is so time critical that even 
calls to IOLog are considered unsafe.
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Behind the Scenes
The driver’s view of interrupts shows just how well I/O Kit hides the underlying kernel logic sup-
porting interrupts. Interrupt handling is not only among the most critical code paths in any kernel, 
but is highly machine dependent. Elegant object orientation abstracts these aspects, and enables 
Apple to share similar, if not identical logic between the two platforms. (See Figure 19-8.)

IOInterruptController

IOSharedInterruptControllerIOCPUInterruptController IOInterruptEventSource

IOEventSource

IOFilterInterruptEventSource

FIGURE 19-8: I/O Kit classes involved with interrupt handling

The IOService::registerInterrupt() method called by drivers for primary interrupts looks up 
the IOInterruptController instance. This is usually an instance of IOCPUInterruptController,
or that of the Platform kext. The function then proceeds to call the controller’s registerInterrupt
method, passing along the this object reference and the arguments it was given.

IOCPUInterruptController ties I/O Kit to Platform Expert, but indirectly — that is, through the ml 
layer. When an interrupt is received, it is fi rst handled by the machine specifi c handlers — hndl_
allintrs on Intel, and fleh_swi on ARM. Chapter 8 discusses this low-level interrupt logic on both 
platforms, but stops short of discussing what happens when interrupts are passed to the Platform Expert.

As shown in Listing 8-4 and Figure 8-6, the Platform Expert’s PE_incoming_interrupt() is invoked 
from the generic handler interrupt(osfmk/i386/trap.c)if the interrupt in question is found to be 
a device interrupt (and not a LAPIC one). The Platform Expert merely calls the corresponding inter-
rupt handler from the i386_interrupt_handler structure. This is shown in Listing 19-13:

LISTING 19-13: Platform Expert Interrupt Handling, from pexpert/i386/pe_interrupt.c

struct i386_interrupt_handler {
        IOInterruptHandler      handler;
        void                    *nub;
        void                    *target;
        void                    *refCon;
};

typedef struct i386_interrupt_handler i386_interrupt_handler_t;

i386_interrupt_handler_t        PE_interrupt_handler;

void
PE_incoming_interrupt(int interrupt)
{
       i386_interrupt_handler_t        *vector;
      // Code also contains DTRACE/DEVELOPMENT INT5 hooks

continues
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     vector = &PE_interrupt_handler;
     vector->handler(vector->target, NULL, vector->nub, interrupt);
}

The PE_interrupt_handler is a singleton. The Platform Expert exports a special function, PE_
install_interrupt_handler, which can be used to set its fi elds. This function is wrapped by void
ml_install_interrupt_handler (osfmk/i386/machine_routines.c), which is also exported and 
invoked by IOCPUInterruptController::enableCPUInterrupt.

In iOS the structure is largely the same, with minor exceptions outside the scope of this book. 
Figure 19-9 shows the iOS disassembly of void ml_install_interrupt_handler, decompiled 
using the OS X source. This is aligned with fleh_irq, which is the (rough) equivalent in iOS of OS 
X’s interrupt(), and inlines PE_incoming_interrupt(). Without getting bogged down in ARM 
assembly, suffi ce it to say that while the installation and invocation of the interrupt handler is not 
identical to OS X, it is nonetheless highly similar (did we not say that ignorance is bliss?)

fleh_irq: // q.v. interrupt(), osfmk/i386/trap.c
0x8007967C  SUB LR, LR, #4
; Set CPSR Interrupt flag
0x80079680  MRS SP, CPSR
0x80079684  BIC SP, SP, #0x100
0x80079688  MSR CPSR_x, SP
;
; ... lots of irrelevant stuff omitted
;
0x80079778 LDR   R8, =_kdebug_enable
0x8007977C LDR   R8, [R8]
0x80079780 MOVS  R8, R8 ; tests kdebug_enable
0x80079784 MOVNE R0, R5
0x80079788 BLNE  do_kdebug_EXCP_INTR_FUNC_START 
0x8007978C BL    SCHED_STATS_INTERRUPT
;

; void ml_install_interrupt_handler(void *nub,
;        int source,
;        void *target,
;        IOInterruptHandler handler,
;        void *refCon);
;
0x8007B794 PUSH    {R4-R7,LR}
0x8007B796 ADD     R7, SP, #0xC
0x8007B798 STR.W   R8, [SP,#0xC+savedR8]!
0x8007B79C MOV     R5, R3 ; R5 = handler
0x8007B79E MOV     R8, R2 ; R8 = target
0x8007B7A0 MOV     R6, R1 ; R6 = source
0x8007B7A2 MOV     R4, R0 ; R4 = nub
 ; current_state = ml_get_interrupts_enabled
0x8007B7A4 BLX    _ml_get_interrupts_enabled
 ; PE_install_interrupt_handler (…) inline
 ; OS X uses vector = &PE_Interrupt_Controller.
 ; But iOS gets the vector from CPU data (R1)
 ;    vector->handler = handler;
 ;    vector->nub = nub;
 ;    vector->target = target;
 ;    vector->refCon = refCon;
0x8007B7A8 MRC     p15, 0, R1,c13,c0, 4
0x8007B7AC LDR     R2, [R7,#8]    ; 5th arg
0x8007B7AE LDR.W   R1, [R1,#0x4B8]; vector
0x8007B7B2 ADD.W   R3, R1, #0xC0
0x8007B7B6 STR.W   R5, [R1,#0xBC] ; handler
;
; One ARM inst stores nub,refcon, target
;
0x8007B7BA STMIA.W R3, {R4,R6,R8} ; C0,C4,C8
0x8007B7BE STR.W   R2, [R1,#0xCC] ; 5th arg 
0x8007B7C2 MOVS    R2, #1
0x8007B7C4 STR     R2, [R1,#0x1C]
;
; Note, current_state is still in R0:
; ml_set_interrupts_enabled(current_state)
0x8007B7C6 BLX    _ml_set_interrupts_enabled
;
; initialize_screen(NULL, kPEAcquireScreen);
0x8007B7CA MOVS    R0, #NULL
0x8007B7CC MOVS    R1, kPEAcquireScreen
; ...
0x8007B7D6 B.W     _initialize_screen

; v->handler(v->target,.., v->nub, interrupt);
;
0x80079790 MRC  p15, 0, R9,c13,c0, 4
0x80079794 LDR  R4, [R9,#0x4B8] ; vector
0x80079798 STR  R5, [R4,#0xB8]
0x8007979C LDR  R3, [R4,#0x16C] ; Load count
0x800797A0 ADD  R3, R3, #1      ; Increment
0x800797A4 STR  R3, [R4,#0x16C] ; store count
0x800797A8 LDR  R0, [R4,#0xC8]  ; target
0x800797AC LDR  R1, [R4,#0xCC]
0x800797B0 LDR  R2, [R4,#0xC0]  ; nub
0x800797B4 LDR  R3, [R4,#0xC4]
0x800797B8 LDR  R5, [R4,#0xBC]  ; handler
0x800797BC BLX  R5 ; handler(target,...,nub,..)
;
; KERNEL_DEBUG_CONSTANT (MACHDBG_CODE( …
;
0x800797C0 MOVS R8, R8 ; test kdebug_enable
0x800797C4 BLNE do_kdebug_EXCP_INTR_FUNC_END;
; ...

FIGURE 19-9: ml_install_interrupt_handler and fl eh_irq from iOS aligned

LISTING 13-13 (continued)
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I/O Kit Memory Management
I/O Kit wraps Mach’s kernel memory management calls with its own. Although Mach has its vari-
ous memory management APIs (discussed in Chapter 12), the preferred mode of work is to use solely 
the I/O Kit new and delete operators, as well as the IO* wrappers.

The Memory management APIs offered by I/O Kit are shown Table 19-7.

TABLE 19-7: The I/O Kit Memory Allocation Methods

MEMORY MANAGEMENT API WRAPS MACH API USED FOR

New

Delete

kalloc

kfree

C++ objects

IOMalloc

IOFree

kalloc

kfree

I/O Kit malloc()/free() 

replacement

IOMallocAligned

IOFreeAligned

kernel_memory_allocate Allocates/frees memory with specifi c 

alignment requirements

IOMallocContiguous

IOFreeContiguous

kmem_alloc_contig Allocates/frees contiguous free 

memory

(deprecated)

IOMemoryDescriptor Various Recommended 

(supersedes IOMallocContiguous)

Mixing and matching methods is obviously a bad idea, and each allocation must be freed with its 
matching function.

Additional classes such as IODMACommand, can be used for physical memory and DMA access. This 
class (which supersedes IOMemoryCursor) is itself a subclass of IOCommand, which is a generic class 
for controller related commands (such as ATA and SCSI).

BSD INTEGRATION

As discussed in this Chapter, I/O Kit presents a rich set of APIs to user mode. This, however, can 
lead to a problem when porting UN*X applications, which still use the BSD device interfaces of 
/dev. XNU therefore supports the traditional concepts of block and character devices (as well as 
network interfaces, as shown in Chapter 17), and even the BSD-specifi c structures of bdevsw and 
cdevsw.

Aside from a few in-memory devices, however, the logic in the kernel which supports these devices 
isn’t XNU, but I/O Kit: In particular, the IOStorageFamily.Kext, which is responsible for han-
dling mass storage devices, and the IOSerialFamily.Kext, which is responsible for serial ports, 
contain specialized classes, (called IOMediaBSDClient and IOSerialBSDClient, respectively. Lion’s 
CoreStorage.kext likewise contains a CoreStorageBSDClient). These classes create and remove 
/dev entries on the fl y when new volumes are attached or removed from the system. The end result 
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is a dynamic /dev directory that refl ects the current state of connected devices, albeit implemented 
differently than Linux’s udevd. Example code from IOSerialBSDClient, which creates character 
devices for serial terminals, is shown in Listing 19-14:

LISTING 19-14: Initialization of BSD character devices in IOSerialBSDClient (IOSerialFamily-59)

// Provide a BSD layer compatible cdevsw structure, by populating all the 
// system call handlers expected by BSD with those of the I/O Kit class 
struct cdevsw IOSerialBSDClient::devsw =
{
    /* d_open     */ IOSerialBSDClient::iossopen,
    /* d_close    */ IOSerialBSDClient::iossclose,
    /* d_read     */ IOSerialBSDClient::iossread,
    /* d_write    */ IOSerialBSDClient::iosswrite,
    /* d_ioctl    */ IOSerialBSDClient::iossioctl,
    /* d_stop     */ IOSerialBSDClient::iossstop,
    /* d_reset    */ (reset_fcn_t *) &nulldev,
    /* d_ttys     */ NULL,
    /* d_select   */ IOSerialBSDClient::iossselect,
    /* d_mmap     */ eno_mmap,
    /* d_strategy */ eno_strat,
    /* d_getc     */ eno_getc,
    /* d_putc     */ eno_putc,
    /* d_type     */ D_TTY
};

// Constructor adds a devsw for TTYs
IOSerialBSDClientGlobals::IOSerialBSDClientGlobals()
{
     // ...
     // Initialization of various globals
     // ...
    fMajor = (unsigned int) -1; // request dynamic major
    fNames = OSDictionary::withCapacity(4); 
    fLastMinor = 4; // four minor devices
    fClients = (IOSerialBSDClient **)
                IOMalloc(fLastMinor * sizeof(fClients[0]));

    if (fClients && fNames) {
        bzero(fClients, fLastMinor * sizeof(fClients[0])); // memset to zero
        fMajor = cdevsw_add(-1, &IOSerialBSDClient::devsw); // assign major
        cdevsw_setkqueueok(fMajor, &IOSerialBSDClient::devsw, 0); // enable
    }
    if (!isValid())
        IOLog("IOSerialBSDClient didn't initialize");
}
// Destructor removes the devsw added
IOSerialBSDClientGlobals::~IOSerialBSDClientGlobals()
{
 ...  // removal of all globals
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   if (fMajor != (unsigned int) -1)
        cdevsw_remove(fMajor, &IOSerialBSDClient::devsw);
 ...
}

bool IOSerialBSDClient::createDevNodes()
{
       // ...
       // Create the device nodes
       //
        calloutNode = devfs_make_node(fBaseDev | TTY_CALLOUT_INDEX,
            DEVFS_CHAR, UID_ROOT, GID_WHEEL, 0666,
            (char *) calloutName->getCStringNoCopy() + 
                     (uint32_t)sizeof(TTY_DEVFS_PREFIX) - 1);

        dialinNode = devfs_make_node(fBaseDev | TTY_DIALIN_INDEX,
            DEVFS_CHAR, UID_ROOT, GID_WHEEL, 0666,
            (char *) dialinName->getCStringNoCopy() + 
                     (uint32_t)sizeof(TTY_DEVFS_PREFIX) - 1);
        if (!calloutNode || !dialinNode)
            break;

}

Thanks to I/O Kit inheritance, storage and serial devices can simply inherit from the Apple provided 
families, wherein all the BSD code is already nicely implemented and hidden.

SUMMARY

This chapter provided a thorough introduction to the wonderful world of I/O Kit, Apple’s runtime 
environment for device drivers, which is a unique part of XNU. This chapter focused on I/O Kit 
from an architectural perspective, and not on the specifi c drivers. The various families, particu-
larly USB and PCI, contain even more intricate and complicated classes than those hard coded into 
XNU. I/O Kit drivers can be accessed and queried from user mode over Mach messages, a property 
which forms the basis for many of Apple’s frameworks (like IOSurface) which communicate with 
hardware. 
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APPENDIX

Welcome to the Machine
Throughout this book, most of the samples of code are in C. Sometimes, however, especially 
in examples of code from the kernel core or from iOS, the excerpts are given in assembly. 
Maximum effort has been given to annotate the listings as much as possible, but in some cases 
you could fi nd yourself wondering about the particular role or meaning of a register.

This appendix provides a bird’s eye view of both Intel and ARM architectures and assembly 
languages. By no means anywhere near comprehensive, this appendix is not meant to replace 
the architecture manuals of Intel[1] (whose 64-bit architecture actually follows AMD[2]) and 
ARM[3] with their many pages of detail. The Intel architecture is fairly well documented, and 
at least one great reference exists for ARM[4]. This appendix, however, is meant to hopefully 
save you a time-consuming lookup of commonly used commands and registers, especially as it 
pertains to their usage in OS X and iOS. 

DRAMATIS PERSONAE: REGISTERS

Virtually every CPU, irrespective of vendor, makes use of registers to hold immediate values 
of variables and constants required for various arithmetic and logical operations. The registers 
and their conventional purpose, however, differs between architectures.

Intel
Intel’s current architecture dates back to the olden days of the 8086 and the 8-bit architecture. 
On 32-bit architectures, the program is limited to using only four general-purpose registers 
(EAX through EDX). In 64-bit architectures, R8 through R15 are added, and EAX through 
EDX can be used in 64-bit mode (i.e. as RAX through RDX).

Table A-1 lists the registers on the 64-bit architecture, and their traditional usage.
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TABLE A-1: 64-Bit Registers on the Intel x86_64 Architecture

REGISTER USED FOR

R AX Accumulator. Used as a general purpose register. This is the only register that does 

not need to be saved by a function before use, and it is expected to hold the function’s 

return value.

RBX Base. Used as a general purpose register.

RCX Counter. Used as a general purpose register. Some loop commands (REP) will decre-

ment RCX and repeat as long as its value is not zero.

RDX Data. Used as general purpose register.

RSI Source Index for copy operations. Used in 64-bit architecture for parameter passing.

RDI Destination Index for copy operations. Used in 64-bit architecture for parameter passing.

RBP Base pointer (if enabled in program).

RSP Stack Pointer.

R8-R15 General purpose registers. R8 and R9 used for parameter passing.

RIP Instruction pointer. Points to the next program to execute.

CS Code Segment. Also holds the Intel “ring” level in two bits: 00 (=0) through 11 (=3).

DS Data Segment

ES Extra Segment. Largely unused in OS X.

FS Far Segment. Largely unused in OS X.

GS General Segment. Kernel/User transition (using swapgs instruction).

SS Stack Segment.

Other registers include the various table registers (IDTR, GDTR, etc.), but they are rarely of any 
interest outside of the very startup of XNU, wherein they are initialized. 

Floating Point Registers
In addition to the common registers, Intel architectures also support fl oating-point optimized regis-
ters, called XMM registers. These are numbered XMM0 through XMM7. They are rarely used in 
the kernel, however, and are thus not of particular interest.

The EFLAGS/RFLAGS Register
There is an additional register in Intel architectures, known as the EFLAGS (32-bit) or RFLAGS 
(64-bit). Most of the 64-bit fi elds are “reserved,” meaning they are (at least at present) unused. 
Figure A-1 presents the important fl ags in this register.
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IOPLID P CO TI ZS ARESERVED

Trap flag: Toggle single-step

ID: can use CPUID Zero

Sign

Adjust

Parity

Carry

IOPL: I/O Privilege level (ring)

FIGURE A-1: Important fl ags in the EFLAGS register

The EFLAGS register can only be accessed only by means of a PUSHF (push fl ags) command 
through the stack. The machine level ml_get_interrupts_enabled function therefore has to resort 
to inline assembly, as shown in Listing A-1:

LISTING A-1: OS X’s ml_get_interrupts_enabled (osfmk/i386/machine_routines.c)

/* Get Interrupts Enabled */
boolean_t ml_get_interrupts_enabled(void)
{
  unsigned long flags;
  __asm__ volatile("pushf; pop  %0" :  "=r" (flags));
  return (flags & EFL_IF) != 0;
}

The EFLAGS register can be set using POPF, but to Intel provides the STI/CLI assembly instructions 
for toggling the interrupt fl ag.

Control Registers
Intel architectures have additional Control Registers (CRs) and DebugRegisters (DRs). The 
latter are used by debuggers to set hardware breakpoints (that is, instruct the CPU to break on 
read, write, or execute access to a particular address), and are outside the scope of this book. 
The former, however, are particularly important. While user mode (Ring 3) has no access to 
them, kernel mode (Ring 0) actually relies on them for enforcing protected mode, virtual mem-
ory management, and other system tasks.  The following list discusses the control registers and 
their usage:

 ‰ CR0: Miscellaneous fl ags controlling processor operation mode. The important ones are:

 ‰ Bit 0 (PE) toggles real/protected mode 

 ‰ Bit 16 (WP) enables write protection on memory pages

 ‰ Bit 31 (PG) enables paging (switches to virtual memory, and enables CR3)

 ‰ CR1: Unused.

 ‰ CR2: Address of last page fault.
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 ‰ CR3: Used when CR0’s PG bit is set. Holds the address of the page directory of the current 
process, i.e. a pointer to the virtual memory space of the current process. As a corollary, all 
threads of the same process share the same value of CR3. 

In 64-bit mode, unless otherwise stated (by the –no_shared_cr3 boot argument), the ker-
nel address space is mapped into all tasks. Entering and exiting kernel mode, therefore, is 
equivalent to switching between related threads.

 ‰ CR4: Miscellaneous fl ags controlling various extensions. Bit 5, for example, controls Physical 
Address Extensions. 

ARM
ARM processors have traditionally had more registers than Intel available for the program’s general 
purpose, though Intel’s 64-bit has narrowed the gap. While there are technically 16 registers for 
general purpose (R0 through R15, as outlined in Table A-2), the last three are reserved for special 
functions, and the fi rst four are used in argument passing, leaving 8 or 9 registers (depending on 
platform) used for the program. 

TABLE A-2: Shows the Registers on a Typical ARM Processor

REGISTER USED FOR

R0 Used as the fi rst argument to functions, and expected to hold the function’s return value 

on exit.

R1 Used as the second argument to functions with more than one argument, or as an addi-

tional 32-bit register to contain a 64-bit fi rst argument. Volatile. 

R2 Used as the third argument to functions with more than two arguments, or as the fi rst 

32-bits of a 64-bit second argument. Volatile.

R3 Used as the fourth argument to functions with more than three arguments, or as the 

second 32-bits of a 64-bit second argument. Volatile.

R4-R12/

V0-V8

General purpose. Must be saved by callee. 

R7/FP In some platforms (such as iOS), used as frame pointer (at all other times used as gen-

eral purpose). Note otool(1) incorrectly calls R11 FP, though it is general purpose. 

R9/ Reserved for special use in some platforms, such as iOS.

R13/SP Traditionally used as the Stack Pointer.

R14/LR Traditionally used as the Link Register, containing the return address of this function.

PC (R15) The Instruction pointer. Unlike Intel’s IP, this register may be set directly.
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A special feature in ARM is register banking. Some registers are available in “shadow copies” when 
in different modes. More specifi cally, R13 and R14 are available in per-mode copies in all CPU 
modes, and R8 through R12 are available in Fast Interrupt (FIQ) mode. This makes it easy to switch 
CPU modes without having to explicitly save registers every time (somewhat similar to Intel’s Model 
Specifi c Registers (MSRs)) 

Floating Point Registers
As in Intel, so in ARM — there are special registers for fl oating point operations. As with the Intel 
architecture, they are rarely used in kernel mode, but if you ever run into them, you’ll recognize 
them from Table A-3:

TABLE A-3: ARM Floating-Point Registers

REGISTER USAGE

S0-S15

D0-D7

Q0-Q3

Floating point registers. Two 16-bit Ss may be grouped together to form a 32-bit 

D, and two Ds may be grouped together to form a 64-bit Q. These can be used for 

fl oating point arguments, and are volatile.

