mer to Programmer™

e e e e . e i e —

e~

&
NEE BB

d

m

it

Ql. .~\\\

, .,T“mi A
Sy
—l— = ! ' B ‘R N |

> \\.\l\‘ =g NM N B \ __ | B

8

Mac OS X and
i0S Internals

To the Apple’s Core

Jonathan Levin






MAC OS® X AND iOS INTERNALS

INTRODUGCTION . ..ottt ittt ittt ttee e eeaeeeeneeeeanaseaaasenaasannnns XXV
» PARTI FOR POWER USERS

CHAPTER1 Darwinism: The Evolution of OS X ... ... .. i 3
CHAPTER 2  E Pluribus Unum: Architecture of OS XandiOS..................... 17
CHAPTER 3  On the Shoulders of Giants: OS X and iOS Technologies ........... 55
CHAPTER 4 Parts of the Process: Mach-O, Process, and Thread Internals. ....... 91
CHAPTER 5 Non Sequitur: Process Tracing and Debugging.................... 147
CHAPTER 6  Alone in the Dark: The Boot Process: EFlandiBoot............... 183
CHAPTER7 The Alphaandthe Omega—Ilaunchd........................... 227
» PARTII THE KERNEL

CHAPTER8 Some Assembly Required: Kernel Architectures.................. 261
CHAPTER9 From the Cradle to the Grave — Kernel Boot and Panics........... 299
CHAPTER 10 The Medium Is the Message: Mach Primitives . ................... 343
CHAPTER1M1 Tempus Fugit —Mach Scheduling .......... ... .. ... ... . .. 389
CHAPTER12 Commit to Memory: Mach Virtual Memory ............ ... ... .... 447
CHAPTER13 BS"D — The BSD Layer. ...t 501
CHAPTER 14 Something Old, Something New: Advanced BSD Aspects......... 539
CHAPTER 15 Fee, FI-FO, File: File Systemsandthe VFS....................... 565
CHAPTER 16 To B (-Tree) or Not to Be — The HFS+ File Systems. ............... 607
CHAPTER 17 Adhere to Protocol: The Networking Stack. ...................... 649
CHAPTER 18 Modu(lu)s Operandi — Kernel Extensions......................... 71
CHAPTER19 DrivingForce —I/OKit . ... ... e 737
APPENDIX Welcometothe Machine ...... ... .. i i 773
IND X, .ottt it ittt it teteneeennesonessssenssssnssssnssennnnas 793






Mac OS® X and iOS Internals
TO THE APPLE’S CORE

Jonathan Levin

WILEY

John Wiley & Sons, Inc.



Mac OS® X and iOS Internal

Published by

John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2013 by Jonathan Levin
Published by John Wiley & Sons, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-1-11805765-0

ISBN: 978-1-11822225-6 (ebk)
ISBN: 978-1-11823605-5 (ebk)
ISBN: 978-1-11826094-4 (ebk)

Manufactured in the United States of America
10987654321

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA
01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Permis-
sions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008,
or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including
without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or
promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work is
sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional
services. If professional assistance is required, the services of a competent professional person should be sought. Neither
the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is
referred to in this work as a citation and/or a potential source of further information does not mean that the author or the
publisher endorses the information the organization or Web site may provide or recommendations it may make. Further,
readers should be aware that Internet Web sites listed in this work may have changed or disappeared between when this
work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with
standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media
such as a CD or DVD that is not included in the version you purchased, you may download this material at
http://booksupport .wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2011945020

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related trade dress are
trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other coun-
tries, and may not be used without written permission. Mac OS is a registered trademark of Apple, Inc. All other trade-
marks are the property of their respective owners. John Wiley & Sons, Inc., is not associated with any product or vendor
mentioned in this book.


http://www.wiley.com
http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://www.wiley.com

To Steven Paul Jobs: From Mac OS’s very first
incarnation, to the present one, wherein the legacy of
NeXTSTEP still lives, his relationship with Apple is
forever entrenched in OS X (and iOS). People focus on
his effect on Apple as a company. No less of an effect,
though hidden to the naked eye, is on its architecture.
I resisted the pixie dust for 25 years, but he

finally made me love Mac OS... Just as soon as I got
my shell prompt.

— JONATHAN LEVIN



CREDITS

ACQUISITIONS EDITOR
Mary James

SENIOR PROJECT EDITOR
Adaobi Obi Tulton

DEVELOPMENT EDITOR
Sydney Argenta

TECHNICAL EDITORS
Arie Haenel
Dwight Spivey

PRODUCTION EDITOR
Christine Mugnolo

COPY EDITORS
Paula Lowell
Nancy Rapoport

EDITORIAL MANAGER
Mary Beth Wakefield

FREELANCER EDITORIAL MANAGER
Rosemarie Graham

ASSOCIATE DIRECTOR OF MARKETING
David Mayhew

MARKETING MANAGER
Ashley Zurcher

BUSINESS MANAGER
Amy Knies

PRODUCTION MANAGER
Tim Tate

VICE PRESIDENT AND EXECUTIVE GROUP
PUBLISHER
Richard Swadley

VICE PRESIDENT AND EXECUTIVE PUBLISHER
Neil Edde

ASSOCIATE PUBLISHER
Jim Minatel

PROJECT COORDINATOR, COVER
Katie Crocker

PROOFREADER
James Saturnio, Word One New York

INDEXER
Robert Swanson

COVER DESIGNER
Ryan Sneed

COVER IMAGE
© Matt Jeacock / iStockPhoto



ABOUT THE AUTHOR

JONATHAN LEVIN is a seasoned technical trainer and consultant focusing on the internals of the
“Big Three” (Windows, Linux, and Mac OS) as well as their mobile derivatives (Android and iOS).
Jonathan has been spreading the gospel of kernel engineering and hacking for 15 years, and has
given technical talks at DefCON as well as other technical conferences. He is the founder and CTO
of Technologeeks.com, a partnership of expert like-minded individuals, devoted to propagating
knowledge through technical training, and solving tough technical challenges through consulting.
Their areas of expertise cover real-time and other critical aspects of software architectures, system/
kernel-level programming, debugging, reverse engineering, and performance optimizations.

ABOUT THE TECHNICAL EDITORS

ARIE HAENEL is a security and internals expert at NDS Ltd. (now part of Cisco). Mr. Haenel has
vast experience in data and device security across the board. He holds a Bachelor of Science Engi-
neering in Computer Science from the Jerusalem College of Technology, Israel and an MBA from the
University of Poitiers, France. His hobbies include learning Talmud, judo, and solving riddles. He
lives in Jerusalem, Israel.

DWIGHT SPIVEY is the author of several Mac books, including OS X Mountain Lion Portable
Genius and OS X Lion Portable Genius. He is also a product manager for Konica Minolta, where
he has specialized in working with Mac operating systems, applications, and hardware, as well as
color and monochrome laser printers. He teaches classes on Mac usage, writes training and support
materials for Konica Minolta, and is a member of the Apple Developer Program. Dwight lives on
the Gulf Coast of Alabama with his beautiful wife Cindy and their four amazing children, Victoria,
Devyn, Emi, and Reid. He studies theology, draws comic strips, and roots for the Auburn Tigers
(“War Eagle!”) in his ever-decreasing spare time.






ACKNOWLEDGMENTS

“Y’KNOW, JOHNNY,” said my friend Yoav, taking a puff from his cigarette on a warm summer night
in Shanghai, “Why don’t you write a book?”

And that’s how it started. It was Yoav (Yobo) Chernitz who planted the seed to write my own book,
for a change, after years of reading others’. From that moment, in the Far, Middle, and US East (and
the countless flights in between), the idea began to germinate, and this book took form. I had little
idea it would turn into the magnum opus it has become, at times taking on a life of its own, and
becoming quite the endeavor. With so many unforeseen complications and delays, it’s hard to believe
it is now done. I tried to illuminate the darkest reaches of this monumental edifice, to delineate
them, and leave no stone unturned. Whether or not I have succeeded, you be the judge. But know, I
couldn’t have done it without the following people:

Arie Haenel, my longtime friend — a natural born hacker, and no small genius. Always
among my harshest critics, and an obvious choice for a technical reviewer.

Moshe Kravchik — whose insights and challenging questions as the book’s first reader hope-
fully made it a lot more readable for all those who follow.

Yuval Navon — from down under in Melbourne, Australia, who has shown me that friend-
ship knows no geographical bounds.

And last, but hardly least, to my darling Amy, who was patient enough to endure my all-too-fre-
quent travels, more than understanding enough to support me to no end, and infinitely wise enough
to constantly remind me not only of the important deadlines and obligations. I had with this book,
but of the things that are truly the most important in life.

— JONATHAN LEVIN






CONTENTS

INTRODUCTION XXV
CHAPTER 1: DARWINISM: THE EVOLUTION OF OS X 3
The Pre-Darwin Era: Mac OS Classic 3
The Prodigal Son: NeXTSTEP 4
Enter: OS X 4
OS X Versions, to Date 5
10.0 — Cheetah and the First Foray 5
10.1 — Puma — a Stronger Feline, but . .. 6
10.2 — Jaguar — Getting Better 6
10.3 — Panther and Safari 6
10.4 — Tiger and Intel Transition 6
10.5 — Leopard and UNIX 7
10.6 — Snow Leopard 7
10.7 — Lion 8
10.8 — Mountain Lion 9
iOS — OS X Goes Mobile 10
1.x — Heavenly and the First iPhone 1
2.x — App Store, 3G and Corporate Features 1
3.x — Farewell, 1° gen, Hello iPad 1
4.x — iPhone 4, Apple TV, and the iPad 2 il
5.x — To the iPhone 4S and Beyond 12
iOS vs. OS X 12
The Future of OS X 15
Summary 16
References 16
CHAPTER 2: E PLURIBUS UNUM: ARCHITECTURE OF OS X AND IOS 17
OS X Architectural Overview 17
The User Experience Layer 19
Aqua 19
Quicklook 20
Spotlight 21



CONTENTS

xii

Darwin — The UNIX Core 22
The Shell 22
The File System 23

UNIX System Directories 24
OS X-Specific Directories 25
iOS File System Idiosyncrasies 25

Interlude: Bundles 26

Applications and Apps 26
Info.plist 28
Resources 30
NIB Files 30
Internationalization with .Iproj Files 31
Icons (.icns) 31
CodeResources 31

Frameworks 34
Framework Bundle Format 34
List of OS X and iOS Public Frameworks 37

Libraries 44

Other Application Types 46

System Calls 48
POSIX 48
Mach System Calls 48

A High-Level View of XNU 51
Mach 51
The BSD Layer 51
libkern 52
I/0 Kit 52

Summary 52

References 53

CHAPTER 3: ON THE SHOULDERS OF GIANTS: OS X
AND IOS TECHNOLOGIES 55

BSD Heirlooms 55
sysctl 56
kqueues 57
Auditing (OS X) 59
Mandatory Access Control 62

OS X- and iOS-Specific Technologies 65
User and Group Management (OS X) 65
System Configuration 67



CONTENTS

Logging 69
Apple Events and AppleScript 72
FSEvents 74
Notifications 78
Additional APIs of interest 79
OS X and iOS Security Mechanisms 79
Code Signing 80
Compartmentalization (Sandboxing) 81
Entitlements: Making the Sandbox Tighter Still 83
Enforcing the Sandbox 89
Summary 20
References 90
CHAPTER 4: PARTS OF THE PROCESS: MACH-O,
PROCESS, AND THREAD INTERNALS 91
A Nomenclature Refresher 91
Processes and Threads 91
The Process Lifecycle 92
UNIX Signals 95
Executables 98
Universal Binaries 99
Mach-O Binaries 102
Load Commands 106
Dynamic Libraries m
Launch-Time Loading of Libraries m
Runtime Loading of Libraries 122
dyld Features 124
Process Address Space 130
The Process Entry Point 130
Address Space Layout Randomization 131
32-Bit (Intel) 132
64-Bit 132
32-Bit (i0OS) 133
Experiment: Using vmmap(1) to Peek Inside a Process’s
Address Space 135
Process Memory Allocation (User Mode) 138
Heap Allocations 139
Virtual Memory — The sysadmin Perspective 140
Threads 143
Unraveling Threads 143

References 146

xiii



CONTENTS

CHAPTER 5: NON SEQUITUR:

PROCESS TRACING AND DEBUGGING 147
DTrace 147
The D Language 147
dtruss 150
How DTrace Works 152
Other Profiling mechanisms 154
The Decline and Fall of CHUD 154
AppleProfileFamily: The Heir Apparent 155
Process Information 156
sysctl 156
proc_info 156
Process and System Snapshots 159
system_profiler(8) 159
sysdiagnose(1) 159
allmemory(1) 160
stackshot(1) 160
The stack_snapshot System Call 162
kdebug 165
kdebug-based Utilities 165
kdebug codes 166
Writing kdebug messages 168
Reading kdebug messages 169
Application Crashes 170
Application Hangs and Sampling 173
Memory Corruption Bugs 174
Memory Leaks 176
heap(1) 177
leaks(1) 177
malloc_history(1) 178
Standard UNIX Tools 178
Process listing with ps(1) 179
System-Wide View with top(1) 179
File Diagnostics with Isof(1) and fuser(1) 180
Using GDB 181
GDB Darwin Extensions 181
GDB on iOS 182
LLDB 182
Summary 182
References and Further Reading 182

Xiv



CONTENTS

CHAPTER 6: ALONE IN THE DARK:

THE BOOT PROCESS: EFI AND IBOOT 183
Traditional Forms of Boot 183
EFI Demystified 185

Basic Concepts of EFI 186
The EFI Services 188
NVRAM Variables 192
OS X and boot.efi 194
Flow of boot.efi 195
Booting the Kernel 201
Kernel Callbacks into EFI 203
Boot.efi Changes in Lion 204
Boot Camp 204
Count Your Blessings 204
Experiment: Running EFI Programs on a Mac 206
iOS and iBoot 210
Precursor: The Boot ROM 210
Normal Boot 21
Recovery Mode 212
Device Firmware Update (DFU) Mode 213
Downgrade and Replay Attacks 213
Installation Images 214
OS X Installation Process 214
iOS File System Images (.ipsw) 219
Summary 225
References and Further Reading 225

CHAPTER 7: THE ALPHA AND THE OMEGA — LAUNCHD 227

launchd 227
Starting launchd 227
System-Wide Versus Per-User launchd 228
Daemons and Agents 229
The Many Faces of launchd 229

Lists of LaunchDaemons 241

GUI Shells 246
Finder (OS X) 247
SpringBoard (i0OS) 248

XPC (Lion and iOS) 253

Summary 257

References and Further Reading 258

XV



CONTENTS

CHAPTER 8: SOME ASSEMBLY REQUIRED:

KERNEL ARCHITECTURES 261
Kernel Basics 261
Kernel Architectures 262
User Mode versus Kernel Mode 266
Intel Architecture — Rings 266
ARM Architecture: CPSR 267
Kernel/User Transition Mechanisms 268
Trap Handlers on Intel 269
Voluntary kernel transition 278
System Call Processing 283
POSIX/BSD System calls 284
Mach Traps 287
Machine Dependent Calls 292
Diagnostic calls 292
XNU and hardware abstraction 295
Summary 297
References 297
CHAPTER 9: FROM THE CRADLE TO THE GRAVE —
KERNEL BOOT AND PANICS 299
The XNU Sources 299
Getting the Sources 299
Making XNU 300
One Kernel, Multiple Architectures 302
The XNU Source Tree 305
Booting XNU 308
The Bird’s Eye View 309
OS X: vstart 310
iOS: start 310
[i386larm]_init 3N
i386_init_slave() 313
machine_startup 314
kernel_bootstrap 314
kernel_bootstrap_thread 318
bsd_init 320
bsdinit_task 325
Sleeping and Waking Up 328
Boot Arguments 329

XVi



CONTENTS

Kernel Debugging 332
“Don’t Panic” 333
Implementation of Panic 334
Panic Reports 336

Summary 340

References 341

CHAPTER 10: THE MEDIUM IS THE MESSAGE: MACH PRIMITIVES 343

Introducing: Mach 344
The Mach Design Philosophy 344
Mach Design Goals 345

Mach Messages 346
Simple Messages 346
Complex messages 347
Sending Messages 348
Ports 349
The Mach Interface Generator (MIG) 351

IPC, in Depth 357
Behind the Scenes of Message Passing 359

Synchronization Primitives 360
Lock Group Objects 361
Mutex Object 362
Read-Write Lock Object 363
Spinlock Object 364
Semaphore Object 364
Lock Set Object 366

Machine Primitives 367
Clock Object 378
Processor Object 380
Processor Set Object 384

Summary 388

References 388

CHAPTER 11: TEMPUS FUGIT — MACH SCHEDULING 389

Scheduling Primitives 389
Threads 390
Tasks 395
Task and Thread APIs 399
Task APIs 399
Thread APIs 404

xvii



CONTENTS

Scheduling 408
The High-Level View 408
Priorities 409
Run Queues 412

Mach Scheduler Specifics 415
Asynchronous Software Traps (ASTs) 423
Scheduling Algorithms 427

Timer Interrupts 431
Interrupt-Driven Scheduling 431
Timer Interrupt Processing in XNU 432

Exceptions 436
The Mach Exception Model 436
Implementation Details 437
Experiment: Mach Exception Handling 440

Summary 446

References 446

CHAPTER 12: COMMIT TO MEMORY:
MACH VIRTUAL MEMORY 447

Virtual Memory Architecture 447
The 30,000-Foot View of Virtual Memory 448
The Bird’s Eye View 449
The User Mode View 452

Physical Memory Management 462

Mach Zones 467
The Mach Zone Structure 468
Zone Setup During Boot 470
Zone Garbage Collection 471
Zone Debugging 473

Kernel Memory Allocators 473
kernel_memory_allocate() 473
kmem_alloc() and Friends 477
kalloc 477
OSMalloc 479

Mach Pagers 480
The Mach Pager interface 480
Universal Page Lists 484
Pager Types 486

Paging Policy Management 494
The Pageout Daemon 495
Handling Page Faults 497
The dynamic_pager(8) (OS X) 498

xviii



CONTENTS

Summary 499
References 500
CHAPTER 13: BS”D — THE BSD LAYER 501
Introducing BSD 501
One Ring to Bind Them 502
What'’s in the POSIX Standard? 503
Implementing BSD 503
XNU Is Not Fully BSD 504
Processes and Threads 504
BSD Process Structs 504
Process Lists and Groups 507
Threads 508
Mapping to Mach 510
Process Creation 512
The User Mode Perspective 512
The Kernel Mode Perspective 513
Loading and Executing Binaries 516
Mach-O Binaries 522
Process Control and Tracing 525
ptrace (#26) 525
proc_info (#336) 527
Policies 527
Process Suspension/Resumption 529
Signals 529
The UNIX Exception Handler 529
Hardware-Generated Signals 534
Software-Generated Signals 535
Signal Handling by the Victim 536
Summary 536
References 537
CHAPTER 14: SOMETHING OLD, SOMETHING NEW:
ADVANCED BSD ASPECTS 539
Memory Management 539
POSIX Memory and Page Management System Calls 540
BSD Internal Memory Functions 541
Memory Pressure 545
Jetsam (iOS) 546
Kernel Address Space Layout Randomization 548
Work Queues 550

Xix



CONTENTS

XX

BSD Heirlooms Revisited 552
Sysctl 552
Kqueues 555
Auditing (OS X) 556
Mandatory Access Control 558

Apple’s Policy Modules 560

Summary 563

References 563

CHAPTER 15: FEE, FI-FO, FILE: FILE SYSTEMS AND THE VFS 565

Prelude: Disk Devices and Partitions 565
Partitioning Schemes 567

Generic File System Concepts 577
Files 577
Extended Attributes 577
Permissions 577
Timestamps 578
Shortcuts and Links 578

File Systems in the Apple Ecosystem 579
Native Apple File Systems 579
DOS/Windows File Systems 580
CD/DVD File Systems 581
Network-Based File Systems 582
Pseudo File Systems 583

Mounting File Systems (OS X only) 587

Disk Image Files 589
Booting from a Disk Image (Lion) 590

The Virtual File System Switch 591
The File System Entry 591
The Mount Entry 592
The vhode Object 595

FUSE — File Systems in USEr Space 597

File I/O from Processes 600

Summary 605

References and Further Reading 605

CHAPTER 16: TO B (-TREE) OR NOT TO BE —
THE HFS+ FILE SYSTEMS 607

HFS+ File System Concepts 607
Timestamps 607
Access Control Lists 608



CONTENTS

Extended Attributes 608
Forks 611
Compression 612
Unicode Support 617
Finder integration 617
Case Sensitivity (HFSX) 619
Journaling 619
Dynamic Resizing 620
Metadata Zone 620
Hot Files 621
Dynamic Defragmentation 622
HFS+ Design Concepts 624
B-Trees: The Basics 624
Components 630
The HFS+ Volume Header 631
The Catalog File 633
The Extent Overflow 640
The Attribute B-Tree 640
The Hot File B-Tree 641
The Allocation File 642
HFS Journaling 642
VFS and Kernel Integration 645
fsctl(2) integration 645
sysctl(2) integration 646
File System Status Notifications 647
Summary 647
References 648
CHAPTER 17: ADHERE TO PROTOCOL: THE NETWORKING STACK 649
User Mode Revisited 650
UNIX Domain Sockets 651
IPv4 Networking 651
Routing Sockets 652
Network Driver Sockets 652
IPSec Key Management Sockets 654
IPv6 Networking 654
System Sockets 655
Socket and Protocol Statistics 658
Layer V: Sockets 660
Socket Descriptors 660
mbufs 661
Sockets in Kernel Mode 667

XXi



CONTENTS

xXii

Layer IV: Transport Protocols 668
Domains and Protosws 669
Initializing Domains 673
Layer Ill: Network Protocols 676
Layer IlI: Interfaces 678
Interfaces in OS X and iOS 678
The Data Link Interface Layer 680
The ifnet Structure 680
Case Study: utun 682
Putting It All Together: The Stack 686
Receiving Data 686
Sending Data 690
Packet Filtering 693
Socket Filters 694
ipfw(8) 696
The PF Packet Filter (Lion and iOS) 697

IP Filters 698
Interface Filters 701
The Berkeley Packet Filter 701
Traffic Shaping and QoS 705
The Integrated Services Model 706
The Differentiated Services Model 706
Implementing dummynet 706
Controlling Parameters from User Mode 707
Summary 707
References and Further Reading 708
CHAPTER 18: MODU(LU)S OPERANDI — KERNEL EXTENSIONS 71
Extending the Kernel M1
Securing Modular Architecture 712
Kernel Extensions (Kexts) 713
Kext Structure 717
Kext Security Requirements 718
Working with Kernel Extensions 719
Kernelcaches 719
Multi-Kexts 723

A Programmer’s View of Kexts 724
Kernel Kext Support 725
Summary 735
References 735



CONTENTS

CHAPTER 19: DRIVING FORCE — I/O KIT 737
Introducing 1/0 Kit 738
Device Driver Programming Constraints 738
What I/0 Kit Is 738
What I/0 Kit Isn’t 741
LibKern: The I/O Kit Base Classes 742
The I/O Registry 743
I/0 Kit from User Mode 746
I/O Registry Access 747
Getting/Setting Driver Properties 749

Plug and Play (Notification Ports) 750

I/O Kit Power Management 751
Other I/O Kit Subsystems 753

I/O Kit Diagnostics 753

I/0O Kit Kernel Drivers 755
Driver Matching 755

The I/O Kit Families 757

The 1/O Kit Driver Model 761

The IOWorkLoop 764
Interrupt Handling 765

I/O Kit Memory Management 769

BSD Integration 769
Summary 771
References and Further Reading 771
APPENDIX: WELCOME TO THE MACHINE 773
INDEX 793

xxiii






INTRODUCTION

EVEN MORE THAN TEN YEARS AFTER ITS INCEPTION, there is a dearth of books discussing the architec-
ture of OS X, and virtually none about iOS. While there is plentiful documentation on Objective-C,
the frameworks, and Cocoa APIs of OS X, it often stops short of the system-call level and implemen-
tation specifics. There is some documentation on the kernel (mostly by Apple), but it, too, focuses on
building drivers (with I/O Kit), and shows only the more elegant parts, and virtually nothing on the
Mach core that is foundation of XNU. XNU is open source, granted, but with over a million lines of
source (and comments) with some dating as far back to 1987, it’s not exactly a fun read.

This is not the case with other operating systems. Linux, being fully open source, has no shortage of
books, including the excellent series by O’Reilly. Windows, though closed, is exceptionally well docu-
mented by Microsoft (and its source has been “liberated” on more than one occasion). This book aims
to do for XNU what Bovet & Cesati’s Understanding the Linux Kernel does for Linux, and Russinov-
ich’s Windows Internals does for Windows. Both are superb books, clearly explaining the architectures
of these incredibly complex operating systems. With any luck, the book you are holding (or downloaded
as a PDF) will do the same to expound on the inner workings of Apple’s operating systems.