S16-D31

D8-D15

Q4-Q7

Floating point registers, as above, but non-volatile (i.e. must be saved by callee).

S31-S63

D16-D31

Q8-Q15

Floating point registers, as above, but volatile, and only available on ARMv7 (which 

all modern i-Devices are).

Current Program Status Register
ARM CPUs use a special register, called the Current Program Status Register, in a way that is simi-
lar to Intel’s EFLAGS. This register is a fl ags-only register that holds roughly the same fl ags as those 
in Intel.

Just as in the case of Intel’s CPL bits (11-12) of EFLAGS, the CPSR dedicates bits to hold the current 
program’s processor mode. As discussed in Chapter 8 (and in particular Table 8-1), the CPSR holds 
the processor state in its fi ve least signifi cant bits. These status fl ags are naturally not writable by 
code in any mode but supervisor mode, though when responding to an interrupt, fast interrupt, or 
trap, they are automatically set. A special case is the Thumb mode register, which is set automati-
cally by the BX instruction (discussed later). (See Figure A-2.)

The CPSR can be read using the MRS command, and can be set using MSR, though the latter is not 
widely used. Instead, ARM offers a CPS command to change the processor state, and specifi cally 
set the I and F bits. The implementation of ml_get_interrupts_enabled in iOS therefore requires 
querying the CPSR (using MRS), as shown in Listing A-2:

bapp01.indd 777bapp01.indd   777 10/1/2012 7:00:50 PM10/1/2012   7:00:50 PM



Book Title   <Chapter No>   V1 - MM/DD/2010

778 x APPENDIX    WELCOME TO THE MACHINE

N Z C V Q TFIAE
Processor

Mode

oVerflow bit

Suffix

Q/NE

CS/CC
HS/HL

MI/PL

VS/VC

HI/LS

GE/GT
LT/LE

AL

Values

0/1

2/3

4/5

6/7

8/9

A/C
B/D

E

Carry/borrow/extend

Zero

Negative/less than

Thumb/ARM mode

Mode

10000

10001

10010

10011

10111

11011

11111

Meaning

_usr

_fiq

_irq

_svc

_abt

_und

_system

FIGURE A-2: The ARM CPSR fl ags

LISTING A-2: ml_get_interrupts_enabled in iOS

_ml_get_interrupts_enabled:            
0x8007C26C    MRS  R2, CPSR         ; Read value of CPSR into R2
0x8007C270    MOV  R0, #1           ; Set R0 to be "1"
0x8007C274    BIC  R0, R0, R2,LSR#7 ; Isolate bit #8 ("I")
0x8007C278    BX              LR    ; returns R0

Similar to Intel, instead of having to set the interrupt fl ag through CPSR the specifi c assembly 
instructions of CPSIE(nable) and CPSID(isable) can be used to toggle interrupts. These instruc-
tions take an argument of I for normal IRQs and F or fast IRQs. This can be seen in the disassem-
bly of ml_set_interrupts_enabled, which is left as an exercise to the interested reader.

Control Registers
Whereas Intel uses the CR registers for various process control tasks, ARM  employs a coproces-
sor. This coprocessor is known as p15, and has its own registers. It is used for various low-level 
operations, including cache control, virtual memory, and multithreading support. Operations on 
the coprocessor are generally of the form of reading (MRC) or writing (MCR) to the coprocessor’s 
registers. 
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Both the MRC and MCR commands follow the same general syntax:

MRC/MCR p15,  Opcode, Reg,  C#1, C#2, Opcode2

Where:

 ‰ p15—This constant denotes coprocessor

 ‰ Opcode—Operation to perform 

 ‰ Reg—Destination (MRC) or source (MCR) register

 ‰ C##, C##—Coprocessor control registers, as per Table A-4

 ‰ Opcode 2—Additional opcode, if required

SETTING: ABIS AND CONTEXTS

The processor executes code linearly (out-of-order execution notwithstanding). Developers, how-
ever, make use of functions and subroutines in order to improve code readability and effi cacy. When 
the compiler emits code, it follows certain calling convention that dictate how the functions are to 
be called and which registers are used for passing the parameters and return values. When the com-
piler emits calls that interface with the operating system (namely, system call invocations), it must 
additionally pass system call numbers and parameters in a way that is mutually agreed upon with 
the operating system. Additionally, certain other conventions dictate fl oating-point usage, and data 
alignment. Collectively, all these are known as the Application Binary Interface, or ABI. Apple pro-
vides documentation for the ABIs used in both OS X[5] and iOS[6], but both documents refer to the 
standard architecture ABI documents by AMD (which originated the x86_64 standard) and ARM, 
respectively.

ABIs
Intel and ARM have different ABIs, but the principles are similar. In both, the calling conven-
tions follow the same rough idea: Some registers are declared volatile, meaning their values are not 
expected to persist across a function call, whereas others are. A non-volatile register, however, is 
not necessarily a reserved register: Functions are expected to save non-volatile registers on entry and 
restore them on exit. So long as the non-volatile registers are correctly saved and restored, the caller 
has no idea (and really doesn’t care, either) if they are used in whatever way. What follows, is that 
functions generally have a fi xed prolog and epilog. This can be a useful anchor when trying to disas-
semble blocks of assembly which have no symbols. 

When calling a function, the following conventions are adhered to:

 ‰ The calling function (caller) is expected to do the following:

 ‰ Pass as many arguments as possible in the registers allocated for them

 ‰ If there are less arguments than available registers, registers are unused

 ‰ If there are more arguments than registers, any remaining arguments are passed on 
the stack
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 ‰ Save its return address, so the called function may return to its caller upon 
completion

 ‰ Pass control to the called function by jumping to its address

The callee has more responsibilities than the caller:

 ‰ On entry (that is, in the prolog), the called function (callee) is expected to:

 ‰ Save any registers it is going to use 

 ‰ If a frame pointer (Intel: RBP, ARM: R7) is used, set it

 ‰ Save any fl oating point registers it may be using

 ‰ Allocate space on the stack for local variables

 ‰ On exit, the callee is also expected to:

 ‰ Deallocate space on the stack for local variables

 ‰ Restore any fl oating point registers it may have been using

 ‰ Restore any general purpose registers it may have been using

 ‰ Restore the Frame Pointer, if used, and return to the return address specifi ed by the 
caller

Comparing the same function call on Intel and ARM side by side shows this well.

Figure A-3 demonstrates a decompilation of thread_call_allocate(), with interleaved source 
code and implementation on both Intel and ARM. You are encouraged to use otool(1) or IDA to 
see this call, as it is exported on both platforms.

Unlike the Intel architecture, wherein the instruction pointer may only be set by a JMP, CALL, or
RET instruction, ARM is more fl exible: The PC may be set by a branch, but also by a POP (as in 
the previous example), or by a direct load (LDR), or even a simple move (MOV). Both Intel and ARM 
assembly opcodes are discussed in this appendix. 

Context Switching
Another type of control transfer is context switching, the process of replacing the currently execut-
ing thread with another one. Unlike function calls, in which the caller premeditates the control 
transfer, this is an abrupt occurrence, which often happens unexpectedly (due to an interrupt), and 
which the thread is totally unaware of. It is, in effect, the same as pausing a movie, changing the 
channel, then — at some later point — resuming the movie.  

Context switching in Mach is abstracted by the machine_switch_context(osfmk/x86_64/
Cswitch.s) wrapper, which wraps the Switch_Context assembly logic. OS X’s Switch_Context,
as would be expected of an Intel architecture, saves all the registers and loads the previous state. 
Intel doesn’t have a “save all registers” command, so this is done manually, as shown in Listing A-3 
(i386 code is virtually identical, but with fewer registers).
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push    r14

push    rbx

push    rbp

mov     rbp, rsp

ADD    R7, SP, #0xC ; R7 = SP+12

PUSH   {R4-R7,LR} ; 0xB5F0

mov     rbx, rsi ; rbx = param0

mov     r14, rdi ; r14 = func

mov     rdi, = thread_call_zone

call    _zalloc

; Now rax = call

MOV    R4, R1 ; R4 = param0

LDR    R1, =thread_call_zone 

; call->func = func

mov     [rax+18h], r14

; call->param0 = param

mov     [rax+20h], rbx

; call->queue = NULL

mov     qword ptr [rax+10h], 0

MOV    R6, R0  ; R6 = func

LDR    R0, [thread_call_zone]

BL     _zalloc

; Now R0 = call

; bzero (call, 60);

MOVS   R1, #0x3C ; size_t

MOV    R5, R0    ; R5 = call

MOV    R0, R5    ; void *

BLX    _bzero    ; R0 destroyed

STR    R6, [R5,#0xC] ;call->func

MOVS   R1, #0        ; R1 = 0

MOVS   R0, #1        ; R0 = 1

STR    R4, [R5,#0x10] ;call->param

STR    R1, [R5,#8]    ;call->queue

; iOS has more fields than Lion..

STR    R1, [R5,#0x30]

STR    R0, [R5,#0x34]

STR    R0, [R5,#0x38] 

thread_call_t call = zalloc(thread_call_zone);

(call)->func = (call_entry_func_t)(func);
(call)->param0 = (call_entry_param_t)(param);
(call)->queue  = NULL;

thread_call_t thread_call_allocate(
 thread_call_func_t   func,
 thread_call_param_t   param0)
{

; rax already holds call

; restore regs in reverse order

pop     rbx

pop     r14

pop     rbp

retn

MOV    R0, R5 ; return (call);

POP             {R4-R7,PC}

return (call);

FIGURE A-3: Comparison of thread_call_allocate code on both ARM and Intel
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LISTING A-3: Switch_context on Intel x64, from osfmk/x86_64/cswitch.s 

/*
 * thread_t Switch_context(
 *              thread_t old,                           // %rsi
 *              thread_continue_t continuation,         // %rdi
 *              thread_t new)                           // %rdx
 */
Entry(Switch_context)
        popq    %rax                            /* pop return PC */

        /* Test for a continuation and skip all state saving if so... */
        cmpq    $0, %rsi
        jne     5f
        movq    %gs:CPU_KERNEL_STACK,%rcx       /* get old kernel stack top */
        movq    %rbx,KSS_RBX(%rcx)              /* save registers */
        movq    %rbp,KSS_RBP(%rcx)
        movq    %r12,KSS_R12(%rcx)
        movq    %r13,KSS_R13(%rcx)
        movq    %r14,KSS_R14(%rcx)
        movq    %r15,KSS_R15(%rcx)
        movq    %rax,KSS_RIP(%rcx)              /* save return PC */ 
        movq    %rsp,KSS_RSP(%rcx)              /* save SP */
5:
        movq    %rdi,%rax                       /* return old thread */
        /* new thread in %rdx */
        movq    %rdx,%gs:CPU_ACTIVE_THREAD      /* new thread is active */
        movq    TH_KERNEL_STACK(%rdx),%rdx      /* get its kernel stack */
        lea     -IKS_SIZE(%rdx),%rcx
        add     EXT(kernel_stack_size)(%rip),%rcx /* point to stack top */

        movq    %rdx,%gs:CPU_ACTIVE_STACK       /* set current stack */
        movq    %rcx,%gs:CPU_KERNEL_STACK       /* set stack top */
        movq    KSS_RSP(%rcx),%rsp              /* switch stacks */
        movq    KSS_RBX(%rcx),%rbx              /* restore registers */
        movq    KSS_RBP(%rcx),%rbp
        movq    KSS_R12(%rcx),%r12
        movq    KSS_R13(%rcx),%r13
        movq    KSS_R14(%rcx),%r14
        movq    KSS_R15(%rcx),%r15

        jmp     *KSS_RIP(%rcx)                  /* return old thread */

The saved value of RIP, which is also the one restored, returns to machine_switch_context()
which called this function.  Because this is the very last line in machine_switch_context, however, 
control returns back to its caller, thread_invoke(), which either calls the continuation, or returns 
right after thread_block().

iOS performs a context switch even more elegantly by using ARM’s STM and LDM commands, which 
can store multiple registers with a single instruction, as shown in Listing A-4:

LISTING A-4: Context switching, ARM style

__Switch_context: ; (called in ARM from machine_switch_context) _
0x8007B3A0     TEQ      R1, #0 ; is continuation specified?
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0x8007D364     STRNE    R1, [R0,#0x44] ; if yes, save to old+44 
  ;; 
  ;; If R1 == 0, there is no continuation – so we need to save state:
  ;;
0x8007D368     LDREQ    R3, [R0,#0x4B4] ; get TCB
0x8007D36C     ADDEQ    R3, R3, #0x10 ; get Register save area
0x8007D370 STMEQIA  R3!, {R4-LR}    ; save registers
  ;;
  ;; The following is done in any case (like the label "5" in the intel case)
  ;;
0x8007D374     LDR      R3, [R2,#0x4B4] ; get new thread TCB
0x8007D378     MCR      p15, 0, R2,c13,c0, 4
0x8007D37C     LDR      R6, [R2,#0x4C0]
0x8007D380     MRC      p15, 0, R5,c13,c0, 3
0x8007D384     AND      R5, R5, #3
0x8007D388     ORR      R6, R6, R5
0x8007D38C     MCR      p15, 0, R6,c13,c0, 3
0x8007D390     LDR      R6, [R2,#0x4C4]
0x8007D394     MCR      p15, 0, R6,c13,c0, 2
__load_context: ; this is also called in iOS from machine_load_context
0x8007D398     ADD      R3, R3, #0x10 ; get Register save area
0x8007D39C LDMIA    R3!, {R4-LR}    ; Load R4 through R14
0x8007D3A0     BX       LR    ; Return to loaded R14 (LR)

Note, that in both the OS X and iOS cases, a check is made for a continuation. If one is speci-
fi ed, the operation of saving the register state can be skipped altogether, allowing for a much faster 
thread context switch. Continuations are discussed in Chapter 11.

FLOW: OPCODES

Intel and ARM assembly are two different languages: They can be used to convey the same ideas, 
though with totally different syntax and words. The two assembly languages are also very rich, with 
hundreds of mnemonics. Just like human languages, however, which can be colloquially mastered 
with a subset of the full vocabulary, so can assembly be understood with relatively few mnemonics. 
These are listed in Table A-5.

TABLE A-5: Assembly Mnemonics

INSTRUCTION INTEL  MNEMONIC ARM MNEMONIC

Move value to/from registers MOV MOV

MVN: move negative

LDR/STR: Load/Store Register

LDMIA/STMIA reg!, {register-list}

Load/Store Multiple (Registers) 

and increment after

Basic arithmetic ADD

SUB

MUL

DIV

ADD

SUB

MUL/MULA

SDIV/UDIV

continues
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INSTRUCTION INTEL  MNEMONIC ARM MNEMONIC

Logical test on value in a 

register

TEST TST

MOVS

No-operation NOP MOV R0, R0

Logical Operations AND

OR

XOR

AND

ORR

EOR

BIC (bitwise-complement)

Jump JMP/Jxx B (with standard conditionals, see 

“Conditional Execution” section below)

Call a function CALL address BL address/register

BLX address/register – change 

ARM/Thumb

Return from a function RET BX LR (common)

(Can also modify PC directly)

Stack operations PUSH register

POP register

PUSH  {register-list}

POP  {register-list}

Simulated interrupt/system call INT SWI/SVC

Breakpoint INT $3 BKPT num

A great “cheat sheet” for Intel Assembly can be found in a work by Ange Albertini[7], and ARM 
maintains a quick reference card as well[8].

ARM ASSEMBLY ENHANCEMENTS

ARM assembly is somewhat different from other assembly languages, in that it has specifi c features 
no other language has. Instructions may be suffi xed with logical conditions, or specifi ed with bit-
shift operations. These features are discussed next.

Conditional Execution
ARM processors have a nifty feature: A conditional suffi x may be appended to every instruction. 
This conditional tests the result of the last comparison or logical comparison operation, and only 
executes the instruction if it satisfi es that result. Otherwise, the instruction in question effectively 
becomes a NOP command. This is more elegant and cache-friendly than simply jumping over a set 
of instructions. The suffi xes are shown in Table A-6:

TABLE A-5 (continued)
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TABLE A-6: Instruction Suffi  xes on ARM for Conditional Execution

SUFFIX MEANING

EQ/NE Equal or Not-Equal

CS/CC

HS/HL

Carry set or clear

Unsigned Higher-same or lower

MI/PL Minus (negative) or Zero-Positive

VS/VC Overfl ow or not overfl ow

HI/LS Signed higher or lower

GE/GT/LT/LE >=/>/</<=

AL Always (not specifi ed, as it is default)

If you look back at Figure A-2, you will see how the suffi x maps to the fl ags in the CPSR.

Built-in Bit Shifting
Another useful (though somewhat confusing) feature of ARM processors is the ability to specify bit-
shifts in the instruction. The processor has a barrel shifter, which enables it to shift left (i.e. multiply by 
powers of 2) or right (divide by powers of 2). The right shifts, in particular, may be one of three types:

 ‰ Logical: A “0” is pushed into the most signifi cant (leftmost) position, and pushes all the bits 
right. The least signifi cant bit is lost. 

 ‰ Arithmetic: The current bit value of the most signifi cant bit is used to push it along with all 
other bits right. The least signifi cant bit is lost.

 ‰ Rotation: As arithmetic, with the least signifi cant bit used to push the most signifi cant bit. 

An example of the logical shift right could be seen in Listing A-2, which demonstrated getting the 
interrupt status. To isolate bit #8 of the CPSR (the I bit, which holds the interrupt state), the com-
mand BIC R0, R0, R2,LSR#7 is used to shift R2 (holding the value of CPSR) right 7 bits (making 
the eighth bit the fi rst bit), then take a bitwise complement of it, and performs a bitwise AND with 
the value of 0x01 (which preserves the fi rst bit) back into R0 (which is returned to the caller).

Thumb mode
ARM processors have more than one mode of operation. In the normal, 32-bit mode, they execute 
the default instruction set, known as ARM. They can, however, be instructed to dynamically 
change the instruction set to a more compact, 16-bit mode known as Thumb mode. This means 
that, when dumping an ARM binary, the assembly may be read in one of two ways, with only one 
of them being the “correct” mode. This dual mode often confused otool(1), which is why it can 
be forced to dump ARM binaries in Thumb using the –B switch. Even powerful disassemblers, most 
notably IDA, sometimes get the mode wrong.
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The processor itself “knows” which mode is required because its branch instruction, B can 
contain the X directive, specifying a mode switch. The encoding of the desired mode is in the 
address itself: The least-signifi cant bit of the address encodes 1 for thumb mode, or 0 for ARM. This 
encoding is possible since bit is unused anyway: ARM instructions must be aligned on a four byte 
boundary, and thumb instructions must be aligned on a two byte boundary, leaving the bit unused 
in either case.  

So long as you know how the processor got to a particular code section, telling the two modes apart 
is simple. But if you are dumping some random text, there is no way to disambiguate ARM mode 
from Thumb mode without trying both. Usually, trying the incorrect mode (ARM when it’s actually 
Thumb, or vice versa) yields nonsensical or just plain illegal instructions.  

GENERAL CONCEPTS

User mode programmers enjoy many benefi ts they often take for granted: multithreading, virtual 
memory, and synchronization objects, among others. The kernel, however, is the entity responsible 
for providing these, and falls back on the hardware whenever possible. This section discusses hard-
ware support mechanisms the kernel utilizes for various tasks.

Multithreading
Both ARM and Intel processors support threading at the processor level.  This is, in fact, why mod-
ern operating systems don’t schedule processes anymore, but threads. The process as we know it, 
a vestige of UNIX terminology, remains only at the administrative level, used for accounting, and 
resource containment.

Intel
Intel-based operating systems use a segment register to hold the thread control block. OS X uses GS. 
This is shown in Listing A-4.

LISTING A-4: The current_task /current_thread machine-specifi c implementation in Lion 

_current_task:
ffffff8000235f60    pushq   %rbp
ffffff8000235f61    movq    %rsp,%rbp
ffffff8000235f64    movq    %gs:0x00000008,%rax ; get the current thread
ffffff8000235f6d    movq    0x00000348(%rax),%rax ; return thread->task (offset 0x348)
ffffff8000235f74    popq    %rbp
ffffff8000235f75    ret

_current_thread:
ffffff80002bc1c0    pushq   %rbp
ffffff80002bc1c1    movq    %rsp,%rbp
ffffff80002bc1c4    movq    %gs:0x00000008,%rax
ffffff80002bc1cd    popq    %rbp
ffffff80002bc1ce    ret
ffffff80002bc1cf    nop 
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ARM
On ARM (from an iOS 5.0.0 kernel), a call is made to cr13, the “thread and process ID register,” as 
documented in the ARM architecture manuals. This is shown in Listing A-5:

LISTING A-5: The current_task and current_thread machine-specifi c implementation in iOS, 
from an iOS 5.0.0 iPod 4G (Apple A4, Arm Cortex A8)

_current_task:
80027a18    ee1d0f90    mrc     15, 0, r0, cr13, cr0, {4} ; Get the current thread
80027a1c    f8d004cc    ldr.w   r0, [r0, #1228] ; 0x4CC (note different offset)
80027a20    4770        bx      lr ; return
_current_thread:
8007bc00    ee1d0f90    mrc     15, 0, r0, cr13, cr0, {4} ; Get the current thread
8007bc04    e12fff1e    bx      lr ; return

It is fairly common to fi nd the ARM instruction sequences also inlined in various other thread and 
task functions. This is not necessarily for obfuscation, as much as it is a likely consequence of com-
piler optimizations.