A previous book on Mac OS — Amit Singh’s excellent OS X Internals: A Systems Approach is an
amazing reference, and provides a vast wealth of valuable information. Unfortunately, it is PowerPC
oriented, and is only updated up until Tiger, circa 2006. Since then, some six years have passed. Six
long years, in which OS X has abandoned PowerPC, has been fully ported to Intel, and has progressed
by almost four versions. Through Leopard, Snow Leopard, Lion and, most recently Mountain Lion, the
wild cat family is expanding, and many more features have been added. Additionally, OS X has been
ported anew. This time to the ARM architecture, as iOS, (which is, by some counts, the world’s leading
operating system in the mobile environments). This book, therefore, aims to pick up where its predeces-
sor left off, and discuss the new felines in the Apple ecosystem, as well as the various iOS versions.

Apple’s operating systems have proven to be moving targets. This book was originally written to
target iOS 5 and Lion, but both have gone on evolving. iOS is, at the time this book goes to print,
at 5.1.1 with hints of iOS 6. OS X is still at Lion (10.7.4), but Mountain Lion (10.8) is in advanced
developer previews, and this book will hit the shelves coinciding with its release. Every attempt has
been made to keep the information as updated as possible to reflect all the versions, and remain rel-
evant going forward.

OVERVIEW AND READING SUGGESTION

This is a pretty large book. Initially, it was not designed to be this big and detailed, but the more I
delved into OS X I uncovered more of the abstruse, for which I could find no detailed explanation
or documentation. I therefore found myself writing about more and more aspects. An operating sys-
tem is a full eco-system with its own geography (hardware), atmosphere (virtual memory), flora and
fauna (processes). This book tries to methodically document as much as it can, while not sacrificing
clarity for detail (or vice versa). No mere feat.



INTRODUCTION

Architecture at a Glance

OS X and iOS are have a complex architecture, which is a hybrid of several very different technolo-
gies: The Ul and APIs of the legacy OS 9 (for OS X) with NextSTEP’s Cocoa, the system calls and
kernel layer of BSD, and the kernel structure of NeXTSTEP. Though an amalgam, it still maintains
a relatively clean separation between its components. Figure I-1 shows a bird’s eye view of the archi-
tecture, and maps the components to the corresponding chapters in this book.

Proprietary, strictly user
mode components.
Covered at an overview
level in Chapter 2

Darwin Libraries & syscalls
(Chapter 2,3,4)

Scheduling Networking
(13) (17)

loKit and kexts

(18,19)

BSD

FIGURE I-1: OS X Architecture, and its mapping to chapters in this book

This book additionally contains chapters on non-architectural, yet very important topics, such as
debugging (5), firmware (6) and user mode startup (7), kernel-mode startup (9), and kernel modules
(18). Lastly, there are two appendices: The first, providing a quick reference for POSIX system calls
and Mach traps, and the second, providing a gentle high-level introduction to the assembly of both
Intel and ARM architectures.

Target Audience
There are generally four types of people who might find this tome, or its parts, interesting:

> Power users and system administrators who want to get a better idea of how OS X works.
Mac OS adoption grows steadily by the day, as market claws back market share that was, for

XXVi



INTRODUCTION

years, denied by the utter hegemony of the PC. Macs are steadily growing more popular in
corporate environments, and overshadowing PCs in academia.

User mode developers who find the vast playground of Objective-C insufficient, and want to
see how their programs are really executed at the system level.

Kernel mode developers who revel in the vast potential of kernel-mode low-level program-
ming of drivers, kernel enhancements, or file system and network hooks.

Hackers and jailbreakers who aren’t satisfied with jailbreaking with a ready-made tool,
exploit or patch, and want to understand how and what exactly is being patched, and how
the system can be further tweaked and bent to their will. Note, that in this context, the target
audience refers to people who delve deeper into internals for the fun, excitement, and chal-
lenge, and not for any illicit or evil purposes.

Choose your own adventure

While this book can be read cover to cover, let’s not forget it is a technical book, after all. The chap-
ters are therefore designed to be read individually, as a detailed explanation or as a quick reference.
You have the option of reading chapters in sequential or random access, skimming or even skipping
over some chapters, and coming back to them later for a more thorough read. If a chapter refers to a
concept or function discussed in a previous chapter, it is clearly noted.

You are also welcome to employ a reading strategy which reflects the type of target reader you clas-
sify yourself as. For example, the chapters of the first part of this book can therefore be broken into
the flow shown in Figure I-2:

Part I:

User mode |

PowerUser UserDev Kernel Dev Hacker

| 1: Introduction |

| 2: Architecture |

| 3: OS X Proprietary |

4: Process Internals |

| 5: Process Tracing and Debugging |

6: Firmware

L]

| 7: User Mode Startup

FIGURE I-2: Reading suggestion for the first part of this book, which focuses on user mode
architecture

XXvii



INTRODUCTION

In Figure -2, a full bar implies the chapter contents are of interest to the target reader, and a partial
bar implies at least some interest. Naturally, every reader’s interest will vary. This is why every chap-
ter starts with a brief introduction, discussing what the chapter is about. Likewise, just by looking
at the section headers in the table of contents you can figure out if the section merits a read or just a
quick skim.

The second part of this book could actually have been a volume by itself. It focuses on the XNU
kernel architecture, and is considerably more complicated than the first. This cannot be avoided; by
their very nature, kernels are subject to a more complicated, real-time, and hardware constrained
environment. This part shows many more code listings, and (thankfully, rarely) even has to go into
snippets of code implemented in assembly. Reading suggestions for this part of the book are shown
in Figure I-3.

Power User User Dev Kernel Dev Hacker

8: Kernel Architectures |

| 9: Kernel start up and panics |

Part Il: : :
10: Mach Architecture |

Kernel mode

| 11: Scheduling |

| 12: Mach VM |

13: BSD |

14: Advanced BSD |

15: Filesystems |

| 16: HFS+ |

| 17: Networking |

| 18: KEXTs |

19: 1/0 Kit |

FIGURE I-3: Reading suggestion for the second part of this book, which focuses on the kernel

Xxviii



INTRODUCTION

EXPERIMENTS

Most chapters in this book contain “experiments,” which usually involve running a few shell com-
mands, and sometimes custom sample programs. They are classified as “experiments” because they
demonstrate aspects of the operating system which can vary, depending on OS version, or on con-
figuration. Normally, the results of these experiments are demonstrated in detail, but you are more
than encouraged to try the experiments on your own system, and witness the results. Like UNIX,
which it implements, Mac OS X can truly be experienced and absorbed through the fingers, not the
eyes or ears.

In some cases, some parts of the experiments have been left out as an exercise for the reader.

Even though the book’s companion website will have the solutions — i.e. fully working versions of
the exercises in question — you are encouraged to try to complete those parts yourself. Careful
reading of the book, with a modicum of common sense, should provide you with everything you
need to do so.

TOOLS

The book also makes use of a few tools, which were developed by the author to accompany the
book. The tools, true to the UNIX heritage, are command line tools, and are meant to be both
easily readable as well as grep (1) -able, making them useful not just for manual usage, but also in
scripts.

filemon

Chapter 3 presents a tool called “filemon,” to display real time file system activity on OS X and iOS.
An homage to Russinovich’s tool of the same name, this simple utility relies on the FSEvents device,
present in OS X and i0S 3, to follow file system related events, such as creation and deletion of files.

psx

Chapter 4 presents a tool called psx, an extended ps-like command which can display pretty much
any tidbit of information one could possibly require about processes and threads in OS X. It is
particularly useful for this chapter, which deals with process internals, and demonstrates using an
undocumented system call, proc_info. The tool requires no special permissions if you are viewing
your own processes, but will require root permissions otherwise. The tool can be freely downloaded
from the book’s companion website, with full source code.

jtool

While for most binary function one can use the OS X built-in otool (1), it leaves much to be desired
in analyzing data section and can get confused when displaying ARM binaries due to the two
modes of assembly in the ARM architecture. jtool aims to improve on otool, by addressing these

XXiX



INTRODUCTION

shortcomings, and offering useful new features for static binary analysis. The tool comes in handy
in Chapter 4, which details the Mach-O file format, as well as later in this book, due to its many
useful features, like finding references in files and limited disassembly skills. The tool can be freely
downloaded from the book’s companion website, but is closed source.

dEFI

This is a simple program to dump the firmware (EFI) variables on an Intel Mac and to display reg-
istered EFI providers. This tool demonstrates the basics of EFI programming — interfacing with the
boot and runtime services. This tool can be freely downloaded, along with its source code. It is pre-
sented in Chapter 6.

joker

The joker tool, presented in Chapter 8, is a simple tool created to play with the kernel (specifically,
in i08S). The tool can find and display the system call and Mach trap tables of iOS and OS X kernels,
show sysctl structures, and look for particular patterns in the binary. This tool is highly useful for
reverse engineers and hackers alike, as the trap and system call symbols are no longer exported.

corerupt

Chapter 11 discusses the low-level APIs of the Mach virtual memory manager. To demonstrate just
how powerful (and dangerous) these APIs are, the book provides the corerupt tool. This tool enables
you to dump any process’s virtual memory map to a file in a core-compatible format, similar to
Windows’ Create Dump File option, and much like the gcore tool in this book’s predecessor. It fur-
ther improves on its precursor, by providing support for ARM and allowing invasive operations on
the vm map, such as modifying its pages.

HFSleuth

XXX

A key tool used in the book is HFSleuth, a command line all-in-one utility for viewing the support-
ing structures of HFS+ file systems, which are the native OS X file system type. The tool was devel-
oped because there really are no alternative ways to demonstrate the inner workings of this rather
complicated file system. Singh’s book, Mac Os X Internals: A Systems Approach (Addison-Wesley;
2006) also included a similar, though less feature-ful tool called hfsdebug, but the tool was only
provided for PowerPC, and was discontinued in favor of a commercial tool, fileXRay.

To use HFSleuth on an actual file system, you must be able to read the file system. One option is to
simply be root. HFSleuth’s functions are nearly all read-only, so rest assured it is perfectly safe. But
access permissions to the underlying block (and sometimes, character) devices on which the file sys-
tems are usually rw-r----- , meaning the devices are not readable by plebes. If you generally distrust
root and adhere to least privilege (a wise choice!), an equally potent alternative is to chmod (1) the
permissions on the HFS+ partition devices, making them readable to your user (usually, this involves
an o+r). Advanced functions (such as repair, or HFS+/HFSX conversion) will require write access.



INTRODUCTION

HFSleuth can be freely downloaded from the book’s companion website and will remain freely
available, period. Like its predecessor, however, it is not open source.

Isock

The much needed functionality of netstat -o, which shows the processes owning the various sock-
ets in the system, is missing from OS X. It exists in 1sof (1), but the latter makes it somewhat cum-
bersome to weed out sockets from other open files. Another functionality missing is the ability to
display socket connections as they are created, much like Windows’ TCPMon. This tool, introduced
in Chapter 17, uses an undocumented kernel control protocol called com.apple
.network.statistics to obtain real-time notifications of sockets as they are created. The tool is
especially easy to incorporate into scripts, making it handy for use as a connection event handler.

jkextstat

The last tool used in the book is jkextstat, a kextstat (8) -compatible utility to list kernel exten-
sions. Unlike the original, it supports verbose mode, and can work on iOS. This makes it invaluable
in exploring the i0OS kernel hands-on, something which — until this book — was very difficult, as
the binary kextstat for iOS uses APIs which are no longer supported. The tool improves on its origi-
nal inspiration by allowing more detailed output, focusing on particular kernel extensions, as well
as output to XML format.

All the tools mentioned here are made available for free, and will remain free,
whether you buy (or copy) the book. This is because they are generally useful,
and fill many advanced functions, which are either lacking, or present but well
hidden, in Apple’s own tools.

CONVENTIONS USED IN THIS BOOK

To make it easier to follow along the book and not be bogged down by reiterating specific back-
ground for example code and programs, this book adopts a few conventions, which are meant to
subtly remind you of the context of the given listings.

Dramatis Personae

The demos and listings in this book have naturally been produced and tested on various versions of
Apple computers and i-Devices. As is in the habit of sysadmins to name their boxes, each host has
his or her own “personality” and name. Rather than repeatedly specifying which demo is based on
which device and OS, the shell command prompt has been left as is, and by the hostname you can
easily figure out which version of OS X or iOS the demo can be reproduced on. (See Table I-1.)

XXXi



INTRODUCTION

TABLE I-1: Host Name and Version Information for the Book’s Demos

HOST NAME  TYPE OS VERSION USED FOR
Ergo MacBook Air, Snow Leopard , 10.6.8  Generic OS X feature demonstration.
2010 Tested in Snow Leopard and later
iPhonoclast  iPhone 4S iOS 5.1.1 iOS 5 and later features on an A5 (ARM
multi-core)
Minion Mac Mini, 2010 Lion,10.7.4 Lion specific feature demonstration

Simulacrum  VMWare image Mountain Lion, 10.8.0 Mountain Lion (Developer Preview) specific

DP3 feature demonstration
Padishah iPad 2 i0S 4.3.3 iOS 4 and later features
Podicum iPod Touch, 4G i0S 5.0.1 iOS 5 specific features, on A4 or A5

Further,

shell prompts of roote demonstrate a command runnable only by the root user. This makes

it easy to see which examples will run on which system, with what privileges.

Code Excerpts and Samples

XXXii

This book contains a considerable number of code samples of two types:

>

Example programs, which are found mostly in the first part. These usually demonstrate simple
concepts and principles that hold in user mode, or specific APIs or libraries. The example pro-
grams were all devised by the author, are well commented, and are free for you to try your-
self, modify in any way you see fit, or just leave on the page. In an effort to promote the lazy,
all these programs are available on the book’s website, in both open source and binary form.

Darwin code excerpts, which are found mostly in the second part. These are almost entirely
snippets of XNU’s code, taken from the latest open source version, i.e. 1699.26.8 (cor-
responding to Lion 10.7.4). All code is open source, but subject to Apple’s Public Source
License. The excerpts are provided here for demonstration of the relevant parts in XNU’s
architecture. While natural language is potentially prone to some ambiguities, code is context
free and precise (though unfortunately sometimes less readable), and so at times the most
precise explanation comes from reading the code. When code references are provided, they
are usually either to the header files (denoted by the standard C < > notation, e.g. <mach/
mach-o.hs) in /usr/include. Other times, they may refer to the Darwin sources, either of
XNU or some related package. In those cases, the relative path is used (e.g. osfmk/kern/
spl.c, relating to where the XNU kernel source is extracted). The related package will
always be specified in the section, and in Part II of the book nearly all references are to the
XNU kernel source.



INTRODUCTION

XNU and Darwin components are fairly well documented, but this book tries to go the extra step,
and sometimes provide additional explanations inline, as comments. To be clear, such annotations,
which are not part of the original source code, can be clearly marked by their C++ style comment,

rather than the C style comment which is typical in Darwin as in this sample listing:

LISTING I-1: SAMPLE LISTING

/* This is a Darwin comment, as it appears in the original source */

// This is an annotation provided by the author, elaborating or explaining
// something which the documentation may or may not leave wanting

// Where the source code is long and tedious, or just obvious, some parts may
// be omitted, and this is denoted by a comment marking ellipsis (...), i.e:

//

important parts of a listing or output may be shown in bold

The book distinguishes between outputs and listings. Listings are verbatim references from files,
either program source code or system files. Outputs, on the other hand, are textual captures of user
commands, shown for demonstration on OS X, iOS, or — sometimes — both. The book aims to
compare and contrast the two systems, so it is not uncommon to find the same sequence of com-
mands shown on both systems. In an output, you will see the user commands that were typed
marked in bold, and are encouraged to follow along and try them on your own systems.

In general, the code listings are provided to elucidate, not to confuse. Natural language is not with-
out its ambiguities, but code can only be interpreted one way (even if sometimes that way is not
entirely clear). Whenever possible, clear descriptions aided by detailed figures will hopefully enable
you to just skim through the code. Fluency in C (and sometimes a little assembly) is naturally helpful
for reading the code samples, but is not necessary. The comments — especially the extra annota-
tions — help you understand the gist of the code. More commonly, block diagrams and flow charts
are presented, leaving the functions as black boxes. This enables to choose between remaining at an
overview level, or delving deeper and seeing the actual variables and functions of the implementa-
tions. Be warned, however, that the complexity of the code, being the product of many people and
many coding styles, varies greatly throughout XNU.

In the case of i0OS, XNU remains closed. iOS versions actually use a version of XNU many revi-
sions ahead of the publicly released versions. Naturally, code samples cannot be shown, but in some
cases disassembly (mostly of iOS 5.x) is provided. The assembly in question is ARM, and comments
there — all provided by the author — aim to explicate its inner workings. For all things assembly,
you can refer to the appendix in this book for a quick overview.

xxxiii



INTRODUCTION

Typographic Conventions
Every effort has been made to ensure that these conventions are followed throughout this book:

»  Words in courier font denote commands, file names, function names, or variable names
from the Darwin sources.

»  Commands are further specified by their man section (if applicable) in parentheses. Example:
1s(1) for a user command, write (2) for a system call, printf (3) for a library call, and
ipfw (8) for a system administration command. Most commands and system calls shown in
this book are usually well documented in the manual page, and the book does not attempt to
upstage the fine manual (i.e. RTFM, first). Occasionally, however, the documentation may
leave some aspects wanting — or, rarely, undocumented at all — and this is where further
information is provided.

THE COMPANION WEBSITE(S)

Both OS X and iOS have rapidly evolved, and continue to do so. I will try to play catch up, and
keep an updated companion website for this book at http://newosxbook.com. My company,
(http://technologeeks.com), also maintains the OS X and iOS Kernel developers group on
LinkedIn (alongside those of Windows and Android), with its website of http://darwin.
kerneldevelopers.com (the name chosen in a forward-compatible view of a post OS X era. The
latter site includes a questions and answers forum, which will hopefully become a bustling arena for
OS X and iOS related discussions.

On the book’s companion website you can find:
> An appendix that lists the various POSIX and Mach system calls.

> The sample programs included in experiments throughout this book — for the enthusiastic
to try, yet lazy to code. The programs are provided in source form, but also as binaries (for
those even lazier to compile(!) or devoid of XCode).

> The tools introduced in this book, and discussed in this introduction freely downloadable in
binary form for both OS X and iOS, and often times with source.

Updated references and links to other web resources, as they become available.
> Updated articles about new features or enhancements, as time goes by.

Errata — Errare est humanum, and — especially in iOS, where most of the details were eked
out by painful disassembly, there may be inaccuracies or version differences that need to be

fixed.

This book has been an unbelievable journey, through the looking glass (while playing with kittens),
unraveling the very fabric of the reality presented to user mode applications. I truly hope that you,
the reader, will find it as illuminating as I have, drawing ideas not just on OS X and iOS, but on
operating system architecture and software design in general.

Read on then, ye devout Apple-lyte, and learn.

XXXV


http://newosxbook.com
http://technologeeks.com
http://darwin.kerneldevelopers.com
http://darwin.kerneldevelopers.com

PART |
For Power Users

» CHAPTER 1: Darwinism: The Evolution of OS X
» CHAPTER 2: E Pluribus Unum: Architecture of OS X and iOS
» CHAPTER 3: On the Shoulders of Giants: OS X and iOS Technologies

» CHAPTER 4: Parts of the Process: Mach-O, Process, and Thread
Internals

» CHAPTER 5: Non Sequitur: Process Tracing and Debugging
» CHAPTER 6: Alone in the Dark: The Boot Process: EFl and iBoot

» CHAPTER 7: The Alpha and the Omega — launchd






Darwinism: The Evolution
of OS X

Mac OS has evolved tremendously since its inception. From a niche operating system of a cult
crowd, it has slowly but surely gained mainstream share, with the recent years showing an
explosion in popularity as Macbooks, Macbook Pros, and Airs become ever more ubiquitous,
clawing back market share from the gradually declining PC. Its mobile derivative — iOS — is
by some accounts the mobile operating system with the largest market share, head-to-head
with Linux’s derivative, Android.

The growth, however, did not happen overnight. In fact, it was a long and excruciating pro-
cess, which saw Mac OS come close to extinction, before it was reborn as “OS X.” Simply
“reborn” is an understatement, as Mac OS underwent a total reincarnation, with its architec-
ture torn down and rebuilt anew. Even then, Mac OS still faced significant hardship before the
big breakthrough — which came with Apple’s transition to Intel-based architecture, leaving
behind its long history with PowerPC architectures.

The latest and greatest version, OS X 10.7, or Lion, occurred shortly before the release of this
book, as did the release of iOS 5.x, the most recent version of i0S. To understand their fea-
tures and the relationship between the two, however, it makes sense to take a few steps back
and understand how the architecture unifying both came to be.

The following is by no means a complete listing of features, but rather a high-level perspec-
tive. Apple has been known to add hundreds of features between releases, mostly in GUI and
application support frameworks. Rather, more emphasis is placed on design and engineering
features. For a comprehensive treatise on Mac OS versions to date, see Amit Singh’s work on
the subject!'l, or check Ars Technica’s comprehensive reviews?.. Wikipedia also maintains a
fairly complete list of changes®!.

THE PRE-DARWIN ERA: MAC OS CLASSIC

Mac OS Classic is the name given the pre-OS X era of Mac OS. The operating system then
was nothing much to boast about. True, it was novel in that it was an all-GUI system (earlier
versions did not have a command line like today’s “Terminal” app). Memory management was



4 | CHAPTER1 DARWINISM: THE EVOLUTION OF OS X

poor, however, and multitasking was cooperative, which — by today’s standards — is considered
primitive. Cooperative multitasking involves processes voluntarily yielding their CPU timeslice, and
works reasonably well when processes are well behaved. If even one process refuses to cooperate,
however, the entire system screeches to a halt. Nonetheless, Mac OS Classic laid some of the foun-
dations for the contemporary Mac OS, or OS X. Primarily, those foundations include the “Finder”
GUI, and the file system support for “forks” in the first generation HFS file system. These affect OS
X to this very day.

THE PRODIGAL SON: NEXTSTEP

While Mac OS experienced its growing pains in the face of the gargantuan PC, its founder Steve
Jobs left Apple (by some accounts was ousted) to get busy with a new and radically different com-
pany. The company, NeXT, manufactured specialized hardware, the NeXT computer and NeXTsta-
tion, with a dedicated operating system called NeXTSTEP.

NeXTSTEP boasted some avant-garde features for the time:

> NeXTSTEP was based on the Mach microkernel, a little-known kernel developed by Carne-
gie Mellon University (CMU). The concept of a microkernel was, itself, considered a novelty,
and remains rarely implemented even today.

>  The development language used was Objective-C, a superset of C, which — unlike C++ —is
heavily object-oriented.

> The same object-orientation was prevalent all throughout the operating system. The system
offered frameworks and kits, which allowed for rapid GUI development using a rich object
library, based on the Nsobject.

> The device driver environment was an object-oriented framework as well, known as
DriverKit. Drivers could subclass other drivers, inheriting from them and extending their
functionality.

> Applications and libraries were distributed in self-contained bundles. Bundles consisted of a
fixed directory structure, which was used to package software, along with its dependencies
and related files, so installing and uninstalling could be as easy as moving around a folder.

> PostScript was heavily used in the system, including a variant called “display postscript,”
which enabled the rendering of display images as postscript. Printing support was thus 1:1,
unlike other operating systems, which needed to convert to a printer-friendly format.

NeXTSTEP went down the road of better operating systems (remember OS/2?), and is nowadays
extinct, save for a GNUStep port. Yet, its legacy lives on to the present day. One winter day in 1997,
Apple — with an OS that wasn’t going anywhere — ended up acquiring NeXT, bringing its intellec-
tual property into Apple, along with Steve Jobs. And the rest, as they say, is history.

ENTER: OS X

As a result of the acquisition of NeXT, Apple gained access to Mach, Objective-C, and the other
aspects of the NeXTSTEP architecture. While NeXTSTEP was discontinued as a result, these
components live on in OS X. In fact, OS X can be considered as a fusion of Mac OS Classic and



OS X Versions,to Date | 5

NeXTSTEP, mostly the latter absorbing the former. The transition wasn’t immediate, and Mac OS
passed through an interim operating system called Rhapsody, which never really went public. It
was Rhapsody, however, that eventually evolved into the first version of Mac OS X, and its kernel
became the core of what is now known as Darwin.

Mac OS X is closer in its design and implementation to NeXTSTEP than it is to any other operating
system, including Apple’s own OS 9. As you will see, the core components of OS X — Cocoa, Mach,
IOKit, the XCode Interface Builder, and others — are all direct descendants of NeXTSTEP. The
fusion of two fringe, niche operating systems — one with a great GUI and poor design, the other
with great design but lackluster GUI — resulted in a new OS that has become far more popular than
the both of them combined.

OS X VS. DARWIN

There is sometimes some confusion between OS X and Darwin regarding the defini-
tions of the two terms, and the relationship between them. Let’s attempt to clarify this:

OS X is the name given, collectively, to the entire operating system. As discussed in
the next chapter, the operating system contains many components, of which Darwin
is but one.

Darwin is the UNIX-like core of the operating system, which is itself comprised of
the kernel, XNU (an acronym meaning “X is Not UNIX”, similar to GNU’s recursive
acronym) and the runtime. Darwin is open source (save for its adaptation to ARM in
i0S, discussed later), whereas other parts of OS X — Apple’s frameworks — are not.

There exists a straightforward correlation between the version of OS X and the ver-
sion of Darwin. With the exception of OS X 10.0, which utilized Darwin 1.3. x, all
other versions follow a simple equation:

If (OSX.version == 10.x.y)
Darwin.version = (4+x).y

So, for example, the upcoming Mountain Lion, being 10.8.0, is Darwin 12.0. The
last release of Snow Leopard, 10.6.8, is Darwin 10.8. It’s a little bit confusing, but
at least it’s consistent.

OS X VERSIONS, TO DATE

Since its inception, Mac OS X has gone through several versions. From a novel, but — by some
accounts — immature operating system, it has transformed into the feature-rich platform that
is Lion. The following section offers an overview of the major features, particularly those which
involve architectural or kernel mode changes.

10.0 — Cheetah and the First Foray

Mac OS X 10.0, known as Cheetah, is the first public release of the OS X platform. About a year
after a public beta, Kodiak, Apple released 10.0 in March 2001. It marks a significant departure



6 | CHAPTER1 DARWINISM: THE EVOLUTION OF OS X

from the old-style Mac OSes with the integration of features from NeXT/Openstep, and the layered
architecture we will discuss shortly. It is a total rewrite of the MacOS 9, and shares little in com-
mon, save for maybe the Carbon interface, which is used to maintain compatibility with OS 9 APIs.
10.0 ran five sub-versions (10.0 through 10.0.4) with relatively minor modifications. The version of
the core OS packages, called Darwin, were 1.3.1 in all. XNU was version 123.

10.1 — Puma — a Stronger Feline, but. ..

While definitely novel, OS 10.0 was considered to be immature and unstable, not to mention slow.
Although it boasted preemptive multitasking and memory protection, like all its peer operating sys-
tems, it still left much to be desired. Some six months later, Mac OS X 10.1, known as Puma, was
released to address stability and performance issues, as well as add more user experience features.
This also led shortly thereafter to Apple’s public abandonment of Mac OS 9, and focus on OS X

as the new operating system of choice. Puma ran six sub-versions (10.1 through 10.1.5). In version
10.1.1, Darwin (the core OS) was renumbered from v1.4.1 to 5.1, and since then has followed the
OS X numbers consistently by being four numbers ahead of the minor version, and aligning its own
minor with the sub-version. XNU was version 201.

10.2 — Jaguar — Getting Better

A year later saw the introduction of Mac OS X 10.2, known as Jaguar, a far more mature OS with
myriad UX feature enhancements, and the introduction of the “Quartz Extreme” framework for
faster graphics. Another addition was Apple’s Bonjour (then called Rendezvous), which is a form of
ZeroConf, a uPNP-like protocol (Universal Plug and Play) allowing Apple devices to find one another
on a local area network (discussed later in this book). Darwin was updated to 6.0. 10.2 ran nine
sub-versions (10.2 through 10.2.8, Darwin 6.0 through 6.8, respectively). XNU was version 344.

10.3 — Panther and Safari

Yet another year passed, and in 2003 Apple released Mac OS X 10.3, Panther, enhancing the OS
with yet more UX features such as Exposé. Apple created its own web browser, Safari, displacing
Internet Explorer for Mac as it distanced itself from Microsoft.

Another noteworthy improvement in Panther is FileVault, which allows for transparent disk encryp-
tion. Mac OS X 10.3 stayed current for a year and a half, and ran 10 sub-versions (10.3 through 10.3.9)
with Darwin 7.x (7.0 through 7.9). XNU was version 517.

10.4 — Tiger and Intel Transition

The next update to Mac OS was announced in May 2004, but it took almost a year until Mac OS
X 10.4 (Tiger) was officially released. This version sported, as usual, many new GUI features, such
as spotlight and dashboard widgets, but also significant architectural changes, most important

of which was the foray into the Intel x86 processor space, with 10.4.4. Until that point, Mac OS
required a PowerPC architecture. 10.4.4 was also the first OS to introduce the concept of univer-
sal binaries that could operate on both PPC and x86 architectures. The kernel was significantly
improved, allowing for 64-bit pointers.



OS X Versions, to Date | 7

Other important developer features in this release included four important frameworks: Core Data,
Image, Video, and Audio. Core Data handled data manipulation (undo/redo/save). Core Image and
Core Video accelerated graphics by exploiting GPUs, and Core Audio built audio right into the

OS — allowing for Mac’s text-to-speech engine, Voice Over, and the legendary “say” command
(“Isn’t it nice to have a computer that talks to you?”).

Tiger reigned for over two years and a dozen sub-versions — 10.4.0 (Darwin 8.0) through 10.4.11
(Darwin 8.11). XNU was 792.

10.5 — Leopard and UNIX

Leopard was over a year in the making. Announced in June 2006, but not released until October
2007, it boasted hundreds of new features. Chief among them from the developer perspective were:

»  Core Animation, which offloaded animation tasks to the framework

Objective-C 2.0

OpenGL 2.1

Improved scripting and new languages, including Python and Ruby

Dtrace (ported from Solaris 10) and its GUI, Instruments

FSEvents, allowing for Linux’s inotify-like functionality (file system/directory notifications)
Leopard is also fully UNIX/POSIX-compliant

Leopard ran 10.5 through 1.0.5.8; Darwin 9.0 through 9.8. XNU leapt forward to version 1228.

Y Y Y VY Y Y

10.6 — Snow Leopard

Snow Leopard introduced quite a few changes, but mostly under the hood. Following what now
was somewhat of a tradition, it took over a year from its announcement in June 2008 to its release
in August 2009 From the UX perspective, changes are minimal, although all its applications were
ported to 64-bit. The developer perspective, however, revealed significant changes, including:

> Full 64-bit functionality: Both in user space libraries and kernel space (K64).

> File system-level compression: Incorporated very quietly, as most commands and APIs
still report the files’ real sizes. In actuality, however, most files — specifically those of the
OS — are transparently compressed to save disk space.

Grand Central Dispatch: Enabled multi-core programming through a central APL

> OpenCL: Enabled the offloading of computations to the GPU, utilizing the ever-increasing
computational power of graphics adapters for non-graphic tasks. Apple originally developed
the standard, and still maintains the trademark over the name. Development has been handed
over to the Khronos group (www.khronos.org), a consortium of industry leaders (including
AMD, Intel, NVidia, and many others), who also host OpenGL (for graphics) and OpenSL
(for sound).


http://www.khronos.org

8 | CHAPTER1 DARWINISM: THE EVOLUTION OF OS X

Snow Leopard finished the process of migration started in 10.4.4 — from PPC to x86/x64 architec-
tures. It no longer supports PowerPCs so universal binaries to support that architecture are no lon-
ger needed, saving much disk space by thinning down binaries. In practice, however, most binaries
still contain multiple architectures for 32-bit and 64-bit Intel.

The most current version of Snow Leopard is 10.6.8 (Darwin 10.8.0), released July 2011. XNU is
version 1504.

10.7 — Lion

Lion is Apple’s latest incarnation of OS X at the time of this writing. (More accurately, the latest
one publicly available, as Mountain Lion has been released as a developer preview as this book goes
to print.) It is a relatively high-end system, requiring Intel Core 2 Duo or better to run on (although
successfully virtualized by now).

While it provides many features, most of them are in user mode. Several of the new features have
been heavily influenced from iOS (the mobile port of OS X for i-Devices, as we discuss later). These
features include, to name but a few:

> iCloud: Apple’s new cloud-based storage is tightly integrated into Lion, enabling applications
to store documents in the cloud directly from the Objective-C runtime and NSDocument.

> Tighter security: Drawing on a model that was started in iOS, of application sandboxing and
privilege separation.

> Improvements in the built-in applications: Such as Finder, Mail, and Preview, as well as port-
ing of apps from iOS, notably FaceTime and the iOS-like LaunchPad.

> Many framework features: From overlay scrollbars and other GUI enhancements, through
voice over, text auto-correction similar to iOS, to linguistic and part-of-speech tagging to
enable Natural Language Processing—based applications.

> Core Storage: Allowing logical volume support, which can be used for new partitioning fea-
tures. A particularly useful feature is extending file systems onto more than one partition.

> FileVault 2: Used for encryption of the filesystem, down to the root volume level — mark-
ing Apple’s entry into the Full Disk Encryption (FDE) realm. This builds on Core Storage’s
encryption capabilities at the logical volume level. The encryption is AES-128 in XTS mode,
which is especially optimized for hard drive encryption. (Both Core Storage and File Vault
are discussed in Chapter 15 of this book, “Files and Filesystems.”)

> Air Drop: Extends Apple’s already formidable peer-finding abilities (courtesy of Bonjour) to
allow for quick file sharing between hosts over WiFi.

> 64-bit mode: Enabled by default on more Mac models. Snow Leopard already had a 64-bit
kernel, but still booted 32-bit kernels on non-Pro Macbooks.

At the time of this writing, the most recent version of Lion is 10.7.3, XNU version 1699.24.23. With

the announcement of Mountain Lion (destined to be 10.8), it seems that Lion will be especially short
lived.



OS X Versions,to Date | 9

10.8 — Mountain Lion

In February 2012, just days before this book was finalized and sent off to print, Apple surprised the
world with the announcement of OS X 10.8, Mountain Lion. This is quite unusual, as Apple’s OS
lifespan is usually longer a year, especially for a cat as big as a Lion, which many believed would end
the feline species. The book makes every attempt to also include the most up-to-date material so as
to cover Mountain Lion, but the operating system will only be available to the public much later,
sometime around the summer of 2012.

Mountain Lion aims to bring iOS and OS X closer together, as was actually speculated in this book
(see “The Future of OS X,” later in this chapter). Continuing the trend set by Lion, 10.8 further
brings features from iOS to OS X, as boasted by its tagline — “Inspired by iPad, reimagined for
Mac.” The features advertised by Apple are mostly user mode. Interestingly enough, however, the
kernel seems to have undergone major revisions as well, as is hinted by its much higher version num-
ber — 2050. One notable feature is kernel address space randomization, a feature that is expected
to make OS X far more resilient to rootkits and kernel exploitation. The kernel will also likely be
64-bit only, dropping support for 32-bit APIs. The sources for Darwin 12 (and, with them, XNU)
will not be available until Mountain Lion is officially released.

Using uname(1)
Throughout this book, many UNIX and OS X-specific commands will be presented. It is only fit-
ting that uname (1), which shows the UNIX system name, be the first of them. Running uname will
give you the details on the architecture, as well as the version information of Darwin. It has several
switches, but -a effectively uses all of them. The following code snippets shownin Outputs 1-1a
through ¢ demonstrate using uname on two different OS X systems:

OUTPUT 1-1A: Using uname(1) to view Darwin version on Snow Leopard 10.6.8, a 32-bit system

morpheus@ergo (~) uname -a
Darwin Ergo 10.8.0 Darwin Kernel Version 10.8.0: Tue Jun 7 16:33:36 PDT 2011; root:xnu-
1504.15.3~1/RELEASE I386 1386

OUTPUT 1-1B: Using uname(1) to view Darwin version on Lion 10.7.3, a 64-bit system

morpheus@Minion (~) uname -a
Darwin Minion.local 11.3.0 Darwin Kernel Version 11.3.0: Thu Jan 12 18:47:41 PST 2012;
root:xnu-1699.24.23~1/RELEASE X86 64 x86 64

If you use uname (1) on Mountain Lion (in the example below, the Developer Preview) you will see
an even newer version

OUTPUT 1-1C: Using uname(1) to view Darwin version on Mountain Lion 10.8 (DP3), a 64-bit system

morpheus@Simulacrum (~) uname -a
Darwin Simulacrum.local 12.0.0 Darwin Kernel Version 12.0.0: Sun Apr 8 21:22:58 PDT
2012; root:xnu-2050.3.19~1



10 | CHAPTER1 DARWINISM: THE EVOLUTION OF OS X

OS X ON NON-APPLE HARDWARE

A la Apple, running OS X on any hardware other than the Apple line of Macs
constitutes a violation of the EULA. Apple wages a holy war against Mac clones,
and has sued (and won against) companies like Psystar, who have attempted to
commercialize non-Apple ports of OS X. This has not deterred many an enthusiast,
however, from trying to port OS X to the plain old PC, and — recently — to run
under virtualization.

The OpenDarwin/PureDarwin projects take the open source Darwin environment
and make of it a fully bootable and installable ISO image. This is carried further
by the OSX86 project, which aims to fully port OS X onto PCs, laptops, and even
netbooks (this is commonly referred to as “Hackintosh”). With the bootable ISO
images, it is possible to circumvent the OS X installer protections and install the
system on non-Apple hardware. The hackers (in the good sense of the word) emu-
late the EFI environment (which is the default on Mac hardware, but still scarce
on PC) using a boot loader (Chameleon) based on Apple’s Boot-132, which was

a temporary boot loader used by Apple back in Tiger v10.4.8. Originally, some
minor patches to the kernel were needed, as well — which were feasible since XNU
remains open source.

With the rise of virtualization and the accessibility of excellent products such as
VMWiare, users can now simply download a pre-installed VM image of a fully
functioning OS X system. The first images made available were of the later Leop-
ards, and are hard to come by, but now images of the latest Lion and even Moun-
tain Lion are readily downloadable from some sites.

While still in violation of the EULA, Apple does not seem as adamant (yet?) in
pursuing the non-commercial ports. It has added features to Lion which require an
Internet connection to install (i.e. “Verify the product with Apple”), but still don’t
manage to snuff the Hackintosh flame. Then again, what people do in the privacy
of their own home is their business.

I0S — OS X GOES MOBILE

Windows has its Windows Mobile, Linux has Android, and OS X, too, has its own mobile deriva-
tive — the much hyped iOS. Originally dubbed iPhone OS (until mid-2010), Apple (following a short
trademark dispute with Cisco), renamed the operating system iOS to reflect the unified nature of the
operating system which powers all its i-Devices: the iPhone, iPod, iPad, and Apple TVs.

i0S, like OS X, also has its version history, with its current release at the time of writing being iOS
5.1. Though all versions have code names, they are private to Apple and are usually known only to
the jailbreaking community.



iOS — OS X Goes Mobile | 11

1.x — Heavenly and the First iPhone

This release ran from the iPhone’s inception, in mid-2007, through mid-2008. Version numbers were
1.0 through 1.02, then 1.1 through 1.1.5. The only device supported was initially the iPhone, but
the iPod Touch soon followed. The original build was known as “Alpine” (which is also the default
root password on i-Devices), but the released version was “Heavenly.”

From the jailbreakers’ perspective, this release was heavenly, indeed. Full of debug symbols, unen-
crypted, and straightforward to disassemble. Indeed, many versions later, many jailbreakers still rely
on the symbols and function-call graphs extracted from this version.

2.x — App Store, 3G and Corporate Features

iPhoneOS 2.0 (known as BigBear) was released along with the iPhone 3G, and both became an
instant hit. The OS boasted features meant to make the iPhone more compatible with corporate
needs, such as VPN and Microsoft Exchange support. This OS also marked the iPhone going global,
with support for a slew of other languages.

More importantly, with this release Apple introduced the App Store, which became the largest soft-
ware distribution platform in the world, and helped generate even more revenue for Apple as a result
of its commission model. (This is so successful that Apple has been trying this, with less success,
with the Mac App Store, as of late Snow Leopard).

2.x ran 2.0-2.02, 2.1 (SugarBowl), 2.2-2.2.1 (Timberline), until early 2009, and the release of 3.x.
The XNU version in 2.0.0 is 1228.6.76, corresponding to Darwin 9.3.1.

3.x — Farewell, 15 gen, Hello iPad

The 3.x versions of i0S brought along the much-longed-for cut/paste, support for lesser used lan-
guages, spotlight searches, and many other enhancements to the built-in apps. On the more techni-
cal front, it was the first iOS to allow tethering, and allowed the plugging in of Nike+ receivers,
demonstrating that the i-Devices could not only be clients but hosts for add-on devices themselves.

3.0 (KirkWood) was quickly superseded by 3.1 (NorthStar), which ran until 3.1.3, the final version

supported by the “first generation” devices. Version 3.2 (WildCat) was introduced in April of 2010,
especially for the (then mocked) tablet called the iPad. After its web-based jailbreak by Comex (Star
2.0), it was patched to 3.2.2, which was its last version. The Darwin version in 3.1.2 was 10.0.0d3,
and XNU was at 1357.5.30.

4.x — iPhone 4, Apple TV, and the iPad 2

The 4.x versions of iOS brought along many more features and apps, such as FaceTime and voice
control, with 4.0 introduced in late June 2010, along with the iPhone 4. 4.x versions were the first to
support true multitasking, although jailbroken 3.x offered a crude hack to that extent.

iOS 4 was the longest running of the iOS versions, going through 4.0-4.0.2 (Apex), 4.1 (Baker
or Mohave, which was the first Apple TV version of iOS), and 4.2—-4.2.10 (Jasper). Version 4.3



12 | CHAPTER1 DARWINISM: THE EVOLUTION OF OS X

(Durango) brought support for the (by then well respected) iPad 2 and its new dual-core AS chip.
Another important new feature was Address Space Layout Randomization (ASLR, discussed later in
this book), which was unnoticeable by users, but — Apple hoped — would prove insurmountable to
hackers. Hopes aside, by version 4.3.3 ASLR succumbed to “Saffron” hack when jailbreaker Comex
then released his ingenious “Star 3.0” jailbreak for the till-then-unbreakable iPad 2. Apple quickly
released 4.3.4 to fix this bug (discussed later in this book as well), and figured the only way to dis-
courage future jailbreaks is to go after the jailbreaker himself — assimilating him. The last release of
4.3.x was 4.3.5, which incorporated another minor security fix.

The Darwin version in 4.3.3 is 11.0.0, same as Lion. The XNU kernel, however, is at
1735.46.10 — way ahead of Lion.

5.x — To the iPhone 4S and Beyond

iOS is, at the time of this writing, in its fifth incarnation: Telluride (5.0.0 and 5.0.1) and Hoodoo
(5.1), named after ski resorts. Initially released as iOS 5.0, it coincided with the iPhone 4S, and
introduced (for that phone only) Apple’s natural language-based voice control, Siri. iOS5 also boasts
many new features, such as much requested notifications, NewsStand (an App Store for digital pub-
lications), and some features iOS users never knew they needed, like Twitter integration. Another
major enhancement is iCloud (also supported in Lion).

As a result of complaints concerning poor battery life in 5.0, Apple rushed to release 5.0.1, although
some complaints persisted. Version 5.1 was released March 2012, coinciding with the iPad 3.

As this book goes to print, the iPhone 4S is the latest and greatest model, and the iPad 3 has just
been announced, boasting the improved A5X with quad-core graphics. If Apple’s pattern repeats
itself, it seems more than likely that it will be followed by the highly anticipated iPhone 5. Apple’s
upgrade cycles have, thus far, been first for iPad, then iPhone, and finally iPod. From the iOS
perspective this matters fairly little — the device upgrades have traditionally focused on better hard-
ware, and fairly few software feature enablers.

Darwin is still at 11.0.0, but XNU is even further ahead of Lion with the version being 1878.11.8 in
i0S 5.1.

iOS vs. OS X

Deep down, iOS is really Mac OS X, but with some significant differences:

>  The architecture for which the kernel and binaries are compiled is ARM-based, rather than
Intel 1386 or x86_64. The processors may be different (A4, A5, A5X, etc), but all are based
on designs by ARM. The main advantage of ARM over Intel is in power management, which
makes their processor designs attractive for mobile operating systems such as i0S, as well as
its arch-nemesis, Android.

> The kernel sources remain closed — even though Apple promised to maintain XNU, the OS
X Kernel, as open source, it apparently frees itself from that pledge for its mobile version.
Occasionally, some of the iOS modifications leak into the publicly available sources (as can
be seen by various #ifdef, arm , and ARM_ARCH conditionals), though these generally
diminish in number with new kernel versions.



iOS — OS X Goes Mobile | 13

> The kernel is compiled slightly differently, with a focus on embedded features and some new
APIs, some of which eventually make it to OS X, whereas others do not.

> The system GUI is Springboard, the familiar touch-based application launcher, rather than
Aqua, which is mouse-driven and designed for windowing. SpringBoard proved so popular it
has actually been (somewhat) back ported into OS X with Lion’s LaunchPad.

>  Memory management is much tighter, as there is no nigh-infinite swap space to fall on. As a
consequence, programmers have to adapt to harsher memory restrictions and changes in the
programming model.

> The system is hardened, or “jailed,” so as not to allow any access to the underlying UNIX
APIs (i.e. Darwin), nor root access, nor any access to any directory but the application’s own.
Only Apple’s applications enjoy the full power of the system. App Store apps are restricted
and subject to Apple’s scrutiny.

The last point is really the most important: Apple has done its utmost to keep iOS closed, as a spe-
cialized operating system for its mobile platforms. In effect, this strips down the operating system to
allow developers only the functionality Apple deems as “safe” or “recommended,” rather than allow
full use of the hardware, which — by itself — is comparable to any decent desktop computer. But
these limitations are artificial — at its core, iOS can do nearly everything that OS X can. It doesn’t
make sense to write an OS from scratch when a good one already exists and can simply be ported.
What’s more, OS X had already been ported once, from PPC to x86 — and, by induction, could be
ported again.

Whether or not you possess an i-Device, you have no doubt heard the much active buzz around the
“jailbreaking” procedure, which allows you to overcome the Apple-imposed limitations. Without
getting into the legal implications of the procedure (some claim Apple employs more lawyers than
programmers), suffice it to say it is possible and has been demonstrated (and often made public) for
all i-Devices, from the very first iPhone to the iPhone 4S. Apple seems to be playing a game of cat
and mouse with the jailbreakers, stepping up the challenge considerably from version to version, yet
there’s always “one more thing” that the hackers find, much to Apple’s chagrin.

Most of the examples shown in this book, when applied to iOS, require a jailbroken device. Alterna-
tively, you can obtain an iOS software update — which is normally encrypted to prevent any prying
eyes such as yours — but can easily be decrypted with well-known decryption keys obtained from
certain iPhone-dedicated Wiki sites. Decrypting the iOS image enables you to peek at the file system
and inspect all the files, but not run any processes for yourself. For this reason, jailbreaking proves
more advantageous. Jailbreaking is about as harmful (if you ask Apple) as open source is bad for
your health (if you ask Microsoft). Apple went so far as to “get the facts” and published HT3743
about the terrible consequences of “unauthorized modification of i0S.” This book will not teach
you how to jailbreak, but many a website will happily share this information.

If you were to, say, jailbreak your device, the procedure would install an alternate software package
called Cydia, with which you can install third-party apps, that are not App Store approved. While
there are many, the ones you’ll need to follow along with the examples in this book are:

> OpenSSH: Allows you to connect to your device remotely, via the SSH protocol, from any
client, OS X, Linux (wherein ssh is a native command line app), or Windows (which has a
plethora of SSH clients — for example, PuTTY).



14 | CHAPTER1 DARWINISM: THE EVOLUTION OF OS X

> Core Utilities: Packaging the basic utilities you can expect to find in a UNIX /bin directory.
> Adv-cmds and top: Advanced commands, such as ps to view processes.

SSHing to your device, the first command to try would be the standard UNIX uname which you
saw earlier in the context of OS X. If you try this on an iPad 2 running iOS 4.3.3, for example, you
would see something similar to the following:

OUTPUT 1-2A: uname(1) on an iOS 4 iPad 2

root@Padishah (/) # uname -a
Darwin Padishah 11.0.0 Darwin Kernel Version 11.0.0: Wed Mar 30 18:52:42 PDT 2011;
rOOt:xnu—l735.46~10/RELEASE_ARM_SSL894OX iPad2,3 arm K95AP Darwin

And on an iPod running iOS 5:, you would see the following;:

OUTPUT 1-2B: uname(1) on a 4t"-generation iPod running iOS 5.0

root@Podicum (/) # uname -a
Darwin Podicum 11.0.0 Darwin Kernel Version 11.0.0: Thu Sep 15 23:34:16 PDT 2011;
rOOt:xnu—1878.4.43~2/RELEASE_ARM_S5L893OX iPod4,1 arm N81AP Darwin

So, from the kernel perspective, this is (almost) the same kernel, but the architecture is ARM.
(S51.8940X is the processor on iPad, commonly known as A5, whereas S5L8930X is the one known
as A4. The new iPad is reported as iPad3.1, and its processor, A5X, is identified as S51.8945X).