Locking and Atomicity
A prerequisite of concurrency in modern operating systems is the ability to provide a safe locking 
mechanism, by means of which access to shared resources can be synchronized. This mechanism 
often relies on hardware support, and therefore is implemented differently in ARM and Intel archi-
tectures. Furthermore, often, even the same architecture may choose different implementations, 
based on UP or SMP availability.

A good example of this can be found in the implementation Mach’s low level hw_lock_lock() func-
tion. From the kernel’s perspective, this function always delivers the same functionality: a fast spin-
lock (as discussed in Chapter 10). The underlying implementation, however, uses different hardware 
features in Intel or in ARM.

Intel
Listing A-7 shows the various implementations of _hw_lock_lock on OS X 64-bit (Listing A-7) and 
iOS (Listing A-8 and Listing A-9). The i386 implementation is largely the same as the 64-bit one, 
and is left as an exercise for the reader.

LISTING A-7: hw_lock_lock from a 10.7.3 kernel, on an x86_64 

_hw_lock_lock:
ffffff80002b3300    movq    %gs:0x00000008,%rcx
ffffff80002b3309    incl    %gs:0x00000010
  ;; Attempt lock here
ffffff80002b3311    movq    (%rdi),%rax
ffffff80002b3314    testq   %rax,%rax
ffffff80002b3317    jne     0xffffff80002b3326 

continues
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   ;; lock is free – attempt to lock, but double check, since another thread can beat us 
to it
ffffff80002b3319    lock/cmpxchgq   %rcx,(%rdi)
ffffff80002b331e    jne     0xffffff80002b3326 ;; double check failed – go spin
ffffff80002b3320    movl    $0x00000001,%eax ;; Successful – return 1 to caller
ffffff80002b3325    ret ;; return
   ; Spinning – pause for a cycle, then jmp right back to the lock attempt
ffffff80002b3326    pause
ffffff80002b3328    jmp     0xffffff80002b3311

ARM
On a single core ARM processor (i.e. pre-A5 processors), hw_lock_lock doesn’t need to spin. In 
fact, if it did spin a deadlock could result. The implementation is therefore straightforward:

LISTING A-8: hw_lock_lock from iOS 5.0, on an ARM single core (iPod touch 4G)

0x800757F0 _hw_lock_lock   MRC    p15, 0, R12,c13,c0, 4 ; Load current thread
0x800757F4                 LDR    R2, [R12,#0x4BC] ; Load value from thread_t
0x800757F8                 ADD    R2, R2, #1 ; Increment value
0x800757FC                 STR    R2, [R12,#0x4BC] ; Put value back into thread_t
0x80075800                 LDR    R3, [R0] ; Load lock value into R3
0x80075804                 ORR    R1, R3, #1 ; Light lock bit
                           ;;  sanity check
0x80075808                 TST    R3, #1 ; Test if indeed 1
0x8007580C                 STREQ  R1, [R0] ; Store back into lock, if 1
0x80075810                 BXEQ   LR ; And return, if 1
                           ;;  If we get here, panic!
0x80075814                 MOV    R1, R0 ; Move lock address to R1
0x80075818                 ADR    R0, "hw_lock_lock(): lock (0x%08X)\n"
0x8007581C                 LDR    PC, =(_panic+1) ; Jump to panic, in Thumb mode

On the A5, which is a dual-core (hence, SMP) architecture, the code is more complex, with the LDR 
and STR replaced by their EX (exclusive) counterparts, and the addition of a slow path. Further, a 
Data Memory Barrier (DMB) instruction is executed prior to return:

LISTING A-9: hw_lock_lock from iOS 5.0, on an ARM dual core (iPhone 4S)

_hw_lock_lock:
0x80075630                 MRC             p15, 0, R12,c13,c0, 4
0x80075634LDR             R2, [R12,#0x4BC] ; Load value from thread_t
0x80075638                 ADD             R2, R2, #1 ; Increment
0x8007563C                 STR             R2, [R12,#0x4BC] ; Store it
0x80075640 _retry          LDREX           R3, [R0]
0x80075644                 TST             R3, #1 
0x80075648                 ORREQ           R3, R3, #1
0x8007564C                 STREXEQ         R1, R3, [R0] ;  Store and exchange 
0x80075650                 BNE             0x80075664 ; _slow_path
0x80075654                 CMP             R1, #0 

LISTING A-7 (continued)
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0x80075658                 BNE             _retry 
0x8007565C                 DMB             #0xB ; Data Memory Barrier
0x80075660                 BX              LR 
0x80075660 _slow_path ; ...

A similar functionality closely related to locking is that of atomic operations. An atomic operation is 
an operation in which atomicity (i.e. non-interruptibility) is guaranteed. The OSAddAtomic64(b,&a)
is an atomic operation of a = a + b, where a and b are signed Integer 64 types, and a is passed by ref-
erence. Atomic operations often serve as the underlying mechanism to enable locks (as locks must be 
accessed in a guaranteed atomic manner), and can often be used instead (when the object guarded is 
machine-word sized). 

On OS X, either disassemble (otool –tV) the kernel image, or look at the XNU source code. If you 
choose to disassemble, make sure to select the i386 image by passing -arch i386 to otool(1), as 
shown in Listing A-10:

LISTING A-10: The implementation of _OSAddAtomic64 on Intel, 32-bit

_OSAddAtomic64:
        pushl           %edi
        pushl           %ebx

        movl            12+8(%esp), %edi ; ptr
        movl            0(%edi), %eax ; load low 32-bits of *ptr
        movl            4(%edi), %edx ; load high 32-bits of *ptr
1:
        movl            %eax, %ebx
        movl            %edx, %ecx ; ebx:ecx := *ptr
        addl            4+8(%esp), %ebx
        adcl            8+8(%esp), %ecx ; ebx:ecx := *ptr + theAmount
        lock
        cmpxchg8b       0(%edi) ; CAS (eax:edx, ebx:ecx implicit)
        jnz             1b ; - failure: eax:edx re-loaded, retry
                                           ; - success: old value in eax:edx

   popl            %ebx
        popl            %edi
        ret

On OS X in 64-bit mode, the atomic operation is natively supported by the architecture, making for 
even simpler code, as shown in Listing A-11:

LISTING A-11: The implementation of OSAddAtomic* on Intel,  x86_64

_OSAddAtomic64:
ffffff800062916b        lock/xaddq      %rdi,(%rsi)
ffffff8000629170        movq    %rdi,%rax
ffffff8000629173        ret
_OSAddAtomic:
ffffff8000629174        lock/xaddl      %edi,(%rsi)
ffffff8000629178        movl    %edi,%eax
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Kernel mode has no monopoly over atomic operations: Atomic functions are available in user 
mode, although with the name ordering reversed (q.v. OSAtomicAdd32(3) and friends). The imple-
mentation is the same as the kernel’s, though through a stub (i.e. LibSystem’s OSAtomicAdd32, for 
example, loads the address of __atomic_add32 which has the i386 or x86_64 code). The actual 
code resides either in the commpage (in Snow Leopard, as discussed in Chapter 4), or is located by 
LibSystem’s find_platform_function.

In iOS, you can disassemble (otool –tV) the kernel image, and look for the _OSAddAtomic64 sym-
bol which is still exported (using more(1)/less(1), type "/^_OSAddAtomic64"). You should see 
something like Listing A-12:

LISTING A-12: The implementation of _OSAddAtomic on ARM (iOS 5.1)

_OSAddAtomic64:

;  ARM is a 32-bit processor, so to pass around 64-bits it groups registers 
;  together. r0,r1,r2,r3 – usually used for four 32-bit arguments, can pass 
; instead up to two 64-bit ones. Thus:
; @param: r0-r1: amount, as 64-bit value spanning both registers
; @param: r2:    address of 64-bit value in memory

80077f30  e92d4330     push    {r4, r5, r8, r9, lr} ; save non volatile
80077f34  e1b24f9f     ldrexd  r4, [r2] ; atomic load: *r2 to r4-r5
80077f38  e0948000     adds    r8, r4, r0 ; add-signed low bits
80077f3c  e0a59001     adc     r9, r5, r1 ; add-carry high bits
80077f40  e1a23f98     strexd  r3, r8, [r2] ; atomic store r8-r9 -> *r2
80077f44  e3530000     cmp     r3, #0  @ 0x0 ; test if failed..
80077f48  1afffff9     bne     0x80077f34 ; if indeed failed, retry
80077f4c  e1a00004     mov     r0, r4               ; else return: low  in r0
80077f50  e1a01005     mov     r1, r5               ;  .. high in r1
80077f54  e8bd8330     pop     {r4, r5, r8, r9, pc} ; restore regs, return

Note that “atomic” does not necessarily mean “single cycle.” It just means that the CPU guar-
antees uninterrupted access. There are many more examples of this. If you want, take a peek at 
task_reference() (which is defi ned over task_reference_internal (osfmk/kern/task.h), itself 
a macro over hw_atomic_add). The Intel and ARM implementations closely resemble the preceding 
example.

Barriers
Modern CPUs can execute instructions out of order to optimize utilization of their internal com-
ponents (such as the ALU, FPU, and load/store units). The CPU has liberty in deciding the actual 
order, and usually this goes unnoticed by both the developer and the compiler generating the code. 
In some cases, however, out-of-order execution may introduce bugs into the program. In these cases, 
barrier instructions can be used to ensure all access completes by a certain point in the program’s 
execution.  
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Intel provides Load (LFENCE), Store (SFENCE), and both (MFENCE) barrier instructions. ARM 
provides three types of barrier instructions: Data synchronization (DSB), Data Memory (DMB), and 
Instruction Synchronization (ISB).

Virtual Memory
Both Intel and ARM chips support virtual memory at the processor level, with the low-level func-
tionality of virtual to physical translation performed by a dedicated Memory Management Unit 
(MMU). This allows the CPU to switch into virtual memory mode fairly early during the operating 
system boot, and from thereon use virtual addresses instead of physical ones.

Intel
Intel architectures enable protected mode and paging through CR0 (bits 0 and 31, respectively). 
From that moment on, the CPU shifts to virtual addresses, with CR3 used as the master page table.

The page table is actually a multi-level table: Depending on architecture (32-bit, PAE, or 64-bit), the 
page table is of varying depth (2, 3, or 4, respectively). The kernel sets up the page tables in a format 
that the MMU can understand, and virtual address resolution is conducted by the MMU. In case of 
a page fault, the MMU reports back to the CPU the page fault address in CR2.

In Intel 32-bit architectures each level is on a physical page with 1024 entries 3 (32-bit pointer) = 4k. 
Physical Address Extensions (PAE) extend this to work with 64-bit pointers, reducing the number 
of entries to 512 (to preserve 512 entries 3 (64-bit pointer) = 4k), resulting in the addition of the 
third level (a small 2-bit table, with only four entries). This scheme is further extended in 64-bit to 
four levels, each with a 9-bit index, allowing for a maximum addressable space of 48 bits. PAE and 
64-bit can also opt to use the penultimate table for pages, which allows for 2 MB (“super”) pages.

Using a multi-level table makes the table more space-effi cient (at the cost of multiple lookups) and 
facilitates sharing, particularly of kernel memory. In the original 32-bit OS X, the kernel used its 
own virtual memory space (and hence, its own value of CR3). As of OS X 64-bit this is, by default, 
no longer true, with the kernel mapping its memory into the high region of every address space, 
unless explicitly instructed to not do so with the –no_shared_cr3 boot argument.

ARM
ARM supports a two level page table. Unlike Intel, in 32-bit mode the fi rst level divides the address 
space into 1 MB sections (as opposed to Intel’s 4 MB), with 4096 page table entries, allowing for 
256 entries of 4 K pages, or 1 entry of a 1 MB superpage. (This is, of course a greatly simplifi ed nut-
shell view: ARM processors also allow fi ne and course page granularity for smaller or larger page 
sizes).

Virtual memory is controlled on ARM (like just about everything else) through coprocessor 15, as 
the example in Listing A-13 shows. The MMU control bits can be used to enable/disable the MMU 
(least signifi cant bit), data and instruction caches, and various other settings. Most important of 
those are memory domains and access permissions
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LISTING A-13: Controlling the MMU

; Near textbook example of reading from cp15. In this case, read MMU value
; (q.v. ARM manual, 3-46)
_get_mmu_control:
_0x8007BDF0      MRC   p15, 0, R0,c1,c0, 0 ; Read CP15, c1,c0, opcode 0 into R0
_0x8007BDF4      BX    LR ; Returns R0
_set_mmu_control:
_0x8007BDF8      MCR  p15, 0, R0,c1,c0, 0 ; Write CP15, c1, c0, opcode 0 from R0
_0x8007BDFC      ISB  SY ; Instruction barrier
_0x8007BE00      BX   LR ; Returns R0

The c2 register holds the Translation Table Base (TTB), which is akin to CR3. ARM also supports a 
Translation Lookaside Buffer (TLB) for faster lookups, which is controlled through c8 (usually with 
c7). The TLB lines can be locked, which permits them to persist when the TLB is fl ushed (as a result 
of a context switch). This is accomplished by modifying p15’s c10 register.

REFERENCES

1.  Intel Architecture manuals, http://www.intel.com/content/www/us/en/processors/
architectures-software-developer-manuals.html

2. AMD64 manuals, http://developer.amd.com/documentation/guides/Pages/default
.aspx

3.  ARM Architecture Manuals, http://infocenter.arm.com/help/topic/com.arm.doc
.set.architecture/index.html

4. Sloss, Symes and Wright, ARM System Developer’s Guide. Morgan Kaufmann; 2004

5.  “Mac OS X ABI Function Call Guide,” http://developer.apple.com/library/
mac/#documentation/DeveloperTools/Conceptual/LowLevelABI/

6.  “Iphone OS ABI Reference,” http://developer.apple.com/library/
ios/#documentation/Xcode/Conceptual/iPhoneOSABIReference/

7. x86/x64 Opcodes infographics, https://code.google.com/p/corkami/

8.  ARM and Thumb-2 Instruction quick reference card, http://infocenter.arm.com/help/
topic/com.arm.doc.qrc0001l/QRC0001_UAL.pdf

bapp01.indd 792bapp01.indd   792 10/1/2012 7:00:53 PM10/1/2012   7:00:53 PM

http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://developer.amd.com/documentation/guides/Pages/default.aspx
http://infocenter.arm.com/help/topic/com.arm.doc.set.architecture/index.html
http://developer.apple.com/library/mac/#documentation/DeveloperTools/Conceptual/LowLevelABI/
http://developer.apple.com/library/ios/#documentation/Xcode/Conceptual/iPhoneOSABIReference/
https://code.google.com/p/corkami
http://infocenter.arm.com/help/topic/com.arm.doc.qrc0001l/QRC0001_UAL.pdf
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://developer.amd.com/documentation/guides/Pages/default.aspx
http://infocenter.arm.com/help/topic/com.arm.doc.set.architecture/index.html
http://developer.apple.com/library/mac/#documentation/DeveloperTools/Conceptual/LowLevelABI/
http://developer.apple.com/library/ios/#documentation/Xcode/Conceptual/iPhoneOSABIReference/
http://infocenter.arm.com/help/topic/com.arm.doc.qrc0001l/QRC0001_UAL.pdf


Book Title   <Chapter No>   V1 - MM/DD/2010

793

INDEX

Symbols
\ (backslash), NVRAM variables, 199
?? (question mark-double), dyld, 114

A
-a, 126
aapl, 193
ABIs, 779–780
abnormal_exit_notify, 438
aborts, 270
ABRT(), 534
Absinthe, 173
ABT, 268
Accelerate, 35
accept(), 240
Access Control Lists (ACLs), 578, 608
accessory_device_arbitrator, 244
Accounts, 35
accountsd*, 244
ACLs. See Access Control Lists
-acm, 578
acpi_*, 329
act_set_astbsd(), 325
act_set_bsdast(), 536
addDisk, 576
AdditionalEssentials.pkg, 216
AdditionalSystemVoices.pkg, 216
Address Family (AF), 650
Address Space Layout Randomization (ASLR), 12, 122, 

131–132, 173, 548–549
AddressBook, 35
ADD_TO_ZONE, 469
Advanced PIC (APIC), 270
Adv-cmds, 14
AEDebug*, 73
AEServer, 73
AF. See Address Family
AF_, 650
afc, 246
affi nity, CPU threads, 415
AFFINITY_POLICY, 421
affinity_tag, 421
AF_INET, 677

AFP. See Apple Filing Protocol
AGL, 35
Air Drop, 8
alarm_expire_timer, 380
alarm_lock, 380
allmemory(1), 160, 161
alloca(), 138–139
AllocatePages, 189
AllocatePool, 189
allocation fi le, B-Tree, 642
alloc_size, 469
_AllowedClients, 257
al_port, 380
alternate data streams, 611
AMFI. See AppleMobileFileIntegrity
amfi_*, 563
Amfid, 244
Animation, 201
APIC. See Advanced PIC
APM. See Apple Partitioning Scheme
App Store, 11, 25–26
AppKit, 35
AppKitScripting, 35
apple argument, 130
Apple Filing Protocol (AFP), 582, 651, 652
Apple Partitioning Scheme (APM), 570–572
Apple policy modules, BSD, 560–563
Apple Protect pager, 491–493
Apple TV, 11–12
AppleACPIPlatform.Kext, 329
APPLE_BOOT_GUID, 193
AppleEvents, 72–79
AppleFSCompressionTypeZlib.kext, 612
AppleIDAuthAgent(), 242
AppleMobileFileIntegrity (AMFI), 89–90, 331, 

562–563
AppleOnBoardSerialBSDClient, 656
AppleProfile*, 155
appleprofilepolicyd, 242
apple_protect_pager_setup(), 493
AppleScript*, 35, 72–79
AppleShareClientCore, 35
AppleTalk, 35
APPLE_VENDOR_NVRAM_GUID, 195
/Applicants, 23
/Application, 25
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applications – backing store

applications
bundles, 24
containers, Lion, 84–97
debugging

crashes, 170–176
hangs, 173–174
sampling, 173–174

defaults, 30–32
Java, 44–45
NeXTSTEP, 4, 24
OS X, 24–32

Application Frameworks layer, 15
Application Services, 18
Applications, 26
/Applications, 23
ApplicationServices, 35
Application.System, 257
Application.User, 257
<app>.pkg, 216
Apsd, 244
ApTicket, 213
Aqua, 17–18
arbiter, kernel, 262
arch(1), 100, 101–102
architecture

ARM, 519
Intel, Mach physical memory management, 465–467
kernel, 261–287

XNU, 302–305
Mach

Intel, physical memory management, 465–467
VM, 447–462

modular, 712–713
OS X, 518
PPC, 518–519

arg_ptr, 304
arg_string, 304
arguments, XNU boots, 329–331
argv[], 326–327
ARM, 12, 14

architecture, 519
ASLR, 549
assemblies, 784–786
atomicity, 788–790
Darwin, 5
EFLAGS, 296
exception vector, 268
Intel trap handlers, 275–278
interrupts, 296
iOS, 5, 261
kernel, 267–268
locking, 788–790
machine_init, 316
multithreading, 787
registers, 776–779
SWI, 280
VM, 447, 791
voluntary user/kernel transition, 280–282

__arm__, 12

ARM_ARCH, 12
arm_init, 311
ARM_THREAD_STATE, 109
arm_vm_init(), 311
array, 255
AS, 302
asctl(1), 84
A_SETCOND, 557
AsianLanguagesSupport.pkg, 216
ASL, 70–71
-asl_in 1, 70
aslmanager, 242
ASLR. See Address Space Layout Randomization
assemblies

ARM, 784–786
mnemonics, 783–784

assert_wait, 406, 414
assert_wait_deadline, 430
Assetsd, 244
AssetsLibrary, 35
AST. See asynchronous system trap
AST_*, 406, 424, 426, 430
ASTs. See Asynchronous Software Traps
ast_taken(), 425–426
asynchronous interrupts, 431
asynchronous kernel, 268
Asynchronous Software Traps (ASTs), 275, 423–427
asynchronous system trap (AST), 325
Atc, 244
atd, 231
atomicity

ARM, 788–790
Intel, 787–788

atrun, 231
Attribute B-Tree, 640–641
Audio*, 35
audit(), 61
audit_*, 60–61, 352
AUDIT_ARG, 557
auditctl(), 61
auditing, OS X, 59–62, 556–558
auditon(), 61, 557
AUDIT_SYSCALL_*, 557
authentication, 80
auto-boot, 212
autofsd, 587
Automator, 36
automount, 587
autorun, 237
AVFoundation, 35

B
-b, XNU boot argument, 330
Background Color, 199
BACKGROUND_APPLICATION, 423
BACKGROUND_POLICY, 421
backing store, 452, 497
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BackupAgent – BSD

BackupAgent, 173
Backupd, 242
bad_info, 395
Baker, 11
barriers, 256, 790–791
BaseSystemBinaries.pkg, 216
BaseSystem.dmg, 214, 215
BaseSystemResources.pkg, 216
Basic Input Output System (BIOS), 183–185
Basic Security Module (BSM), 59
BBTicket, 213
BeepGen, 191
Berkeley Packet Filter (BPF), 701–705
BigBear, 11
/bin, 22
binaries