Table 1-1 partially maps OS X and iOS, in some of their more modern incarnations, to the respec-
tive version of XNU. As you can see, until 4.2.1, iOS was using largely the same XNU version as its
corresponding OS X at the time. This made it fairly easy to reverse engineer its compiled kernel (and
with a fairly large number of debug symbols still present!). With iOS 4.3, however, it has taken off
in terms of kernel enhancements, leaving OS X behind. Mountain Lion seems to put OS X back in
the lead, but this might very well change if and when iOS 6 comes out.

TABLE 1-1: Mapping of OS X and iOS to their corresponding kernel versions, and approximate release

dates.

OPERATING SYSTEM RELEASE DATE KERNEL VERSION
Puma (10.1.x) Sep 2001 201.**

Jaguar (10.2.x) Aug 2002 344>

Panther (10.3.x) Oct 2003 517>

Tiger (10.4.x) April 2005 7927

iOS 1.1 June 2007 933.0.0.78
Leopard (10.5.4) October 2007 1228.5.20



The Future of OS X | 15

OPERATING SYSTEM

RELEASE DATE

KERNEL VERSION

i0S 2.0.0 July 2008 1228.6.76
i0S 3.1.2 June 2009 1357.5.30
Snow Leopard (10.6.8) August 2009 1504.15.3
i0S 4.21 November 2010 1504.58.28
i0S 4.31 March 2011 1735.46
Lion (10.7.0) August 201 1699.22.73
i0S 5 October 2011 1878.4.43
Lion (10.7.3) February 2012 1699.24.23
i0S 5.1 March 2012 1878.11.8
Mountain Lion (DP1) March 2012 2050.1.12

THE FUTURE OF OS X

At the time of writing, the latest publicly available Mac OS X is Lion, OS X 10.7, with Mountain
Lion — OS X 10.8 — lurking in the bushes. Given that the minor version of the latter is already at 8,
and the supply of felines has been exhausted, it is also likely to be the last “OS X” branded operat-
ing system (although this is, of course, a speculation).

OS X has matured over the past 10 years and has evolved into a formidable operating system. Still,
from an architectural standpoint, it hasn’t changed that much. The great transition (to Intel archi-

tectures) and 64-bit changes aside, the kernel has changed relatively little in the past couple of ver-
sions. What, then, may one expect from OS XI?

>

The eradication of Mach: The Mach APIs in the kernel, on which this book will elaborate
greatly, are an anachronistic remnant of the NeXTSTEP days. These APIs are largely hidden
from view, with most applications using the much more popular BSD APIs. The Mach APIs
are, nonetheless, critical for the system, and virtually all applications would break down if
they were to be suddenly removed. Still, Mach is not only inconvenient — but also slower.
As you will see, its message-passing microkernel-based architecture may be elegant, but it

is hardly as effective as contemporary monolithic kernels (in fact, XNU tends toward the
monolithic than the microkernel architecture, as is discussed in Chapter 8). There is much to
be gained by removing Mach altogether and solidifying the kernel to be fully BSD, though
this is likely to be no mere feat.

ELF binaries: Another obstacle preventing Mac OS from fully joining the UN*X sorority
is its insistence on the Mach-O binary format. Whereas virtually all other UN*X support
ELF, OS X does not, basing its entire binary architecture on the legacy Mach-O. If Mach is
removed, Mach-O will lose its raison d’etre, and the road to ELF will be paved. This, along



16 | CHAPTER1 DARWINISM: THE EVOLUTION OF OS X

with the POSIX compatibility OS X already boasts, could provide both source code and
binary compatibility, allowing migrating applications from Solaris, BSD, and Linux to run
with no modifications.

ZFS: Much criticism is pointed at HFS+, the native Mac OS file system. HFS+ is itself a
patchwork over HFS, which was used in OS 8 and 9. ZFS would open up many features that
HFS+ cannot. Core Storage was a giant stride forward in enabling logical volumes and multi-
partition volumes, but still leaves much to be desired.

Merger with i0S: At present, features are tried out in OS X, and then sometimes ported to
i0S, and sometimes vice versa. For example, Launchpad and gestures, both now mainstream
in Lion, originated in iOS. The two systems are very much alike in many regards, but the
supported frameworks and features remain different. Lion introduced some UI concepts
borrowed from iOS, and iOS 5.0 brings some frameworks ported from OS X. As mobile
platforms become stronger, it is not unlikely that the two systems will eventually become
closer still, paving the way for running iOS apps, for example, on OS X. Apple has already
implemented an architecture translation mechanism before — with Rosetta emulating the
PPC architecture on Intel.

SUMMARY

Over the years, Mac OS evolved considerably. It has turned from being the underdog of the operat-
ing system world — an OS used by a small but devoted population of die-hard fans — into a main-
stream, modern, and robust OS, gaining more and more popularity. iOS, its mobile derivative, is
one of the top mobile operating systems in use today.

The next chapters take you through a detailed discussion of OS X internals: Starting with the basic
architecture, then diving deeper into processes, threads, debugging, and profiling.

REFERENCES

[1]

[2]
[3]
[4]

Amit Singh’s Technical History of Apple’s Operating Systems: http://osxbook . com/book/
bonus/chapterl/pdf/macosxinternals-singh-1.pdf

ARS Technica: http://arstechnica.com
Wikipedia’s Mac OS X entry: http://en.wikipedia.org/wiki/Mac_0S_X

“Unauthorized modification of iOS has been a major source of instability, disruption of ser-
vices, and other issues”: http://support.apple.com/kb/HT3743


http://osxbook.com/book/bonus/chapter1/pdf/macosxinternals-singh-1.pdf
http://arstechnica.com
http://en.wikipedia.org/wiki/Mac_OS_X
http://support.apple.com/kb/HT3743
http://osxbook.com/book/bonus/chapter1/pdf/macosxinternals-singh-1.pdf

E Pluribus Unum: Architecture of
OS X and iOS

OS X and iOS are built according to simple architectural principles and foundations. This
chapter presents these foundations, and then focuses further on the user-mode components
of the system, in a bottom-up approach. The Kernel mode components will be discussed with
greater equal detail, but not until the second part of this book.

We will compare and contrast the two architectures — iOS and OS X. As you will see, iOS is
in essence, a stripped down version of the full OS X with two notable differences: The archi-
tecture is ARM-based (as opposed to Intel x86 or x86_64), and some components have either
been simplified or removed altogether, to accommodate for the limitations and/or features of
mobile devices. Concepts such as GPS, motion-sensing, and touch — which are applicable at
the time of this writing only to mobile devices — have made their debut in iOS, and are pro-
gressively being merged into the mainstream OS X in Lion.

OS X ARCHITECTURAL OVERVIEW

When compared to its predecessor, OS 9, OS X is a technological marvel. The entire operat-
ing system has been redesigned from its very core, and entirely revamped to become one of
the most innovative operating systems available. Both in terms of its Graphical User Interface
(GUI) and its underlying programmer APIs, OS X sports many features that are still novel,
although are quickly being ported (not to say copied) into Windows and Linux.

Apple’s official OS X and iOS documentation presents a very elegant and layered approach,
which is somewhat overly simplified:
> The User Experience layer: Wherein Apple includes Aqua, Dashboard, Spotlight, and
accessibility features. In iOS, the UX is entirely up to SpringBoard, and Spotlight is sup-
ported as well.
> The Application Frameworks layer: Containing Cocoa, Carbon, and Java. iOS, how-
ever, only has Cocoa (technically, Cocoa Touch, a derivative of Cocoa)
> The Core Frameworks: Also sometimes called the Graphics and Media layer. Contains
the core frameworks, Open GL, and QuickTime.
> Darwin: The OS core — kernel and UNIX shell environment.



18 | CHAPTER2 E PLURIBUS UNUM: ARCHITECTURE OF OS X AND IOS

Of those, Darwin is fully open sourced and serves as the foundation and low-level APIs for the rest
of the system. The top layers, however, are closed-source, and remain Apple proprietary.

Figure 2-1 shows a high level architectural overview of
these layers. The main difference from Apple’s official fig-
ure, is that this rendition is tiered in a stair-like manner.
This reflects the fact that applications can be written so as
to interface directly with lower layers, or even exist solely
in them. Command line applications, for example, have no
“User Experience” interaction, though they can interact FIGURE 2-1: OS X and iOS architectural
with application or core frameworks. diagram

| Darwin

At this high level of simplification, the architecture of both

systems conforms to the above figure. But zooming in, one would discover subtle differences. For
example, the User Experience of the two systems is different: OS X uses Aqua, whereas iOS uses
SpringBoard. The frameworks are largely very similar, though iOS contains some that OS X doesn’t,
and vice versa.

While Figure 2-1 is nice and clean, it is far too simplified for our purposes. Each layer in it can be
further broken down into its constituents. The focus of this book is on Darwin, which is itself not a
single layer, but its own tiered architecture, as shown in Figure 2-2.

Other Darwin Libraries

libSystem.B.dylib

libc.dylib | libm.dylib

Scheduling
BSD

libkern libkern

machine specific hacks ml_* APIs Platform Expert

FIGURE 2-2: Darwin Architecture




The User Experience Layer | 19

Figure 2-2 is much closer to depicting the real structure of the Darwin, and particularly its kernel,
XNU (though it, too, is somewhat simplified). It reveals an inconvenient truth: XNU is really a
hybrid of two technologies: Mach and BSD, with several other components — predominantly IOKit,
thrown in for good measure. Unsurprisingly, Apple’s neat figures and documentation don’t get to
this level of unaesthetic granularity. In fact, Apple barely acknowledges Mach.

The good news in all this is that, to some extent, ignorance is bliss. Most user-mode applications,
especially if coded in Objective-C, need only interface with the frameworks — primarily Cocoa, the
preferred application framework, and possibly some of its core frameworks. Most OS X and iOS
developers therefore remain agnostic of the lower layers, Darwin, and most certainly of the kernel.
Still, each of the user-mode layers is individually accessible by applications. In the kernel, quite a few
components are available to device driver developers. We therefore wade into greater detail in the
sections that follow. In particular, we focus on the Darwin shell environment. The second part of
this book delves into the kernel.

THE USER EXPERIENCE LAYER

In OS X parlance, the user interface is the User Experience. OS X prides itself on its innovative fea-
tures, and with good reason. The sleek interface, that debuted with Cheetah and has evolved since,
has been a target for imitation, and has influenced other GUI-based operating systems, such as Vista
and Windows 7.

Apple lists several components as part of the User Experience layer:
>  Aqua
> Quick Look
> Spotlight
>

Accessibility options

iOS architecture, while basically the same at the lower layers, is totally differ-
ent at the User Experience level. SpringBoard (the familiar touch driven Ul) is
entirely responsible for all user interface tasks (as well as myriad other ones).
SpringBoard is covered in greater detail in chapter 6.

Aqua

Aqua is the familiar, distinctive GUI of OS X. Its features, such as translucent windows and graph-
ics effects, are well known but are of less interest in the context of the discussion here. Rather, the
focus is how it is actually maintained.

The system’s first user-mode process, launchd (which is covered in great depth in Chapter 6) is
responsible for starting the GUI. The main process that maintains the GUI is the windowServer.
It is intentionally undocumented, and is part of the Core Graphics frameworks buried deep within



20 | CHAPTER2 E PLURIBUS UNUM: ARCHITECTURE OF OS X AND IOS

another framework, Application Services. Thus, the full path to it is /System/Library/Frame-
works/ApplicationServices. framework/Frameworks/CoreGraphics. framework/Resources/

WindowServer.

The window server is started with the -daemon switch. Its code doesn’t really do anything — all
the work is done by the caxserver (Core Graphics X Server) of the CoreGraphics framework.
cexserver checks whether it is running as a daemon and/or as the main console getty. It then forks
itself into the background. When it is ready, the Loginwindow (also started by 1aunchd) starts the
interactive login process.

@ It is possible to get the system to boot in text console mode, just like the good
ol’ UNIX days. The setting which controls loginWindow is in /etc/ttys, under
console defined as:

root@Ergo (/)# cat /etc/ttys | grep console

#console "/usr/libexec/getty std.57600" vt100 on
secure

console "/System/Library/CoreServices/loginwindow.app/Contents/
MacO0S/

loginwindow" vt100 on secure onoption="/usr/libexec/getty
std.9600"

Uncommenting the first console line will make the system boot into single-user
mode. Alternatively, by setting Display Login Window as Name and Password
from System Settings = Accounts © Login options, the system console can be
accessed by logging in with ">console" as the user name, and no password. If
you want back to GUI, a simple CTRL-D (or an exit from the login shell) will
resume the Window Server. You can also try ">sleep" and ">reboot"

Quicklook

Quicklook is a feature that was introduced in Leopard (10.5) to enable a quick preview from inside
the Finder, of various file types. Instead of double-clicking to open a file, it can be QuickLook-ed
by pressing the spacebar. It is an extensible architecture, allowing most of the work to be done by
plugins. These plugins are bundles with a . glgenerator extension, which can be readily installed
by dropping them into the QuickLook directory (system-wide at /System/Library/QuickLook; or
per user, at ~/Library/QuickLook).

Bundles are a fundamental software deployment architecture in OS X, which we
cover in great detail later in this chapter. For now, suffice it to consider a bundle
as a directory hierarchy conforming to a fixed structure.

The actual plug-in is a specially compiled program — but not a standalone executable. Instead of the
traditional main () entry point, it implements a QuickLookGeneratorPluginFactory. A separate
configuration file associates the plugin with the file. The file type is specified in what Apple calls
UTI, Uniform Type Identifier, which is essentially just reverse DNS notation.



The User Experience Layer | 21

REVERSE DNS NOTATION — WHY?

There is good reasoning for using reverse DNS name as identifiers of software
packages. Specifically,

> The Internet DNS format serves as a globally unique hierarchical namespace
for host names. It forms a tree, rooted in the null domain (.), with the top-level
domains being .com, .net, .org, and so on.

> The idea of using the same namespace for software originated with Java.
To prevent namespace conflict, Sun (now Oracle) noted that DNS can be
used — albeit in reverse — to provide a hierarchy that closely resembles a file
system.

> Apple uses reverse DNS format extensively in OS X, as you will see through-
out this book.

quicklookd (8) is the system “QuickLook server,” and is started upon login from the file
/System/Library/LaunchAgents/com.apple.quicklook.plist. The daemon itself resides within
the QuickLook framework and has no GUI. The glmanage (1) command can be used to maintain
the plugins and control the daemon, as is shown in Output 2-1:

OUTPUT 2-1: Demonstrating qlmanage(1)

morpheus@Ergo (/) % glmanage -m
living for 4019s (5 requests handled - 0 generated thumbnails) -
instant off: yes - arch: X86_64 - user id: 501

memory used: 1 MB (1132720 bytes)

last burst: during 0.010s - 1 requests - 0.000s idle

plugins:

org.openxmlformats.wordprocessingml.document ->

/System/Library/QuickLook/Office.glgenerator (26.0)
com.apple.iwork.keynote.sffkey -> /Library/QuickLook/iWork.glgenerator
(11)

org.openxmlformats.spreadsheetml.template ->
/System/Library/QuickLook/Office.glgenerator (26.0)

com.microsoft.word.stationery -> /System/Library/QuickLook/Office.glgenerator (26.0)
com.vmware.vm-package -> /Library/QuickLook/VMware Fusion

QuickLook.glgenerator (282344)

com.microsoft.powerpoint.pot -> /System/Library/QuickLook/Office.qglgenerator (26.0)

Spotlight

Spotlight is the quick search technology that Apple introduced with Tiger (10.4). In Leopard, it has
been seamlessly integrated into Finder. It has also been ported into iOS, beginning with iOS 3.0.

In OS X, the user interacts with it by clicking the magnifying glass icon that is located at the right
corner of the system’s menu bar. In iOS, a finger swipe to the left of the home screen will bring up a
similar window.



22 | CHAPTER2 EPLURIBUS UNUM: ARCHITECTURE OF OS X AND 10S

The brain behind spotlight is an indexing server, mds, located in the MetaData framework, which

is part of the system’s core services. (/System/Library/Frameworks/CoreServices.framework/
Frameworks/Metadata . framework/Support /mds). This is a daemon with no GUI. Every time a file
operation occurs — creation, modification, or deletion — the kernel notifies this daemon. This noti-
fication mechanism, called fsevents, is discussed later in this chapter.

When mds receives the notification, it then imports, via a Worker process (mdworker), various metadata
information into the database. The mdworker can launch a specific Spotlight Importer to extract the
metadata from the file. System-provided importers are in /System/Library/Spot1ight, and user-pro-
vided ones are in /Library/Spotlight. Much like QuickLook, they are plugins, implementing a fixed
API (which can be generated boilerplate by XCode when a MetaData Importer project is selected).

Spotlight can be accessed from the command line using the following commands:
> mdutil: Manages the MetaData database

mdfind: Issues spotlight queries

mdimport: Configures and test spotlight plugins

md1s: Lists metadata attributes for file

mdcheckschema: Validates metadata schemata

Y VYV VY Y Y

Mddiagnose: Added in Lion, this utility provides a full diagnostic of the spotlight subsystem
(mds and mdworker), as well as additional data on the system.

Another little documented feature is controlling Spotlight (particularly, mds) by creating files in vari-
ous paths: For example, creating a .metadata never index hidden file in a directory will prevent
its indexing (originally designed for removable media).

DARWIN — THE UNIX CORE

OS X’s Darwin is a full-fledged UNIX implementation. Apple makes no attempt to hide it, and in
fact takes pride in it. Apple maintains a special document highlighting Darwin’s UNIX features!?!.
Leopard (10.5) was the first version of OS X to be UNIX-certified. For most users, however, the
UNIX interface is entirely hidden: The GUI environment hides the underlying UNIX directories
very well. Because this book focuses on the OS internals, most of the discussion, as well as the
examples, will draw on the UNIX command line.

The Shell

Accessing the command line is simple — the Terminal application will open a terminal emulator
with a UNIX shell. By default this is /bin/bash, the GNU “Bourne Again” shell, but OS X provides
quite the choice of shells:

> /bin/sh (the Bourne shell): The basic UNIX shell, created by Stephen Bourne. Considered
the standard as of 1977. Somewhat limited.

>  /bin/bash (Bourne Again shell): Default shell. Backward compatible with the basic Bourne
shell, but far more advanced. Considered the modern standard on many operating systems,
such as Linux and Solaris.



Darwin — The UNIX Core | 23

/bin/csh (C-shell): An alternative basic shell, with C-like syntax.

/bin/tesh (TC-shell): Like the C-shell, but with more powerful aliasing, completion, and
command line editing features.

>  /bin/ksh (Korn shell): Another standard shell, created by David Korn in the 1980s. Highly
efficient for scripting, but not too friendly in the command-line environment.

>  /bin/zsh (Z-Shell): A slowly emerging standard, developed at http://www.zsh.org. Fully
Bourne/Bourne Again compatible, with even more advanced features.

The command line in OS X (and iOS) can also be accessed remotely, over telnet or SSH. Both are
disabled by default, and the former (telnet) is highly discouraged as it is inherently insecure and
unencrypted. SSH, however, is used as a drop-in replacement (as well as for the former Berkeley
“R-utils,” such as rcp/rlogin/rsh).

Either telnet or SSH can be easily enabled on OS X by editing the appropriate property list file
(telnet.plist, or ssh.plist)in /System/Library/LaunchDaemons. Simply set the Disabled
key to false, (or remove it altogether). To do so, however, you will need to assume root privileges
first — by using sudo bash (or another shell of your choice).

On iOS, SSH is disabled by default as well, but on jailbroken systems it is installed and enabled
during the jailbreak process. The two users allowed to log in interactively are root (naturally) and
mobile. The default root password is alpine, as was the code name for the first version of iOS.

The File System

Mac OS X uses the Hierarchical File System Plus (or HES+) file system. The “Plus” denotes that HFS+
is a successor to an older Hierarchical File System, which was commonly used in pre-OS X days.

HFS+ comes in four varieties:

> Case sensitive/insensitive: HFS+ is always case preserving, but may or may not also be case-
sensitive. When set to be case sensitive, HFS+ is referred to as HFSX. HFSX was introduced
around Panther, and — while not used in OS X — is the default on iOS.

> Optional journaling: HFS+ may optionally employ a journal, in which case it is commonly
referred to as JHFS (or JHFSX). A journal enables the file system to be more robust in cases
of forced dismounting (for example, power failures), by using a journal to record file system
transactions until they are completed. If the file system is mounted and the journal contains
transactions, they can be either replayed (if complete) or discarded. Data may still be lost, but
the file system is much more likely to be in a consistent state.

In a case-insensitive file system in OS X, files can be created in any uppercase-lowercase combina-
tion, and will in fact be displayed in the exact way they were created, but can be accessed by any

case combination. As a consequence, two files can never share the same name, irrespective of case.
However, accidentally setting caps lock wouldn’t affect file system operations. To see for yourself,

try LS /ETC/PASSWD.

In iOS, being the case sensitive HFSX by default, case is not only preserved, but allows for multiple
files to have the same name, albeit with different case. Naturally, case sensitivity means typos pro-
duce a totally different command or file reference, often a wrong one.


http://www.zsh.org

24 | CHAPTER2 EPLURIBUS UNUM: ARCHITECTURE OF OS X AND 10S

The HFS file systems have unique features, like extended attributes and transparent compression,
which are discussed in depth in chapter 15. Programmatically, however, the interfaces to the HFS+
and HFSX are the same as other file systems, as well — The APIs exposed by the kernel are actu-
ally provided through a common file system adaptation layer, called the Virtual File system Switch
(VFS). VFS is a uniform interface for all file systems in the kernel, both UNIX based and foreign.
Likewise, both HFS+ and HFSX offer the user the “default” or common UNIX file system user
experience — permissions, hard and soft links, file ownership and types are all like other UNTX.

UNIX SYSTEM DIRECTORIES

As a conformant UNIX system, OS X works with the well-known directories that are standard on
all UNIX flavors:

>

/bin: Unix binaries. This is where the common UNIX commands (for example, 1s, rm, mv,
df) are.

/sbin: System binaries. These are binaries used for system administration, such as file-system
management, network configuration, and so on.

/usr: The User directory. This is not meant for users, but is more like Windows’ program
files in that third-party software can install here.

/usr: Contains in it bin, sbin, and 1ib. /usr/1ib is used for shared objects (think, Win-
dows DLLs and \windows\system32). This directory also contains the include/ subdirec-
tory, where all the standard C headers are.

/ete: Et Cetera. A directory containing most of the system configuration files; for example,
the password file (/etc/passwd). In OS X, this is a symbolic link to /private/etc.

/dev: BSD device files. These are special files that represent hardware devices on the system
(character and block devices).

/tmp: Temporary directory. The only directory in the system that is world-writable (permis-
sions: rwxrwxrwx). In OS X, this is a symbolic link to /private/tmp.

/var: Various. A directory for log files, mail store, print spool, and other data. In OS X, this
is a symbolic link to /private/var.

The UNIX directories are invisible to Finder. Using BSD’s chflags (2) system call, a special file
attribute of “hidden” makes them hidden from the GUI view. The non-standard option -0 to 1s,
however, reveals the file attributes, as you can see in Output 2-2. Other special file attributes, such
as compression, are discussed in Chapter 14.

OUTPUT 2-2: Displaying file attributes with the non standard “-O” option of Is

morpheus@Ergo (/) % 1ls -10 /

drwxrwxr-x+ 39 root admin - 1326 Dec 5 02:42 Applications
drwxrwxr-x@ 17 root admin - 578 Nov 5 23:40 Developer
drwxrwxr-t+ 55 root admin - 1870 Dec 29 17:23 Library

drwxr-xr-x@ 2 root wheel hidden 68 Apr 28 2010 Network



UNIX System Directories | 25

drwxr-xr-x 4 root wheel - 136 Nov 11 09:52 System
drwxr-xr-x 6 root admin - 204 Nov 14 21:07 Users
drwxrwxrwt@ 3 root admin hidden 102 Feb 6 11:17 Volumes
drwxr-xr-x@ 39 root wheel hidden 1326 Nov 11 09:50 bin
drwxrwxr-t@ 3 root admin hidden 102 Jan 21 02:40 cores
dr-xr-xr-x 3 root wheel hidden 4077 Feb 6 11:17 dev

OS X-Specific Directories
OS X adds its own special directories to the UNIX tree, under the system root:
>  /mpplications: Default base for all applications in system.
>  /Developer:If XCode is installed, the default installation point for all developer tools.
>  /Library: Data files, help, documentation, and so on for system applications.
>  /Network: Virtual directory for neighbor node discovery and access.
>

/system: Used for System files. It contains only a Library subdirectory, but this direc-
tory holds virtually every major component of the system, such as frameworks (/System/
Library/Frameworks), kernel modules (/System/Library/Extensions), fonts, and so on.

/Users: Home directory for users. Every user has his or her own directory created here.
> /Volumes: Mount point for removable media and network file systems.

/Cores: Directory for core dumps, if enabled. Core dumps are created when a process
crashes, if the ulimit (1) command allows it, and contain the core virtual memory image of
the process. Core dumps are discussed in detail in Chapter 4, “Process Debugging.”

iOS File System Idiosyncrasies
From the file system perspective, iOS is very similar to OS X, with the following differences:

> The file system (HFSX) is case-sensitive (unlike OS X’s HFS+, which is case preserving, yet
insensitive). The file system is also encrypted in part.

> The kernel is already prepackaged with its kernel extensions, as a kernelcache (in /System/
Library/Caches/com.apple.kernelcaches). Unlike OS X kernel caches (which are com-
pressed images), iOS kernel caches are encrypted Img3. This is described in chapter 5.

Kernel caches are discussed in Chapter 18, but for now you can simply think of
them as a preconfigured kernel.

> /Applications may be a Symbolic link to /var/stash/Applications. This is a feature of
the jailbreak, not of i0S.

> There is no /Users, but a /User — which is a symbolic link to /var/mobile



26 | CHAPTER2 E PLURIBUS UNUM: ARCHITECTURE OF OS X AND IOS

»  There is no /vVolumes (and no need for it, or for disk arbitration, as iOS doesn’t have any
way to add more storage to a given system)

> /Developer is populated only if the i-Device is selected as “Use for development” from
within XCode. In those cases, the DeveloperDiskImage.dmg included in the iOS SDK is
mounted onto the device.

INTERLUDE: BUNDLES

Bundles are a key idea in OS X, which originated in NeXTSTEP and, with mobile apps, has become
the de facto standard. The bundle concept is the basis for applications, but also for frameworks,
plugins, widgets, and even kernel extensions all packaged into bundles. It therefore makes sense to
pause and consider bundles before going on to discuss the particulars of applications as frameworks.

@ The term “bundle” is actually used to describe two different terms in Mac OS:
The first is the directory structure described in this section (also sometimes called
“package”). The second is a file object format of a shared-library object which
has to be explicitly loaded by the process (as opposed to normal libraries, which
are implicitly loaded). This is also sometimes referred to as a plug-in.

Apple defines bundles as “a standardized hierarchical structure that holds executable code and the
resources used by that code.”™. Though the specific type of bundle may differ and the contents vary,
all bundles have the same basic directory structure, and every bundle type has the same directories.
OS X Application bundles, for example, look like the following code shown in Listing 2-1:

LISTING 2-1: The bundle format of an application

Contents/
CodeResources/
Info.plist Main package manifest files
MacOS/ Binary contents of package
PkgInfo Eight character identifier of package
Resources/ .nib files (GUI) and .lproj files
Version.plist Package version information
_CodeSignature/
CodeResources

Cocoa provides a simple programmatic way to access and load bundles using the NSBundle object,
and CoreFoundation’s CFBundle APIs.

APPLICATIONS AND APPS

OS X’s approach to applications is another legacy of its NeXTSTEP origins. Applications are neatly
packaged in bundles. An application’s bundle contains most of the files required for the application’s
runtime: The main binary, private libraries, icons, UI elements, and graphics. The user remains



Applications and Apps | 27

largely oblivious to this, as a bundle is shown in Finder as a single icon. This allows for the easy
installation experience in Mac OS — simply dragging an application icon into the Applications
folder. To peek inside an application, one would have to use (the non-intuitive) right click.

In OS X, applications are usually located in the /Applications folder. Each application is in its
own directory, named AppName. app. Each application adheres quite religiously to a fixed for-
mat, discussed shortly — wherein resources are grouped together according to class, in separate
sub-directories.

In iOS, apps deviate somewhat from the neat structure — they are still contained in their own direc-
tories, but do not adhere as zealously to the bundle format. Rather, the app directory can be quite
messy, with all the app files thrown in the root, though sometimes files required for internationaliza-
tion (“i18n”) are in subdirectories (xxx.lproj directories, where xxx is the language, or ISO language
code).

Additionally, iOS distinguishes between the default applications provided by Apple, which reside
in /Applications (or /var/stash/Applications in older jailbreak-versions of iOS), and App
Store purchased ones, which are in /var/mobile/Applications. The latter is installed in a direc-
tory with a specific 128-bit GUID, broken up into a more manageable structure of 4-2-2-2-4 (e.g:
A8CB4133-414E-4AF6-06DA-210490939163 — each hex digit representing 4 bits).

In the GUID-named directory, you can find the usual .app directory, along with several additional
directories:

This special directory structure, shown in Table 2-1 is required because iOS Apps are chroot (2)-ed
to their own application directory — the GUID encoded one — and cannot escape it and access
the rest of the file system. This ensures that non-Apple applications are so limited that they can’t
even see what other applications are installed side by side — contributing to the user’s privacy and
Apple’s death grip on the operating system (Jailbreaking naturally changes all that). An application
therefore treats its own GUID directory as the root, and when it needs a temporary directory, /tmp
points to its GUID/tmp.

TABLE 2-1: Default directory structure of an iOS app.

10S APP COMPONENT USED FOR

Documents Data files saved by the applications (saved high scores for
games, documents, notes..)

iTunesArtwork The app’s high resolution icon. This is usually a JPG image.

iTunesMetaData.plist The property list of the app, in binary plist format (more on plists
follows shortly)

Library/ Miscellaneous app files. This is further broken down into
Caches, Cookies, Preferences, and sometimes WebKit (for apps
with built-in browsing)

Tmp Directory for temporary files



28 | CHAPTER2 E PLURIBUS UNUM: ARCHITECTURE OF OS X AND 10S

When downloaded from the App Store (or elsewhere), applications are packaged as an .ipa

file — this is really nothing more than a zip file (and may be opened with unzip (1)), in which the
application directory contents are compressed, under a Payload/ directory. If you do not have a jail-
broken device, try to unzip -t an .ipa to get an idea of application structure. The .ipas are stored
locally in Music/iTunes/iTunes Media/Mobile Applications/.

Info.plist

The Info.plist file, which resides in the contents/ subdirectory of Applications (and of most
other bundles), holds the bundle’s metadata. It is a required file, as it supplies information necessary
for the OS to determine dependencies and other properties.

The property list format, or plist, is well-documented in its own manual page — plist (5). Prop-
erty lists are stored in one of three formats:

>  XML: These human-readable lists are easily identified by the XML signature and docu-
ment type definition (DTD) found in the beginning of the file. All elements of the property
list are contained in a <plist> element, which in turn defines an array or a dictionary
(<dicts>) — an associative array of keys/values. This is the common format for property lists
on OS X.

> Binary: Known as bplists and identified by the magic of bplist at the beginning of the
file, these are compiled plists, which are less readable by humans, but far more optimized
for the OS, as they do not require any complicated XML parsing and processing. Further, it
is straightforward to serialize BP1ists, as data can be simply memcpy’d directly, rather than
being converted to ASCII. BPLists have been introduced with OS X v10.2 and are much
more common on iOS than on OS X.

> JSON: Using JavaScript Object Notation, the keys/values are stored in a format that is both
easy to read, as well as to parse. This format is not as common as either the XML or the
Binary.

All three of these formats are, of course, supported natively. In fact, the Objective-C runtime
enables developers to be entirely agnostic about the format. In Cocoa, it is simple to instantiate a
Plist by using the built-in dictionary or array object without having to specify the file format:

NSDictionary *dictionary = [NSDictionary dictionaryWithContentsOfURL:plistURL] ;
NSArray *array = [NSArray arrayWithContentsOfURL:plistURL];

Naturally, humans would prefer the XML format. Both OS X and iOS contain a console mode pro-
gram called plutil (1), which enables you to convert between the various representations. Output
2-3 shows the usage of plutil (1) for the conversion:

OUTPUT 2-3: Displaying the Info.plist of an app, after converting it to a more human readable form
morpheus@ergo (~) $ c¢d ~/Music/iTunes/iTunes\ Media/Mobile\ Applications/
# Note the .ipa is just a zipfile..

morpheus@ergo (Mob..) $ file someApp.ipa
someApp.ipa: Zip archive data, at least v1.0 to extract



Applications and Apps | 29

# Use unzip -j to "junk" subdirs and just inflate the file, without directory
structure

morpheus@ergo (Mob..) $ unzip -j someApp.ipa Payload/someApp.app/Info.plist
Archive: someApp.ipa
inflating: Info.plist

# Resulting file is a binary plist:

morpheus@ergo (Mob..) $ file Info.plist
Payload/someApp.app/Info.plist: Apple binary property list

# .. which can be converted using plutil..
morpheus@ergo (Mob..) $ plutil -convert xmll - -o - < Info.plist > converted.Info.plist
# .. and the be displayed:

morpheus@ergo (Mob..) $ more converted.Info.plist
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
<key>BuildMachineOSBuild</key>
<string>10K549</string>
<key>CFBundleDevelopmentRegion</key>
<string>English</string>
<key>CFBundleDisplayName</key>
(output truncated for brevity)...

A standard Info.plist contains the following entries:
>  CFBundleDevelopmentRegion: Default language if no user-specific language can be found.
>  CFBundleDisplayName: The name that is used to display this bundle to the user.

> CFBundleDocumentTypes: Document types this will be associated with. This is a dictionary,
with the values specifying the file extensions this bundle handles. The dictionary also specifies
the display icons used for the associated documents.

\

CFBundleExecutable: The actual executable (binary or library) of this bundle. Located in
Contents/MacOS.

CcFBundleIconFile: Icon shown in Finder view.
CFBundleIdentifier: Reverse DNS form.

CcFBundleName: Name of bundle (limited to 16 characters).

Y V VY Y

CFBundlePackageType: Specifying a four letter code, for example, APPL = Application,
FRMW = Framework, BNDL = Bundle.

CFBundleSignature: Four-letter short name of the bundle.

\

CFBundleURLTypes: URLs this bundle will be associated with. This is a dictionary, with the
values specifying which URL scheme to handle, and how.


http://www.apple.com/DTDs/PropertyList-1.0.dtd

30 | CHAPTER2 E PLURIBUS UNUM: ARCHITECTURE OF OS X AND IOS

All of the keys in the preceding list have the CF prefix, as they are defined and handled by the Core
Foundation framework. Cocoa applications can also contain Ns keys, defining application script-
ability, Java requirements (if any), and system preference pane integration. Most of the Ns keys are
available only in OS X, and not in iOS.

Resources

The Resources directory contains all the files the application requires for its use. This is one of the
great advantages of the bundle format. Unlike other operating systems, wherein the resources have
to be compiled into the executables, bundles allow the resources to remain separate. This not only
makes the executable a lot thinner, but also allows for selective update or addition of a resource,
without the need for recompilation.

The resources are very application-dependent, and can be virtually any type of file. It is common,
however, to find several recurring types. I describe these next.

NIB Files

.nib files are binary plists which contain the positioning and setup of GUI components of an appli-
cation. They are built using XCode’s Interface Builder, which edits the textual versions as .xib,
before packaging them in binary format (from which point on they are no longer editable). The .nib
extension dates back to the days of the NEXT Interface Builder, which is the precursor to XCode’s.
This, too, is a property list, and is in binary form on both OS X and iOS.

The plutil (1) command can be used to partially decompile a .nib back to its XML representa-
tion, although it still won’t have as much information as the .xib from which it originated (shown
in the following code). This is no doubt intentional, as .nib files are not meant to be editable; if they
had been, the UI of an application could have been completely malleable externally.

.XIB FILE

<?xml version="1.0" encoding="UTF-8"?>
<archive type="com.apple.InterfaceBuilder3.CocoaTouch.XIB" version="7.10">
<data>

<int key="IBDocument.SystemTarget">1056</int>
<string key="IBDocument.SystemVersion">10J869</string>
<string key="IBDocument.InterfaceBuilderVersion">1306</string>
<string key="IBDocument.AppKitVersion">1038.35</string>
<string key="IBDocument.HIToolboxVersion">461.00</string>
<object class="NSMutableDictionary" key=
"IBDocument .PluginVersions" >

<string key="NS.key.0">com.apple.InterfaceBuilder
.IBCocoaTouchPlugin</string>
<string key="NS.object.0">301</string>
</object>
<object class="NSArray" key="IBDocument
.IntegratedClassDependencies">
<bool key="EncodedWithXMLCoder">YES</bool>



Applications and Apps | 31

<string>IBUIButton</string>

<string>IBUIImageView</string>

<string>IBUIView</string>

<string>IBUILabel</string>

<string>IBProxyObject</string>
</object>

.NIB FILE

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/
PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
<key>$archiver</key>
<string>NSKeyedArchiver</string>
<key>Sobjects</key>
<arrays>
<string>$null</string>
<dict>
<key>$class</key>
<dict>
<key>CF$UID</key>
<integer>135</integers>
</dict>
<key>NS.objects</key>
<array>
<dict>
<key>CFS$UID</key>
<integer>2</integer>
</dict>

Internationalization with .Iproj Files

Bundles have, by design, internationalization support. This is accomplished by subdirectories for
each language. Language directories are suffixed with an .1proj extension. Some languages are
with their English names (English, Dutch, French, etc), and the rest are with their country and lan-
guage code (e.g. zh_CN for Mandarin, zh_TW for Cantonese). Inside the language directories are
string files, .nib files and multimedia which are localized for the specific language.

Icons (.icns)

An application usually contains one or more icons for visual display. The application icon is used in
the Finder, dock, and in system messages pertaining to the application (for example, Force Quit).

The icons are usually laid out in a single file, appname. icns, with several resolutions — from 32 x 32
all the way up to a huge 512 x 512.

CodeResources

The last important file an application contains is CodeResources, which is a symbolic link to
_CodeSignature/CodeResources. This file is a property list, containing a listing of all other files


http://www.apple.com/DTDs/PropertyList-1.0.dtd
http://www.apple.com/DTDs/PropertyList-1.0.dtd

32 | CHAPTER2 E PLURIBUS UNUM: ARCHITECTURE OF OS X AND 10S

in the bundle. The property list is a single entry, files, which is a dictionary whose keys are the
file names, and whose values are usually hashes, in Base64 format. Optional files have a subdic-
tionary as a value, containing a hash key, and an optional key (whose value is, naturally, a Bool-
ean true).

The CodeResources file helps determine if an application is intact or damaged, as well as prevent
accidental modification or corruption of its resources.

Application default settings

Unlike other well known operating systems, neither OS X nor iOS maintain a registry for applica-
tion settings. This means that an Application must turn to another mechanism to store user
preferences, and various default settings.

The mechanism Apple provides is known as defaults, and is yet again, a legacy of NeXTSTEP. The
idea behind it is simple: Each application receives its own namespace, in which it is free to add,
modify, or remove settings as it sees fit. This namespace is known as the application’s domain. Addi-
tionally, there is a global domain (NSGlobalDomain) common to all applications.

The application defaults are (usually) stored in property lists. Apple recommends the reverse DNS
naming conventions for the plists, which are (again, usually) binary, are maintained on a per-user
basis, in ~/Library/Preferences. Additionally, applications can store system-wide (i.e. common to
all users) preferences in /Library/Preferences. NSGlobalDomain is maintained in a hidden file,
.GlobalPreferences.plist, which can also exist in both locations.

A system administrator or power user can access and manipulate defaults using the defaults (1)
command — a generally preferable approach to direct editing of the plist files. The command also
accepts a -host switch, which enables it to set different default settings for the same application on
different hosts.

Note, that the defaults mechanism only handles the logistics of storing and retrieving settings. What
applications choose to use this mechanism for is entirely up to them. Additionally, some applications
(such as VM Ware Fusion) deviate from the plist requirement and naming convention.

Applications are seldom self-contained. As any developer knows, an application cannot rein-
vent the wheel, and must draw on operating system supplied functionality and APIs. In UNIX,
this mechanism is known as shared libraries. Apple builds on this the idiosyncratic concept of
frameworks.

Launching Default Applications

Like most GUI operating systems, OS X keeps an association of file types to their registered
applications. This provides for a default application that will be started (or, in Apple-speak,
“launched”) when a file is double clicked, or a submenu of the registered applications, if the
Open With option is selected from the right click menu. This is also useful from a terminal,
wherein the open (1) command can be used to start the default application associated with the
file type.

Windows users are likely familiar with its registry, in which this functionality is implemented (spe-
cifically, in subkeys of HKEY_CLASSES_ROOT). OS X provides this functionality a framework



Applications and Apps | 33

called LaunchServices. This framework (which bears no relation to 1aunchd (1), the OS X boot pro-
cess), is part of the Core Services framework (described later in this chapter).

The launch services framework contains a binary called 1sregister, which can be used to dump
(and also reset) the launch services database, as shown in Listing 2-2:

LISTING 2-2: Using Isregister to view the type registry

morpheus@Ergo (~)$ cd /System/Library/Frameworks/CoreServices.Framework
morpheus@Ergo (../Core..work)$ cd Frameworks/LaunchServices.framework/Support
morpheus@Ergo (../Support)s$ ./lsregister -dump

Checking data integrity...... done.

Database is seeded.
Preferences are loaded.

Status:
Status:

// some lines omitted here for brevity...

bundle id: 1760
path: /System/Library/CoreServices/Archive Utility.app
name: Archive Utility
category:
identifier: com.apple.archiveutility (0x8000bdoc)
version: 58
mod date: 5/5/2011 2:16:50
reg date: 5/19/2011 10:04:01
type code: 'APPL'
creator code: '????!
sys version: 0
flags: apple-internal display-name relative-icon-path wildcard
item flags: container package application extension-hidden native-app 1386
x86_64
icon: Contents/Resources/bah.icns
executable: Contents/MacOS/Archive Utility
inode: 37623
exec inode: 37629
container id: 32
library:
library items:
claim id: 8484
name:
rank: Default
roles: Viewer
flags: apple-internal wildcard
icon:
bindings: thxkx 1 fold!
claim id: 8512
name: PAX archive
rank: Default
roles: Viewer
flags: apple-default apple-internal relative-icon-path
icon: Contents/Resources/bah-pax.icns
bindings: public.cpio-archive, .pax

continues



34 | CHAPTER2 E PLURIBUS UNUM: ARCHITECTURE OF OS X AND I0S

LISTING 2-2 (continued)

claim id: 8848
name: bzip2 compressed archive
rank: Default
roles: Viewer
flags: apple-default apple-internal relative-icon-path
icon: Contents/Resources/bah-bzip2.icns
bindings: .bzip2

// many more lines omitted for brevity

A common technique used when the Open With menu becomes too overwhelming (often due to the
installation of many application), is to rebuild the database with the command: 1sregister -kill

-r -domain local -domain system -domain user.

FRAMEWORKS

Another key component of the OS X landscape are frameworks. Frameworks are bundles, consisting
of one or more shared libraries, and their related support files.

Frameworks are a lot like libraries (in fact having the same binary format), but are unique to
Apple’s systems, and are therefore not portable. They are also not considered to be part of
Darwin: As opposed to the components of Darwin, which are all open source, Apple keeps
most frameworks in tightly closed source. This is because the frameworks are responsible
(among other things) for providing the unique look-and-feel, as well as other advanced features
that are offered only by Apple’s operating systems — and which Apple certainly wouldn’t want
ported. The “traditional” libraries still exist in Apple’s systems (and, in fact, provide the basis
on top of which the frameworks are implemented). The frameworks do, however, provide a full
runtime interface, and — especially in Objective-C — serve to hide the underlying system and
library APIs.

Framework Bundle Format

Frameworks, like applications (and most other files on OS X), are bundles. Thus, they follow a fixed
directory structure:

CodeResources/ Symbolic link to Code Signature/CodeResources plist
Headers/ Symbolic link to Miscellaneous .h files provided by this
framework
Resources/ .nib files (GUI), .lproj files, or other files required by
framework
Versions/ Subdirectory to allow versioning
A/ Letter directories denoting version of this framework
Current/ Symbolic link to preferred framework version

Framework -name Symbolic link to framework binary, in preferred version

As you can see, however, framework bundles are a bit different than applications. The key difference
is in the built-in versioning mechanism: A framework contains one or more versions of the code,



Frameworks | 35

which may exist side-by-side in separate subdirectories, such as versions/A , Versions/B, and so
on. The preferred version can then easily be toggled by creating a symbolic link (shortcut) called
current. The framework files themselves are all links to the selected version files. This approach
takes after the UN*X model of symbolically linking libraries, but extends it to headers as well. And,
while most frameworks still have only one version (usually 2, but sometimes B or c), this architec-
ture allows for both forward and backward compatibility.

The OS X and iOS GCC supports a -framework switch, which enables the inclusion of any frame-
work, whether Apple supplied or 3rd party. Using this flag provides to the compiler a hint as to
where to find the header files (much like the -1 switch), and to the linker where to find the library
file (similar, but not exactly like the -1 switch)

Finding Frameworks

Frameworks are stored in several locations on the file system:

>  /System/Library/Frameworks. Contains Apple’s supplied frameworks — both in iOS and
0S X

>  /Network/Library/Frameworks may (rarely) be used for common frameworks installed on
the network.

>  /Library/Frameworks holds 3rd party frameworks (and, as can be expected, the directory is
left empty on iOS)

>  ~/Library/Frameworks holds frameworks supplied by the user, if any
Additionally, applications may include their own frameworks. Good examples for this are Apple’s

GarageBand, iDVD, and iPhoto, all of which have application-specific frameworks in contents/
Frameworks.

The framework search may be modified further by user-defined variables, in the following
order:

>  DYLD FRAMEWORK PATH

>  DYLD LIBRARY PATH

>  DYLD FALLBACK FRAMEWORK PATH

>  DYLD FALLBACK LIBRARY PATH
Apple supplies a fair number of frameworks — over 90 in Snow Leopard, and well past 100 in Lion.
Even greater in number, however, are the private frameworks, which are used internally by the
public ones, or directly by Apple’s Applications. These reside in /System/Library/PrivateFrame-

works, and are exactly the same as the public ones, save for header files, which are (intentionally)
not included.

Top Level Frameworks

The two most important frameworks in OS X are known as Carbon and Cocoa:



36 | CHAPTER2 E PLURIBUS UNUM: ARCHITECTURE OF OS X AND IOS

Carbon

Carbon is the name given to the OS 9 legacy programming interfaces. Carbon has been declared
deprecated, though many applications, including Apple’s own, still rely on it. Even though many of
its interfaces are specifically geared for OS 9 compatibility, many new interfaces have been added
into it, and it shows no sign of disappearing.

Cocoa

Cocoa is the preferred application programming environment. It is the modern day incarnation of

the NeXTSTEP environment, as is evident by the prefix of many of its base classes — NS, short for
NeXTSTEP/Sun. The preferred language for programming with Cocoa is Objective C, although it

can be accessed from Java and AppleScript as well.

y If you inspect the Cocoa and Carbon frameworks, you will see they are both
small, almost tiny binaries — around 40k or so on Snow Leopard. That’s unusu-
ally small for a framework with such a vast APL. It’s even more surprising, given
that Cocoa is a “fat” binary with all three architectures (including the deprecated
PPC). The secret to this is that they are built on top of other frameworks, and
essentially serve as a wrapper for them — by re-exporting their dependencies’
symbols as their own.

The “Cocoa” framework just serves to include three others: AppKit, Core-
Data and Foundation, which can be seen directly, in its Headers/cocoa.h.
In Apple-speak, a framework encapsulating others is often referred to as
an umbrella framework. The term applies whether the framework merely
#imports, as Cocoa does, or actually contains nested frameworks, as the
Application and Core Services frameworks do. This can be seen in the follow-
ing code:
/*
Cocoa.h
Cocoa Framework

Copyright (c) 2000-2004, Apple Computer, Inc.
All rights reserved.

This file should be included by all Cocoa application
source files for easy building. Using this file is preferred
over importing individual files because it will use a precompiled
version.

Tools with no UI and no AppKit dependencies may prefer to
include just <Foundation/Foundation.hs.

2

#import <Foundation/Foundation.h>
#import <AppKit/AppKit.h>
#import <CoreData/CoreData.h>




Frameworks | 37

List of OS X and iOS Public Frameworks

Table 2-2 lists the frameworks in OS X and i0S, including the versions in which they came to be
supported. The version numbers are from the Apple official documentation *#, wherein similar (and
possibly more up to date tables) tables can be found. There is a high degree of overlap in the frame-
works, with many frameworks from OS X being ported to iOS, and some (like CoreMedia) making
the journey in reverse. This is especially true in the upcoming Mountain Lion, which ports several
frameworks like Game Center and Twitter from iOS. Additionally, quite a few of the OS X frame-
works exist in iOS as private ones.