BSD process creation, 516–522
EFI, 187
ELF, 15–16
Mach-O, 522–525
portability, 46, 502
__stubs, 115
universal

executables, 98
file(1), 99
kernel, 100
Mach-O, 102–105
OS X, 99
processes, 99–111
Snow Leopard, 99
Tiger, 6

widgets, 47
/bin/csh, 21
binding, Mach, 415
binfmt, 516
/bin/ksh, 21
/bin/sh, 20
/bin/tcsh, 21
binutils, 102
/bin/zsh, 21
/bin/zsh -i, 241
BIOC*, 702, 705
BIOS. See Basic Input Output System
bit shifting, 785
Blazakis, Dionysus, 561
bless(1), 204–206, 215
bless(8), 204–206
block fragmentation, 624
blockCount, 639
BLOCK_IO_PROTOCOL, 190
/bn/bash, 20
Bom, 217, 613
bond, 678
Bonjour, 6
bool, 254
boot, 183–225

disk image fi les, 590–591
EFI, 185–210
iBoot, 210–214

installation images, 214–225
Mach zones, 470–471
traditional, 183–185
XNU

arguments, 329–331
kernel, 299–340

Boot Camp, 204
boot loader, 184
Boot Logo*, 199
Boot Services, 188–191
boot-args, 193
launchd, 228
nvram, 329

boot_args
dTrace, 202–203
Lion, 201–202
Revision, 202
Version, 202

boot-command, 212
boot.efi, 187, 195, 204
BootServices, 201
EFI GUIDs, 192–193
OS X, 194–210

boothowto, 326
boot-image*, 193
BootMGR, 184
bootsArgs, 304
BootServices, 201
BOOT_SERVICES_TABLE, 188
boot-signature, 193
bootstrap server, 234–235
bootstrap_cmds, 300
bootstrap_server, 235
Bourne Again shell, 20
Bourne shell, 20
BPF. See Berkeley Packet Filter
bpfattach(), 702
BPF_WORDALIGN, 705
bplist, 26
bridge, 678
BSD, 22, 45, 501–536

advanced aspects, 519–563
Apple policy modules, 560–563
ASLR, 548–549
cache, 545
disk image fi les, 589
EFI, 203
heirlooms, 55–65
implementing, 503
initialization, 318
I/O Kit, 737, 769–771
kqueues, 555–556
ledgers, 398
MAC, 318, 558–560
Mach, 343, 501, 510–512

tasks, 395
malloc(), 541–544
_MALLOC, 479
mcache, 545
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memory
management, 539–549
pressure, 545

mincore(2), 456
msync(2), 454, 458
network stack, 649
OS X, 501
packet fi ltering, 693, 697
POSIX, 501, 503

system calls, 284–287
processes, 504–508

control and tracing, 525–529
creating, 512–525
groups, 507–508
lists, 507–508
software, 535
structs, 504–507
suspension and resumption, 529

signals, 529–536
handling by victims, 536
hardware, 534

slab allocators, 545
sysctl(8), 552–555
system calls, 47–48
threads, 508–512

objects, 508–510
UNIX, 501–502
work queues, 550–552
XNU, 49–50, 501, 504
zones, 541–544

bsd, 307
BSD(4), 167
bsd_ast(), 536
bsd_info, 510
bsd_init(), 318, 320–325, 326, 544, 673
bsdinit_task(), 227, 325–328, 530
bsd/kern_descrip.c, 601–602
bsd/kern/kern_descrip.c, 603–604
bsd/kern/mach_loader.c, 522–523
bsd/kern/makesyscalls.master,

 285–286
bsd/kern/uipc_domain.c, 673
bsd/net/if_var.h, 680–681
bsd/net/kpi_protocol.h, 677
-bsd_out, 70, 71
BSD.pkg, 216
bsd/sys/file_internal, 602–603
bsd/sys/mount.h, 591–592
bsd/sys/mount_internal.h, 592–593
bsd/sys/protosw.h, 672–673
bsd/sys/sysent, 285
bsd/sys/user.h, 508–510
bsd/sys/vnode_if.h, 597
bsd_utasbootstrap(), 325
bsd/uxkern/ux_exception.c, 529–533
BSM. See Basic Security Module
bsm/security, 307
bstree, 253
BTNodeDescriptor, 625
B-Tree

allocation fi le, 642
Attribute, 640–641
catalog, 633–640

deletions, 636–637
forks, 639–640
hard links, 639
insertions, 636
lookups, 634–636
permissions, 637–639
soft links, 639

components, 630–645
defi nition of, 625
extent overfl ow, 640
header node, 627–629
HFS+, 624–645

journaling, 642–643
volume header, 631–632

hot fi les, 641–642
insertions, 624

catalog, 636
nodes, 625–627
random access, 624
search, 624, 629–630
updates, 624

buffer overfl ow, 131
bundle, 248
bundles

applications, 24
Finder, 25
frameworks, 32–34
Info.plist, 26
NeXTSTEP, 4, 24
OS X, 24
Quicklook, 18

byteordering, 100

C
-c, dtruss, 151
C++, I/O Kit, 737, 740–741
C++, 302
cache, 23, 121, 545

shared library, 121
Unifi ed Buffer Cache, 484, 488, 596

Calaccessd, 244
CalendarStore, 36
CALL, 279
call psignal(), 535
call_continuation(), 420
callnum, 156–157
calloutart, 508
canblock, 469
cansignal(), 535
can_update_priority(), 430
Carbon, 34, 122
Carbon, 36
CARenderServerSBUserNotificationUIKit.

statusbarserverbulletinboard.*.chat
kit, 245
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Cascading Style Sheet (CSS), 45
widgets, 47

case sensitivity, 21, 619
cat(1), 88–89
catalog, B-Tree, 633–640

deletions, 636–637
forks, 639–640
hard links, 639
insertions, 636
lookups, 634–636
permissions, 637–639
soft links, 639

Catalog Node ID (CNID), 633–634, 635
catch_mach_exception_raise, 533
CC, 302
CCALL, 274
CD-Audio File System (CDDAFS), 581
CD-ROM File System (CDFS/ISO-9660), 582
CFBundle*, 27, 248, 257, 718
C++filt, 300
CG(11), 167
CGXServer. See Core Graphics X Server
CheckEvent, 189
CheckHibernate, 198
checksum, 644
Cheetah, 5–6
chfn(1), 67
child_thread, 514
chmod(1), 578
chmod +x, 98
choose_processor(), 429
choose_thread(), 429
chown(2), 48
C/H/S. See Cylinder/Head/Sector
chsh(1), 67
CHUD. See Computer Hardware Understanding and 

Development
chud, 307
chud.chum, 242
c_init, 379
Clock, 352
clock, 378–380
clock_alarm*, 378, 380
clock_get_*, 378
clock_init(), 379
clock_oldinit(), 379
clock_priv, 352
clock_reply, 352
clock_service_create(), 379
cloneproc(), 325, 516
close(), 127, 512
CloseEvent, 189
CloseProtocol, 189
CNID. See Catalog Node ID
Cocoa, 34, 122, 145, 254
Cocoa, 36
code injection, 131
code signing, 80–81, 712–713
Code Signing in Depth, 110
CodeDirectory, 717

CodeRequirements, 717
CodeResources, 29–32, 717
codesign(1), 80, 86–87, 110
CodeSignatures, 717
Collaboration, 36
com.apple.audited.plist, 59
com.apple.blued.plist, 237
com.apple.Boot.plist, 199
com.apple.decmpfs, 612, 613
com.apple.dock.extra, 247
com.apple.iokit.matching, 237
com.apple.kpi*, 714
com.apple.syslogd.plist, 233–234
com.apple.WindowServer.plist, 235–236
Comex, 11, 12
commpage, 318
compartmentalization. See sandboxing
compression, 7, 612–617
compute_averages, 411
compute_priority(), 429
Computer Hardware Understanding and Development 

(CHUD), 154–155, 373
conditional execution, 784–785
conf, 303, 307
config, 307
CONFIG_AUDIT, 305
CONFIG_CODE_DECRYPTION, 493
configd, 242, 411
-configd(8), 67
CONFIG_DEBUG, 308
CONFIG_DTRACE, 305
CONFIG_EMBEDDED, 305, 421, 548
CONFIG_FREEZE, 494, 547
CONFIG_MACF, 305, 318
CONFIG_NO_KPRINTF_STRINGS, 305
CONFIG_NO_PRINTF_STRINGS, 305
CONFIG_SCHED_*, 305, 428
CONFIG_SOCKETS, 649
CONFIG_ZLEAKS, 468
connect(2), 682
connection, 254
consider_buffer_cache_collect(), 497
consider_machine_collect(), 497
consider_zone_gc(), 471–473, 497
console, 307
console protocols, 189–190
CONT, 94
Contents/, 26
Contents/Frameworks, 33
context switching, 780–783
continuations, 416–418
Control Registers (CRs), 266–267, 775–776, 778–779
CONTROL_APPLICATION, 423
cooperative multitasking, 420
coprocessors, 778
Core*, 36, 494
Core Animation, 7
Core Audio, 7
Core Data, 7
core dumps, 170–171
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Core Frameworks layer, 15
Core Graphics X Server (CGXServer), 18
Core Image, 7
Core Storage, 8, 200, 204
Core Utilities, 14
Core Video, 7
/Cores, 23
CoreServices, 36, 75–76, 247
coreservicesd, 75
CoreStorage, 191, 575–577
CORESTORAGE(10), 167
CoreTelephony, 36
CoreText, 36
CoreVideo, 36
CoreWifi, 36
coreWLAN, 36
correctness, 265
corservices.appleid.authentication.

coreservices.appleid.passwordcheck,
242

cprotect, 609
CPSR. See Current Program Status Register
CPU

affi nity, threads, 415
multithreading, 93
processes, 92–93
threads, 408
yielding, 415

cpuid, 195, 200
cpu_mode_init(), 279
cpus, 330
cpusubtype, 100
cputype, 100
crash_mover, 244
CrashReporter, 171–173, 442
CrashReportSupport, 336
CreateEvent*, 189
CreateRemoteThread(), 407
CRO, 266–267
crond, 231
CRs. See Control Registers
crypto, 307
cs_debug, 562
cs_enforcement_disable, 562
C-shell, 21
csops, 110
csreq(1), 80
CSS. See Cascading Style Sheet
CTFCONVERT, 302
CTFMerge, 300
CTL_*, 552–553
CTLIOCGINF ioctl(2), 682
Current Program Status Register (CPSR), 267–268, 

777–778
cut(1), 409
cvmsServ, 242
cvmsServer, 242
Cxxfilt, 300
Cylinder/Head/Sector (C/H/S), 568

D
.d, DTrace, 149
-d, dtruss, 151
D language, 147–150
DAAP. See Digital Audio Access Protocol
DADissenterCreate, 589
-daemon, 18
daemons. See also specifi c daemons
launchd, 229
Spotlight, 20
system confi guration, 67

Darwin
architecture, 15–17
Cheetah, 6
GDB, 181
iOS, 12
Jaguar, 6
LibC, 139
Mountain Lion, 9
notifi cations, 78
Panther, 6
Snow Leopard, 8
Tiger, 7
UNIX, 5, 20–22

data, 254
Data?, 85
_DATA(), 107
__DATA, 125, 134
Data Execution Prevention (DEP), 522, 549
data forks, 611
Data Link Interface Layer (DLIL), 680
DATA_HUB_PROTOCOL, 191
data_list, 454
data_request, 493, 494
data_return, 482, 494
date, 254
DB_*, 332–333
DB_ARP, 333
DBG_APPS(33), 167
DBG_MACH_SCHED, 430
DBG_MIG(255), 168
DBG_PERF(37), 168
DbgPrintKernel, 332
ddb, 307
deadfs, 586–587
deadline timers, 432–433
DEAD_NAME, 350
DEBUG, 308
debug, 56, 331, 332
Debug Registers (DRs), 775
debugging, 147–182

applications
crashes, 170–176
hangs, 173–174
sampling, 173–174

DTrace, 147–154
exception ports, 439
GDB, 181–182
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hfsleuth, 577
init_kdp(), 318
kernel, 332–340
launchd, 228
LLDB, 182
Mach zones, 473
memory leaks, 176–178
UNIX, 178–180
VMWare, 333

DebugPrintFilter, 332
debugserver, 87–88
decmpfs, 608
decmpfs_file_is_compressed, 613
decompression, 613–616
decryptVolume, 576
default:, 333
default directories, 25
Default Freezer, 494
DEFAULT_APPLICATION, 423
default_freezer, 529, 547
default_pager, 307, 448, 499
default_pager_*, 487
defaults(1), 173
#defines, 305, 318, 463, 650
defragmentation, 622–623
.defs, 353
<defunct>, 93
DEP. See Data Execution Prevention
DEPRESSPRI, 412
dev, 307
/dev, 22
/dev/auditpipe, 60
/Developer, 23, 24
DeveloperDiskImage.dmg, 24
devfs*, 584
device drivers

I/O Kit, 738
user mode, 749–750

NeXTSTEP, 4
Device Firmware Update (DFU), 211, 213
device tree, 196–198

iOS, 224–225
device_pager, 448
DFLAGS(2), 169
DFU. See Device Firmware Update
diag, 331
diagCall(), 292–295
diag.h, 487
diagnose, 86
diagnostic system calls, 292–295
dictionary, 255
didReceiveMemoryWarning, 139, 545
Differentiated Services (DiffSrv), 706
Digital Audio Access Protocol (DAAP), 652
di_load_controller, 592
DIOCADDRULE, 698
DIOCGETRULE, 698
direct_dispatch_to_idle_processors, 430
directories

GUID, 25
UNIX, 22–24

iOS, 23–24
OS X, 23

DirectoryServices, 37
-disable_aslr, 330
DiscRecording*, 37
disk image fi les, 589–591
DiskArbitration, 37
diskarbitrationd, 587–589
DiskImageMounter.app, 589
DISK_IO_PROTOCOL, 190
diskutil(8), 575
dispatch_get_global_queue(), 145
dispatch_queue_create(), 146, 257
DISPATCH_QUEUE_PRIORITY_*, 145, 550
--display, 86
distnoted(8), 78
disym(void *handle, char *sym), 122
ditto(1), 613
dladdr(), 122
dlerror(), 122
DLIL. See Data Link Interface Layer
DLIL(8), 167
dlil_output(), 693
dlopen(), 122
dlopen_preflight(), 122
.dmg, 589–591
dmgextractor, 589
DNS

mDNS, 652
reverse, 18–19, 30

Dock.app, 247
document type defi nition (DTD), 26
Documents, 25
do_init_slave(), 313–314
domains

initialization, 673–675
protosws, 669–673
sockets, UNIX, 651
XNU, 675

domaininit(), 673
Don’t Steal Mac OS X (DSMOS), 491, 716–717
do_priority_computation, 411, 412
double, 254
double fault, 270
downgrade attacks, 213–214
do_write, 599–600
dp_backing_store.c, 487
dp_memory_object.c, 487
Draves, Richard, 418
DrawBootGraphics, 200
DrawSprocket, 37
drivers. See also device drivers

I/O Kit
kernel, 755–769
matching, 755–757
model, 761–763

NDIS, 739
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DriverKit, 4
DRIVERS(6), 167
DRs. See Debug Registers
dscl(8), 65–66
DSMOS. See Don’t Steal Mac OS X
DTD. See document type defi nition
DTrace, 147–154

Leopard, 7
Dtrace, 300
dTrace, 202–203
dtrace, 152
dtruss, 150–151
dummynet(4), 705–707
DumpPanic(), 242
dup2(), 240
Durango, 12
DVComponentGlue, 36
DVDPlayback, 37
dyld

environment variables, 128–130
function interposing, 125–128
kernel, 111
load commands, 114
shared library cache, 121
two-level namespace, 125

DYLD_*, 125, 126, 128, 129–130, 493
.dyld(1), 44
DYLD(31), 167
dyldinfo(1), 114
dyld_stub_linker, 119
dyld_stub_puts, 120
.dylib, 42
dynamic defragmentation, 622–623
dynamic libraries, 111–130
dynamic resizing, 620
dynamic_pager(8), 142–143, 488, 498–499
DYNAMIC_PAGER_PORT, 499

E
-e, 59, 409

ACLs, 578
dtruss, 151

EAPOL, 653
EAX, 278
EDR, SUN-RPC, 353
EEPROM. See Electronically-Erasable Programmable Read 

Only Memory
EFI. See Extensible Firmware Interface
efi-boot-*, 193, 205
efi_init(), 203
efi_set_tables_[32|64], 203
EFI_STATUS, 187
EFI_SUCCESS, 187
EFI_SYSTEM_TABLE, 187–188
EFLAGS, 295, 296, 774–775
EFLAGS(1), 169

Electronically-Erasable Programmable Read Only Memory 
(EEPROM), 184

ELF. See Executable and Library Format
EMMI. See External Memory Manager Interface
EMT, 534
en, 679
ENABLE(3), 169
Enable Transactions, 236
enable_preemption(), 426
encryptVolume, 576
ENDIAN_MAGIC(), 644
EndOfAllTime, 435–436
endpoint, 254
enterlctx(), 515
entitlements

iOS, 87–89, 97
OS X, 97
sandboxing, 83–89

entry points, 130
environment variables, 128–130
EPPC. See Event Process-to-Process Communication
errno_t, 681
error, 255
Essentials.pkg, 216
etap_trace_thread, 405
/etc/syslog.conf, 70
/etc/ttys, 18, 22
etimer_intr, 434
etimer_resync_deadlines(), 435
EULA, 10
Event Process-to-Process Communication (EPPC), 652
EventKit*, 37
every, 409
EVFILT_*, 57–58
exc, 352
EXC_*, 438, 534
exceptions

Intel trap handlers, 269–270
involuntary user/kernel transition, 269–270
Mach scheduling, 436–445
ports, 436

debugging, 439
UNIX, 529–534
vector, ARM, 268

EXCEPTION_DEFAULT, 439
exception_deliver(), 439
ExceptionHandling, 37
EXCEPTION_STATE*, 439
exception_triage(), 438, 439
ExceptionVectorsBase, 275–276
EXC_SOFTWARE, 534
exec(), 240
exec_activate_image(), 521
exec_archhandler, 519
execargs_alloc, 521
exec_save_path, 521
execsw, 516, 518
executables

entry points, 130
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libraries, 111
Mach-O, segments and sections, 108
PEs, 187
processes, 98
UNIX, 98

Executable and Library Format (ELF), 102, 502
binaries, 15–16

execution
conditional, 784–785
DEP, 522, 549
policies, 527–528
threads, 408

execve(), 130, 327, 520–521
exit(), 117
exit(2), 92, 93, 143
ExitBootServices(), 188
explicit preemption, 418–420
Exposé, 6
extended attributes, 577, 608–611
EXTENDED_POLICY, 421
Extensible Firmware Interface (EFI), 10, 185–210

architecture, 186
ASLR, 549
binaries, 187
BIOS, 184
Boot Camp, 204
Boot Services, 188–191
BSD, 203
console protocols, 189–190
GUIDs, boot.efi, 192–193
kernel, 203
Mach, 203
media access protocols, 190
Platform Expert, 303
protocols, 188–191
runtime services, 191–192
variables, APPLE_BOOT_GUID, 193

extents, 577
overfl ow, 640

external data representation (XDR), 351
External Memory Manager Interface (EMMI), 480
ExternalAccessory, 37
extract_heap, 706

F
-f, dtruss, 150
-F, dynamic-pager(8), 143
FaceTime, 11
facility, 70
FairplaydUnfreed, 244
fairplay.d.XXX, 244
fairshare_dequeue(), 430
fairshare_enqueue(), 430
fairshare_init(), 430
fairshare_runq_count(), 430
fairshare_runq_stats_count_sum(), 430
false, 254

FAT. See File Allocation Table
faults, 270
fbt, 152
fd, 255
fdcopy(), 515
FDE. See full disk encryption
fd_ofiles, 601
f_flob, 602
fg_data, 603
fg_type, 603
FIFOfs, 584–586
file(1), 99, 212–213
File Allocation Table (FAT), 580, 625
fi le systems

CDDAFS, 581
CDFS/ISO-9660, 582
generic concepts, 577–579
HFS, 4, 579
HFS+, 21–22, 579–580, 607–648