TABLE 2-2: Public frameworks in Mac OS X and iOS

FRAMEWORK 0s X 10S  USED FOR

AGL 10.0 - Carbon interfaces for OpenGL

Accounts 10.8 5.0 User account database — Single sign on support
Accelerate 10.3 4.0  Accelerated Vector operations

AddressBook 10.2 2.0  Address Book functions

AddressBookUI - 2.0 Displaying contact information (iOS)

AppKit 10.0 - One of Cocoa’s main libraries (relied on by Cocoa.

Framework), and in itself, an umbrella for others. Also
contains XPC (which is private in iOS)

AppKitScripting 10.0 - Superseded by Appkit

AppleScriptKit 10.0 - Plugins for AppleScript

AppleScriptObjC 10.0 - Objective-C based plugins for AppleScript
AppleShareClientCore 10.0 - AFP client implementation

AppleTalk 10.0 - Core implementation of the AFP protocol
ApplicationServices 10.0 - Umbrella (headers) for CoreGraphics, CoreText, Col-

orSync, and others, including SpeechSynthesis (the
author’s favorite)

AudioToolBox 10.0 2.0 Audio recording/handling and others
AssetsLibrary - 4.0 Photos and Videos

AudioUnit 10.0 2.0 Audio Units (plug-ins) and Codecs
AudioVideoBridging 10.8 - AirPlay

AVFoundation 10.7 2.2 Objective-C support for Audio/Visual media. Only

recently ported into Lion

continues



38 | CHAPTER2 E PLURIBUS UNUM: ARCHITECTURE OF OS X AND IOS

TABLE 2-2 (continued)

FRAMEWORK 0s X 10S  USED FOR

Automator 10.4 -- Automator plug-in support

CalendarStore 10.5 - iCal support

Carbon 10.0 - Umbrella (headers) for Carbon, the legacy OS 9 APIs

Cocoa 10.0 - Umbrella (headers) for Cocoa APIs — AppKit, Core-
Data and Foundation

Collaboration 10.5 - The CBldentity* APIs

CoreAudio 10.0 2.0  Audio abstractions

CoreAudioKit 10.4 - Objective-C interfaces to Audio

CoreBlueTooth - 5.0 BlueTooth APIs

CoreData 10.4 3.0 Data model — NSEntityMappings, etc.

CoreFoundation 10.0 2.0 Literally, the core framework supporting all the rest
through primitives, data structures, etc. (the CF*
classes)

CoreLocation 10.6 2.0 GPS Services

CoreMedia 10.7 4.0 Low-level routines for audio/video

CoreMediaIO 10.7 - Abstraction layer of CoreMedia

CoreMIDI 10.0 - MIDI client interface

CoreMIDIServer 10.0 - MIDI driver interface

CoreMotion - 4.0  Accelerometer/gyroscope

CoreServices 10.0 - Umbrella for AppleEvents, Bonjour, Sockets,

Spotlight, FSEvents, and many other services (as
sub-frameworks)

CoreTelephony - 4.0 Telephony related data

CoreText 10.5 3.2 Text, fonts, etc. On OS X this is a sub framework of
ApplicationServices.

Corevideo 10.5 4.0 Video format support used by other libs
CoreWifi 10.8 P Called “MobileWiFi” and private in iOS
CoreWLAN 10.6 - Wireless LAN (WiFi)

DVComponentGlue 10.0 - Digital Video recorders/cameras



Frameworks

| 39

FRAMEWORK

DVDPlayback
DirectoryService
DiscRecording
DiscRecordingUI

DiskArbitration

DrawSprocket
EventKit
EventKitUI
ExceptionHandling

ExternalAccessory

FWAUserLib

ForceFeedback

Foundation
GameKit
GLKit

GLUT

GsSS

iad

ICADevices
IMCore
ImageCaptureCore
ImageIO
IMServicePlugin

InputMethodKit

0os X

10.3

10.0

10.2

10.2

10.4

10.0

10.8

10.2

10.2

10.0

10.8

10.8

10.0

10.7

10.3

10.6

10.6

10.7

10.5

2.0

3.0

5.0

5.0

4.0

USED FOR

DVD playing

LDAP Access

Disc Burning libraries

Disc Burning libraries, and user interface

Interface to DiskArbitrationD, the system volume
manager

Sprocket components
Calendar support
Calendar User interface
Cocoa exception handling

Hardware Accessories (those that plug in to iPad/
iPod/iPhone)

FireWire Audio

Force Feedback enabled devices (joysticks, game-
pads, etc)

underlying data structure support
Peer-to-peer connectivity for gaming
OpenGLES helper

OpenGL Utility framework

Generic Security Services API (RFC2078), flavored
with some private Apple extensions

Apple’s mobile advertisement distribution system
Scanners/Cameras (like TWAIN)

Used internally by InstantMessaging

Supersedes the older ImageCapture
Reading/writing graphics formats

iChat service providers

Alternate input methods

continues



40 | CHAPTER2 E PLURIBUS UNUM: ARCHITECTURE OF OS X AND IOS

TABLE 2-2 (continued)

FRAMEWORK 0s X 10S  USED FOR

InstallerPlugins 10.4 - Plug-ins for system installer

InstantMessage 10.4 M Instant Messaging and iChat

IOBluetooth 10.2 - BlueTooth support for OS X

IOBluetoothUI 10.2 - BlueTooth support for OS X

IOKit 10.0 2.0 User-mode components of device drivers

IOSurface 10.6 P Shares graphics between applications

JavaEmbedding 10.0- - Embeds Java in Carbon. No longer supported in Lion
10.7 and later

JavaFrameEmbedding 10.5 - Embeds Java in Cocoa

JavaScriptCore 10.5 5.0 The Javascript interpreter used by Safari and other

WebKit programs.
JavavM 10.0 - Apple’s port of the Java runtime library

Kerberos 10.0 -- Kerberos support (required for Active Directory
integration and some UNIX domains)

Kernel 10.0 - Required for Kernel Extensions

LDAP 10.0 P Original LDAP support. Superseded by
OpenDirectory

LatentSemanticMapping 10.5 - Latent Semantic Mapping

MapKit - 4.0 Embedding maps and geocoding data

MediaPlayer -- 2.0 iPod player interface and movies

MediaToolbox 10.8 P

Message 10.0 P Email messaging support

MessageUI -- 3.0 Ul Resources for messaging and the Mail . app

(ComposeView and friends)

MobileCoreServices - 3.0 Core Services, light

Newsstandkit - 5.0 Introduced with iOS 5.0’s “Newsstand”
NetFs 10.6 - Network File Systems (AFP, NFS)
OSAKit 10.4 - OSA Scripting integration in Cocoa

OpenAL 10.4 2.0 Cross platform audio library



Frameworks | 41

FRAMEWORK

OpenCL
OpenDirectory

OpenGL

OpenGLES
PCsC

PreferencePanes

PubSub
Python
QTKit

Quartz

QuartzCore
QuickLook
QuickTime
Ruby
RubyCocoa

SceneKit

ScreenSaver
Scripting
ScriptingBridge
Security
SecurityFoundation

SecurityInterface

ServerNotification

0os X

10.6

10.6

10.0

10.0

10.0

10.5

10.3

10.4

10.4

10.4

10.5

10.0

10.5

10.5

10.8

10.0

10.0

10.5

10.0

10.0

10.3

10.6

10s

2.0

4.0

USED FOR
GPU/Parallel Programming framework
Open Directory (LDAP) objective-C bindings

OpenGL — 3D Graphics. Links with OpenCL on
supported chipsets.

Embedded OpenGL — replaces OpenGL in iOS
SmartCard support

System Preference Pane support. Actual panes
are bundles in the /System/Library/
PreferencePanes folder

RSS/Atom support
The Python scripting language
QuickTime support

An umbrella framework containing PDF support,
ImageKit, QuartzComposer, QuartzFilters, and Quick-
LookUIl.Responsible for most of the 2D graphics in
the system

Interface between Quartz and Core frameworks
Previewing and thumbnailing of files

Quicktime embedding

The popular Ruby scripting language

Ruby Cocoa bindings

3D rendering. Available as a private framework of
Lion, but made into a public one in Mountain Lion

Screen saver APIs

The original scripting framework. Now superseded
Scripting adapters for Objective-C

Certificates, Keys and secure random numbers
SF* Authorization

SF* headers for Ul of certificates, authorization and
keychains

Notficiation support

continues



42 | CHAPTER2 E PLURIBUS UNUM: ARCHITECTURE OF OS X AND IOS

TABLE 2-2 (continued)

FRAMEWORK os X I0S  USED FOR
ServiceManagement 10.6 - Interface to launchD
StoreKit 10.7 3.0 In-App purchases
SyncServices 10.4 - Sync calendars with .mac
System 10.0 2.0 Internally used by other frameworks
SystemConfiguration 10.0, 2.0  SCNetwork, SCDynamicStore
10.3
TWAIN 10.2 - Scanner support
Twitter 10.8 5.0 Twitter support (in iOS 5)
Tcl 10.3 - TCL Interpreter
Tk 10.4 -- Tk Toolkits
UIKit -- 2.0 Cocoa Touch — replaces AppKit
VideoDecodeAcceleration  10.6.3 - H.264 acceleration via GPU (TN2267)
VideoToolkit 10.8 P Replaces QuickTime image compression manager

and provides video format support

WebKit 10.2 P HTML rendering (Safari Core)
XgridFoundation 10.4— - Clustering (removed in Mountain Lion)
10.7
vecLib 10.0 - Vector calculations (sub framework of Accelerate)

Exercise: Demonstrating the Power of Frameworks

OS X’s frameworks really are technological marvels. By any standards, their ingenuity and reusabil-
ity stands out. There are many stunning examples one can bring using graphical frameworks, but a
really useful, and equally impressive example is the SpeechSynthesis.Framework.

This framework allows the quick and easy embedding of Text-to-Speech features by drawing on
complicated logic which has already been developed (and, to a large part, perfected) by Apple. The
/System/Library/Speech directory contains the Synthesizers (currently, only one — MacinTalk)
which are Mach-O binary bundles, that can be loaded, like libraries, into virtually any process.
Additionally, there are quite a few pre-programmed voices (in the voices/ subdirectory), and Rec-
ognizers (for Speech-to-Text). The voices encode the pitch and other speech parameters, in a pro-
prietary binary form. There is ample documentation about this in the Apple Developer document
“The Speech Synthesis API,” and a cool utility to customize speech (which is part of XCode) called
“Repeat After Me” (/Developer/Applications/Utilities/Speech/Repeat After Me).



Frameworks | 43

The average developer, however, needn’t care about all this. The Speech Synthesizer can be accessed
(among other ways) through the Speechsynthesis.Framework, which itself is under Application-
Services (Carbon) or AppKit (Cocoa). This enables a C or Objective-C application to enable Text-
To-Speech — in one of the many voices on the system — in a matter of several lines of code, as is
demonstrated in the following example. The example shows a quick and dirty example of drawing
on OS X’s text-to-speech.

To not get into the quite messy Objective-C syntax, the next example, shown in Listing 2-3 is in C,
and therefore uses the ApplicationServices framework, rather than AppKit.

LISTING 2-3: Demonstrating a very simple (partial) implementation of the say(1) utility
#include <ApplicationServices/ApplicationServices.h>

// Quick and dirty (partial) implementation of 0S X's say(l) command
// Compile with -framework ApplicationServices

void main (int argc, char **argv)

{

OSErr rc;

SpeechChannel channel;

VoiceSpec vs;

int voice;

char *text = "What do you want me to say?";

if (largv[l]) { voice = 1; } else { voice = atoil(argv[1i]); }

if (argc == 3) { text = argv([2]; }
// GetIndVoice gets the voice defined by the (positive) index
rc= GetIndVoice (voice, // SIntlé index,
&vs); // VoiceSpec * voice)
// NewSpeechChannel basically makes the voice usable

rc = NewSpeechChannel (&vs,// VoiceSpec * voice, /* can be NULL */
&channel) ;

// And SpeakText... speaks!

rc = SpeakText (channel, // SpeechChannel chan,
text, // const void * textBuf,
strlen(text)); //unsigned long textBytes)

if (rc) { fprintf (stderr,"Unable to speak!\n"); exit(1);}

// Because speech is asynchronous, wait until we are done.
// Objective-C has much nicer callbacks for this.

while (SpeechBusy()) sleep(l);
exit (0) ;



44 | CHAPTER2 E PLURIBUS UNUM: ARCHITECTURE OF OS X AND IOS

The speech framework can also be tapped by other means. There are various bridges to other
languages, such as Python and Ruby, and for non-programmers, there is the command line of
say (1) (which the example mimics), and/or Apple’s formidable scripting language, Applescript
(accessible via osascript (1) ). To try this for yourself, have some fun with either command
(which can be an inexhaustible font of practical jokes, or other creative uses, as is shown in the
comic in Figure 2-3)

SHOULD T ASK? FRSTITRED || THEnTmRED = I couonT FND
T™M LOCKED OUT, HER CELL PHONE, IRC, BUT SHE'S ANYTHING TO THROW
AND TRYING TOGET | | RuT IT5 OFF. NOT ONUINE. AT HER WINDOW,

MY ROOMMATE TO

LET ME IN. \._O
)

R i A

50 I SSHD INTO THE MAC | [ BUT I THINK T LEFT THE PH
MINI IN THE LIVING ROOM | | VOLUME WAY DOWN, \

AND GOT THE SPEECH SYNTH | |50 T READING THE 05 X T TAKE T
TO YELL TO HER FOR ME. DOCS To LEARN TO SET THE THE DOORBELL
VOLLME VIA COMMAND LINE. | [ DOESN'TWORK?

7 Resll § 8

FIGURE 2-3: Other creative uses of OS X Speech, from the excellent site, http://XKCD.com/530
(incidentally, osascript -e “set Volume 10” is what he is looking for)

As stated, an application may be entirely dependent only on the frameworks, which is indeed the
case for many OS X and iOS apps. The frameworks themselves, however, are dependent on the
operating system libraries, which are discussed next.

LIBRARIES

Frameworks are just a special type of libraries. In fact, framework binaries are libraries, as can be
verified with the file (1) command. Apple still draws a distinction between the two terms, and
frameworks tend to be more OS X (and iOS) specific, as opposed to libraries, which are common to
all UNIX systems.

OS X and iOS store their “traditional” libraries in /usr/1ib (there is no /1ib). The libraries are
suffixed with a .dy1ib extension, rather than the customary .so (shared object) of ELF on other
UNIX. Aside from the different extension (and the different binary format, which is incompatible
with . so), they are still conceptually the same. You can still find your favorite libraries from other
UNIX here, albeit with the .dy1ib format.


http://XKCD.com/530

Libraries | 45

y If you try to look around the iOS file system — either on a live, jailbroken sys-
tem, or through an iOS software update image (.ipsw), you will see that many
of the libraries (and, for that matter, also frameworks), are missing! This is due
to an optimization (and possibly obfuscation) technique of library caching,
which is discussed in the next chapter. It’s easier, therefore to look at the iPhone
SDK, wherein the files can be found under /Developer/Platforms/iPhoneos.
platform/Developer/SDKs/iPhoneOS#.#.sdk/.

The core library — 1ibc — has been absorbed into Apple’s own 1ibSystem.B.dylib. This library
also provides the functionality traditionally offered by the math library (1ibm), and PThreads
(libpthread) — as well as several others, which are all just symbolic links to 1ibSystem, as you can

see in Output 2-4:

OUTPUT 2-4: Libraries in /usr/lib which are all implemented by libSystem.dylib

morpheus@Minion (/)$

lrwxr-xr-x
lrwxr-xr-x
lrwxr-xr-x
lrwxr-xr-x
lrwxr-xr-x
lrwxr-xr-x
lrwxr-xr-x
lrwxr-xr-x
lrwxr-xr-x
lrwxr-xr-x

1

=

root
root
root
root
root
root
root
root
root
root

1ls -1 /usr/lib | grep

wheel
wheel
wheel
wheel
wheel
wheel
wheel
wheel
wheel
wheel

17
15
15
15
15
15
15
15
15
15

Sep
Sep
Sep
Sep
Sep
Sep
Sep
Sep
Sep
Sep

26
26
26
26
26
26
26
26
26
26

*1 | grep libSystem.dylib

02:
02:
02:
02:
02:
02:
02:
02:
02:
02:

08
08
08
08
08
08
08
08
08
08

libSystem.dylib -> libSystem.B.dylib
libc.dylib -> libSystem.dylib
libdbm.dylib -> libSystem.dylib
libdl.dylib -> libSystem.dylib
libinfo.dylib -> libSystem.dylib
libm.dylib -> libSystem.dylib
libpoll.dylib -> libSystem.dylib
libproc.dylib -> libSystem.dylib
libpthread.dylib -> libSystem.dylib
librpcsve.dylib -> libSystem.dylib

Yet, libSystem itself relies on several libraries internal to it — which are found in /usr/1lib/system.
It imports these libraries, and then re-exports their public symbols as if they are its own. In Snow
Leopard, there are fairly few such libraries. In Lion and iOS 5, there is a substantial number. This is
shown in Output 2-5, which demonstrates using XCode’s otool (1) to show library dependencies.
Note, that because 1ibSystem is cached (and therefore not present in the iOS filesystem), it’s easier
to run it on the iPhone SDK’s copy of the library.

OUTPUT 2-5: Dependencies of iOS 5’s libSystem using otool(1).

morpheus@ergo (.../Developer/SDKs/iPhone0S5.0.sdk/usr/lib)$ otool -L libSystem.B.dylib

libSystem.B.dylib

(architecture armv7) :

/usr/lib/libSystem.B.dylib (compatibility version 1.0.0, current version 161.0.0)
/usr/lib/system/libcache.dylib (compatibility version 1.0.0, current version 49.0.0)
/usr/lib/system/libcommonCrypto.dylib (compatibility version 1.0.0, current version 40142.0.0)
/usr/lib/system/libcompiler rt.dylib (compatibility version 1.0.0, current version 16.0.0)

continues



46 | CHAPTER2 E PLURIBUS UNUM: ARCHITECTURE OF OS X AND IOS

OUTPUT 2-5 (continued)

/usr/lib/system/libcopyfile.dylib (compatibility version 1.0.0, current version 87.0.0)
/usr/lib/system/libdispatch.dylib (compatibility version 1.0.0, current version 192.1.0)
/usr/lib/system/libdnsinfo.dylib (compatibility version 1.0.0, current version 423.0.0)
/usr/lib/system/libdyld.dylib (compatibility version 1.0.0, current version 199.3.0)
/usr/lib/system/libkeymgr.dylib (compatibility version 1.0.0, current version 25.0.0)
/usr/lib/system/liblaunch.dylib (compatibility version 1.0.0, current version 406.4.0)
/usr/lib/system/libmacho.dylib (compatibility version 1.0.0, current version 806.2.0)
/usr/lib/system/libnotify.dylib (compatibility version 1.0.0, current version 87.0.0)
/usr/lib/system/libremovefile.dylib (compatibility version 1.0.0, current version 22.0.0)
/usr/lib/system/libsystem blocks.dylib (compatibility version 1.0.0, current version 54.0.0)
/usr/lib/system/libsystem c.dylib (compatibility version 1.0.0, current version 770.4.0)
/usr/lib/system/libsystem dnssd.dylib (compatibility version 1.0.0, current version 1.0.0)
/usr/lib/system/libsystem info.dylib (compatibility version 1.0.0, current version 1.0.0)
/usr/lib/system/libsystem kernel.dylib (compatibility version 1.0.0, current version 1878.4.20)
/usr/lib/system/libsystem network.dylib (compatibility version 1.0.0, current version 1.0.0)
/usr/lib/system/libsystem sandbox.dylib (compatibility version 1.0.0, current version 1.0.0)
/usr/lib/system/libunwind.dylib (compatibility version 1.0.0, current version 34.0.0)
/usr/lib/system/libxpc.dylib (compatibility version 1.0.0, current version 89.5.0)

The OS X loader, dy1d (1), is also referred to as the Mach-O loader. This is discussed in great detail
in the next chapter, which offers an inside view on process loading and execution from the user
mode perspective.

OS X contains out-of-box many other open source libraries, which have been included in Darwin

(and in iOS). OpenSSL, OpenSSH, libZ, libXSLT, and many other libraries can either be obtained
from Apple’s open source site, or downloaded from SourceForge and other repositories, and com-

piled. Ironically enough, it’s not the first (nor last) time these open source libraries were the source
of i0S jailbreaks (libTiff? FreeType, anyone?)

OTHER APPLICATION TYPES

The Application and App bundles discussed so far aren’t the only types of applications that can be
created. OS X (and, to a degree iOS) supports several other types of Applications as well.

Java (OS X only)

OS X includes a fully Java 1.6 compliant Java virtual machine. Just like other systems, Java applications
are provided as .class files. The .class file format is not native to OS X — meaning one still needs

to use the java (1) command-line utility to execute it, just like anywhere else. The JVM implementa-
tion, however, is maintained by Apple. The java command line utilities (java, javac, and friends)

are all part of the public JavavM. framework. Two other frameworks, JavaEmbedding. framework and
JavaFrameEmbedding. framework, are used to link with and embed Java in Objective-C.



Other Application types | 47

The actual launching of the Java VM process is performed by the private JavaLaunching. frame-
work, and JavaApplicationLauncher.framework. iOS does not, at present, support Java.

Widgets

Dashboard widgets (or, simply, Widgets) are HTML/Javascript mini-pages, which can be presented
by dashboard. These mini-apps are very easy to program (as they are basically the same as web
pages), and are becoming increasingly popular.

Widgets are stored in /Library/Widgets, as bundles with the .wdgt extension. Each such bundle is
loosely arranged, containing;:

> An HTML file (widgetname. html) which is the Widget’s UL The UI is marked up just like
normal HTML, usually with two <div> elements — displaying the front and back of the
widget, respectively.

> A Javascript (JS) file (widgetname.js) which is the Widget’s “engine,” providing for its
interactivity

> A Cascading Style Sheet (CSS) file (widgetname. css), which provides styles, fonts, etc.

> Language directories, like other bundles, containing localized strings

> Any images or other files, usually stored in an Tmages/ subdirectory

>

Any binary plugins, required when the widget cannot be fully implmeneted in Javascript.
This is optional (for example, Calculator.wdgt does not have one) and, if present, contains
another bundle, with a binary plugin (with a Mach-O binary subtype of “bundle”). These
can be loaded into Dashboard itself to provide complicated functionality that needs to break
out of the browser environment, for example to access local files.

BSD/Mach Native

Though the preferred language for both iOS and OS X is Objective-C, native applications may be
coded in C/C++, and may choose to forego frameworks, working directly with the system libraries
and the low-level interfaces of BSD and Mach instead. This allows for the relatively straightforward
porting of UNIX code bases, such as PHP, Apache, SSH, and numerous other open-source products.
Additionally, initiatives such as “MacPorts” and “fink” go the extra step by packaging these sources,
once compiled, into packages akin to Linux’s RPM/APT/DEB model, for quick binary installation.

OS X’s POSIX compliance makes it very easy to port applications to it, by relying on the standard
system calls, and the libraries discussed earlier. This also holds true for iOS, wherein developers
have ported everything but the kitchen sink, available through Cydia. There is, however, another
subset of APIs — Mach Traps, which remains OS X (and GNUStep) specific, and which coexists
with that of BSD. Both of these are explained from the user perspective next.



48 | CHAPTER2 E PLURIBUS UNUM: ARCHITECTURE OF OS X AND IOS

SYSTEM CALLS

As in all operating systems, user programs are incapable of directly accessing system resources. Pro-
grams can manipulate the general-purpose registers and perform simple calculations, but in order to
achieve any significant functionality, such as opening a file or a socket, or even outputting a simple
message — they must use system calls. These are entry points into predefined functions exported

by the kernel and accessible in user mode by linking against /usr/1ib/libSystem.B.dylib. OS X
system calls are unusual in that the system actually exports two distinct “personalities” — that of
Mach and that of POSIX.

POSIX

Starting with Leopard (10.5), OS X is a certified UNIX implementation. This means that it is fully
compliant with the Portable Operating System Interface, more commonly known as POSIX. POSIX
is a standard API that defines, specifically:

> System call prototypes: All POSIX system calls, regardless of underlying implementation,
have the same prototype — i.e., the same arguments and return value. open (2), for example,
is defined on all POSIX systems as:

int open(const char *path, int oflag, ...);

path is the name of the file name to be opened, and oflags is a bitwise or of flags defined
in <fcntl.h> (for example, 0 RDONLY, O_RDWR, O_EXCL).

This ensures that POSIX-compatible code can be ported — at the source level — between
any POSIX compatible operating system. Code from OS X can be ported to Linux, Free-
BSD, and even Solaris — as long as it relies on nothing more than POSIX calls and the
C/C++ standard libraries.