ACLs, 608
B-Tree, 624–645
case sensitivity, 619
compression, 612–617
decompression, 613–616
design concepts, 624
disk image fi les, 589
dynamic defragmentation, 622–623
dynamic resizing, 620
extended attributes, 608–611
finderInfo, 205–106
forks, 611–612
hfsleuth, 577
hot fi les, 621–622
journaling, 619–620
metadata zone, 620–621
OS X Finder, 617–618
panic(), 333
permissions, 577, 639
sandboxing, 84
status notifi cations, 647
timestamps, 607–608
Unicode, 617
VFS, 591

links, 578–579
native, 579–580
networks, 582–583
NFS, 582–583
NTFS, 578, 581, 591, 624
OS X, 587–589
pseudo, 583–587
shortcuts, 578–579
timestamps, 578
VFS, 22, 577, 591–600

fsctl(2), 645–646
FUSE, 597–605
kernel, 645–648
mount entry, 592–595
struct vnode, 595–597
sysctl(2), 646–647
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vnode, 595–597
File systems in USEr space (FUSE), 597–605
File Transfer Protocol (FTP), 583, 598
fileglob, 602–603, 605
FILE_PROTOCOL, 190
filesize, 107
FileVault, 6, 8
filterfn, 508
FinalizeBootStruct, 201
Finder

bundles, 25
GUI, 247–248
OS X, 247–248

HFS+, 617–618
Quicklook, 18–19
Spotlight, 19–20
UI, 250–253
UNIX directories, 22

FinderInfo, 608
finderInfo, 205–206
FIQ, 268
fi rmware, 184

DFU, 211, 213
EFI, 10, 185–210

architecture, 186
ASLR, 549
binaries, 187
BIOS, 184
Boot Camp, 204
Boot Services, 188–191
BSD, 203
console protocols, 189–190
GUIDs, boot.efi, 192–193
kernel, 203
Mach, 203
media access protocols, 190
Platform Expert, 303
protocols, 188–191
runtime services, 191–192
variables, APPLE_BOOT_GUID, 193

UEFI, 185–186, 191
FixedPriorityString(), 427
FixedPriorityWithPsetRunqueueString(),

427
flags, 107
fl ashing, 184
flavor, 156
fleh_irq, 426
fleh_swi, 280, 438
fl oating point registers, 774, 777
fmm-hostname, 193
folderCount, 633
f_ops, 605
Force Quit, 174
ForceFeedback, 37
fo_read, 604
FOREGROUND_APPLICATION, 422
fork(), 512, 514, 515
forks, 611–612, 639–640

forkproc(), 514, 515–516
Foundation, 37
fp_data, 667
FPE, 534
fpextovrfit, 438
fp_lookup, 601–602
free(), 127

memory leaks, 176
vm_allocate, 453

FreeBSD, 55
FreePages, 189
FreePool, 189
FREE_ZONE, 544
friends, 44
fsboot(), 212
fsck(1), 217
fsck_cs(8), 576
fsctl(2), 645–646
FSE_CHOWN, 5
FSE_CONTENT_MODIFIED, 5
FSE_CREATE_DIR, 5
FSE_CREATE_FILE, 5
FSE_DELETE, 5
FSE_EVENTS_DROPPED, 75
FSE_FINDER_INFO_CHANGED, 5
FSE_RENAME, 5
FSE_STAT_CHANGED, 5
FSEvents, 7, 74–78, 237, 242
fseventsd, 75, 242
FSEventStreamCreate, 75
-fstack-protector, 130
fstat1(), 603–604
fs_usage(1), 76, 165
FSYSTEM(3), 166
FTP. See File Transfer Protocol
full disk encryption (FDE), 204, 575
function interposing, 125–128
FUSE. See File systems in USEr space
fuse_main(), 598
fuse_operations, 599
fuser(1), 156, 180
fw, 679
FWAUserLib, 37
fwkpfv(1), 333
FXR, 305

G
-g, dtruss, 151
GameKit, 37
garbage collection

Mach zones, 471–473
Objective-C, 545
vm_pageout(), 497

GateKeeper, 84
GCD. See Grand Central Dispatch
GDB. See GNU Debugger
gdb, 118, 119, 337

bindex.indd 802bindex.indd   802 9/29/2012 5:56:53 PM9/29/2012   5:56:53 PM



10 Book Title   <Chapter No>   V1 - MM/DD/2010

803

gen – HFS_GET_BOOT_INFO

gen, 303
general protection fault, 267
Generic Security Services (GSS), 37
getaudit(), 61
getaudit_addr(), 61
get_bsdtask_info(task_t), 511
get_bsdthread_info(thread_t), 511
GETBUF(5), 169
get_dp_control_port, 376
GetMemoryMap, 189
GetNextVariableName, 192
GETREG(9), 169
getrlimit(2), 398, 512
get/set inferior-auto-start-dyld, 181
get/set inferior-bind-exdception-port,

181
get/set inferior-ptrace[-on-attach], 181
get_special_port(), 400
get-task-allow, 444
GetTime, 192
GetVariable, 192
GetWakeupTime, 192
GID. See group identifi er
gif, 678
gif(4), 655
gif_clone_create(), 685
GLKit, 37
Globally Unique Identifi er Partition Table (GPT), 572–574, 

576–577
GLUT, 37
GNU Debugger (GDB), 181–182, 458
GNUStep port, 4
GPT. See Globally Unique Identifi er Partition Table
GPU, 7
GrabFS, 598
Grand and Unifi ed Bootloader (GRUB), 184
Grand Central Dispatch (GCD), 7, 79, 145–146, 253, 550
Graphical User Interface (GUI), 15

Aqua, 17–18
dtruss, 151
Finder, 247–248
Force Quit, 174
Leopard, 7
Lion, 8
Mac OS Classic, 3–4
NeXTSTEP, 4
OS X, 215
shells, launchd, 246–253
SpringBoard, 13, 248–253
Tiger, 6

graphics, Quartz Extreme, 6
GRAPHICS_OUTPUT_PROTOCOL, 190
GRAPHICS_SERVER, 423
grep, 306
groups

lock, 361
processes, 91

BSD, 507–508
group identifi er (GID), 97

GRRRString(), 427
GRUB. See Grand and Unifi ed Bootloader
GSEvent, 253
GSS. See Generic Security Services
GuardMalloc, 125
GUI. See Graphical User Interface
GUIDs

directories, 25
EFI, boot.efi, 192–193
protocols, UEFI, 191

GUID/tmp, 25

H
-h, 105
-H, dynamic-pager(8), 143
HandleProtocol, 189
handoffs, 415–416
hard links, 578–579, 639
hardening, 13
HardResourceLimits, 236
hardware

BSD signals, 534
CHUD, 154–155, 373
EFI, 189
interrupts, 431
non-Apple, 10
pop, timer interrupts, 435–436

hardware extraction, XNU kernel, 295–297
hdiutil, 213, 568–569, 589
header records, 627
heap(1), 177
heaps, 139–140
heap spray, 103
Heavenly, 11
hertz_tick(), 431
HFS. See Hierarchical File System
hfs, 307
HFS+. See Hierarchical File System Plus
HFS_BULKACCESS_FSCTL, 646
HFSCatalogFileRecord, 637
HFSCatalogFolderRecord, 637
HFS_CHANGE_NEXT_ALLOCATION, 646
HFS_CLRBACKINGSTOREINFO, 646
--hfsCompression, 613
HFS_DISABLE_JOURNALING, 647
HFS_DISABLE_METAZONE, 646
HFS_ENABLE_JOURNALING, 647
HFS_ENABLE_RESIZE_DEBUG, 647
HFS_ENCODINGBIAS, 647
HFS_ENCODINGHINT, 647
HFS_EXTEND_FS, 647
sysctl(2), 620

HFS_FSCTL_GET_JOURNAL_INFO, 646
HFS_FSCTL_SET_DESIRED_DISK, 646
HFS_FSCTL_SET_LOW_DISK, 646
HFS_FSCTL_SET_VERY_LOW_DISK, 646
HFS_GET_BOOT_INFO, 646
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HFS_GET_JOURNAL_INFO, 647
HFS_GETPATH, 646
<hfs/hfs_format.h>, 625
hfsleuth, 577, 613, 628, 635
HFS_MARK_BOOT_CORRUPT, 646
HFS_NEXT_LINK, 646
HFSPlusCatalogKey, 633
HFSPlusCatalogThread, 633
HFSPlusForkData, 639
HFS_PREV_LINK, 646
hfs_readwrite.c, 622–623
hfs_relocate(), 622–623
HFS_RESIZE_PROGRESS, 646
HFS_RESIZE_VOLUME, 646
ioctl(2), 620

HFS_SET_ALWAYS_ZEROFILL, 646
HFS_SETBACKINGSTOREINFO, 646
HFS_SET_BOOT_INFO, 646
HFS_SET_PKG_EXTENSIONS, 647
HFS_SET_XATTREXTENTS_STATE, 646
HFS_VOLUME_STATUS, 646
HFSX, 619
hibernate_newruntime_map(), 203
hidden, 248
Hierarchical File System (HFS), 4, 579
Hierarchical File System Plus (HFS+), 21–22, 579–580, 

607–648
ACLs, 608
B-Tree, 624–645
case sensitivity, 619
compression, 612–617
decompression, 613–616
design concepts, 624
disk image fi les, 589
dynamic defragmentation, 622–623
dynamic resizing, 620
extended attributes, 608–611
fi le systems, status notifi cations, 647
finderInfo, 205–106
forks, 611–612
hfsleuth, 577
hot fi les, 621–622
journaling, 619–620
journaling, B-Tree, 642–645
metadata zone, 620–621
OS X Finder, 617–618
panic(), 333
permissions, 577, 639
sandboxing, 84
timestamps, 607–608
Unicode, 617
VFS, 591
volume header, B-Tree, 631–632

himemory_mode, 331
HNDL_ALLINTRS, 274
HNDL_ALLTRAPS, 274
hndl_alltraps, 273–274
Hoodoo, 12
host, 367–371

HOST_AMFID_PORT(18), 373
HOST_AUDIT_CONTROL(9), 372
HOST_AUTOMOUNTD_PORT(11), 373
HOST_CHUD_PORT(16), 373
host_default_memory_manager, 375
HOST_DYNAMIC_PAGER_PORT(8), 372
host_get_boot_info, 374
host_get_clock_control, 375
host_get_clock_service, 368, 379
host_get_host_priv_port(), 374
host_get_special_port, 371–374, 375
host_get_UNDServer, 376
HOST_GSSD_PORT(19), 373
host_info, 355, 368
hostinfo(1), 369–371
HOST_KEXTD_PORT(15), 373
host_load_symbol_table, 376
HOST_LOCKD_PORT(12), 373
host_lockgroup_info, 369
host_notify_reply, 352
host_priv, 352
host_priv_statistics, 374
host_processor_info, 368
host_processors, 375
host_processor_sets, 376
host_reboot, 374
HOST_SEATBELT_PORT, 561
HOST_SEATBELT_PORT(14), 373
host_security, 352
host_set_exception_ports, 376
bsdinit_task(), 530

host_set_special port, 376
host_set_UNDServer, 376
HostSpecialPort, 235
host_statistics, 369
HOST_UNFREED_PORT(17), 373
HOST_USER_NOTIFICATION_PORT(10), 372
host_virtual_physical_table(), 456
host_virtual_physical_table_info, 369
hot fi les, 621–622, 641–642
HTML, 241

widgets, 45, 47
hw, 56
hw_lock_t, 364
hybrid kernel, 265–267
hyperthreading, 408, 415

I
i386, 303
[i386|arm]_init, 311–313
i386_astintr(), 425
i386_exception(), 274, 438
i386_init(), 311, 395
i386_init_slave(), 311, 313
i386/machine/ppc, 307
i386/ppc/x86_64, 307
i386_THREAD_STATE, 109
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i386/trap.c, 274
iAD, 37
iBoot, 210–214
ICADevices, 37
iCloud, 8, 12
.icns, 29
icons, 29
IDL. See Interface Defi nition Language
idle_queue, 384
idle_thread, 384
IDT. See Interrupt Descriptor Table
IDT_ENTRY_WRAPPER, 272
ifconfig(8), 679
#ifdef, 12
#ifdef’ed, 314
ifnet, 680–682
ifnet_allocate(), 682
ifnet_attach(), 682
ifnet_attach_proto_param(), 682
ifnet_reference(), 682
ifnet_release(), 682
if_output, 693
ILL, 534
imageboot_needed(), 590
imageboot_setup(), 590
ImageCaptureCore, 37
ImageIO, 37
image_params, 518
IMCore, 37
IMG3, 221–222
implicit preemption, 420–423
__IMPORT, 134
IMServicePlugin, 37
#include, 355
INET, 234
inetd, 232–234, 238
info mach-port <task> <port>, 181
info mach-ports <task>, 181
info mach-region <address>, 181
info mach-regions, 181
info mach-task <task>, 181
info mach-tasks, 181
info mach-thread <thread>, 181
info mach-threads <task>, 181
Info.plist, 26–28, 717, 721

I/O Kit, 741
init(), 93, 230, 428
inital_thread_sched_mode(), 429
InitBootStruct, 200
initialization

BSD, 318
domains, 673–675
launchd, 230–231

initializeConsole, 195
initial_quantum_size(), 429
init_kdp(), 318
InitMemoryConfig, 198
initprot, 107
init_proto(), 674

InitSupportedCPUTypes, 198
inode, 608
inotify, 74
InputMethodKit, 37
insertions, B-Tree, 624, 636
installation

images, boot process, 214–225
OS X, 214–219

InstallESD.dmg, 214, 215
InstallProtocolInterface, 189
install_real_mode_bootstrap(), 316, 329
instances, processes, 91
InstantMessage, 38
Int 13h, 183
int64, 254
IntallerPlugins, 38
Integrated Services (IntSrv), 706
Intel

architecture, Mach physical memory management, 
465–467

atomicity, 787–788
IDT, 268
kernel, 266–267
locking, 787–788
multithreading, 786
OS X, 261
registers, 773–776
32-bit, process address space, 132
trap handlers, 268–278

ARM, 275–278
XNU, 272–275

VM, 791
x86, 6

interfaces. See also Graphical User Interface
EMMI, 480
fi lters, packet fi ltering, 701
ifconfig(8), 679
iOS, 678–680
KPI functions, 682
layer III, 678–686
NDIS, 739
OS X, 678–680
protocols, 677–678
utun, 682–686

Interface Defi nition Language (IDL), 351
internationalization, 29
__interpose, 125
interpreters, 98
INTerrupt, 278
Interrupt(), 275
interrupts

ARM, 296
asynchronous, 431
hardware, 431
involuntary user/kernel transition, 270–271
I/O Kit, 765–768
PIC, 270
PPC, 296–297
SWI, 275, 280
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synchronous, 278
timer, 431–436

Interrupt Descriptor Table (IDT), 268, 438
Interrupt Handler, 270
Interrupt Request (IRQ), 270–271
Interrupt Service Routine (ISR), 268, 270
IntSrv. See Integrated Services
involuntary user/kernel transition

exceptions, 269–270
interrupts, 270–271

io, 331
I/O. See also Basic Input Output System
launchd, 236
policies, 527–528
processes, 93, 600–605

I/O Kit, 737–771
BSD, 769–771
C++, 737, 740–741
device drivers, 738
diagnostics, 753–755
diskarbitrationd, 587
driver matching, 755–757
driver model, 761–763
families, 757–761
Info.plist, 741
interrupts, 765–768
I/O registry, 740, 743–746
IOMalloc, 479
IOMemoryDescriptor, 485
IOPlatformExpert, 304–305
kernel drivers, 755–769
kernel_bootstrap_thread, 318
launchd, 237–238
libkern, 742–743
loops, 740
memory management, 769
name mangling, 740
namespaces, 740
NDIS, 739
OSObject, 739, 741
Platform Expert, 303
power management, 751–753
subsystems, 753
user mode, 740, 746–755

device drivers, 749–750
I/O registry, 747–749
plug and play, 750–751

XNU, 50
I/O registry, 740, 743–749
IOACPIPlane, 744
ioalloccount(8), 753
IOAllowPowerChange(), 752
IOBluetooth, 38
IOBluetoothUI, 38
ioclasscount(8), 754
IOCommandate, 764
IOCopyAssertionsByProcess(), 753
ioctl(), 566–567, 672
ioctl(2), 75, 620
IODeviceTree, 196–198, 744

IOFilterInterruptEventSource, 764
IOFilterInterruptSource, 764
IOGENERALMEMORYDESCRIPTOR::doMap, 488
IOHDIXController, 592
IOHDIXController.kext, 589
IOHibernateIO.cpp, 193
IOHibernatePrivate.h, 193
IOKernelConfigTables, 755
IOKit, 38, 79, 196
iokit, 307
IOKIT(5), 167
iokit/bsddev/DINetBookHook.cpp, 590
IOMalloc, 479
IOMemoryDescriptor, 485
IONetworkController::outputPacket(), 693
IONotificationPortCreate, 750
IOPlatformDevice, 755
IOPlatformExpert, 304–305
IOPMAssertionCreateWithName(), 752
IOPMSchedulePowerEvent(), 752
IOPMSleepSystem(), 752
iopolicysys(), 527–528
IOPower, 744, 751
ioreg, 194, 224
ioreg(8), 196
IORegisterForSystemPower(), 752
IORegistry, 717
IORegistryEntry, 746
iOS

Apple TV, 11–12
architecture, 15–51
ARM, 5, 261
ASLR, 173
BackupAgent, 173
CHUD, 155
default directories, 25
Default Freezer, 494
device tree, 224–225
downgrade attacks, 213–214
DTrace, 148
entitlements, 87–89, 97
fleh_irq, 426
frameworks, 32–43
GDB, 182
hiding applications, 250
hostinfo(1), 369
iBoot, 210–214
interfaces, 678–680
iPad, 11
iPad 2, 11–12
iPhone, 11
iPhone 4, 11–12
.ipsw, 219–225
IPv6, 654
jailbreaking, 210
Jetsam, 236–237, 546–548
kernel, 23

ExceptionVectorsBase, 275–276
jailbreaking, 457
system calls, 286–287
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versions, 14–15
kernelcache, 719
LaunchDaemons, 241–253
libraries, 42–44
lockdownd, 234
Mach, 343

scheduling exceptions, 445
Mountain Lion, 9
network stack, 649
OS X, 12–15

merger, 16
PF_NDRV, 652
pid_shutdown_sockets, 94
process hibernation, 547–548
replay attacks, 213–214
sandboxing, 81–82
security, 79–90
Setup.App, 249
shared cache, 121
sleep, 329
SpringBoard, 248–253
start(), 310–311
32-bit, process address space, 133–134
UNIX directories, 23–24
versions, 10–12
XNU, 310
XPC, 253–257

IOService, 744, 746
IOServiceAddInterestNotification(), 750
IOSurface, 38
iothread, 496
IOUSB, 744
IOUserEthernetController, 656
IOWorkLoop, 764–765
IP fi lters, 698–701
ip6config, 655
iPad, 11
iPad 2, 11–12
ipc, 307
IPC services, 234, 357–360
ipc_kmsg_send(), 359
ipc_kobject_server(), 359
ip_clock_enable(), 379
ipc_mqueue_*, 359–360
ipc_port_t, 357
ipf_filter, 699
ipfw(8), 696–697
iPhone, 11
iPhone 4, 11–12
ip_output_list(), 692
IPSec Key Management sockets, 654
.ipsw, 219–225
iptap_init(), 656
IPv4, 651–652
IPv6, 654–655
IRQ. See Interrupt Request
IRQ, 268
isolated virtual memory, 130
ISR. See Interrupt Service Routine
iTunesArtwork, 25

iTunesMetaData.plist, 25
Itunesstored(), 244
iTunesStore.daemon.*itunesstored.*, 244

J
Jaguar, 6
jailbreaking, 13

ASLR, 549
CrashReporter, 173
ioreg, 224
iOS, 210

kernel, 457
LC_CODE_SIGNATURE, 110
lockdownd, 245
logging, 71–72
sandboxing, 81–82
SSH, 21
unionfs, 587
versions, 213

Jasper, 11
Java, 44–45
java, 44
JavaApplicationLauncher.framework, 45
javac, 44
JavaEmbedding, 38
JavaEmbedding.framework, 44
JavaFrameEmbedding, 38
JavaFrameEmbedding.framework, 44
JavaLaunching.framework, 45
JavaScript, 45

widgets, 47
JavaScript Object Notation (JSON), 26
JavaScriptCore, 38
JavaTools.pkg, 216
JavaVM, 38
Jetsam, 236–237, 546–548
jetsam_flags_procs(), 546
jetsam_kill_hiwat_proc(), 546
jetsam_kill_top_proc(), 546
jetsam_snapshot_procs(), 546
jetsam_task_page_count(), 546
JIT. See Just-In-Time
JOURNAL_HEADER_MAGIC, 644
journalInfoBlock, 643
journaling, HFS+, 21, 619–620, 642–645
JSON. See JavaScript Object Notation
jtool, 721
Just-In-Time (JIT), 457

K
-k, 149–150
kalloc(), 470, 477–479
kas_info(), 549
KAUTH, 578
kBTHeaderNode(1), 627
kdebug, 79, 165–170, 434
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kdebug_trace, 169
KDGETENTROPY(16), 170
KDP. See Kernel Debugger Protocol
kdp, 307
kdp_match_name, 332
kdp_register_send_received(), 332
Kerberos, 38
kern, 56, 307
KERN_BAD_ACCESS, 534
kern.coredump, 171
kern.corfile, 171
kern_ctl_reg, 656
kernel, 12–13

arbiter, 262
architecture, 261–287
ARM, 267–268
asynchronous versus synchronous, 268
cache, 23
clients, 261
control protocol, 655–657
debugging, 332–340
drivers, I/O Kit, 755–769
DTrace, 152
dyld, 111
EFI, 203
event protocol, 657–658
extensions, 711–735

code signing, 712–713
modular architecture, 712–713
pre-linking, 713

FUSE, 598
hybrid, 265–267
Intel, 266–267
iOS, 23

ExceptionVectorsBase, 275–276
jailbreaking, 457
system calls, 286–287
versions, 14–15

kdebug, 166
kext, 725–735
kprintf(), 313
launchd, 227
Linux, 262–264, 303
logging, 70
MAC, 63
Mach, 303

scheduling, 406–407
memory, 198

Mach, 473–480
microkernels, 264–265
monolithic, 262–264
Mountain Lion, 9
NeXTSTEP, 4
OS X versions, 14–15
panic(), 333–340
permissions, 262
Platform Expert, 296, 303
printf(), 313
runtime services, 191
scheduling, 262

security services, 262
serial, 313
64-bit, 264
system calls, 261, 268, 283–295
32-bit, 266
tick-less, 432
Tiger, 6
trap handlers, 334
universal binaries, 100
user mode/kernel mode, 266–282

involuntary transition, 269–271
transition, 268–282
voluntary transition, 278–282

VFS, 22, 645–648
virtualization, 262
XNU, 50

architecture, 302–305
boot, 299–340
hardware extraction, 295–297

Kernel, 38, 199
kernel Architecture, 199
Kernel Cache, 199
Kernel Debug Kit, 337
Kernel Debugger Protocol (KDP), 331, 332
Kernel Flags, 199
kernel mode

BSD process creation, 513–516
involuntary transition

exceptions, 269–270
interrupts, 270–271

sockets, 667–668
voluntary transition, 278–282

kernel_bootstrap(), 314–316, 379
kernel_bootstrap_thread(), 318–320, 379, 495
kernelcache, 201, 211, 214, 719–723
kernel_create_thread(), 318
KERNEL_DEBUG_CONSTANT, 169
kernel_memory_allocate(), 469, 473–476
kernel_task, 395, 402
-kernel_text_ps-4k, 330
kernel_thread_create, 416–417
kernel_thread_start_priority, 416
kern_hibernation_wakeup, 547
kern_invalid(), 290
KERN_INVALID_ARGMENT, 290
KERN_KD*, 169–170
KERN_KDENABLE, 169
KERN_NOT_SUPPORTED, 345
kern_os_malloc(), 479
KERN_PANICINFO_TEST, 336
KERN_PROCARGS, 156
kern_return_t, 353
KERN_SUCCESS, 436
kern.sugid_coredump, 171
KEV_APPLESHARE_CLASS(4), 657
kevent(2), 556
kevent64(2), 556
KEV_FIREWALL_CLASS(5), 657
KEV_IEEE80211_CLASS(6), 657
KEV_IOKIT_CLASS(2), 657
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KEV_NETWORK_CLASS – LCK_ATTR_DEBUG

KEV_NETWORK_CLASS(1), 657
KEV_SYSTEM_CLASS(3), 657
kext, 713–735

kernel, 725–735
loading, 732–733
MIG, 734–735
otool(1), 340
plist, 718
programmer’s view of, 724–725
security, 718
structure, 717–718

kextd, 733–734
kextd(8), 728
kextlog, 331
kext_request, 377, 733–734
kextstat(8), 714, 727
Kext-tools, 300
keyed records, 627
kHFS*, 633
Khronos, 7
KILL(), 534
kill -9, 236, 247, 253
kill -15, 236
kill -CONT, 247
kill -STOP, 247
killall(1), 248
killpg1(), 508, 535
killpg1_callback(), 535
kIODTNVRAMPanicInfoKey, 336
KirkWood, 11
kJIJournalInFsMask(), 644
kJIJournalOnOtherDeviceMask(), 644
-klog_in 1, 70
kmem, 331
kmem_alloc(), 477
kmem_alloc_contig(), 477
kmem_alloc_pageable(), 477
kmem_alloc_pages(), 477
kmeminit(), 544
kmod_get_info(), 368, 726
kmod_info_t, 725
kmzones[], 542
Kodiak, 5
Korn shell, 21
KPI functions

interfaces, 682
protocols, 677

kpi_socket, 667
kprintf(), 313, 333
kqueues, 57–59, 237, 555–556
kSBXProfileNoNetwork, 83

L
-l, 330, 409
-L, dynamic-pager(8), 143
Label, 238
labels, MAC, 62
<language>.pkg, 216

LAPIC. See Local Advanced Programmable Interrupt 
Controller

Large Block Address (LBA), 568
lastMountedVersion, 642–645
latency(1), 165
LatentSemanticMapping, 38
Launch Daemon, 79, 229
launchctl(), 228, 240–241
bstree, 253

launchctl(1), 240–246
launchd, 93, 227–257, 326

agents, 229
atd, 231
autorun, 237
bsdinit_task, 227
crond, 231
daemons, 229
GUI shells, 246–253
inetd, 232–234
init, 230
initialization, 230–231
I/O Kit, 237–238
kernel, 227
LaunchDaemons, 241–246
load_init_program(), 227, 326
lockdownd, 245–246
mach_init(), 234–236, 351
MachServices, 373
parameters, 240
PID, 228
resource limits, 236–237
socket descriptors, 240
starting, 227–241
syslogd, 72
system-wide versus per-user, 228
throttling, 236–237
transactions, 236
wrappers, 240–241
xinetd, 232–234
XPC, 253–257

launchd(8), 59
LAUNCHD(34), 168
.launchd_log_debug, 228
.launchd_log_shutdown, 228
.launchd_use_gmalloc, 228
<launch.h>, 235, 240
launch_msg(), 240
LaunchPad, 13
layer III interfaces, 678–686
layer III network protocols, 676–678
layer IV transport protocols, 668–669
layer V sockets, 660–668
LBA. See Large Block Address
LC_CODE_SIGNATURE, 106, 110
LC_DYLINKER, 111
LC_DYSMTAB, 114
LC_ENCRYPTION_INFO, 106
LC_FUNCTION_STARTS, 114
LC_ID_DYLIB, 114
LCK_ATTR_DEBUG, 361
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lck_grp_t, 361
lck_mtx_destroy, 364
lck_mtx_free, 363, 364
lck_mtx_init, 364
lck_mtx_lock, 364
lck_mtx_t, 364
lck_mtx_try_lock, 364
lck_mtx_unlock, 364
lck_rw_destroy, 363
lck_rw_init, 363
lck_rw_lock, 363
lck_rw_t, 363
lck_rw_unlock, 363
lck_spin_t, 364
LC_LOAD_DYLIB, 114, 115
LC_LOAD_DYLINKER, 106
LC_MAIN, 110
LC_REEXPORT_DYLIB, 114, 115
LC_SEGMENT, 106, 107–109
LC_SEGMENT(64), 130
LC_SEGMENT_64, 106, 107–109
LC_SOURCE_VERSION, 114
LC_SYMTAB, 114, 115
LC_THREAD, 106, 109
LC_UNIXTHREAD, 106, 109, 110, 311
otool, 308

LC_UUID, 106
LC_VERSION_MIN_IPHONEOS, 114
LC_VERSION_MIN_MACOSX, 114
LDAP, 38
ldd, 105, 114
LDFILELIST, 302
leaks(1), 177–178
ledger, 352
ledgers, Mach scheduling, 398–399
ledger_entry_info(), 399
ledger_info(), 399
ledger_template_info(), 399
Legacy PICs (XT-PICs), 270
Lemon, Jonathan, 555
Leopard, 7, 131
LibC, 139
LibC, OS X, memory, 174–175
libdispatch, 545
libgmalloc, 175–176
libKern, 728–732
libkern, 50, 307, 742–743
libraries

ASLR, 122
dynamic, 111–130
ELF, 102, 502

binaries, 15–16
executables, 111
iOS, 42–44
launch-time loading, 111–121
NeXTSTEP, 4
OS X, 42–44
runtime loading, 122–124

shared cache, 121
/Library, 23
Library/, 25
/Library/Frameworks, 33
/Library/LaunchAgents, 229
~/Library/LaunchAgents, 229
/Library/LaunchDaemons, 229
libSystem, 115
libxpc.dylib, 254, 256
libXSLT, 44
libZ, 44
LICENSE, 717
Lightweight Volume Manager (LwVM), 574–575
lightweight_update_priority(), 430
links, 578–579, 639

pre-linking, 713
_LINKEDIT(), 107
__LINKEDIT, 134
Linus Cross Reference (LXR), 305
Linux
binfmt, 516
kernel, 262–264, 303
NetFilter, 698
OOM, 139

Lion, 8
application containers, 84–97
asctl(1), 84
ASLR, 131–132
boot_args, 201–202
boot.efi, 195, 204
booting from disk image, 590–591
compression, 612
Core Storage, 200, 204
diagnose, 86
dscl(8), 67
I/O Kit, 237–238
kextstat(8), 714
kSBXProfileNoNetwork, 83
LaunchPad, 13
ledgers, 398
MAC, 64
malloc_entropy, 130
64-bit, 200
stack_guard, 130
XPC, 253–257
zones, 542

lipo, 99
lipo(1), 101–102
listImages(), 122
listq, 452
lists, BSD processes, 507–508
LLB. See Low Level Bootloader
LLDB, debugging, 182
lo, 678
LoadCoreStorageConfiguration(), 200
LoadDrivers, 200
LOAD_FAILURE, 523
LOAD_FILE_PROTOCOL, 190
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load_init_program(), 227, 326
LoadKernelCache, 200
load_machfile(), 522–525
LoadRamDisk, 200–201
load_result(), 524–525
load_segment(), 107, 492
Local Advanced Programmable Interrupt Controller 

(LAPIC), 316
/Local/Default, 65
LocateHandle, 189
locationd, 242
lock groups, 361
lock objects, Mach

groups, 361–362
lock sets, 366–367
mutex, 362–363
read-write, 363
semaphores, 364–366
spinlock, 364

lock sets, 366–367
lock_acquire, 366
Lockbot, 244
lockbundle, 248
Lockdownd, 245
lockdownd, 234, 245–246
lockdown.host_watcher, 245
lock_handoff, 367
lock_handoff_accept, 367
locking

ARM, 788–790
Intel, 787–788

lock_make_stable, 367
lock_release, 366
lock_set, 352
lock_set_create, 366
lock_set_destroy, 366
lock_set_t, 366
lock_try, 367
LOG_ALERT, 70
LOG_ERR, 70
logging

jailbreaking, 71–72
OS X, 69–72

LoginWindow, 18
LOG_KERN, 70
lookups, B-Tree catalog, 634–636
loops, I/O Kit, 740
loopattach(), 677
LoopbackFS, 598
Low Level Bootloader (LLB), 210, 211
LowPriorityIO, 236
.lproj, 29
ls(1), 578
lseek(), 512
lsof(1), 156, 180
lsregister, 31–32
LwVM. See Lightweight Volume Manager
LXR. See Linus Cross Reference

M
-m, Mach, 441
MAC. See Mandatory Access Control
Mac OS Classic, 3–5
MAC_CHECK, 560
mac_execve, 82
__mac_execve(), 520
MACF. See Mandatory Access Control Framework
Mach, 4, 45

APIs, 79
binding, 415
BSD, 343, 501, 510–512
design goals, 345–346
design philosophy, 344
EFI, 203
eradication of, 15
I/O Kit, 737
iOS, 343
IPC services, 234
kernel, 303

memory allocators, 473–480
lock groups, 361
lock objects

groups, 361–362
lock sets, 366–367
mutex, 362–363
read-write, 363
semaphores, 364–366
spinlock, 364

-m, 441
messages, 346–357

complex, 347–348
MIG, 351–357
passing, 344
ports, 349–351
sending, 348–349

microkernels, 264, 501
XNU, 343

OS X, 343
osfmk/console, 334
pagers, 447, 480–499

policy management, 494–499
physical memory management, 462–467

Intel architecture, 465–467
PID, 511–512
ports, 251–253, 357–358
POSIX, 343
primitives, 343–388

clock, 378–380
IPC, 357–360
machine primitives, 367–387
privileged ports, 374–377
processor, 380–384
processor_set, 384–387
scheduling, 389–408
synchronization, 360–367

read-write lock objects, 363
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scheduling, 389–446
algorithms, 427–430
ASTs, 423–427
continuations, 416–418
dispatch table, 428–430
exceptions, 436–445
explicit preemption, 418–420
handoffs, 415–416
implicit preemption, 420–423
kernel, 406–407
ledgers, 398–399
preemption modes, 418–423
tasks, 395–398, 422–423
task APIs, 399–404
threads, 390–395
thread APIs, 404–408
thread creation, 407–408
timer interrupts, 431–436

subsystems, 352–353
system calls, 46–48
throttling, 412
trailers, 347
trap handlers, 287–291
UNIX, 534
UN*X, 389
UPL, 484–486
VM, 447–500

architecture, 447–462
XNU, 49
zones, 467–473

boot, 470–471
debugging, 473
garbage collection, 471–473
OS X, 470–471

mach, 307
MACH(1), 166
Mach Interface Generator (MIG), 236, 256, 343, 351–357, 

734–735
mach_call_munger, 287–289
mach_call_munger_xx, 438
machdep, 56
machdep_call_table, 292
mach_exc, 352
<mach/exception_types.h>, 437
mach_header, 105
mach_host, 352
mach_host.h, 355
mach_host_self(), 374, 496
machine, 307
machine primitives, 367–387
machine_init, 316–317
machine_startup, 314
mach_init(), 234–236, 351
<mach/mach_host.h>, 355
mach_make_memory_entry(), 456
<mach/message.h>, 346
mach_msg(), 236, 349, 353, 442
mach_msg_context_trailer_t, 347
mach_msg_mac_trailer_t, 347

MACH_MSG_OOL_DESCRIPTOR, 347–348
MACH_MSG_OOL_PORTS_DESCRIPTOR, 347–348
MACH_MSG_OOL_VOLATILE_DESCRIPTOR, 347–348
mach_msg_overwrite, 348
mach_msg_overwrite_trap(), 359
MACH_MSG_PORT_DESCRIPTOR, 347–348
mach_msg_receive(), 359–360
mach_msg_receive_results(), 360
mach_msg_security_trailer_t, 347
mach_msg_seqno_trailer_t, 347
mach_msg_trailer_t, 347
mach_msg_trailer_type_t, 346
mach_msg_trap(), 349
Mach-O

ASLR, 131–132
binaries, 522–525
dynamic libraries, 111–130
executables, 98

segments and sections, 108
fi le types, 103
header fl ags, 104
heaps, 139–140
LC_CODE_SIGNATURE, 110
load commands, 106–111
loader, 44
memory, 138–143
NeXTSTEP, 102
otool(1), 105
process address space, 130–138
universal binaries, 102–105
VM, 140–143

<mach-o/arch.h>, 100
mach_port, 352
mach_port_name_t(), 61
mach_port_t, 357, 452
MACH_RCV_INTERRUPT, 348
MACH_RCV_LARGE, 348
MACH_RCV_MSG, 348
mach_msg(), 353

MACH_RCV_NOTIFY, 348
MACH_RCV_OVERWRITE, 348
MACH_RCV_TIMEOUT, 348
MACH_RCV_TOO_LARGE, 348
mach_reply_port, 48
MACH_SEND_ALWAYS, 349
MACH_SEND_CANCEL, 349
MACH_SEND_INTERRUPT, 349
MACH_SEND_MSG, 349
mach_msg(), 353

MACH_SEND_NOTIFY, 349
MACH_SEND_TIMEOUT, 349
MACH_SEND_TRAILER, 349
MachServices, 373
mach_sg_send(), 359
mach_task_self(), 400, 407, 453
mach_trap, 152
mach_trap_table, 290–291
mach_types, 352
mach_vm, 352
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mach_vm_allocate(), 453
mach_vm_behavior_set(), 454
mach_vm_deallocate(), 453
mach_vm_inherit(), 454
mach_vm_machine_attribute(), 455
mach_vm_map(), 455
mach_vm_map_page_query(), 456
mach_vm_msync(), 454
mach_vm_page_info(), 456
mach_vm_page_query(), 456
mach_vm_protect(), 453
mach_vm_purgable_control(), 456
mach_vm_read(), 454
mach_vm_read_overwrite(), memcpy, 454
mach_vm_region(), 453
mach_vm_region_recurse(), 453
mach_vm_region_recurse, 458–462
mach_vm_remap(), 455
[mach]_vm_wire, 375
mach_vm_wire, 458
mach_vm_write(), 454
mach_zone_info(), 467
MacOS, 717
mac_policy_conf, 559
mac_policy_initmach(), 318
mac_policy_ops, 559
MAC_POLICY_SET, 559
mac_policy_unregister, 559
mac_vnode_check_signature, 560
macx_swapoff(), 499
macx_swapon(), 499
macx_triggers(), 499
madvise(), 454
magazine allocator, 139
main(), 18, 92, 93, 187
_main, 120
maintenance_continuation(), 428
malloc(), 125, 127–128, 453, 467, 541–544
_MALLOC, 479
malloc(3), 174–175
MallocCheckHeapEach, 174
MallocCheckHeapSleep/Abort, 174
MallocCheckHeapStart, 174
MallocCorruptionAbort, 175
MallocDoNotProtectPostlude, 175
MallocDoNotProtectPrelude, 175
malloc_entropy, 130
MallocErrorAbort, 175
MallocGuardEdges, 175
malloc_history(1), 178
__MALLOC_LARGE, 134
MallocLogFile, 174
malloc_printf, 128
MALLOC_PROTECT_BEFORE, 176
MallocScribble, 175
__MALLOC_SMALL, 134
MallocStackLogging, 175
MallocStackLoggingDirectory, 175
MallocStackLoggingNoCompact, 175

__MALLOC_TINY, 134
man, 307
Management Information Base (MIB), 56, 64
Mandatory Access Control (MAC), 55, 62–65, 558–560
mac_policy_initmach(), 318
sandboxing, 89

Mandatory Access Control Framework (MACF), 527
Map Record, 628
MapKit, 38
Master Boot Record (MBR), 568–570
maxmem, 331
MAXPRI_THROTTLE(4), 412
maxprot, 107
MBR. See Master Boot Record
mbuf, 661–667
mcache, 545
mdcheckschema, 20
mddiagnose, 20
mdfind, 20
mdimport, 20
MDL. See Memory Descriptor List
mdls, 20
mDNS. See multicast DNS
mDNSResponder, 243
mds, 75
mdutil, 20
media access protocols, 190
MediaFiles.pkg, 216
MediaPlayer, 38
MediaToolbox, 38
memcpy, 26, 454
memory

EEPROM, 184
EFI, 189
EMMI, 480
kernel, 198

Mach, 473–480
leaks, debugging, 176–178
Mac OS Classic, 3–4
Mach-O, 138–143
management, 13

BSD, 539–549
I/O Kit, 769

OOM, 139
OS X LibC, 174–175
physical

Mach, 462–467
VM, 448–449

PROM, 184
ROM, 184
VM

ARM, 447, 791
arm_vm_init(), 311
Intel, 791
isolated, 130
Mach, 447–500
Mach-O, 140–143
PE, 304
physical memory plane, 448–449
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POSIX, 458, 540–541
processes, 107–109
threads, 144

Memory Descriptor List (MDL), 485
memory objects, 447
memory pressure, 545
memory_object, 452
memory_object_control.defs, 481
memory_object_data_initialize(), 482
memory_object_data_reclaim(), 482
memory_object_data_request(), 482
memory_object_data_return(), 482, 496
memory_object_data_unlock(), 482
memory_object_deallocate(), 481
memory_object_default.defs, 481
memory_object.defs, 481
memory_object_init(), 481
memory_object_last_unmap(), 482
memory_object_map(), 482
memory_object_name.defs, 481
memory_object_reference(), 481
memory_object_synchronize(), 482
memory_object_t, 483, 596
memory_object_terminate(), 481
Memorystatus, 546–548
memq, 452
Message, 38
messages

facility, 70
Mach, 346–357

complex, 347–348
MIG, 351–357
ports, 349–351
sending, 348–349

passing, 264, 344
severity, 70

MessageUI, 38
metadata, 20
metadata, 609
MetaData Importer, 20
metadata zone, 620–621
MH_ALLOW_STACK_EXECUTION, 103
MH_BINDS_TO_WEAK, 103
MH_BUNDLE(8), 103
MH_CORE(4), 103
MH_DSYM(10), 103
MH_DYLIB(6), 103
MH_DYLINKER(7), 103
MH_EXECUTABLE(2), 103
MH_FORCEFLAT, 103
MH_FORCE_FLAT, 125
MH_KEXT_BUNDLE(11), 103
MH_NO_HEAP_EXECUTION, 103
MH_NOUNDEFS, 103
MH_OBJECT(1), 103
MH_PIE, 103
MH_SPLITSEGS, 103
MH_TWOLEVEL, 103
MH_WEAK_DEFINES, 103

MIB. See Management Information Base
microkernels, 264–265, 343, 501
MIG. See Mach Interface Generator
MIG, 302
mig(1), 353
MINCORE_*, 456
mincore(2), 456
MISC(20), 167
MJ_DIRECTORY_CONTROL, 74
mkext, 723–724
Mkext Cache, 199
ml_enable_initmach(), 318
ml_enable_interrupts(), 318
ml_functions, 296–297
ml_get_interrupts_enabled, 295
mlock(2), 458
ml_thrm_init(), 314
Mobileassetd, 245
MobileCoreServices, 38
MobileFileIntegrity, 244
mobile.installd, 245
mobil.installd.mount_helper, 245
model specifi c registers (MSRs), 279
modular architecture, 712–713
Mohave, 11
monolithic kernel, 262–264
mount entry, 592–595
Mountain Lion, 9, 84, 215, 398