> System call numbers: The key POSIX functions, in addition to the fixed prototype, have well-
defined system call numbers. This enables(to a limited extent) binary portability — meaning
that a POSIX-compiled binary can be ported between POSIX systems of the same underlying
architecture (for example, Solaris can run native Linux binaries — both are ELF). OS X does
not support this, however, because its object format, Mach-O, is incompatible with ELF.
What’s more, its system call numbers deviate from those of the standard.

The POSIX compatibility is provided by the BSD layer of XNU. The system-call prototypes are in
<unistd.h>. We discuss their implementations in Chapter 8.

Mach System Calls

Recall that OS X is built upon the Mach kernel, a legacy of NeXTSTEP. The BSD layer wraps the
Mach kernel, but its native system calls are still accessible from user mode. In fact, without Mach
system calls, common commands such as top wouldn’t work.

In 32-bit systems, Mach system calls are negative. This ingenious trick enables both POSIX and
Mach system calls to exist side by side. Because POSIX only defines non-negative system calls, the
negative space is left undefined, and therefore usable by Mach.



System Calls | 49

In 64-bit systems, Mach system calls are positive, but are prefixed with 0x2000000 — which clearly
separates and disambiguates them from the POSIX calls, which are prefixed with 0x1000000.

The online appendix at http://newosxbook . com lists the various POSIX and Mach system calls. We
will further cover the transition to Kernel mode in Chapter 8, and the Kernel perspective of system
calls and traps in Chapters 9 and 13.

Experiment: Displaying Mach and BSD system calls

System calls aren’t called directly, but via thin wrappers in 1ibSystem.B.dylib. Using otool (1),
the default Mach-O handling tool and disassembler on OS X, you can disassemble (with the -tv
switch) any binary, and peek inside libSystem. This will enable you to see how the system call inter-
face in OS X works with both Mach and BSD calls.

On a 32-bit system, a Mach system call would look something like this:

Morpheus@Ergo (/) % otool -arch i386 -tV /usr/lib/libSystem.B.dylib | more
/usr/lib/libSystem.B.dylib:

(__TEXT, text) section

mach reply port:

000010cO movl Soxffffffe6, $eax ; Load system call # into EAX
000010c5 calll _ sysenter trap

000010ca ret

000010cb nop ; padding to 32-bit boundary
_thread _self trap:

000010cc movl soxffffffes5, $eax ; Load system call # into EAX..
00001041 calll __sysenter_ trap

000010d6 ret

00001047 nop ; padding to 32-bit boundary
__sysenter trap:

000013d8 popl sedx

000013d9 movl %esp, secx

000013db sysenter ; Actually execute sysenter
000013dd nopl ($eax)

The system call number is loaded into the EAX register. Note the number is specified as
0xFFFFxxxx. Treated as a signed integer, the Mach API calls would be negative. Looking at a BSD

system call:

Ergo (/) % otool -arch 1386 -tV /usr/lib/libSystem.B.dylib -p chown | more
/usr/lib/libSystem.B.dylib:
(__TEXT, text) section

_chown:

0005d350 movl $0x000c0010, $eax ; load system call -

0005d355 calll 0x00000dds ; jump to _ sysenter trap

0005d35a jae 0x0005d36a ; if return code >= 0: jump to ret
0005d35c calll 0x0005d361

0005d361 popl sedx

0005d362 movl 0x0014c587 (%edx) , $edx

0005d368 jmp *%$edx

0005d36a ret

0005d87c calll 0x0005d881 ; ON error..


http://newosxbook.com

50

CHAPTER 2 E PLURIBUS UNUM: ARCHITECTURE OF OS X AND I0S

0005d881 popl $edx

0005d882 movl 0x0014c063 (%edx) , $edx
00054888 jmp *$edx

0005d88a ret

The same example, on a 64-bit architecture, reveals a slightly different implementation:

Ergo (/) %
/usr/lib/libSystem.B.dylib:
(__TEXT, text) section
_mach_reply port:

otool -arch x86 64 -tV /usr/lib/libSystem.B.dylib | more

Load system call Oxla with
flag 0x01
call syscall directly

00000000000012a0 movg %$rcx, $rlo
00000000000012a3 movl $0x0100001a, $eax ;
00000000000012a8 syscall i
00000000000012aa ret
00000000000012ab nop
And, for a POSIX (BSD) system call:
Ergo (/) % otool -arch x86 64 -tV /usr/lib/libSystem.B.dylib -p chown | more

/usr/lib/libSystem.B.dylib:
(__TEXT,_ text) section

___ chown:
0000000000042£20 movl $0x02000010, $eax #
#
0000000000042£25 movqg %$rcx, $rlo
0000000000042£28 syscall #
0000000000042f2a jae 0x00042£31 #
0000000000042f2¢ jmp cerror #
#
0000000000042£31 ret

Load system call (0x10),
with flag 0x02

call syscall directly
if >=0, jump to ret
else jump to cerror
(return -1, set errno)

If you continue this example and try the ARM architecture (for iOS) as well, you’ll see a similar
flow, with the system call number loaded into r12, the intra-procedural register, and executed

using the svc (also sometimes decoded by assemblers as swi, or SoftWare Interrupt) command. In
the example below (using GDB, though otool (1) would work just as well), BSD’s chown (2) and
Mach’s mach_reply port are disassembled. Note the latter is loaded with “mvn” — Move Negative.

The return code is, as usual in ARM, in RO.

(gdb) disass chown
0x30d2ad54 <chowns>: mov rl2, #16 ;
0x30d2ad58 <chown+4s>: svc 0x00000080
0x32£9c758 <chown+8>: bcc 0x32£9¢c770 <chown+32> ;
0x32f9c75¢c <chown+12>: ldr rl2, [pc, #4] ;
0x32£9¢c760 <chown+16>: 1dr rl2, [pc, rl2]
0x32£9c764 <chown+20>: b 0x32f9c76c <chown+28>
0x32£9c768 <chown+24>: bleqg 0x321e2a50 ;
0x32f9c76c <chown+28>: bx rl2
0x32£9c770 <chown+32>: bx 1r

(gdb) disass mach reply port
Dump of assembler code for function mach_reply port:

0x32f99bbc <mach reply port+0>: mvn rl2, #25 i
0x32f99bc0 <mach_reply port+4>: svc 0x00000080
0x32f99bc4 <mach_reply port+8>: bx 1r

0x10
jump to exit on >= 0

0x32£9c768 <chown+24>

to errno setting

0x19



A High-Level View of XNU | 51

A HIGH-LEVEL VIEW OF XNU

The core of Darwin, and of all of OS X, is its Kernel, XNU. XNU (allegedly an infinitely recursive
acronym for XNU’s Not UNIX) is itself made up of several components:

> The Mach microkernel
> The BSD layer
> libKern
> T/OKit
Additionally, the kernel is modular and allows for pluggable Kernel Extensions (KExts) to be
dynamically loaded on demand.

The bulk of this book — its entire second part — is devoted to explaining XNU in depth. Here,
however, is a quick overview of its components.

Mach

The core of XNU, its atomic nucleus, if you will, is Mach. Mach is a system that was originally
developed at Carnegie Mellon University (CMU) as a research project into creating a lightweight
and efficient platform for operating systems. The result was the Mach microkernel, which handles
only the most primitive responsibilities of the operating system:

> Process and thread abstractions

> Virtual memory management

> Task scheduling

> Interprocess communication and messaging
Mach itself has very limited APIs and was not meant to be a full-fledged operating system. Its APIs
are discouraged by Apple, although — as you will see — they are fundamental, and without them

nothing would work. Any additional functionality, such as file and device access, has to be imple-
mented on top of it — and that is exactly what the BSD layer does.

The BSD Layer

On top of Mach, but still an inseparable part of XNU, is the BSD layer. This layer presents a solid
and more modern API that provides the POSIX compatibility discussed earlier. The BSD layer pro-
vides higher-level abstractions, including, among others:

> The UNIX Process model

> The POSIX threading model (Pthread) and its related synchronization primitives
> UNIX Users and Groups

»  The Network stack (BSD Socket API)



52 | CHAPTER2 EPLURIBUS UNUM: ARCHITECTURE OF OS X AND I0S

> File system access

> Device access (through the /dev directory)

XNU’s BSD implementation is largely compatible with FreeBSD’s, but does have some noteworthy
changes. After covering Mach, this book turns to BSD, focusing on the implementations of the BSD
core, and providing specific detail about the virtual file system switch and the networking stack in
dedicated chapters.

libkern

Most kernels are built solely in C and low level Assembly. XNU, however, is different. Device driv-
ers — called I/0O Kit drivers, and discussed next, can be written in C++. In order to support the C++
runtime and provide the base classes, XNU includes 1ibkern, which is a built-in, self-contained
C++ library. While not exporting APIs directly to user mode, 1ibkern is nonetheless a foundation,
without which a great deal of advanced functionality would not be possible.

1/0 Kit

Apple’s most important modification to XNU was the introduction of the I/O Kit device-driver
framework. This is a complete, self-contained execution environment in the kernel, which enables
developers to quickly create device drivers that are both elegant and stable. It achieves that by estab-
lishing a restricted C++ environment (of 1ibkern), with the most important functionality offered by
the language — inheritance and overloading.

Writing an I/0 Kit driver, then, becomes a greatly simplified matter of finding an existing driver to
use as a superclass, and inheriting all the functionality from it in runtime. This alleviates the need
for boilerplate code copying, which could lead to stability bugs, and also makes driver code very
small — always a good thing under the tight memory constraints of kernel space. Any modification
in functionality can be introduced by either adding new methods to the driver or overloading/hiding
existing ones.

Another benefit of the C++ environment is that drivers can operate in an object-oriented envi-
ronment. This makes OS X drivers profoundly different than any other device drivers on other
operating systems, which are both limited to C and require hefty code for even the most basic func-
tionality. I/O Kit forms an almost self-contained system in XNU, with a rich environment consisting
of many drivers. It could easily be covered in a book of its own (and, in fact, is, in a recent book),
though this book dedicates chapter 18 to its architecture.

SUMMARY

This chapter explained the architecture of OS X and iOS. Though the two operating systems are
designed for different platforms, they are actually quite similar, with the gaps between them grow-
ing narrower still with every new release of either.



References |

53

The chapter provided a detailed overview, yet still remained at a fairly high level, getting into code
samples as little as possible. The next chapter goes deeper and discusses OS X specific APIs — with
plenty of actual code samples you can try.

REFERENCES

[11 Apple Developer — Bundle Programming Guide

[2] “OS X for UNIX Users” (Lion version): http://images.apple .com/macosx/docs/
0SX for UNIX Users TB July2011.pdf

[3] Apple Developer — OS X Technology Overview: (details all the frameworks):
http://developer.apple.com/library/mac/#documentation/Mac0OSX/Conceptual/
0SX_ Technology Overview/SystemFrameworks/SystemFrameworks.html

[4] Details frameworks for iOS: http://developer.apple.com/library/
ios/#documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/
iPhoneOSFrameworks/iPhoneOSFrameworks.html


http://images.apple.com/macosx/docs/OSX_for_UNIX_Users_TB_July2011.pdf
http://developer.apple.com/library/mac/#documentation/MacOSX/Conceptual/OSX_Technology_Overview/SystemFrameworks/SystemFrameworks.html
http://developer.apple.com/library/ios/#documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/iPhoneOSFrameworks/iPhoneOSFrameworks.html
http://images.apple.com/macosx/docs/OSX_for_UNIX_Users_TB_July2011.pdf
http://developer.apple.com/library/mac/#documentation/MacOSX/Conceptual/OSX_Technology_Overview/SystemFrameworks/SystemFrameworks.html
http://developer.apple.com/library/ios/#documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/iPhoneOSFrameworks/iPhoneOSFrameworks.html
http://developer.apple.com/library/ios/#documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/iPhoneOSFrameworks/iPhoneOSFrameworks.html




On the Shoulders of Giants:
OS X and iOS Technologies

By virtue of being a BSD-derived system, OS X inherits most of the kernel features that are
endemic to that architecture. This includes the POSIX system calls, some BSD extensions
(such as kernel queues), and BSD’s Mandatory Access Control (MAC) layer.

It would be wrong, however, to classify either OS X or iOS as “yet another BSD system” like
FreeBSD and its ilk. Apple builds on the BSD primitive’s several elaborate constructs — first
and foremost being the “sandbox” mechanism for application compartmentalization and
security. In addition, OS X and iOS enhance or, in some cases, completely replace BSD com-
ponents. The venerable /etc files, for example, traditionally used for system configuration, are
entirely replaced. The standard UN*X syslog mechanism is augmented by the Apple System
Log. New technologies such as Apple Events and FSEvents are entirely proprietary.

This chapter discusses these features and more, in depth. We first discuss the BSD-inspired
APIs, and then turn our attention to the Apple-specific ones. The APIs are discussed from the
user-mode perspective, including detailed examples and experiments to illustrate their usage.
For the kernel perspective of these APIs, where applicable, see Chapter 14, “Advanced BSD
Aspects.”

BSD HEIRLOOMS

While the core of XNU is undeniably Mach, its main interface to user mode is that of BSD. OS
X and iOS both offer the set of POSIX compliant system calls, as well as several BSD-specific
ones. In some cases, Apple has gone several extra steps, implementing additional features,
some of which have been back-ported into BSD and OpenDarwin.



56 | CHAPTER3 ON THE SHOULDERS OF GIANTS: OS X AND 10S TECHNOLOGIES

sysctl

The sysctl(8) command is somewhat of a standardized way to access the kernel’s internal state.
Introduced in 4.4BSD, it can also be found on other UN*X systems (notably, Linux, where it is
backed by the /proc/sys directories). By using this command, an administrator can directly query
the value of kernel variables, providing important run-time diagnostics. In some cases, modifying
the value of the variables, thereby altering the kernel’s behavior, is possible. Naturally, only a fairly
small subset of the kernel’s vast variable base is exported in this way. Nonetheless, those variables
that are made visible play key roles in recording or determining kernel functionality.

The sysctl(8) command wraps the sysctl (3) library call, which itself wraps the  sysctl sys-
tem call (#202). The exported kernel variables are accessed by their Management Information Base
(MIB) names. This naming convention, borrowed from the Simple Network Management Protocol
(SNMP), classifies variables by namespaces.

XNU supports quite a few hard-coded namespaces, as is shown in Table 3-1.

TABLE 3-1: Predefined sysctl Namespaces

NAMESPACE NUMBER STORES

debug 5 Various debugging parameters.

hw 6 Hardware-related settings. Usually all read only.

kern 1 Generic kernel-related settings.

machdep 7 Machine-dependent settings. Complements the hw namespace with

processor-specific features.

net 4 Network stack settings. Protocols are defined in their own
sub-namespaces.

vEs 3 File system-related settings. The Virtual File system Switch is the kernel’s
common file system layer.

vm 2 Virtual memory settings.

user 8 Settings for user programs.

As shown in the table, namespaces are translated to an integer representation, and thus the vari-
able can be represented as an array of integers. The library call sysctlnametomib (3) can translate
from the textual to the integer representation, though that is often unnecessary, because sysct1by-
name (3) can be used to look up a variable value by its name.

Each namespace may have variables defined directly in it (for example, kern.ostype, 1.1), or in
sub-namespaces (for example, kern. ipc.somaxconn, 1.32.2). In both cases accessing the variable
in question is possible, either by specifying its fully qualified name, or by its numeric MIB specifier.
Looking up a MIB number by its name (using sysctlnametomib (3)) is possible, but not vice versa.
Thus, one can walk the MIBs by number, but not retrieve the corresponding names.



BSD Heirlooms | 57

Using sysct1 (8) you can examine the exported values, and set those that are writable. Due to

the preceding limitation, however, you cannot properly “walk” the MIBs — that is, traverse the
namespaces and obtain a listing of their registered variables, as one would with SNMP’s getNext ().
The command does have an -a switch to list all variables, but this is done by checking a fixed list,
which is defined in the <sys/sysctl.h> header (cTL_NAMES and related macros). This is not a prob-
lem with the OS X sysct1 (8), because Apple does rebuild it to match the kernel version. In iOS,
however, Apple does not supply a binary, and the one available from Cydia (as part of the system-
cmds package) misses out on iOS-specific variables.

Kernel components can register additional sysct1 values, and even entire namespaces, on the fly.
Good examples are the security namespace (used heavily by the sandbox kext, as discussed in this
chapter) and the appleprofile namespace (registered by the AppleProfileFamily kexts — as dis-
cussed in Chapter 5, “Process Tracing and Debugging”). The kernel-level perspective of sysctis are
discussed in Chapter 14.

The gamut of sysctl (3) variables ranges from various minor debug variables to other read/write
variables that control entire subsystems. For example, the kernel’s little-known kdebug functional-
ity operates entirely through sysct1 (3) calls. Likewise, commands such as ps (1) and netstat (1)
rely on sysct1 (2) to obtain the list of PIDs and active sockets, respectively, though this could be
achieved by other means, as well.

kqueues

kqueues are a BSD mechanism for kernel event notifications. A kqueue is a descriptor that blocks
until an event of a specific type and category occurs. A user (or kernel) mode process can thus
wait on the descriptor, providing a simple but effective method for synchronization of one or more
processes.

kqueues and their kevents form the basis for asynchronous I/O in the kernel (and enable the POSIX
poll (2)/select (2), accordingly). A kqueue can be constructed in user mode by simply calling the
kqueue (2) system call (#362), with no arguments. Then, the specific events of interest can be speci-
fied using the EV_SET macro, which initializes a struct kevent. Calling the kevent (2) or
kevent64 (2) system calls (#363 or #369, respectively) will set the event filters, and return if they
have been satisfied. The system supports several “predefined” filters, as shown in Table 3-2:

TABLE 3-2: Some of the predefined Event Filters in <sys/event.h>

EVENT FILTER CONSTANT USAGE

EVFILT_MACHPORT Monitors a Mach port or port set and returns if a message has been
received.

EVFILT_PROC Monitors a specified PID for execve (2), exit (2), fork (2),wait (2), or
signals.

EVFILT_READ For files, returns when the file pointer is not at EOF.

For sockets, pipes, and FIFOs, returns when there is data to read (such as
select (2)).

continues



58 | CHAPTER3 ON THE SHOULDERS OF GIANTS: OS X AND I0S TECHNOLOGIES

TABLE 3-2 (continued)

EVENT FILTER CONSTANT

EVFILT_ SESSION

EVFILT_SIGNAL

EVFILT TIMER

EVFILT WRITE

EVFILT_ VM

EVFILT_VNODE

USAGE
Monitors an audit session (described in the next section).

Monitors a specific signal to the process, even if the signal is currently
ignored by the process.

A periodic timer with up to nanosecond resolution.

For files, unsupported.
For sockets, pipes, and FIFOs, returns when data may be written. Returns
buffer space available in event data.

Virtual memory Notifications. Used for memory pressure handling (discussed
in Chapter 14).

Filters file (vnode)-specific system calls such as rename (2), delete (2),
unlink (2), link (2), and others.

Listing 3-1 demonstrates using kevents to track process-level events on a particular PID:

LISTING 3-1: Using kqueues and kevents to filter process events

void main (int argc,

{

char **argv)

pid t pid; // PID to monitor

int kq; // The kqueue file descriptor
int rc; // collecting return values
int done;

struct kevent ke;

pid = atoi(argv[1l]);

kq = kqueue() ;

if (kg == -1) { perror("kgqueue"); exit(2); }

// Set process fork/exec notifications

EV_SET (&ke, pid, EVFILT PROC, EV_ADD,
NOTE EXIT | NOTE FORK | NOTE EXEC , 0,

// Register event

rc = kevent (kq, &ke, 1, NULL, 0, NULL);
if (rc < 0) { perror ("kevent"); exit (3);

done = 0;
while (!done) {

NULL) ;

}



BSD Heirlooms | 59

memset (&ke, '\0', sizeof (struct kevent)) ;

// This blocks until an event matching the filter occurs
rc = kevent (kq, NULL, 0, &ke, 1, NULL);
if (rc < 0) { perror ("kevent"); exit (4); }

if (ke.fflags & NOTE_FORK)
printf ("PID %d fork()ed\n", ke.ident);

if (ke.fflags & NOTE_EXEC)
printf ("pid %d has exec()ed\n", ke.ident) ;

if (ke.fflags & NOTE_EXIT)

{
printf ("pid %d has exited\n", ke.ident);
done++;

}

} // end while

Auditing (OS X)

OS X contains an implementation of the Basic Security Module, or BSM. This auditing subsystem
originated in Solaris, but has since been ported into numerous UN*X implementations (as Open-
BSM), among them OS X. This subsystem is useful for tracking user and process actions, though
may be costly in terms of disk space and overall performance. It is, therefore, of value in OS X, but
less so on a mobile system such as iOS, which is why it is not enabled in the latter.

Auditing, as the security-sensitive operation that it is, must be performed at the kernel level. In BSD
and other UN*X flavors the kernel component of auditing communicates with user space via a spe-
cial character pseudo-device (for example, /dev/audit). In OS X, however, auditing is implemented
over Mach messages.

The Administrator’s View

Auditing is a self-contained subsystem in OS X. The main user-mode component is the auditd (8),
a daemon that is started on demand by launchd (8), unless disabled (in the com.apple.auditd
.plist file). The daemon does not actually write the audit log records; those are done directly by
the kernel itself. The daemon does control the kernel component, however, and so he who controls
the daemon controls auditing. To do so, the administrator can use the audit (8) command, which
can initialize (-i) or terminate (-t) auditing, start a new log (-n), or expire (-e) old logs. Normally,
auditd(8) times out after 60 seconds of inactivity (as specified in its plist Timeout key). Just
because auditd (8) is not running, therefore, implies nothing about the state of auditing.

Audit logs, unless otherwise stated, are collected in /var/audit, following a naming convention of
start_time.stop time, with the timestamp accurate to the second. Logs are continuously gener-
ated, so (aside from crashes and reboots), the stop time of a log is also a start time of its succes-
sor. The latest log can be easily spotted by its stop time of not terminated, or a symbolic link to
current, as shown in Output 3-1.



60 | CHAPTER3 ON THE SHOULDERS OF GIANTS: OS X AND I0S TECHNOLOGIES

OUTPUT 3-1: Displaying logs in the /var/audit directory

root@Ergo (/)# ls -1d /var/audit
drwx------ 3247 root wheel 110398 Mar 19 17:44 /var/audit

root@Ergo (/)# ls -1 /var/audit

-r--r----- 1 root wheel 749 Mar 19 16:33 20120319203254.20120319203327
-r--r----- 1 root wheel 337 Mar 19 17:44 20120319203327.20120319214427
-r--r----- 1 root wheel 0 Mar 19 17:44 20120319214427.not_terminated
lrwxr-xr-x 1 root wheel 40 Mar 19 17:44 current ->

/var/audit/20120319214427.not_terminated

The audit logs are in a compact binary format, which can be deciphered using the praudit (1) com-
mand. This command can print the records in a variety of human- and machine-readable formats,
such as the default CSV or the more elegant XML (using -x). To enable searching through audit
records, the auditreduce (1) command may be used with an array of switches to filter records by
event type (-m), object access (-o), specific UID (-e), and more.

Because logs are cycled so frequently, a special character device, /dev/auditpipe, exists to allow
user-mode programs to access the audit records in real time. The praudit (1) command can there-
fore be used directly on /dev/auditpipe, which makes it especially useful for shell scripts. As a
quick experiment, try doing so, then locking your screen saver, and authenticating to unlock it. You
should see something like Output 3-2.

OUTPUT 3-2: Using praudit(1) on the audit pipe for real-time events

root@Ergo (/)# praudit /dev/auditpipe

header,106,11,user authentication,0,Tue Mar 20 02:26:01 2012, + 180 msec
subject, root, morpheus, wheel, root ,wheel,38,0,0,0.0.0.0
text,Authentication for user <morpheus>

return, success, 0

trailer, 106

Auditing must be performed at the time of the action, and can therefore have a noticeable impact on
system performance as well as disk space. The administrator can therefore tweak auditing using sev-
eral files, all in /etc/security, listed in Table 3-3.

TABLE 3-3: Files in /etc/security Used to Control Audit Policy

AUDIT CONTROL FILE USED FOR

audit_class Maps event bitmasks to human-readable names, and to the mnemonic classes
used in other files for events.

audit_control Specifies audit policy and log housekeeping.



BSD Heirlooms | 61

AUDIT CONTROL FILE USED FOR
audit_event Maps event identifiers to mnemonic class and human-readable name.

audit_user Selectively enables/disables auditing of specific mnemonic event classes on a
per-user basis. The record format is:
Username:classes_audited:classes not audited

audit_warn A shell script to execute on warnings from the audit daemon (for example,

“audit space low (< 5% free) on audit log file-system”). Usually passes the mes-
sage to logger (1).

The Programmer’s View

If auditing is enabled, XNU dedicates system calls #350 through #359 to enable and control
auditing, as shown in Table 3-4 (all return the standard int return value of a system call: 0 on

success, or -1 and set errno on error). On i0S, these calls are merely stubs returning —ENOSYS
(0x4E).