ASLR, 548–549
CoreStorage, 575–576

mpo_proc_check_get_task, 562
mpo_proc_check_run_cs_invalid, 562
mpo_vnode_check_exec, 562
mpo_vnode_check_signature, 562
msgbuf, 331
msgh_remote_por, 359
msgh_size, 346
MSRs. See model specifi c registers
msync(2), 454, 458
multicast DNS (mDNS), 652
multitasking, 4, 11, 420–423
multithreading, 93, 786, 787
mutual exclusion (mutex), 360, 362–363
mvn, 48

N
-n, 59
name mangling, 740
named pipes, 584
namespaces

I/O Kit, 740
two-level, 125

native fi le systems, 579–580
Natural Language Processing, 8
ncmds, 104
NDIS. See Network Driver Interface Specifi cation
NDR. See Network Data Representation
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NDRV sockets, 653
net, 56
net_add_domain(), 674
net_del_domain(), 674
NetFilter, 698
NetFS, 38
net*/netinet*, 307
netsrc_init(), 655
/Network, 23
NETWORK(2), 166
Network Data Representation (NDR), 353
Network Driver Interface Specifi cation (NDIS), 739
network driver sockets, 652–654
Network File System (NFS), 582–583
network protocols, layer III, 676–678
network stack, 649–708

layer II interfaces, 678–686
layer III network protocols, 676–678
layer IV transport protocols, 668–669
layer V sockets, 660–668
packet fi ltering, 693–705
QoS, 705–707
receiving data, 686–690
sending data, 690–693
socket statistics, 658–660
traffi c shaping, 705–707
user mode, 650–658

networking
fi le systems, 582–583
IPv4, 651–652
IPv6, 654–655

/Network/Library/Networks, 33
NewsStand, 12
Newsstandkit, 38
nextCatalogID, 633
NeXTSTEP, 4, 24, 34, 102, 737
NFS. See Network File System
nfs, 307
.nib, 28–29
nm(1), 105
-no64exec, 330
nodeSize, 627
NONUI_APPLICATION, 423
NORMAL, 528
NorthStar, 11
-no_shared_cr3, 330
notifi cations, OS X, 78–79
notify(), 78–79, 352
notifyd(/usr/sbin), 243
notifyd(8), 79
<notify.h>, 79
notifyutil(1), 79
not_terminated, 59
novfscache, 331
NRQBM, 413
nsects, 107
NSGlobalDomain, 30
nstat_control_register(), 656
NSTAT_PROVIDER_CP, 659

NSTAT_PROVIDER_ROUTE, 659
NSTAT_PROVIDER_UDP, 659
NSZones, 139
NT File System (NTFS), 578, 581, 591, 624
NULL, 134
null, 254
numbers, system calls, 46
NVRAM, 191, 192–194, 336
nvram, 329
NXFindBestFatArch(), 100
NXGetLocalArchInfo(), 100

O
-o, 151, 612
-o union, 587
Objective-C, 45

Cocoa, 34
CoreServices, 75–76
garbage collection, 545
Info.plist, 26
Java, 44
Leopard, 7
NeXTSTEP, 4
XPC, 256

offset, 456
ofileflags, 601
OOM. See Out-Of-Memory
open(), 127
OpenAL, 38
OpenCL, 7, 215
OpenCL, 39
OpenDarwin, 10
OpenDirecotry, 39
OpenGL, 7
OpenGL, 39
OpenGLES, 39
OpenProtocol, 189
OpenSL, 7
OpenSSH, 13, 44
OpenSSL, 44
OS X

ACLs, 578
applications, 24–32
architecture, 15–51, 518
auditing, 59–62, 556–558
boot.efi, 194–210
BSD, 501
bundles, 24
CHUD, 155
Code Signing in Depth, LC_CODE_SIGNATURE, 110
defaults(1), 173
device tree, 196–198
disk image fi les, 589
DSMOS, 491, 716–717
DTrace, 148
dynamic_pager(8), 498–499
EFI, 185
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entitlements, 97
evolution, 3–16
execsw, 516
fi le systems, 587–589
Finder, 247–248

HFS+, 617–618
forks, 611
frameworks, 32–43
FUSE, 598
future, 15–16
GUI, 215
hdiutil, 568–569
hostinfo(1), 369
installation, 214–219
Intel, 261
interfaces, 678–680
iOS, 12–15

merger, 16
IPv6, 654–655
-k, 149–150
kernel, versions, 14–15
kernelcache, 719
kextd(8), 728
-l, 409
LaunchDaemons, 241–253
LibC, memory, 174–175
libgmalloc, 175–176
libraries, 42–44
logging, 69–72
Mac OS Classic, 4–5
Mach, 343

scheduling exceptions, 444–445
zones, 470–471

machine_init, 316
Mountain Lion, 9
network stack, 649
non-Apple hardware, 10
notifi cations, 78–79
otool -L, 114
PF_NDRV, 652
POSIX, 45, 46
preemptive multitasking, 420–423
process information, 156–159
Rosetta installer, 102
security, 79–90
shared cache, 121
sleep, 328–329
snapshots, 159–170
system confi guration, 67–69
universal binaries, 99
UNIX, 502

directories, 23
user and group management, 65–67
utun, 682
versions, 5–10
vstart, 310
XNU, 266

OSAKit, 38
OSArray, 742

osascript(1), 72
OSBoolean, 742
OSBundleAllowUserLoad, 718
OSBundleCompatibleVersion, 718
OSBundleLibraries, 718
OSBundleRequired, 718
OSCollection, 742
OSCollectionIterator, 742
OSData, 742
OSDeclareDefaultStructors, 741
OSDefineMetaClassAndStructures, 741
OSDictionary, 742
osfmk, 303, 307
osfmk/console, 334
osfmk/kern/ast.h, 423
osfmk/kern/ledger.c, 398
osfmk/kern/sched.h, 409, 412–413
osfmk/kern/task.h, 395–397
osfmk/kern/timer_call_entry.h, 433
osfmk/kern/wait_queue.h, 414
osfmk/kern/zalloc.h, 469
osfmk/mach/host_priv.h, 457
osfmk/man, 345
osfmk/memory_object.types.h, 483
osfmk/thread/thread.c, 395
osfmk/vm/vm_user.c, 458
OSInstaller, 216–217
OSInstall.mkpg, 216
OSInstall.pkg, 216
OSIterator, 742
OSKext*, 728, 742
OSMalloc, 479–480
OSMetaClass, 741, 742
OSNumber, 742
OSObject, 739, 741, 742
OSORderedSet, 742
OSSet, 742
OSString, 742
OSSymbol, 742
otool, 308
otool(1), 105, 340
otool -L, 114
otool -l, 117
Out-Of-Memory (OOM), 139

P
-p, 467
p_acflag, 514
PackageInfo, 217
PackageKit, 217
packet fi ltering

BPF, 701–705
interface fi lters, 701
IP fi lters, 698–701
ipfw(8), 696–697
network stack, 693–705
PF, 697–698
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socket fi lters, 694–696
page management system calls, 540–541
page table entries (PTEs), 449
#defines, 463

pageout, 495–497
pageout daemon, 448
pagers

Apple protect, 491–493
Mach, 447, 480–499

policy management, 494–499
swap fi les, 488
XNU, 486

pagestuff(1), 126–127
__PAGEZERO(), 107, 133–134
panic(), 333–340
_panicd_corename, 332
panic_dialog.c, 334
_panicd_ip, 332
_panicd_port, 332
panic_image.c, 334
panic-info, 193
panic_ui/genimage.c, 334
panic_ui/qtif2raw.c, 334
panic_ui/setupdialog.c, 334
Panther, 6
Parent Process Identifi er (PPID), 91–92
parent processes, 91–92
parentID, 633, 635
parent_proc, 516
parse_machfile, 523–524
Partition Boot Record, 568
partitions, 565–577
CoreStorage, 575–577
disks, APM, 570–572
GPT, 572–574
LwVM, 574–575
MBR, 568–570

PASSIVE, 528
passwords, 67
Pastboard(), 245
Payload, 217
PCSC, 39
pdp_ip, 679
PE. See Platform Expert
PE_i_can_has_debugger, 562
PE_init_platform, 304
PE_parse_boot_argn, 314, 331, 562
permissions, 262, 577–578, 637–639
PersistentURLTranslator.Gatekeeper, 244
personality, 755
PEs. See Portable Executables
PESavePanicInfo(), 336
PE_State, 202
PE_state, 304
_PE_state, 303
PE_Video, 304
pexpert, 303, 307
PF. See Protocol Family
PFDL. See process fi le descriptor lock

PF_INET, 650, 677
PF_INET6, 650
PF_KEY, 650
PF_LAT, 650
PF_LOCAL, 650
pflog, 678
pflog_clone_create(), 685
PF_NDRV, 650, 651, 652

spoofi ng packets, 653–654
PF_PACKET, 653
PF_PPP, 651
PF_ROUTE, 650, 652
PF_SYSTEM, 79, 650, 651, 682

system sockets, 655–666
PF_SYSTEM/SYSPROTO_EVENT, 657–658
PFZ. See Preemption Free Zone
pg_members, 508
pgrp_iterate(), 508
physical memory

Mach, 462–467
VM, 448–449

PIC. See Programmable Interrupt Controller
PID. See Process ID
PIDEX(14), 170
pid_resume(), 94, 494
pid_shutdown_sockets, 94
pid_suspend(), 94, 494
PIDTR(11), 169
pinsertchild(), 516
PIPE(), 534
pipeops, 605
.pkg, 217
PL. See process lock
<platform>, 313
Platform Expert (PE), 296, 303, 304
plist, 162, 718
.plist, 229
p_listflag, 516
P_LIST_INCREATE, 516
plumbing, 677
plutil(), 28
pmap, 448–449, 463, 464–465
pmap_create(), 464
pmap_destroy(), 464
pmap_disconnect(), 465
PMAP_ENTER(), 498
pmap_enter(), 464
pmap_enter[_options](), 464
pmap_page_protect(), 464
pmap_reference(), 464
pmap_remove(), 465
pmap_switch(), 465
pmap_t, 463, 465–467
pmap_zero_page(), 464
pmc/profiling, 307
pmCPUGetDeadline(), 433
pmset(1), 68
PNG, 204
Point-to-Point Protocol (PPP), 651
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policies
Apple policy modules, 560–563
execution, 527–528
I/O, 527–528
MAC, 559–560
Mach pagers, 494–499

policy_check, 331
poll(2), 144
Portable Executables (PEs), 187
portmapper, RPC, UNIX, 234–235
ports, 234

exceptions, 436, 439
Mach, 251–253, 357–358

messages, 349–351
tasks, 402

PORT_SET, 350
POSIX

BSD, 501, 503
system calls, 284–287

FUSE, 598
Leopard, 7
Mach, 343
network stack, 649
OS X, 45, 46
page management system calls, 540–541
semaphores, 364
system calls, 46, 283
threads, 144–145
VFS, 591
VM, 458, 540–541

posix_spawn(), 91, 132, 513, 514, 515
PostScript, 4
power management, 751–753
Power On Self Test, 184
PowerPC, 183
PPC, 296–297, 518–519
PPID. See Parent Process Identifi er
PPP. See Point-to-Point Protocol
ppp, 679
praudit(1), 60, 556
pr_ctlinput(), 671
pr_ctloutput(), 671
pr_drain(), 671
PRECEDENCE_POLICY, 421
Preemption Free Zone (PFZ), 275, 426–427
preemption modes, Mach scheduling, 418–423

explicit, 418–420
implicit, 420–423

preemptive multitasking, OS X, 420–423
prefabt, 426
PreferencePanes, 39
_PrelinkBundlePath, 722
_PrelinkExecutable*, 722
PRELINK_INFO, 109
__PRELINK_INFO, 721–722
pre-linking, 713
_PrelinkInterfaceUUID, 722
pr_fasttimo(), 671
pr_init(), 671, 674

pr_input(), 671
printf(), 117, 128, 131, 313
private frameworks, 33
privileged ports, 374–377
pr_lock(), 672
probes, 147
proc, 152
PROC_ALLPROCLIST, 508
PROC_CREATE_FORK, 514, 516
PROC_CREATE_SPAWN, 514, 516
PROC_CREATE_VFORK, 514
Procedure, 353
proc_enforce, 64
processes, 91–146

BSD, 504–508
control and tracing, 525–529
creating, 512–525
lists, 507–508
software, 535
structs, 504–507
suspension and resumption, 529

CPU, 92–93
executables, 98
groups, 91

BSD, 507–508
hibernation, iOS, 547–548
information, OS X, 156–159
instances, 91
I/O, 93, 600–605
lifecycle, 92–95

pid_resume, 94
pid_suspend, 94
zombie state, 93–94

security, 97
threads, 91–92
universal binaries, 99–111
UNIX, 91

signals, 95–97
VM, 107–109

process address space, Mach-O, 130–138
process fi le descriptor lock (PFDL), 507
Process ID (PID), 91, 93, 228, 326, 515
bsdinit_task(), 325
dtruss, 150
killpg1_callback(), 535
Mach, 511–512

process lock (PL), 507
process spin lock (PSL), 507
ProcessOptions, 198–199
processor, 352, 380–384
processor_assign, 381
processor_control, 381
processor_csw_check(), 429
processor_enqueue(), 429
processor_exit, 381
processor_get_assignment, 381
processor_info, 381
processor_init(), 428
PROCESSOR_NULL, 415
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processor_queue_empty(), 429
processor_queue_has_priority(), 429
processor_queue_remove(), 429
processor_queue_shutdown(), 429
processor_queue_urgent(), 429
processor_runq(), 430
processor_runq_stats_count_sum(), 430
processor_set, 352, 384–387, 408
processor_set_destroy, 385
processor_set_info, 386
processor_set_max_priority, 385
processor_set_policy_control, 386
processor_set_policy_enable, 385
processor_set_stack_usage, 386
processor_set_statistics, 385
processor_set_tasks, 385
processor_set_threads, 385
processor_start, 381
processor_ts, 382–384
process_policy(), 528
Procfs, 598
proc_info, 156–159, 527, 552
proc_iterate(), 508
proc_listallpids, 159
proc_listchildpids, 159
proc_listpgrppids, 159
PROC_PIDWORKQUEUEINFO, 552
PROC_POLICY_APP_LIFECYCLE, 528
PROC_POLICY_APPTYPE, 528
PROC_POLICY_BACKGROUND, 528
PROC_POLICY_HARDWARE_ACCESS, 528
PROC_POLICY_RESOURCE_STARVATION, 528
PROC_POLICY_RESOURCE_USAGE, 528
proc_t, 326, 515, 600
PROC_ZOMPROCLIST, 508
profile, 152
Program, 238
ProgramArguments, 238
Programmable Interrupt Controller (PIC), 270
Programmable Read Only Memory (PROM), 184
protocols. See also specifi c protocols

EFI, 188–191
GUIDs, UEFI, 191
interfaces, 677–678
KPI functions, 677
transport, layer IV, 668–669

Protocol Family (PF), 650
packet fi ltering, 697–698

proto_plumb(), 677
ProtoString(), 427
protosws, 669–673
prototypes, 46
pr_output(), 671
pr_slowtimo(), 671
pr_sysctl(), 672
pr_unlock(), 672
pru_sosend, 691
pr_usrreq(), 672–673
ps(1), 179, 409–411

pset_init(), 428
pset_name_self, 384
psets, 408
pseudo fi le systems, 583–587
PSL. See process spin lock
PTEs. See page table entries
Pthread, 49
pthread, 144–145
pthread_create(), 407, 510
pthread_exit(), 408
pthread_mutex_lock(), 134
ptrace(2), 148, 525–527
PubSub, 39
Puma, 6
PureDarwin, 10
purgeable zones, 139
PurpleSystemEventPort, 253
PUSH_FUNCTION, 272
p_uthlist, 515
puts, 117
Pystar, 10
Python, 7
Python, 39

Q
.qlgenerator, 18
qlmanage(), 19
QoS. See Quality of Service
QT(32), 167
QTKit, 39
Quality of Service (QoS), 705–707
quantum_expire(), 430
quarantine, 609
Quartz, 39
Quartz Extreme, 6
QuartzCore, 39
QueueDirectories, 237
queue_head.t, 398
queue-iterate, 398
QuickLook, 18–19
QuickLook, 39
QuickLookGeneratorPluginFactory, 18
QuickTime, 39

R
Racoon, 243
RaiseTPL, 189
RAM Disk, 199
RAMDisk, 200–201
random access, 624
RAX, 278
RB_SINGLE, 326
read(), 418
read(2), 143
readelf, 105
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Read-Only Memory – scheduling

Read-Only Memory (ROM), 184
READTR(10), 169
read-write lock objects, 363
ready_heap, 706
real GID, 97
real UID, 97
realtime_setrun, 407
RECEIVE, 349
recovery mode, iBoot, 212–213
ref_count, 456
rEFIT, 194
registers

ARM, 776–779
CPSR, 267–268, 777–778
CRs, 266–267, 775–776, 778–779
DRs, 775
fl oating point, 774, 777
Intel, 773–776
MSRs, 279

RegisterProtocolNotify, 189
regular expressions, 306
ReinstallProtocolInterface, 189
relpath, 300
Remote Procedure Call (RPC), 351

portmapper, UNIX, 234–235
REMOVE(7), 169
removeDisk, 576
Rendezvous, 6
RENICED, 422
replay attacks, 213–214
_reply_sync, 256
ReportCrash, 243
reservation specifi cation (RSpec), 706
ResetSystem, 192
ResizeDisk, 576
resizeStack, 576
ResizeVolume, 576
resource forks, 611–612
Resources, 28
RestoreTPL, 189
Return-Oriented Programming (ROP), 132
reverse DNS, 18–19, 30
Revision, 202
RFLAGS, 774–775
Rhapsody, 5
rings, 266–267
RLIMIT_CORE, 170
robustness, 265
ROM. See Read-Only Memory
Root UUID, 199
ROP. See Return-Oriented Programming
Rosetta installer, 102
route(8), 652
_router_ip, 332
Routine, 353
routing sockets, 652
RPC. See Remote Procedure Call
rpcgen, 351
RSpec. See reservation specifi cation

rtclock, 431
rtclock_timer.deadline, 432–433
rtclock_timer_t, 432
rtc_timer, 435
Ruby, 7
Ruby, 39
RubyCocoa, 39
run queues, 412–413
RunLoopType(), 257
runtime services, 191–192
RunTimeServices, initializeConsole, 195

S
-S, 143
-s, 151, 228, 326, 330
Safari, 6
Saffron, 12
sample(1), 174
Sandboxd, 243
sandboxd, 243
SandBoxedFetch, 257
sandboxing, 65, 81–90

controlling, 82–83
enforcing, 89–90
entitlements, 83–89
iOS, 81–82
jailbreaking, 81–82
voluntary imprisonment, 82

sandbox_init(3), 82
Sandbox.kext, 561
_SandboxProfile, 257
SandboxProfileData, 86
SandboxProfileDataValidation

EntitlementsKey, 86
Saved Application State, 85
sbappend(), 690
sbappendaddr(), 690
sbappendrecord(), 690
sbappendstream(), 690
SBAppTags, 248
/sbin, 22
/sbin/launchd, 227
scalable allocator, 139
SCDyamicStore, 69
SceneKit, 39
sched, 152
sched_decay_shifts, 411–412
sched_dispatch_table, 428
sched_pri, 413
sched_prim.h, 428
sched_pri_shift, 411
scheduling

kernel, 262, 406–407
Mach, 389–446

algorithms, 427–430
ASTs, 423–427
continuations, 416–418
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SCNetworkReachability – 64-bit

dispatch table, 428–430
exceptions, 436–445
explicit preemption, 418–420
handoffs, 415–416
implicit preemption, 420–423
kernel, 406–407
ledgers, 398–399
preemption modes, 418–423
primitives, 389–408
tasks, 395–398, 422–423
task APIs, 399–404
threads, 390–395
thread APIs, 404–408
thread creation, 407–408
timer interrupts, 431–436

SCNetworkReachability, 69
SCNetworkReachabilityConfigd, 242
ScreenSaver, 39
Scripting, 39
ScriptingBridge, 39
Scripts, 217
sc_usage(1), 165
scutil(8), 67–68, 69
search, B-Tree, 624, 629–630
SECURE_KERNEL, 305
security

iOS, 79–90
kernel, 262
kext, 718
Lion, 8
OS X, 79–90
processes, 97

Security, 39
security, 307, 352
_security(), 553
security(1), 80
SECURITY(9), 167
Securityd, 243
securityd, 243
SecurityFoundation, 39
SecurityInterface, 39
SecurityServer (SL), 243
-segcreate, 109
segedit(1), 105, 721
segname, 107
select(), 418
select(2), 144
self-contained*_init(), 320
semaphores, 364–366

Mach lock objects, 364–366
POSIX, 364

semaphore_create, 365
semaphore_destroy, 365
semaphore_signal, 365
semaphore_signal_all, 365
semaphore_wait, 365
SEND, 349
SEND_ONCE, 350
serial, 313, 318, 331, 332

SERIAL_KDP, 318
ServerNotification, 39
serverperfmode, 331
servicebundle, 248
ServiceManagement, 40
ServiceType, 257
set_alarm, 380
setaudit(), 61
setaudit_addr(), 61
SETBUF(4), 169
SetConsoleMode, 200
set_dp_control_port, 376
setfsgid, 97
setfsuid, 97
setpgrp(2), 91
setPop(), 435
SETREG(8), 169
setrlimit(2), 170, 398, 515
SETRTCDEC(15), 170
SetTime, 192
SetTimer, 189
SETUP(6), 169
Setup.App, 249
setup_wqthread, 551
SetVariable, 192
SetWakeupTime, 192
severity, 70
sflt_detach(), 695
SFLT_GLOBAL, 696
sflt_register(), 694
sflt_unregister(), 694
sftl_attach(), 695
SG_PROTECTED_VERSION, 492
shared library cache, 121
shells, 246–253
shmem, 255
should_current_thread_rechoose_

processor(), 430
show regions, 458
SHSH, 213–214
SIDL, 92
signals

BSD, 529–536
UNIX, processes, 95–97

SignalEvent, 189
Simple Network Management Protocol (SNMP), 56
SIMPLE_FILE_SYSTEM_PROTOCOL, 190
SIMPLE_POINTER_PROTOCOL, 190
Simpleprocedure, 353
Simpleroutine, 353
SIMPLE_TEXT_INPUT_PROTOCOL, 190
SIMPLE_TEXT_OUTPUT_PROTOCOL, 190
single UNIX specifi cation (SUS), 502
Siri, 12
SIUResources.pkg, 216
64-bit

BIOS, 184
kernel, 264
Lion, 8, 200
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size – SWI

memory leaks, 176
process address space, 132–133
Snow Leopard, 7
XNU, system calls, 283–284

size, 346
size(1), 105, 109
sizeof(void *), 286
sizeofncmds, 104
slab allocators, 545
slave_pstart(), 313, 316, 329
sleep, 328–329
sleep, 418
sleep_kernel(), 329
sleh_abort, 438
sleh_undef, 438
SMP, 316, 319, 360, 415
smp_init, 316–317
snapshots, 159–170
SNMP. See Simple Network Management Protocol
Snow Leopard, 7–8, 99, 130, 139, 561
.so, 42
sockaddr, 691
sockets

descriptors
launchd, 240
layer V sockets, 660–661

domains, UNIX, 651
fi lters

packet fi ltering, 694–696
XNU, 695–696

kernel mode, 667–668
layer V, 660–668
NDRV, 653
network driver, 652–654
routing, 652
statistics, 658–660
system, 556, 655–658

Sockets, 238
socket_t, 696
sock_inject_*, 695
sockkets, IPSec Key Management, 654
SOCK_RAW, 653
soft links, 578–579, 639
SoftResourceLimits, 236
SoftWare Interrupt (SWI), 275, 280
Solaris, 149
so_proto, 667
source-level compatibility, 502
specfs, 586
Spin Control, 174
spindump, 174
spinlock, Mach lock objects, 364
spllo(), 318
spoofi ng packets, 653–654
Spotlight, 6, 19–20, 75
SpotlightFS, 598
SpringBoard, 13, 248–253, 411
Springboard(), 245

SRUN, 93
SSH, 13–14, 21, 598
ssh.plist, 232–233
SSLEEP, 94
stack protector, 130
stack_collect(), 497
stack_guard, 130
stackshot(1), 160–162
stack_snapshot, 162–165
STANDARD_POLICY, 421
starblock, 639
start(), 310–311
start-stf, 655
start_time.stop_time, 59
stderr, 232, 238, 241
stdin, 232, 238, 241
<stdlib.h>, 503, 724
stdout, 232, 238, 241
std_types, 352
steal_thread(), 429
stf, 678
stf(4), 655
stfattach(), 685
STOP, 94
StopAnimation, 201
StoreKit, 40
strace, 150
string, 254
<string.h>, 503
strings(1), 105
stroff, 115
struct, 201, 463
structs, BSD processes, 504–507
struct fuse_operations, 598
struct ifnet, 680–681
struct mbuf, 661
struct mount, 592–593
struct proc, 504–507
struct proclist, 507–508
struct sockbuf, 661
struct uthread, 508–510
struct vnode, 595–597
stub_helper, 118
__stubs, 115
subsystems

I/O Kit, 753
Mach, 352–353

sunrpc, 235
SUN-RPC, 351, 353
superblock, 592
SuperVisor Call (SVC), 275
supports_timeshare(), 429
SUS. See single UNIX specifi cation
SVC. See SuperVisor Call
SVC, 267
swap fi les, 488
swapfile_pager_data_request(), 488–491
SWI. See SoftWare Interrupt
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switch – threads

switch(), 272, 333
symoff, 115
synchronous interrupt, 278
synchronous kernel, 268
SyncServices, 40
SYS, 267
SYS(), 534
sys, 307
SYSCALL, 279–282
syscall, 152, 169
sysctl(), 56–57, 156
SYSCTL_*, 553, 554
sysctl(2), 169, 620, 646–647
sysctl(8), 110, 142, 171, 552–555
sysdiagnose(1), 159–160
<sys/disk.h>, 566–567
sysent, 285–287
SYSENTER, 279–282
sysenter, 280
sys/kern_control.h, 656
syslog, 70
syslogd, 71, 72, 243
sys/malloc.h, 542
<sys/proc.h>, 92
SYSPROTO_EVENT, 657
<sys/signal.h>, 95
<sys/socket.h>, 650
<sys/syscall.h>, 94
System, 40
/System, 23
system calls

BSD, 47–48
POSIX, 284–287

diagnostic, 292–295
kernel, 261, 268, 283–295

iOS, 286–287
MAC, 63–64
Mach, 46–48
numbers, 46
POSIX, 46, 283

BSD, 284–287
prototypes, 46
UNIX, 292
XNU 64-bit, 283–284

system sockets, 556, 655–658
system sockets, 79
SystemAudioVolume, 193
SystemConfiguration, 40
SystemConfiguration.framework, 68
/System/Library/CoreServices, 247
/System/Library/Frameworks, 33
/System/Library/LaunchAgents, 229
/System/Library/LaunchDaemons, 229
/System/Library/Sandbox/Profiles, 83
system.logger, 243
system.notification_center, 243
system_profiler(8), 159
system.Security, 609

SystemUIServer, 247

T
tar(1), 217
target_task, 455
task, 352
tasks

Mach scheduling, 395–398, 422–423
APIs, 399–404

multitasking, 4, 11, 420–423
ports, 402
threads, 397

task_access, 353
task_create(), 400
task_for_allow, 444
task_for_pid(), 462, 511
task_get_exception_ports(), 401
task_get_state(), 401
task_importance(), 401
task_info(), 400
task_policy_get(), 401
task_policy_set(), 401
task_priority(), 397–398, 401
task_resume(), 400, 529
task_sample(), 401
task_set_emulation(), 345
task_set_exception_ports(), 401
task_set_info(), 400
task_suspend(), 400, 529
task_terminate(), 400
task_threads(), 400, 405
task_zone_info(), 467
Tcl, 40
TC-shell, 21
Telluride, 12
Terminal, 20
Terminal.app, 231
_TEXT(), 107
__TEXT, 134
TextEdit, 84–87
32-bit

Intel, process address space, 132
iOS, process address space, 133–134
kernel, 266
memory leaks, 176

threads, 143–146
BSD, 508–512
CPU, 408

affi nity, 415
execution, 408
hyperthreading, 408, 415
Mach scheduling, 390–395

APIs, 404–408
creation, 407–408

multithreading, 93, 786, 787
objects, BSD, 508–510
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thread_abort[_safely] – two-level namespace

POSIX, 144–145
priorities, 409–412
processes, 91–92
run queues, 412–413
tasks, 397
UNIX, 143
VM, 144
vm_pageout(), 495
wait queues, 414
XNU, 512

thread_abort[_safely](), 404
thread_act, 353
[thread/act]_[get/set]_state, 404
THREAD_AFFINITY_POLICY, 422
thread_assign(), 405
thread_assign_default(), 405
thread_ast_set(), 423
THREAD_BACKGROUND_POLICY, 422
THREAD_BASIC_INFO, 405
thread_bind, 406
thread_block(), 416
thread_block_parameter(), 406, 419
thread_block_reason(), 406, 418–419
thread_bootstrap(), 395
thread_bootstrap_return(), 417
thread_call_daemon, 469
thread_count, 397
thread_create(), 395, 407
thread_create_running(), 407
thread_depress_abort(), 404
thread_exception_return(), 417
THREAD_EXTENDED_POLICY, 422
thread_get_assignment(), 405
thread_get_exception_ports(), 405
thread_[get/set]_special port(), 405
thread_go, 407, 414
thread_info(), 405
thread_invoke(), 406, 419
thread_policy, 405
thread_policy_[get/set](), 405
thread_policy_set_internal(), 421
THREAD_PRECEDENCE_POLICY, 422
thread_resume(), 325–326, 404
thread_run, 406
thread_sample, 405
thread_set_exception_ports, 405, 436
thread_set_policy, 405
thread_setrun, 407, 414
thread_set_state, 408
THREAD_STANDARD_POLICY, 422
thread_suspend(), 404
thread_swap_exception_ports, 405
thread_switch(), 415–416
thread_t, 419
thread_t mach_thread(), 404
thread_template, 395
thread_terminate(), 404
thread_terminate, 408
THREAD_TIME_CONSTRAINT_POLICY, 422
thread_unblock, 414

thread_wakeup_prim, 406
THRMAP(12), 169
THROTTLE, 528
THROTTLE_APPLICATION, 423
throttling
launchd, 236–237
Mach, 412

thumb mode, 785–786
tick-less kernel, 432
Tiger, 6–7
TIME_ABSOLUTE, 378
timebase_init(), 428
TIME_CONSTRAINT_POLICY, 421
TimeOut, 59
timer interrupts, 431–436
TIMER_CALL_CRITICAL, 433
timer_call_enter, 433
TIME_RELATIVE, 378
timer_queue_expire, 434
timestamps, 578, 607–608
TinySCHEME, 82
TinyUmbrella, 214
Tk, 40
TLB. See Translation Lookaside Buffer
Tmp, 25
/tmp, 22, 25
top(1), 179–180
TOSTOP, 93
totalNodes, 628
tr(1), 409
TRACE(7), 167
Trace Server, 162
tracers, 147
TraditionalString(), 427
TraditionalWithPsetRun

QueueString(), 427
traffi c shaping, 705–707
transactions

HFS+ journaling, 644–645
launchd, 236

Translation Lookaside Buffer (TLB), 144, 449
transport protocols, layer IV, 668–669
TRAP, 272, 274, 534
trap handlers

Intel, 268–278
ARM, 275–278

kernel, 334
Mach, 287–291

treeDepth, 627
true, 254
truss, 150
Trusted BSD, 62
TSTOP, 93
tunneling, 682–686
TWAIN, 40
Twitter, 40
twitter.authenticate, 245
Twitterd, 245
twittered.server, 245
two-level namespace, 125
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-u – uuid

U
-u, 441
-u mobile, 246
ubc_info, 596
ubc_info_init(), 488
UDF. See Universal Disk Format
UDIF. See Universal Disk Image Format
-udp_in 1, 70
udp_output(), 691
udp_send(), 691
UEFI. See Universal Extensible Firmware Interface
UGA_DRAW_PROTOCOL, 190
UID. See user identifi er
UIKit, 40
UIKit.pasteboardd, 245
uint64, 254
ulimit(1), 512, 515
ulimit -c, 170–171
uname(1), 9, 14
UND, 268
undef, 426
Unicode, 617
Unifi ed Buffer Cache, 484, 488, 596
Uniform Type Identifi er (UTI), 18
UninstallProtocolInterface, 189
unionfs, 587
<unistd.h>, 46, 503, 724
universal binaries

executables, 98
file(1), 99
kernel, 100
Mach-O, 102–105
OS X, 99
processes, 99–111
Snow Leopard, 99
Tiger, 6

Universal Disk Format (UDF), 582, 591
Universal Disk Image Format (UDIF), 589
Universal Extensible Firmware Interface (UEFI), 185–186, 

191
Universal Page List (UPL), 484–486
Universal Plug and Play (uPNP), 6
UNIX. See also X is Not UNIX

BSD, 501–502
Darwin, 5, 20–22
debugging, 178–180
directories, 22–24

iOS, 23–24
OS X, 23

domain sockets, 651
exceptions, 529–534
executables, 98
fork(), 512
FUSE, 598
INET, 234
inetd, 238
inode, 608
Leopard, 7
load_init_program(), 326

Mach, 534
OS X, 502
permissions, 577, 639
processes, 91
RPC portmapper, 234–235
signals, processes, 95–97
system calls, 292
threads, 143
-u, 441

unix_syscall, 284–285
unpackers, cache, 121
unprotect_segment(), 492, 493
UNSPECIFIED4, 422
UN*X
atd, 231
crond, 231
inetd, 232–234
launchd, 229
ldd, 114
Mach, 389
SUN-RPC, 351
xinetd, 232–234

update_priority(), 411, 430
UPL. See Universal Page List
upl_abort[range](), 486
upl_clear_dirty(), 486
upl_create(), 485
upl_deallocate(), 486
uPNP. See Universal Plug and Play
user, 56
User Data Record, 628
User Experience layer, 15, 17–20
user identifi er (UID), 97
user mode

BSD process creation, 512–513
involuntary transition

exceptions, 269–270
interrupts, 270–271

I/O Kit, 740, 746–755
device drivers, 749–750
I/O registry, 747–749
plug and play, 750–751

network stack, 650–658
traffi c shaping, 707
voluntary transition, 278–282

UserNotification, 307
/Users, 23
USER_TRAP, 272
user_trap(), 274, 438
user_trap_returns, 425
USR, 267
/usr, 22
/usr/share/sandbox, 83
utaskbootstrap(), 326
uthread, 510
UTI. See Uniform Type Identifi er
utun, 679, 682–686
utun_control_register(), 655
utun_ctl_connect(), 684–685
uuid, 255
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ux_handler – voluntary user/kernel transition

ux_handler(), 529–532
ux_handler_init(), 326, 529–530

V
-v, 313
/var, 22
/var/audit, 60
/var/log/asl, 70
/var/log/install.log, 214
/var/run/lockdown.sock, 234
/var/tmp/launchd-shutdown.log, 228
Vassetd, 245
vecLib, 40
--verify, 86
Version, 202
version.plist, 717
vfork(), 514, 515
VFS. See Virtual FileSystem Switch
vfs, 56, 307
VFS_CTL_QUERY, 647
vfs_fentry, 591–592, 593
vfs_fsadd(), 593
vfs_mountroot(), 592
VideoDecodeAcceleration, 40
VideoToolKit, 40
Virtual FileSystem Switch (VFS), 22, 577, 591–600
fsctl(2), 645–646
FUSE, 597–605
kernel, 645–648
mount entry, 592–595
struct vnode, 595–597
sysctl(2), 646–647
vnode, 595–597

virtual memory (VM)
ARM, 447, 791
arm_vm_init(), 311
Intel, 791
isolated, 130
Mach, 447–500

architecture, 447–462
Mach-O, 140–143
PE, 304
physical memory plane, 448–449
POSIX, 458, 540–541
processes, 107–109
threads, 144

virtualization, 10, 262, 267
vlan, 679
VM. See virtual memory
vm, 56, 307
vmaddr, 107
vm_allocate, 453
vm_allocate_cpm, 375
VM_BASIC_INFO_64, 453
VM_CHECK_MEMORYSTATUS, 548
vm_check_memorystatus, 548
vm_fault(), 498

VM_FLAGS_ANWHERE, 453
vminfo, 152
VM_INHERIT_COPY, 455
VM_INHERIT_SHARE, 455
vmmap(), 135–138
vm_map(), 353, 448, 450–451, 456, 493
VM_MAP_ANWHERE, 455
vm_map_apple_protected(), 493
vm_map_behavior_set, 454
vm_map_copyin(), 454
vm_map_copyout(), 454
vm_map_copy_overwrite, 454
vm_map_enter(), 453, 457
vm_map_entry(), 448, 451–452
vm_map_inherit(), 454
vm_map_lookup_entry(), 453
vm_map_machine_attribute(), 455
vm_map_msync, 454
vm_map_object, 452
VM_MAP_OVERWRITE, 455
vm_map_page_query_internal(), 456
vm_map_protect(), 453, 457
vm_map_remap(), 455
vm_map_t, 452
VM_MEM_SUPERPAGE, 465
VM_NOT_CACHEABLE, 465
vm_object(), 448
vm_object_t, 452
vm_page(), 448, 452
vm_page_info(), 456
VM_PAGE_INFO_BASIC, 456
vm_pageout(), 319, 495, 496, 497
vm_pageout_garbage_collect, 471–473
VM_PAGE_QUERY_PAGE_*, 456
vm_page_queue_active, 495
vm_page_queue_free, 495
vm_page_queue_inactive, 495
vm_page_queue_speculative, 495
VM_PRESSURE_MINIMUM_RSIZE, 545
vm_pressure_monitor(), 545
VM_PROT_EXECUTE, 455
VM_PROT_READ, 455
VM_PROT_WRITE, 455
vm_rdwr, 521
vm_read_overwrite, 454
VM_REGION_BASIC_INFO, 458–462
vmsize, 107
vm_stat(1), 141–142, 495–496
vm_statistics, 495–497
VMWare, 10, 333
vnmap(1), 458–462
vnode, 488, 584–587, 595–597
vnode_enforce, 64
vnode_pager, 448
VNOP_LOOKUP, 597
void, 361, 464–465
/Volume, 23, 24
volume header, HFS+, 631–632
voluntary user/kernel transition, 278–282
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<vproc.h> – XPC

<vproc.h>, 236
vpro_transaction, 236
vstart(), 279, 306, 310

W
wait(), 93
wait(2), 93
wait queues, 414
wait3(2), 93
wait4(2), 93
WaitForEvent, 189
waitpid(2), 93
wait_queue_assert_wait[64[_locked]], 414
wait_queue_t, 365
wait_result_t, 363, 364
WatchPaths, 237
weakly defi ned symbols, 124
Web Distributed Authoring and Versioning (WebDAV), 583
WebKit, 40
wfq_ready_heap, 706
widgets, 6, 45, 47
WildCat, 11
WindowServer, 17
work queues, 550–552
wpkernel, 331
WQOPS_QUEUE_ADD, 550
WQOPS_THREAD_RETURN, 551
WQOPS_THREAD_SETCONC, 550
wq_runitem, 551
wrappers, 122, 149, 240–241
write(2), 144
WriteProcessMemoryEx(), 407

X
-x, 330
X is Not UNIX (XNU), 5

boot
arguments, 329–331
kernel, 299–340

BSD, 49–50, 501, 504
build actions, 302
Cheetah, 6
CHUD, 155
compiling, 300–302
CONFIG_CODE_DECRYPTION, 493
CONFIG_DEBUG, 308
confi guration, 305
CONFIG_ZLEAKS, 468
DEBUG, 308
domains, 675
EFI, 184
hardware extraction, kernel, 295–297
hybrid kernel, 265
Intel trap handlers, 272–275
I/O Kit, 50, 737

iOS, 12, 310
Jaguar, 6
kdebug, 165–170
kernel, 50

architecture, 302–305
kpi_socket, 667
kqueues, 555
ledgers, 398
Lion, 8
MAC, 560
Mach, 49

microkernels, 343
Memorystatus, 546
microkernels, 264, 343
ml_functions, 296–297
Mountain Lion, 9
OS X, 266
osfmk/man, 345
packet fi ltering, 693, 697
pagers, 486
Panther, 6
Puma, 6
regular expressions, 306
runtime services, 191
sandboxing, 89
64-bit, system calls, 283–284
Snow Leopard, 8
socket fi lters, 695–696
sources, 299–308
source tree, 305–308
stack_snapshot, 162–165
struct proclist, 507–508
system sockets, 556
threads, 512
Tiger, 7
timer interrupts, 431–436

X Kernel, 12
xar(1), 217
xattr(1), 608, 609
XBD, 503
XCode, 20, 148, 173, 174
xcodebuild(1), 723
XCU, 503
XDR. See external data representation
XgridFoundation, 40
.xib, 28
xinetd, 232–234
XllUser.pkg, 216
XNU. See X is Not UNIX
XPC, 79

Cocoa, 254
GCD, 253
iOS, 253–257
kill -9, 253
launchd, 253–257
Lion, 253–257
messages, 255–256
MIG, 256
object types, 254–255
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<xpc/connection.h> – Z-shell

Objective-C, 256
property lists, 257
SandBoxedFetch, 257
services, 256–257

<xpc/connection.h>, 255–256
xpc_connection_send_barrier, 255
xpc_connection_send_message, 255
xpc_connection_send_message_with_reply,

255
xpc_connection_set_target_queue, 257
xpc_dictionary_create_replay, 257
XPCKit, 254
xpc_main, 256
xpc_object_t, 256
XPCServices, 257
XSH, 503
XT-PICs. See Legacy PICs

Y
yielding, 415

Z
zalloc(), 470, 544
*zalloc(), 469
*zalloc_canblock(), 469

zalloc_noblock(), 544
-zc, 330
Z_CALLERACCT, 469, 544
ZeroConf, 6
Z_EXHAUSTIBLE, 469
Z_EXPAND, 469
Z_FOREIGN, 469
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