TABLE 3-4: System Calls Used for Auditing in OS X, BSM-Compliant

# SYSTEM CALL USED TO

350 audit (const char *rec, Commit an audit record to the log.

u_int length);
359 auditctl (char *path); Open a new audit log in file specified by path (similar to
audit -n)
351 auditon (int cmd, Configure audit parameters. Accepts various A_* com-
void *data, mands from <bsm/audit.h>.

u_int length);

355 getaudit Get or set audit session state. The auditinfo tis
(auditinfo t *ainfo); defined as

356 setaudit struct auditinfo
(auditinfo t *ainfo); au_id_t ai_auid;

au mask t ai mask;
au_tid t ai_ termid;
au_asid t ai_asid; };

These system calls are likely deprecated in Mountain
Lion.

continues



62

CHAPTER 3 ON THE SHOULDERS OF GIANTS: OS X AND I0S TECHNOLOGIES

TABLE 3-4 (continued)

# SYSTEM CALL USED TO
357 getaudit_addr As getaudit or setaudit, but with support for >32-bit
(auditinfo_addr t *aa, termids, and an additional 64-bit ai_flags field.

u_int length) ;

358 setaudit addr
(auditinfo_addr t *aa,
u_int length);

353 getauid(au_id_t *auid); Get or set the audit session ID.

354 setauid(au_id t *auid);

Apple deviates from the BSM standard and enhances it with three additional proprietary system
calls, tying the subsystem to the underlying Mach system. Unlike the standard calls, these are
undocumented save for their open source implementation, as shown in Table 3-5.

TABLE 3-5: Apple-Specific System Calls Used for Auditing

# SYSTEM CALL USED FOR
428 mach port_name t Returns a Mach port (send) for the cur-
audit session self (void) ; rent audit session
429 audit_session_ join Joins the audit session for the given
(mach_port name t port) ; Mach port
432 audit_session port(au_asid_t asid, New in Lion and relocates fileport
user_addr_t portnamep) ; makeport. Obtains the Mach port

(send) for the given audit session asid.

Auditing is revisited from the kernel perspective in Chapter 14.

Mandatory Access Control

FreeBSD 5.x was the first to introduce a powerful security feature known as Mandatory Access
Control (MAC). This feature, originally part of Trusted BSD!" allows for a much more fine-grained
security model, which enhances the rather crude UN*X model by adding support for object-level
security: limiting access to certain files or resources (sockets, IPC, and so on) by specific processes,
not just by permissions. In this way, for example, a specific app could be limited so as not to access
the user’s private data, or certain websites.

A key concept in MAC is that of a label, which corresponds to a predefined classification, which
can apply to a set of files or other objects in the system (another way to think of this is as sensitivity
tags applied to dossiers in spy movies — “Unclassified,” “Confidential,” “Top Secret,” etc). MAC
denies access to any object which does not comply with the label (Sun’s swan song, Trusted Solaris,
actually made such objects invisible!). OS X extends this further to encompass security policies (for
example “No network”) that can then be applied to various operations, not just objects.



BSD Heirlooms | 63

MAC is a framework — not in the OS X sense, but in the architectural one: it provides a solid
foundation into which additional components, which do not necessarily have to be part of the ker-
nel proper, may “plug-in” to control system security. By registering with MAC, specialized kernel
extensions can assume responsibility for the enforcement of security policies. From the kernel’s side,
callouts to MAC are inserted into the various system call implementations, so that each system call
must first pass MAC validation, prior to actually servicing the user-mode request. These callouts are
only invoked if the kernel is compiled with MAC support, which is on by default in both OS X and

i0S. Even then, the callouts return 0 (approving the operation) unless a policy module (specialized
kernel extension) has registered for them, and provided its own alternate authorization logic. The
MAC layer itself makes no decisions — it calls on the registered policy modules to do so.

The kernel additionally offers dedicated MAC system calls. These are shown in Table 3-6. Most
match those of FreeBSD’s, while a few are Apple extensions (as noted by the shaded rows).

TABLE 3-6: MAC-Specific System Calls

# SYSTEM CALL USED FOR
380 int _ mac_execve(char *fname, As execve (2), but executes
char **argp, the process under a given MAC
char **envp, label
struct mac *mac_p) ;
381 int _ mac_syscall (char *policy, MAC-enabled Wrapper for
int call, indirect syscall.
user addr t arg);
382 int mac_[get|set] file Get or set label associated with
383 (char *path p, a pathname
struct mac *mac_p) ;
384 int _ mac_[get|set] link Get or set label associated with
385 (char *path p, struct mac *mac_p); a link
386 int _ mac_[get|set] proc(struct mac Retrieve or set the label of the
387 *mac_p) ; current process
388 int __mac_[get|set]_£d Get or set label associated with
389 (int £4, a file descriptor. This can be a
struct mac *mac_p) ; file, but also a socket or a FIFO
390 int _ mac_get pid(pid_t pid, Get the label of another pro-
struct mac *mac_p) ; cess, specified by PID
391 int _ mac_get_lcid(pid t lcid, Get login context ID
struct mac *mac_p) ;
392 int _ mac_[get|set]_lctx Get or set login context ID
393 (struct mac *mac_p) ;

continues



64

CHAPTER 3 ON THE SHOULDERS OF GIANTS: OS X AND I0S TECHNOLOGIES

TABLE 3-6 (continued)

# SYSTEM CALL USED FOR

424 int _ mac_mount (char *type, MAC enabled mount (2)
char *path, replacement
int flags,

caddr_t data,
struct mac *mac_p) ;

425 int _ mac_get mount (char *path, Get Mount point label
struct mac *mac_p); information

426 int _ mac_getfsstat (user_addr_t buf, MAC enabled getfsstat (2)
int bufsize, replacement

user_addr_t mac,
int macsize,
int flags) ;

The administrator can control enforcement of MAC policies on the various subsystems using sys-
ctl(8): MAC dynamically registers and exposes the top-level security MIB, which contain
enforcement flags, as shown in Output 3-3:

OUTPUT 3-3: The security sysctl MIBs exposed by MAC, on Lion

morpheus@Minion (/)$ sysctl security

security.mac.sandbox.sentinel: .sb-4bde45ee

security.mac.gtn.sandbox enforce: 1

security.mac.max_slots: 7

security.mac.labelvnodes: 0

security.mac.mmap revocation: 0 # Revoke mmap access to files on subject relabel
security.mac.mmap revocation via cow: 0 # Revoke mmap access to files via copy on write
security.mac.device enforce: 1

security.mac.file _enforce: 0

security.mac.iokit_enforce: 0

security.mac.pipe_enforce: 1

security.mac.posixsem enforce: 1 # Posix semaphores

security.mac.posixshm enforce: 1 Posix shared memory
security.mac.proc_enforce: 1 # Process operation (including code signing)
security.mac.socket enforce: 1

security.mac.system enforce: 1

security.mac.sysvmsg_enforce: 1

security.mac.sysvsem enforce: 1

security.mac.sysvshm enforce: 1

security.mac.vm enforce: 1

security.mac.vnode enforce: 1 # VFS VNode operations (including code signing)

+*

The proc_enforce and vnode_enforce MIBS are the ones which control, among other things, code
signing on i0S. A well known workaround for code signing on jailbroken devices was to manually
set both to 0 (i.e. disable their enforcement). Apple made those two settings read only in iOS 4.3 and
later, but kernel patching and other methods can still work around this.



OS X- and iOS-Specific Technologies | 65

MAC provides the substrate for OS X’s Compartmentalization (“Sandboxing”) and iOS’s entitle-
ments. Both are unique to OS X and iOS, and are described later in this chapter under “OS X and
i0S Security Mechanisms.” The kernel perspective of MAC (including an in-depth discussion of its
use in OS X and iOS) is described in Chapter 14.

OS X- AND 10S-SPECIFIC TECHNOLOGIES

Mac OS has, over the years, introduced several avant-garde technologies, some of which still remain
proprietary. The next section discusses these technologies, particularly the ones that are of interest
from an operating-system perspective.

User and Group Management (OS X)

Whereas other UN*X traditionally relies on the age-old password files (/etc/passwd and, com-
monly /etc/shadow, used for the password hashes), which are still used in single-user mode (and
on i0S), with /etc/master.passwd used as the shadow file. In all other cases, however, OS X
deprecates them in favor of its own directory service: DirectoryService (8) on Snow Leopard,
which has been renamed to opendirectoryd(8) as of Lion. The daemon’s new name reflects its
nature: It is an implementation of the OpenLDAP project. Using a standard protocol such as the
Lightweight Directory Access Protocol (LDAP) enables integration with non-Apple directory ser-
vices as well, such as Microsoft’s Active Directory. (Despite the “lightweight” moniker, LDAP is
a lengthy Internet standard covered by RFCs 4510 through 4519. It is a simplified version of DAP,
which is an OSI standard).

The directory service maintains more than just the users and groups: It holds many other aspects of
system configuration, as is discussed under “System Configuration” later in the chapter.

To interface with the daemon, OS X supplies a command line utility called dsc1 (8). You can use
this tool, among other things, to display the users and groups on the system. If you try dscl

«w »

-read /Users/username on yourself (the “.” is used to denote the default directory, which is also
accessible as /Local/Default ), you should see something similar to Output 3-4:

OUTPUT 3-4: Running dscl(8) to read user details from the local directory
morpheus@ergo (/)$ dscl . -read /Users/ “whoami ~

dsAttrTypeNative: writers hint: morpheus

dsAttrTypeNative: writers_ jpegphoto: morpheus

dsAttrTypeNative: writers LinkedIdentity: morpheus

dsAttrTypeNative: writers passwd: morpheus

dsAttrTypeNative: writers_picture: morpheus

dsAttrTypeNative: writers realname: morpheus

dsAttrTypeNative: writers UserCertificate: morpheus

AppleMetaNodeLocation: /Local/Default

AuthenticationAuthority: ;ShadowHash; ;Kerberosv5;;morpheus@LKDC:SHA1.3023D12469030DE9DB
FE2C2621A01C121615DC80; LKDC:SHA1.3013D12469030DESDBFD2C2621A07C123615DC70;

AuthenticationHint:
GeneratedUID: 11E111F7-910C-2410-9BAB-ABB20FE3DF2A
JPEGPhoto:

ffdsffe0d 00104a46 49460001 01000001 00010000 ffe20238 4943435f 50524f46 494c4500..

continues


mailto:morpheus@LKDC:SHA1.3023D12469030DE9DB

66 | CHAPTER3 ON THE SHOULDERS OF GIANTS: OS X AND IOS TECHNOLOGIES

OUTPUT 3-4 (continued)

User photo in JPEG format
NFSHomeDirectory: /Users/morpheus
Password: ****x*%%
PasswordPolicyOptions:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"

"http://www.apple.com/DTDs/

PropertyList-1.0.dtd">

<plist version="1.0">

<dict>
<key>failedLoginCount</key>
<integer>0</integers>
<key>failedLoginTimestamp</key>
<date>2001-01-01T00:00:00Z</date>
<key>lastLoginTimestamp</key>
<date>2001-01-01T00:00:00Z</date>
<key>passwordTimestamp</key>
<date>2011-09-24T20:23:03Z</date>

</dict>

</plist>

Picture:

/Library/User Pictures/Fun/Smack.tif

PrimaryGroupID: 20

RealName: Me

RecordName: morpheus

RecordType: dsRecTypeStandard:Users

UniqueID: 501

UserShell: /bin/zsh

You can also use the dscl (8) tool to update the directory and create new users. The shell script in
Listing 3-2 demonstrates the implementation of a command-line adduser, which OS X does not
provide.

LISTING 3-2: A script to perform the function of adduser (to be run as root)

#!/bin/bash

# Get username, ID and full name field as arguments from command line
USER=$1

ID=$2

FULLNAME=$3

# Create the user node

dscl . -create /Users/S$USER

# Set default shell to zsh

dscl . -create /Users/$USER UserShell /bin/zsh

# Set GECOS (full name for finger)

dscl . -create /Users/$USER RealName "S$FULLNAME"

dscl . -create /Users/$USER UniqueID $ID

# Assign user to gid of localaccounts

dscl . -create /Users/$USER PrimaryGroupID 61

# Set home dir (~$USER)

dscl . -create /Users/$USER NFSHomeDirectory /Users/S$USER


http://www.apple.com/DTDs/PropertyList-1.0.dtd
http://www.apple.com/DTDs/PropertyList-1.0.dtd

OS X- and iOS-Specific Technologies | 67

# Make sure home directory is valid, and owned by the user
mkdir /Users/SUSER

chown $USER /Users/S$USER

# Optional: Set the password.

dscl . -passwd /Users/$USER "changeme"
# Optional: Add to admin group

dscl . -append /Groups/admin GroupMembership S$USER

y Omne of Lion’s early security vulnerabilities was that dscl (8) could be used to

change passwords of users without knowing their existing passwords, even as a
non-root user. If you keep your OS X constantly updated, chances are this issue
has been resolved by a security update.

The standard UNIX utilities of chfn (1) and chsh (1), which enable the modi-
fication of the full name and shell for a given user, respectively, are implemented
transparently over directory services by launching the default editor to allow
root to type in the fields, rather than bother with dscl (8) directly. Most admin-
istrators, of course, probably use the system configuration GUI — a much safer
option, though not as scalable when one needs to create more than a few users.

System Configuration

Much like it deprecates /etc user database files, OS X does away with most other configuration
files, which are traditionally used in UN*X as the system “registry.”

To maintain system configuration, OS X and iOS use a specialized daemon: — configd (8). This
daemon can load additional loadable bundles (“plug-ins”) located in the /System/Library/
SystemConfiguration/ directory, which include IP and IPv6 configuration, logging, and other
bundles. The average user, of course, is blissfully unaware of this, as the System Preferences applica-
tion can be used as a graphical front-end to all the configuration tasks.

Command line-oriented power users can employ a specialized tool, scutil (8) in order to navigate

and query the system configuration. This interactive utility can list and show keys as shown in the
following code snippet:

root@Pad

> list
subKey
subKey
subKey
subKey
subKey
subKey
subKey
subKey
subKey

ishah (

[50] =

U u
N -
won

~)# scutil

Plugin:IPConfiguration
Plugin:InterfaceNamer
Setup:

Setup:/

Setup: /Network/Global/IPv4
Setup: /Network/HostNames

com.apple.MobileBluetooth
com.apple.MobileInternetSharing
com.apple.network.identification

> show com.apple.network.identification
<dictionarys> {

Activeldentifiers : <array> {
IPv4 .Router=192.168.1.254;IPv4.RouterHardwareAddress=00:43:a3:£2:81:d9

0



68

CHAPTER 3 ON THE SHOULDERS OF GIANTS: OS X AND I0OS TECHNOLOGIES

PrimaryIPv4Identifier : IPv4.Router=192.168.1.254;IPv4.RouterHardwareAddress=
00:43:a3:£2:81:d9
ServiceIdentifiers : <array> {
0 : 12C4C9CC-7E42-1D2D-ACF6-AAF7FFAF2BFC
}
}

The public systemConfiguration.framework allows programmatic access to the system configura-
tion. Commands such as OS X’s pmset (1), which configures power management settings, link with
this framework. The framework exists in OS X and iOS, so the program shown in Listing 3-3 can
compile and run on both.

LISTING 3-3: Using the SystemConfiguration APIs to query values

#include <SystemConfiguration/SCPreferences.h>
// Also implicitly uses CoreFoundation/CoreFoundation.h

void dumpDict (CFDictionaryRef dict) {
// Quick and dirty way of dumping a dictionary as XML
CFDataRef xml = CFPropertyListCreateXMLData (kCFAllocatorDefault,
(CFPropertyListRef)dict) ;
if (xml) |
write(l, CFDataGetBytePtr(xml), CFDataGetLength (xml)) ;
CFRelease (xml) ;

void main (int argc, char **argv)
{
CFStringRef myName = CFSTR("com.technologeeks.SystemConfigurationTest") ;
CFArrayRef keyList;
SCPreferencesRef prefs = NULL;
char *val;
CFIndex 1i;
CFDictionaryRef global;

// Open a preferences session

prefs = SCPreferencesCreate (NULL, // CFAllocatorRef allocator,
myName, // CFStringRef name,
NULL) ; // CFStringRef prefsID

if (!lprefs) { fprintf (stderr,"SCPreferencesCreate"); exit(1); }

// retrieve preference namespaces
keyList = SCPreferencesCopyKeyList (prefs);

if (lkeyList) { fprintf (stderr,"CopyKeyList failed\n"); exit(2);}

// dump 'em
for (i = 0; i < CFArrayGetCount (keyList); i++) {
dumpDict (SCPreferencesGetValue (prefs, CFArrayGetValueAtIndex (keyList, 1i)));

}



OS X- and iOS-Specific Technologies | 69

The dictionaries dumped by this program are naturally maintained in plist files. The default location for
these dictionaries is in /Library/Preferences/SystemConfiguration. If you compare the output of
this program with that of the preferences.plist file from that directory, you will see it matches.

Experiment: Using scutil(8) for Network Notifications

You can also use the scutil (8) command to watch for system configuration changes, as demon-
strated in the following experiment:

1. Using scutil(8), set a watch on the state of the Airport interface (if you have one, other-
wise the primary Ethernet interface will do):

> n.add State:/Network/Interface/en0/AirPort
> n.watch
# verify the notification was added
> n.list
notifier key [0] = State:/Network/Interface/en0/AirPort
2. Disable Airport (or unplug your network cable). You should see notification messages break

through the scutil prompt:

notification callback (store address = 0x10010al50).
changed key [0] = State:/Network/Interface/enO/AirPort

notification callback (store address = 0x10010al50).
changed key [0] = State:/Network/Interface/en0/AirPort

notification callback (store address = 0x10010al50).
changed key [0] = State:/Network/Interface/en0/AirPort

3.  Use the “show” subcommand to see the changed key. In this case, the power status value has
been changed:

> show State:/Network/Interface/en0/AirPort
<dictionary> {
Power Status : 0
SecureIBSSEnabled : FALSE
BSSID : <data> 0x0013d37£84d9
Busy : FALSE
SSID STR : AAAA
SSID : <data> 0x41414141
CHANNEL : <dictionary> {
CHANNEL : 11
CHANNEL FLAGS : 10
}
}

In order to watch for changes programmatically, you can use the SCDynamicStore class. Because
obtaining the network connectivity status is a common action, Apple provides the far simpler
SCNetworkReachability class. Apple Developer also provides sample code demonstrating the usage
of the class.!”

Logging
With the move to a BSD-based platform, OS X also inherited support for the traditional UNIX Sys-
tem log. This support (detailed in Apple Technical Article TA261178!) provides the full compatibility
with the ages-old mechanism commonly referred to as syslogd(8).



70 | CHAPTER3 ON THE SHOULDERS OF GIANTS: OS X AND IOS TECHNOLOGIES

The syslog mechanism is well detailed in many other references (including the aforementioned
technical article). In a nutshell, it handles textual messages, which are classified by a message facil-
ity and severity. The facility is the class of the reporting element: essentially, the message source.
The various UNIX subsystems (mail, printing, cron, and so on) all have their own facilities, as does
the kernel (Loc_XERN, or “kern”). Severities range from 1.0G_DEBUG and L.OG_INFO (“About to open
file...”), through Loc_ERR (“Unable to open file”), Log_crRIT (“Is that a bad sector?”), LoG_ALERT
(“Hey, where’s the disk?!”), and finally, to L.oc_EMERG (“Meltdown imminent!”). By using the con-
figuration file /etc/syslog.conf, the administrator can decide on actions to take, corresponding to
facility/severity combinations. Actions include the following:

> Message certain usernames specified

> Log to files or devices (specified as a full path, starting with “/” so as to disambiguate files
from usernames)

> Pipe to commands (| /path/to/program)

>  Send to a network host (@loghost)

Programmers interface with syslog using the syslog(3) API, consisting of a call to openlog ()
(specifying their name, facility, and other options), through syslog (), which logs the messages with
a given priority. The syslog daemon intercepts the messages through a UNIX domain socket (tradi-
tionally /dev/1log, though in OS X this has been changed to /var/run/syslog).

OS X 10.4 (Tiger) introduced a new model for logging called the Apple System Log, or ASL. This
new architecture (which is also used in i0S) aims to provide more flexibility than is provided by
syslog. ASL is modeled after syslog, with the same levels and severities, but allows more features,
such as filtering and searching not offered by syslog.

ASL is modular in that it simultaneously offers four logging interfaces:

> The backward-compatible syslogd: Referred to as BSD logging, ASL can be configured to
accept syslog messages (using -bsd_in 1), and process them according to /etc/syslog.
conf (using -bsd _out 1). In OS X, these are enabled by default, but 70t so 0n iOS. The
messages, as in syslogd, come in through the /var/run/syslog socket.

> The network protocol syslogd: On the well-known UDP port 514, this protocol may
be enabled by —udp_in 1. It is actually enabled by default, but ASL/syslogd relies on
launchd (8) for its socket handling, and therefore the socket is not active by default.

> The kernel logging interface: Enabled (the default) by ~-klog in 1, this interface accepts ker-
nel messages from /dev/1log (a character device, incorrectly specified in the documentation
as a UNIX domain socket).

> The new ASL interface: By using -as1 in 1, which is naturally enabled by default, ASL mes-
sages can be obtained from clients of the as1 (3) APl using asl log(3) and friends. These
messages come in through the /var/run/asl input socket, and are of a different format
than the syslogd ones (hence the need for two separate sockets).

ASL logs are collected in /var/log/asl. They are managed (rotated/deleted) by the asimanager (8)
command, which is automatically run by 1aunchd (from com.apple.aslmanager.plist). You may
also run the command manually.



OS X- and iOS-Specific Technologies | 71

ASL logs, unlike syslog files, are binary, not text. This makes them somewhat smaller in size, but
not as grep (1) -friendly as syslog’. Apple includes the syslog (1) command in OS X to display
and view logs, as well as perform searches and filters.

Experiment: Enabling System Logging on a Jailbroken iOS

Apple has intentionally disabled the legacy BSD syslog interface, but re-enabling it is a fairly simple
matter for the root user via a few simple steps:

1.  Create an /etc/syslog.conf file. The easiest way to create a valid file is to simply copy a
file from an OS X installation. The default syslog.conf looks something like Listing 3-4:

LISTING 3-4: A default /etc/syslog.conf, from an OS X system

* notice;authpriv, remoteauth, ftp,install, internal.none /var/log/system.log
kern.* /var/log/kernel.log

# Send messages normally sent to the console also to the serial port.
# To stop messages from being sent out the serial port, comment out this line.
#*.err;kern. *;auth.notice;authpriv, remoteauth.none;mail.crit /dev/tty.serial

# The authpriv log file should be restricted access; these
# messages shouldn't go to terminals or publically-readable

# files.

auth.info;authpriv.*;remoteauth.crit /var/log/secure.log
lpr.info /var/log/lpr.log

mail.x* /var/log/mail.log

ftp.* /var/log/ftp.log
install.* /var/log/install.log
install.* @127.0.0.1:32376
localo.* /var/log/appfirewall.log
locall.* /var/log/ipfw.log
*.emerg *

2. Enable the -bsd_out switch for syslogd. The syslogd process is started both in iOS and
OS X by 1aunchd (8). To change its startup parameters, you must modify its property list
file. This file is aptly named com.apple.syslogd.plist, and you can find it in the standard
locaﬁonforaﬂlaundldamnons:/System/Library/LaunchDaemon&

The file, however, like all plists on iOS, is in binary form. Copy the file to /tmp and use
plutil -convert xmll to change it to the more readable XML form. After it is in XML,
just edit it so that the ProgramArguments key contains -bsd_out 1. Because the key
expects an array, the arguments have to be written separately, as follows:

<key>ProgramArguments</key>
<arrays>
<string>/usr/sbin/syslogd</string>
<string>-bsd out</string>
<string>l</string>
</array>

After this is done, convert the file back to the binary format (plutil -convert binaryl
should do the trick), and copy it back to /System/Library/LaunchDaemons.


mailto:@127.0.0.1:32376

72 | CHAPTER3 ON THE SHOULDERS OF GIANTS: OS X AND I0S TECHNOLOGIES

Restart launchd, and then syslogd. A kill -HUP 1 will take care of 1aunchd, and — after
you find the process ID of syslogd — a kill ~-TERM on its PID will cause 1aunchd to restart it,
this time with the -bsd_out 1 argument, as desired. A ps aux will verify that is indeed the
case, as will the log files in /var/log.

Apple Events and AppleScript

One of OS X’s oft-overlooked, though truly powerful features, lies in its scripting capabilities.
AppleScript has its origins traced back to OS 7(!) and a language called HyperCard. It has since
evolved considerably, and become the all-powerful mechanism behind the osascript (1) command
and the friendly (but neglected) Automator.

In a somewhat similar wa